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Abstract: Distribution of twin primes is a long stand-
ing problem in the number theory. As of present, it is
not known if the set of twin primes is finite, the problem
known as the twin primes conjecture. An analysis of prime
modulo cycles, or prime harmonics in this work allowed
to define approaches in estimation of twin prime distri-
butions with good accuracy of approximation and estab-
lish constraints on gaps between consecutive twin prime
pairs. With technical effort, the approach and the bounds
obtained in this work can prove sufficient to establish that
the next twin prime exists within the estimated distance,
leading to the conclusion that the set of twin primes is un-
limited and reducing the infinitely repeating distance be-
tween consecutive primes to two. The methods developed
in the study can be instrumental in future analysis of prime
distributions.


1 Problem Statement


Whereas many results were obtained in distribution of
prime numbers, culminating in Prime Number Therem
[1] and numerous bounds on the distance between primes
[2, 3, 4], less is known about twin primes i.e., pairs of con-
secutive odd primes greater than 3. At this time it is not
known whether the set of twin primes is finite or infinite,
the latter being the statement of the twin prime conjec-
ture or Poligniac conjecture for n = 2 [5]. A proof of the
conjecture that can be restated as: for a twin prime pair
p = p1, p2, there exists a greater pair pn > p; would also
reduce the minimum infinitely repeating distance between
consecutive primes to 2 [6].
In this work we apply methods of modulo analysis to dis-
tribution of twin primes and develop approaches to estima-
tion of the distance between consecutive prime pairs. As
well, methods of numerical analysis were used througout
to illustrate and verify the results of the analysis.


2 Prime Harmonics


2.1 Definitions


We will consider the set of odd positive integers IN1, with
an integer step of 2 separating consecutive elements: xn+1
= xn + 2. In the text that follows, the distances between
numbers and the operations such as addition and substrac-
tion will often be expressed in odd steps of 2. Usually such
cases are clear from the context or indicated explicitly.
For a pair x, p∈ IN1 we will use modulo notation x mod(p)


in the form: 0, p−1, . . . ,2,1 with the value of 0 the highest
in the cycle of length p. Trivially, the positions with the
same value of the modulo p are separated by the minimum
of p odd steps.
For a prime p, the prime harmonic function hp(x) can be
defined on IN1 as the modulo of x by p in the above format:


Definition 1. A single prime harmonic hp(x) is defined for
an odd integer x≥ 1 as:
hp(1) := (p−1)/2
hp(n + 1) := hp(n) - 1, hp(n) > 0
hp(n + 1) := p−1, hp(n) = 0


Clearly, hp(x) = 0≡ p | x.
For an odd n > 1 a prime group of order n is the set of odd
primes in n.


Definition 2. A prime set of order n is the ordered set of
non-trivial odd primes less or equal to n:
G(n) := {p : 1 < p≤ n}


Evidently:
1. The size of a prime set G(n) is given by the prime count-
ing function: card(G(n)) = π(n)−2 [1].
2. If P(n) is the maximum prime of n then G(n) =
G(P(n)).
Hence, if the order n is a prime P(n) = n and G(n) con-
tains odd primes up to, and inclusive of n; whereas for a
composite order, G(n) contians odd primes up to P(n).
For n ∈ IN1 prime harmonics function Hn is defined as the
ordered set of prime harmonics in G(n):


Definition 3. For n,x ∈ IN1 the prime harmonics function
Hn(x) is defined as the ordered set of prime harmonics pk
in G(n): Hn (x)=[hp1(x),hp2(x), . . . ,hpk(x)]


For example, for n = 5, H5(x) is defined for odd x as [
mod3(x), mod5(x) ] with values [2, 0], [1, 4] for x = 5, 7
and so on.


2.2 Harmonic Functions


With the prime harmonics function Hn at an order n it
would be useful to define some cumulative indicators of
the state of harmonics hk in Hn at any position x. This can
be achieved with the cumulative harmonic function Cn(x)
that can be defined as follows:


Definition 4. Cumulative harmonic function of the order
n,Cn(x) is a cumulative value of prime harmonics in Hn(x)







defined as:


Cn(x) : =
m+1, i f hk(x)> m ∀pk ∈ G(n), m≥ 1
1 otherwise, i.e. ∃ pk ∈ G(n) : hpk(x) = 1


where as defined earlier, for harmonics hk we consider
the value of 0 ≡ k. Evidently, Cn(x) indicates the proxim-
ity of x to the next composite number with respect to G(n):
Cn(x) = 1 means that at least one prime harmonic in G(n)
will be at 0 at x+ 1 and thus it must be a composite. On
the contrary, the value of Cn(x) above 2 entails by the def-
inition that neither of the following positions x+ 1, x+ 2
can be composite with respect to G(n) as for any prime
harmonic in Hn , hk(x)≥Cn(x)−2 > 0 that is a necessary
(but not necessarily sufficient) condition for constituting a
twin prime pair.
Clearly, for a given position x the condition of the cumu-
lative harmonic function above becomes sufficient for suf-
ficiently large order of the harmonic function n, namely
such that there is no divisors in x greater than n. Then,
the conditions for a prime, and twin prime pair following
a given position x can be written as:


Cn(x)> 1 : =⇒ p = x+1 : prime


Cn(x)> 2 : =⇒ p = (x+1, x+2) : twin prime
(1)


where as noted, n > x//3 and p > n =⇒ p !| x.
The harmonic of order 3, H3(x) is the first non-trivial
prime harmonic. Trivially, only the zeroes of h3(x), or the
maximums of C3(x) can precede a twin prime pair, and
only the values (0, 2) can precede a prime.


2.3 Prime Traversal


With the prime harmonic functions Hp and Cp defined, one
can point to a simple method for identifying primes and
twin prime pairs in an arbitrary range. Starting at 3 as the
first non-trivial prime, one can calculate C3(3) = 3 mean-
ing that the next two positions at 5 and 7 must be primes
by the cumulative harmonic condition (1) at order 3 and
cannot have higher divisors.
Then, the identified primes are added to the set of known
primes and Cpm calculated at the maximums of h3 in the
range up to 3pm (the highest found prime), producing new
primes and so on.
This observation leads to the lemma of the primeness con-
dition that directly follows from the cumulative harmonic
condition (1).


Lemma 1 (Prime and twin prime condition). If Cp(x) > 1
and x≤ 3p+2 then x+1 or x+2 is a prime.
If Cp(x) > 2 and x ≤ 3p+ 2 then x + 1, x + 2 are twin
primes.


Proof. First let’s assume the order of the group is a prime.
Then Cp(x) > 2 indicates that no prime harmonics up to p
would attain 0 in the next two steps and x+1, x+2 cannot


be divisible by p or any prime below it. Also, they cannot
be divisible by any prime above p either and the proof is
complete for prime orders.
If the order is composite, then Cp(x) condition still means
that the pair following x cannot be divisible by any prime
under p. And because it cannot be divisible by any prime
above p, the proof is complete for all cases.
The condition for primes can be proven similarly.


The bound on the range of x in the lemma will be re-
ferred to as ”the compliteness condition”, as it is sufficient
for the value of Cp(x) to indicate a true prime or twin prime
pair. As can be seen immediately, it can actually be ex-
tended inclusive to 3 pnext −1, the next prime after p, that
however, may not be known precisely though a number of
strong bounds exist [2]-[4].
Based on this result we will refer to positions for which
the conditions of harmonic function Cp are satisfied but
not necessarily the completeness condition as ”the candi-
dates” in contrast to genuine primes and twin prime pairs
for which both harmonic and completeness conditions are
satisfied.
The diagram in Fig.1 provides an illustration of the regions
of distribution of the candidates vs genuine twin primes in
Lemma 1.


Figure 1: Prime and twin prime conditions


Though elementary, the lemma shows that the ”primeness”
of any x is controlled entirely by its first prime harmonics
at x/3 i.e. the harmonics in the prime set G(x//3). The
values of Cp thus mark prime and twin-prime candidates
that become primes and twin prime pairs if and when the
completeness condition is satisfied. Further in the text, the
positions with values of Cp that are the necessary condi-
tion for prime and twin prime pair will be referred to as
p, t p-candidates of order p respectively:


Cp(x)> 2 : tp-candidate at order p


Cp(x)> 1 : p-candidate at order p


In the rest of this work the focus will be on twin prime dis-
tributions and refer to tp-candidates as candidates. A triv-
ial observation was already mentioned that a tp-candidate
of any order ck must be a maximum of h3 harmonic.







2.4 Prime Set Cycle


When a new prime p is added to a lower order prime set,
the change in Hp and Cp is controlled by two factors: the
values of the lower prime group harmonics Hp−1,Cp−1 and
the prime harmonic of order p, hp. The complete combi-
nation of these values can be described by a cycle Kp with
the length of L(p) = p×L(p− 1) = p# (the primorial of
p) after which the harmonics of Hp−1 and hp will reach the
same state.
Evidently, prime set cycles must be closely related to
cyclic groups of prime and composite orders; this relation
will be explored in another work.
An essential observation that follows immediately is that
for an order p that is sufficiently large, the position of p in
its prime set cycle will be very near its center, in the sense
that the ratio of the distance from the center of Kp to p to
the length of Kp tends to zero with p.
Indeed, as seen above, the length of Kp, Lp being p#
whereas its end marked by the maximum conditions of
Kp−1 and hp achieved at position Zp = p L(p−1) = p#�
p and:


p/Zp =
1


(p−1)#
→ 0 (2)


For example, for p = 11, the the length of the cycle L11 is
1155, and p is less than 1% of the ”radius” of C11 from the
center.
It is straightforward to estimate the number of prime and
twin prime candidates Rp, Rt (p) in a p-set cycle. Indeed,
given that any combination of Hp−1 values and p-harmonic
will happen exactly once in the p-cycle, one immediately
derives:


Rp(p) = (p−1) Rp(p−1) =
p


∏
prime m=3


(m−1)


Rt(p) = (p−2) Rt(p−1) =
p


∏
prime m=3


(m−2)
(3)


where m are the members of Gp.The analysis that follows
will focus on twin prime pairs and R(p) would signify the
number of twin prime candidates in the prime set cycle of
Gp.
From (2) and (3) one can easily obtain the density of t p-
candidates in a p-cycle as the number of candidates by its
length:


d(p) = R(p)/Lp =
p


∏
prime m=3


(1− 2
m
) (4)


but of greater interest would be the number of candi-
dates within a range of length p that is given by dr(p) =
p d(p) = R(p) / Lp−1. As is easy to see, dr(19) ∼ 1.5 and
increases monotonously with p.
Let’s note as well that the reciprocal of dr has a clear mean-
ing as the average gap g(p) in the cycle of order p, relative
to p.
Then, from above and Mertens’s second theorem [7]
the average density of candidates can be estimated as


∝ p/log2 p, and the average gap size in a prime set cycle
of order p, as:


g(p)/p ∝
log2 p


p
(5)


i.e. that the average gap between twin prime candidates in
Cp relative to p must tend to 0 as p increases.
One may note that Lemma 1 and the estimate in (5) offer
a statistical hint for the validity of the twin prime conjec-
ture. Indeed, if the gaps were distributed uniformly, at cer-
tain order p the average gap between the candidates would
decrease to a value that is small enough value to satisfy
the completeness condition of Lemma 1 that is sufficient
to make them a real twin prime pair.
Of course, there’s no reason to expect that tje uniformity
of gap distributions would hold at higher prime orders and
more detailed analysis of gap distributions at arbitrary or-
der is needed.


3 Gap Distributions


In this section we will look at the distribution of gaps be-
tween given values of Cp(x), such as those that define tp-
candidates, Section 2.3 in a general prime group cycle.
Some preliminary notes:
We will consider the upper, i.e. the positive half of the
prime set cycle of an arbitrary order p with the center po-
sition, in odd steps, at −1, so that the integer value of 1 is
one odd step from the center of the cycle and so on. The
positions of gaps and intervals in this section will be in-
dicated in odd steps relative to the center position unless
stated otherwise.


Definition 5. A gap distribution of order p is defined as
an ordered set of gaps between consecutive tp-candidates
of the order: Dp = { gk(p) } = { t pk+1(p)− t pk(p) }


Clearly, with a gap distribution Dp the positions of all
tp-candidates of the given order can be identified by se-
quential summing of gaps.
As can be seen immediately, in the first prime group of or-
der 3 the distribution is uniform, with the maximum gap
same as minimum, and the length of the cycle, D3 = [ 3
]. As outlined above, the first maximum of C3 occurs at
the odd position 2 from the center (that is equal to inte-
ger value 3), and every L3 = 3 steps thereupon. Clearly,
only the maxima of C3 can precede tp-candidates, with the
obvious conclusion that all gaps in any order must be di-
visible by 3.
For higher prime orders p, the distribution of gaps will
be controlled by the interaction of the higher p-harmonic
with the cumulative harmonic function of the previous or-
der Cp−1 that defines the gap distribution Dp−1. If at the
position of a certain Cp−1 candidate ck hp(c)≤ 2, then the
following pair (x + 1, x + 2) cannot be twin prime and the
candidate at order p− 1 is “erased” by a collision with a
higher harmonic.
For example, with p = 5, the position of the first maximum







of h5 is at 3, and the collision intervals of 5-harmonic Ik(5)
= (6, 7); (11, 12); (16, 17) and so on, colliding with the
C3 candidates at positions: 11, 17 and so on, and creating
gaps at the positions of collision.
A direct but important in the analysis that follows observa-
tion is that for a harmonic of order p there are exactly two
such ”collision positions” at hp(x) = 1, 2 per each modulo
cycle of hp of length p, so it is worthwhile to introduce
the notion of order-related intervals in the analysis of gap
distributions.


3.1 Intervals


In the analysis of candidate and gap distributions in the
prime set cycle of order p it is convenient to define the
intervals of length p, starting from the central position of
the cycle.


Definition 6. The kth interval of a prime harmonic hp is a
range of length p from the kth maximum of hp:


Jk(p) := [
p+1


2
+(k−1)p,


p+1
2


+ kp[, k ≥ 1


J0(p) := [1,
p+1


2
[


The kth collision range of a prime harmonic hp, Ik(p) is
defined as the last two positions in the interval Jk(p):


Ik(p) = (Jk[p−1], Jk[p])


From the definiton, Ik = (Jk[1] + p − 2, p − 1) =
(Jk+1[1]− 2,1). Also straightforwardly, the distance be-
tween the corresponding positions of the consecutive col-
lision ranges is p, whereas the minimum and maximum
distance between the positions of the consecutive collision
ranges is p−1, p+1 respectively.
Let’s consider a harmonic of an order p. A coincidence of
a collision range with a gap boundary in the gap distribu-
tion of the previous order Dp−1 would signify a collision
with a t p-candidate resulting in the elimination of the can-
didate and a merger of adjacent gaps in the distribution Dp.
One can note that while mergers change the size of gaps,
they do not change the positions of gap boundaries in the
initial C3 cycle. Hence, in the analysis of distributions of
any order p one can conclude that if collision ranges of
hp did not intersect with the gap boundaries in the initial
prime cycle C3, a collision of the p-harmonic with gap dis-
tributions of any lower order is not possible.
Let’s consider the gap distribution D3, starting from the
center and extending upwards indefinitely. Then, for a
given order p0, consider the positions of collision ranges
Ik that immediately precede (k+ 1)th maximum of hp as
defined previously.
Now let’s increment the order of the cycle: pn = p+ 2;
then, straightforwardly from Def.6, the positions of the
maxima and the collision ranges change as:


Ik(pn) = Ik(p)+(2k+1) (6)


i.e., as the order p increases, the intervals and collision
ranges effectively move outwards with different ”speeds”:
1, 3, 5, . . . for intervals 0,1, . . . , respectively. Superim-
posing the movement of collision intervals over the initial
gap distribution one can identify the positions of possible
collisions and the resulting gap distributions in the higher
orders.


Figure 2: Collision ranges in gap distributions


In conclusion, a note on the zero-th interval J0(p) and col-
lision range I0(p). It’s upper boundary is positioned at
(p+ 1)/2 that moves upwards by 1 with the order p and
therefore is bound to reach any position in the cycle at cer-
tain order p0 that can be easily calculated. Because for any
position x ∈ J0 < p, collisions with a p-harmonics cannot
occur in this interval, whereas for a composite p such a
collision, if possible, would have already happened with
a harmonic of a prime factor of p. Consequently, no new
collisions can occur in this interval and all candidates of
the lower distribution Dp−1 are immune at least up to the
first collision range I1(p).


3.2 Gap Distribution Properties


From the definitions and observations in the previous
sections some properties of gap distributions Dp can be
pointed out immediately.


Corollary 1 (Central symmetry). For p > 3 gap distribu-
tion Dp is near-symmetrical with respect to the center of
the prime set cycle Kp.


The proof follows from the observation that a prime set
cycle must invariant to the reflection with respect to the
center with simultaneous reversal of the direction of the
modulo iteration, so that the collision points and gaps at
the same distance from the edges of the cycle must have
same values. Note that the exact symmetry is achieved at
the position Lp−3, so that the last gap in any p- cycle has
a length of 3.
Next, it can be readily derived from Def.2 of the composite
harmonic function Cn that for the orders n that are compos-
ite, the gap distribution will coincide with the distribution
of the prime set of n, therefore:







Corollary 2 (Composite orders). For a cycle Kn of a com-
posite order n with pm the highest prime in n, pm < n,
there will be no new collisions between cumulative har-
monics Cpm and the n-harmonic, and the gap distribution
Dn is identical to Dpm .


The proof follows from the fact that the maximums and
therefore, collision ranges of a composite harmonic will
always coincide with those of its prime factors. An obvi-
ous consequence is that new gap creation in consecutive
orders is possible only for twin prime orders.
In the analysis of gap distributions in the center of the cy-
cle, i.e. lower values of prime harmonics, and at its edges
i.e. higher values in the prime set cycle of a given order,
it will be useful to define a collision function of an (odd
number) position x and a harmonic of the order p as an
indicator of intersection of a collision range of hp with x:


φ(x, p) := 1 i f ∃ k : x ∈ Ik(p)
φ(x, p) := 0 else (7)


Similarly, a cumulative collision function for a set of or-
ders S = { pk } can be defined as the sum of collision
functions for pk ∈ S:


φS(x) = ∑
i∈S


φi(x) (8)


The meaning of the cumulative collision function at a po-
sition x is evidently, the number of times x is intersected
by prime harmonics in the range S. A special case of the
cumulative collision function is when S is a prime set,
S = G(p). In this case, φS(x) = 0 indicates that the po-
sition at x is ”immune” up to order p and if x ∈ D3 then x
is also a candidate of order p:


φG(p)(x) = 0 and x ∈ D3 =⇒ x ∈ Dp


3.3 Central Gap Distributions


In this section we shall examine gap distributions near the
center of a prime set cycle i.e. at positions starting from
1 and upwards. The central area is remarkable because
for any order p it is at the same time, the middle of the
middle cycle of the prime set cycle; and the middle of the
p-harmonic modulo cycle.
As was shown in Section 3.1, collisions with the p har-
monic cannot happen at the interval J0. It can be seen
easily that collisions cannot happen in the next interval J1
either: because the collision range in this interval incre-
ments by multiples of 3, if it did not intersect with C3 at a
certain order, it could not for any higher one. This indeed
is the case for p = 5 with I1(5) = (6, 7) and does not inter-
sect with C3 gap boundaries at 5, 8. An alternative way to
prove it is to notice that the second maximum of hp = 3p
in J2 has to be in D3 and therefore, I1 cannot intersect with
D3 (corollary of Def.6).
A detailed examination of the second collision range
shows that collisions are not possible there either, leading
to following statement:


Lemma 2 (Collision suppression at lower intervals). Col-
lisions with the lower distribution Dp−1 are not possible in
the first and second intervals of prime harmonic p > 7.


Proof. The lemma was proven for I1 above, let’s outline
the proof for I2 taking the reference order p0 = 7 and as
explained in the note to (6) we will prove that at any order
that is greater than p0, the collisions at this interval cannot
create new gaps compared with the distribution D5.
The position of the third maximum of hp at p0 = 7 is 18,
the second collision range I2(p0) = (16, 17) and given that
I2 advances with the rate of 5 with each increment of the
order, the positions of I2 at the next two orders after p0 are:
(21, 22) and (26, 27). As can be seen immediately, only
the positions 17, 26 intersect with D3.
Secondly, considering the collision ranges at order 5 Ik(5),
it follows that both positions above intersect with the col-
lision ranges of h5 harmonic and are eliminated in the
D5 distribution: 17 = (5 + 1)/2 + 3× 5− 1; 26 = (5 +
1)/2+5×5−2. For that reason, higher harmonics in the
considered range of orders cannot intersect with new tp-
candidates and create new gaps.
Finally one can recall that the length of the prime group
cycle C5 is 15 and the gap pattern of D5 repeats with the
same period. Then, as was shown above, the only colli-
sions of I2 with D3 within a range of the length 15 are also
those of h5, no new collisions can happen in that range,
and given the period of C5, in any other range of the same
length, completing the proof.


A similar but more tedious analysis of D7 distribution
shows that collisions aren’t possible in the third interval J3
as well at orders higher than 7. As in the case of J2, the
proof involves sequential comparison of the D7 gap posi-
tions versus D3. As the rate of expansion of I3 collision
range is 7, being a divisor of L7 , the gap position analysis
needs to be done for the first fifteen of h7 collision ranges
with the pattern of gaps and collision intervals repeating
thereon.
An immediate corollary is that collisions cannot occur in
intervals 1+3k at any order p because collision ranges in
these intervals do not intersect with the initial candidate
distribution D3: I1 +3kp = I3k+1 = d3−1,2+3kp:


Corollary 3 (Third intervals). For p > 3 collisions are not
possible in the hp intervals 1+3k.


The next observation allows to estimate an order-
dependent bound on the position of the nearest possible
collision in the central distribution of any order.
Let’s consider the first (p+1)/2∼ p/2 intervals and colli-
sion ranges at an order p. As was noted previously, for any
harmonic only the intersections of collision ranges with
the initial, C3 distribution can result in collisions. As can
be seen immediately, every third collision range in any or-
der does not overlap with C3 and can be eliminated. For
the rest it is possible to identify the conditions of overlap-
ping of between the collision ranges of p with those of







the lower harmonics pk. If such an overlapping happens,
a collision would not create a new gap as the candidate
at the position has already been eliminated by the lower
harmonic. These arguments lead to the following lemma:


Lemma 3 (Minimum collision distance). The minimum
distance to the first possible collision of hp and Cp−1 tm ∼
1/2 p2 ≥ (p2−3)/2 for p > 3.


Proof. Taking any interval k < (p− 1)/2 that intersects
with D3 at one of the values in the collision range Ik, the
condition of an overlap for hp with a lower harmonic pl
can be written as:


(p+1)/2− [1,2]+ k p =
(pl +1)/2− [1,2]+ kl pl


(2k+1) p = (2kl +1) pl−2× [1,2]+2, or
(2k+1) p = (2kl +1) pl−2× [1,2]+4


(9)


where the left side has to intersect with D3 and for the
given k, p the solution sought is pl ,kl . Clearly, the con-
dition above can always be satisfied by choosing pl =
2k+ 1 < p, kl = (p− 1)/2 and the appropriate choice of
the collision range position of pl , 1 or 2. This means that
for any interval range Jk, k < (p−1)/2 where a collision
is possible, there will be a lower harmonic with an over-
lapping collision range and correspondingly, no new gaps
can be created.
If pl above is a composite then an overlap would still hap-
pen with one of its prime factor harmonics. The only ex-
ception is if pl = 2k+1 is a power of 3, but in that case as
is easy to see from Cor. 3, collisions with D3 wouldn’t be
possible in these intervasl.
Finally, for the collision range I(p−1)/2 the proof will not
work as pl cannot be greater than p and a collision in pos-
sible. In this case the minimum position of the collision
would be at the offset of -2 of the next interval’s maximum
i.e.:


Pmin = (p2 +1)/2−2∼ p2/2 (10)


As can be shown, the condition for the collision at the
last range is equivalent to p2−2 being a composite. This
condition in turn depends on factorization of the expres-
sion 2x2− 1 that has monotonously growning number of
prime factors at higher p, x providing an heuristic argu-
ment for the conjecture that gap creation at the last colli-
sion range of the ”safe zone” has to be suppressed at higher
p.
As seen in this section, gap creation and growth is sup-
pressed in the central distritbutions by several factors:


1. Interval-specific constraints, J1 to J3 and J1+3k.


2. The minimal distance to the first collision constraint,
Lemma 3.


3. General suppression of new gap creation due to in-
creasing number of composite orders where no new
gaps are created (Cor.2).


It follows form these results that a characteristic feature
of the central distributions in higher orders has to be sup-
pression of collisions and gap creation in the area near
the center of the cycle including the range protected from
collisions that expands from the center quadratically with
the order p. For these reasons it can be expected that gap
distributions at higher orders will be more uniform in the
ranges close to the center.
This conlustion is confirmed by numerical modeling of the
central distributions as illustrated below.


D7: [2, 3, 3, 6, 6, 9, 6, 15, 3, 15, 6, 9, 6, 6, 3, 6, 6, 3, 6, 6,
9, 6, 15 . . . ]
D19: [ [ D7 ], 18, 36, 6, 15, 30, 24, 15, 9, 12, 9, 75, 6, 3, 6,
6, 3, 12 . . . ]
D383: [ [ D19 ], 69, 6, 9, 54, 12, 15, 3, 60, 6, 24, 15, 12, 33,
42, 3, 27, 9, 24, 15 . . . ]


The examples above show a more uniform pattern of gap
distribution near center in the lower intervals. The results
of numerical modeling for the mean and maximum gap
sizes in the immune from collisions range p2/2 relative
to the order p decrease from, respectively, (0.51, 2.58) at
p = 29 to (0.11, 0.82) at p = 383, in agreement with the
conclusions of the analysis in this section.


3.4 Edge Gap Distributions


As follows from Cor.1, egde distributions are symmetrical
with respect to the center, so we can consider the distribu-
tions at the beginnig of the p-cycle without loss of general-
ity. Edge distributions begin at a maxima of both Cp−1 and
p-harmonic with first collision interval at (p− 2, p− 1).
There are no known constraints for collisions and gap cre-
ation at the edges other than the general one of the com-
posite order Cor.(2). In fact, a strightforward analysis
of the collision function near the beginning of the cycle
shows that in these distributions the first gap will grow in-
definitely as the order increases.
It follows immediately from the observation that for any
gap of size ged , the harmonic of the order ged + 2 or if
composite, one of its prime factors will have a collision
with the candidate at the boundary of the gap creating a
larger gap that is thus bound to grow indefinitely.
This observation is confirmed by the examples of edge dis-
tributions obtained in numerical modeling:


D19: [30, 15, 12, 3, 12, 9, 24, 21, 21, 9, 6, 3, 6, 6, 15, 18,
15, 6, 24, 6 . . . ]
D43: [105, 21, 30, 9, 12, 15, 18, 15, 30, 6, 6, 9, 6, 9, 21, 3,
156 . . . ]
D317: [ 660, 12, 45, 15, 24, 81, 24, 15, 9, 96, 15, 21, 75,
60, 33, 15, 12, 24, 45, 24, 12, 3, 45 . . . ],


A conclusion that can be drawn from these observations is
that the gap distribution at a given order p, with the aver-
age gap size tending to zero relative to the order (5) should
have larger gaps tending toward the edge of the cycle (i.e.
higher positions in the cycle) with the distributions near







the centre, on the contrary, more uniform and dominated
by smaller gaps.


3.5 TP-candidates in Central Distributions


In the analysis that follows it would be helpful to estimate
the number of tp-candidates in the region near the center
of the cycle defined by the distance d from the center. To
achieve this one would need to estimate the number of col-
lisions at an arbitrary order p with the original candidates
in D3.
First, we will observe that in the distribution D5 there can
be no collisions with the lower harmonics and the distribu-
tion of candidates and gaps is defined entirely by collisions
of h5 with D3, resulting in a near uniform periodical gap
distribution with the pattern 6−6−3, period of 15 and the
average gap size of 5.
At an arbitrary order p, the number of candidates in a re-
gion within the distance d to the center, Ncan will be deter-
mined by these factors:


1. The number of D3 candidates in the interval [1, d]:
N3(d).


2. The number of D3 candidates in the interval that col-
lided with hp and one or more of the lower harmonics
in Gp−1: N3,p−1(d).


3. The number of collision ranges of hp in the interval
that intersect with D3: Ncol_3(p,d).


4. The number of collision ranges of hp that intersect
with D3 and overlap with a collision range of one or
more of the lower orders l < p: Ncol_3,l,p(p,d).


Then, the number of new collisions at the order p with the
candidates of D3 can be estimated as:


Ncan(p,d) = N3(d)− ∑
k∈Gp


Ncol(k,d)


Ncol(k,d) = Ncol_3(k,d)−
−∑


l<k
Ncol_3,l,k(l,k,d)


(11)


where the sum is over the prime set of p, Gp.
To estimate the number of collisions between a higher and
a lower harmonics p, l at D3 candidates Nc3,l,p(p,d) one
can use the condition of overlap for hp, hl , (9).
Immediately it can be observed that for each collision
range of order p that intersects with D3 only one of the
offsets from the maximum of hp,(1,2) can result in a col-
lision and thus the offset value in (9) should be considered
fixed leading to the following conditions for the overlap
with the lower harmonics:


(2k+1) p = (2kl +1) l
(2k+1) p = (2kl +1) l +2
(2k+1) p = (2kl +1) l−2


(12)


Further, it is easy to see that in each of the cases above 1)
the solutions, if exist, repeats every l of p-intervals; and
2) every third solution in each case intersects with a D3
candidate. The complete solution of the overlap condition
(12) for each prime harmonic l < p then consists of three
sequences: (2k + 1) mod l = 0; ±1 for the kth collision
range of hp and for a given order p and a lower prime
order l < p we have exactly 4 overlap positions in the in-
terval of length 3 p l: two with the collision range offsets
of the same value for p and l; and one for each possible
combination of different values.
This observation allows to estimate the number of colli-
sions in a central interval of sufficient length d for an arbi-
trary order p via PIE-style summation, where we want to
count each position of overlapping D3 collisions of p and
lower order l exactly once:


Ncol(p,d) = Ncol_3(p,d)−∑
l<p


Nov(p, l) (13)


where l, l1 < p, are the lower harmonics, Nov, overlaps of
collision ranges of hp with the lower harmonics and Nint ,
the number collision ranges of hp in the central range d.
Then, in the above, from Cor.3, (12) and the earlier obser-
vations in this section,


Nint(p,d)≈ 2 d/3p


Nov(p, l)≈ 4 d/3p (∑
l<p


1/l−Nov(p, l, ...))


Nov(p, l, l1)≈
2


l l1


(14)


where the last term in the above represents multiple over-
laps of collision ranges p with several lower harmonics
l, l1, . . . for which every position is counted only once and
the approximation is caused by the possibility of incom-
plete intervals in the range d (fringe or granularity effects).
It is straightforward to see that in higher-order overlaps
for each position of an overlapping condition of D3, hp,
and multiple lower harmonics hl there will be exactly two
possible positions of an overlap with a collision range of
another lower harmonic l1, for each of the two possible
values of collision offset of l1. Consequently, in each next
iteration of overlaps the range of the full cycle of possible
overlaps is multiplied by l1 and the number of overlaps in
the range, by 2.
Then combining all terms in the above, one gets:


Ncol(p,d)≈ 2 d/3p (1−2 (∑
l<p


1
l
−


−2 ∑
l,l1<p


1
l l1


+4 ∑
lk<p


1
l l1 lk


±2k
∑


lk<p


1
l l1 ... lk


= 2 d/3p (1−2χ(p))


(15)


As follows from the above, the number of collusions at a
central interval of a sufficient length at an arbitrary order
p is controlled by the twin prime collision function χ(p).







Rearranging the terms in (15) from the lower to higher,
one obtains:


χ(p) =
1
l1
+


1
l2


(1− 2
l1
)+


1
l3


(1− 2
l1
− 2


l2
+


4
l1l2


)


+ ∑
l<p


1
l
(1−2 fk) = Slm−1 +


1
lm


(1−2 Slm−1)
(16)


Thus, as follows immediately from (15) and the above, the
twin collision function χ(p) and the total number of col-
lisions Ncol(p,d) at order p are defined by the recursive
sequence:


Sn = Sn−1 +
1
pn


(1−2 Sn−1) =
1
pn


+(1− 2
pn


) Sn−1


S1 = 1/5
(17)


with p being prime orders starting with 5, as:


χ(pn) = Sn−1 =
1


pn−1
+(1− 2


pn−1
) χ(pn−1)


Ncol(pn,d) =
2d
3


Sn


Ncan(pn,d) =
d
3
− 2d


3
Sn =


d
3
(1−2Sn)


Sn =
1
pn


+(1− 2
pn


) Sn−1


(18)


Some properties of the twin χ function can be pointed:


1. First values χ(5) = 0; χ(7) = 1/5; χ(11) = 2/7 and
so on according to (18)


2. Monotonously increasing: χ(pk+1)> χ(pk)


3. Upper limit at p→∞: 0.5, asymptotics discussed fur-
ther below


The equations (15)-(18) allow to conclude that the number
of collisions with D3 and the resulting central gap distri-
bution at an arbitrary order p and sufficiently large dis-
tance d is controlled by the behavior of χ(p) and is ap-
proximately proportional to the distance, as long as it’s
sufficiently large to make the granularity effects negligi-
ble. Figure 3 plots the behavior of twin χ at lower orders,
obtained with numerical modeling of (18).


Asymptotic Behavior As can be concluded from (15), the
full range at which all overlaps with all lower harmonics
take place at an order p has to be in the order of 3× p #
(primorial) and at shorter ranges overlaps with higher har-
monics can be suppressed due to incomplete range.
Of interest here will be the asymptotic behavior of (1−
2 χ(p)) not in the least because from (15) it is di-
rectly related to the density of new collisions at order
p, Ncol(p,d)/3 d.
Whereas a detailed technical analysis of the asymptotic be-
havior of twin χ will be given in another study, based on


Figure 3: Twin prime χ at first prime orders


relations established in (15)- (18), and in particular, the
behavior of the recursive sequence Sn (17), an estimate
obtained from numerical modeling suggests that 1− 2 χ


tends to 0 as:


1−2 χ(p)≈ α d
log3/2+ε(p)


(19)


Collision and Candidate Estimate As has been shown
in (18), an estimate on bounds on χ(p) at higher orders
can lead directly to the estimates on the number of colli-
sions and candidates at an arbitrary order p, as the density
of both is directly related to Sn = χ(pn+1).
Numerical modeling of χ yields excellent agreement of
(18) with the actual distribution of twin primes in the ver-
ified range of up to 200 first pairs (Figure 4).


Figure 4: TP-candidates, estimated vs actual at d = p2
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Rigorous bounds on the behavior of twin χ at an arbitrary
central distance thus will be essential in the understand-
ing of distribution of tp-candidates at higher prime orders.
This investigation will be the subject of another work, but







for now we will use the numerical estimate of (19). Then,
straightforwardly from (18),


Ncan(pn,d) =
d
3
(1−2 χ(pn+1))≈


α d
log3/2+ε(pn+1)


(20)


and there exist a number of strong bounds on the distance
between p and pn+1, the next prime order.
This estimate can be applied to the no-collision range to
evaluate the number of candidates immune to collisions at
higher orders. Immediately, with d = p2/2 one obtains:


Ncan(p,sq) =
A p2


log3/2+ε(p)
(21)


This estimate is as well confirmed by numerical modeling
that shows the number of candidates in the no-collision
range growing at a rate somewhat slower than p2 but
higher than p.
In conclusion of this section, we will note a result that
follows immediately from the estimates (18) - (21) and
will be used further on in estimation of maximum gaps
between the candidates. A rigorous proof of this result
will need to be given to include ranges with the length
d ∼ p2� 3×p # and therefore account for the granularity
effects of incomplete ranges at these distances.


Lemma 4 (Candidate Distribution). For sufficiently large
orders p > P there is at least one tp-candidate cp of
the gap distribution Dp in the range between collision-
immune ranges of orders p and pn: (p2 + 1)/2 < cp <
(p2


n−3)/2.


where pn is the next prime after p.


Proof. Assuming that granularity / incomplete interval ef-
fects were accounted for, from (21) for the number of p-
candidates in the ranges p, pn one gets:


Ncan(p,d(p)) =
A p2


log3/2+ε(p)
+higher orders


Ncan(p,d(pn)) =
A p2


n


log3/2+ε(pn)
+higher orders


Ncan(p,d(p, pn)) = Ncan(p,d(pn))−Ncan(p,d(p))∼
4 A p


log3/2+ε(p)
+higher orders


where d(p, pn), the range between no-collision ranges of
orders p, pn. The main term in the above is unbound and
there will be P such that Ncan(p,d(p, pn))> 1.


Numerical modeling confirms that Lemma 4 holds for
p > 17 in all verified prime orders. The number of tp-
candidates in the range of length 2p < d(p, pn) in the in-
terval between collision-free ranges of consecutive prime
orders is shown in Table 1.


Table 1: Tp-candidates in the boundary range


Ordinal range 5-20 40-70 90-120 150-180


Tp-candidates 2 - 5 4 - 18 10 - 26 21 - 38


3.6 Gap Estimate in Central Distributions


The analysis in the previous chapters led to understanding
of the gap creation process in the central and edge areas
of prime group cycles, with the estimate on the number of
collisions and candidates at an arbitrary order and range
in the central distributions. Gap creation at any candidate
position x in the initial distribution D3 in an arbitrary
order is then controlled by the harmonics hp of the current
order and cumulative harmonic function Cp−1 of the lower
orders at the candidate position.
The harmonic collision function φp(x) was defined earleir
(8) as the number of prime harmonics pl ≤ p that collided
with the initial distribution D3 at position x. A collision at
x indicated by a positive value of φ creates a gap at that
position and simultaneously, as discussed in the previous
section, prevents all further collisions at this position.
Numerical analysis of the behavior of φ at the lower
postions near the center shows that there exist pos-
tions that are ”immune” to collisions, for example,
x = 53, 95, 119 . . . . At these positions, the collision
function at the maximum order where gap creation is
still possible pmax ∼


√
2x (Lemma 3), φpmax(x) = 0 and


collisions are avoided, whereas at the higher orders they
are no longer possible due to the distance constraint
of Lemma 3. Such ”immune” positions satisfying the
condition φ√2x(x) = 0 form the permanent distribution
of twin primes in the central zone of x and the process
continues to the higher orders indefinitely.
In the general case where φpmax(x) > 0, a collision will
happen at the postion x and some order pk ≤ p, creating
a gap with two boundaries, (xl , xh) and the possibility of
further collsions will be controlled by φ at these positions
till both boundary positions enter the immune zone and
further gap creation stops. Investigating this process
would be an interesting problem in prime combinatorics.
Based on the results of Section 3.5 some important
observations can be made about central gap distributions
in the collision-immune range p2/2:


1. Runaway gap creation, similar to the edge distribu-
tions where the outward gap boundary expands faster
than the order are not possible in central distributions
at least up to certain distance from the center.


2. A constraint on the maximum gap size in the no-
collision range p2/2.


The validity of p.1 follows immediately from Lemma 4
as the last gap gl in the interval that begins at position xl







below or at p2/2 is bound to end at xm < (p2
n− 2)/2 that


as is the first possible collision position of the next prime
harmonic pn ≥ p+2 and therefore is protected from colli-
sions with pn and higher harmonics.
An estimate of the maximum gap size at p2/2 can be ob-
tained based on the results of the previous section.
At a given order p with consecutive orders pp < p < pn,
let’s consider the central interval d(p) with the upper
boundary of the ”immune” range at (p2 +1)/2. Let’s con-
sider the same interval at the next prime order d(pn) and
the maximum tp-candidates of order p : xm(p), xm(pn) in
d(p), d(pn), xm(p)≤ d(p), xm(pn)≤ d(pn).
Lemma 4 provides that at least one candidate of Dp exists
in the range ]d, dn[ and so, xm(pn) > xm(p), xm(pn) >
d(p). Then, d(pn) − xm(pn) < ∆(d,dn), where ∆ =
d(pn)−d(p).
This conclusion must be valid for all orders, then:


d(p)− xm(p)< ∆(dp,d)


xm(pn)−d(p)≤ ∆(d,dn)


xm(pn)− xm(p)≤ ∆(d,dn)+∆(dp,d) = ∆(p)
(22)


Clearly, the interval at the boundary of the collision-
immune range [xm(p), xm(pn)] contains all gaps of Dp in
this range from which it can be concluded that all gaps in
that interval must be limited by the condition (22).
Then, as discussed earlier in Section 3 one can recall that
as the order p increases, the boundaries of the intervals
Ik(p) move upwards (6) eventually reaching the bound-
ary of the non-collision region of some lower order. This
observation allows to establish the constraint on the maxi-
mum gap size in the first central intervals that is of interest
for the analysis of the twin prime distribution.
First we will prove a straightforward statement that a gap
in one of the first intervals Jk corresponds to a gap in the
boundary region of some lower order pg, that is defined by
the position of the gap boundary, with the constraint (22)
on the size.


Corollary 4. For a gap in an interval g ∈ Jk,∃pg : g ≤
∆(pg).


Proof. Let’s consider a gap g in Jk(p), with the lower
boundary position xl(g)≥ ((2k+1) p+1)/2.
For prime orders pl < p let’s consider the sequence d(pl)
of boundaries of no-collision ranges (p2


l + 1)/2 and the
maximum candidates of Dp in them, xm(pl). According to
Lemma 4 xm must exist.
Then there exist two consecutive prime orders pg−1, pg
such that:


xm(pg−1)≤ xl(g),


xl(g)< xm(pg)


Then g saitsfies the conditions of (22) at order pg and must
be limited by it. Further, g is immune to collisions in at
orders higher than pg the size of g cannot change at higher
orders and the condition of (22) must hold:


g≤ ∆(pg)


Based on the noted previously relationship between the
intervals at different prime orders we can now attempt to
establish the constraint on the size of gaps in the first cen-
tral intervals.


Lemma 5 (Maximum Gap Estimate). The maximum gap
between adjacent tp-candidates in a central distribution at
an order p > P with the lower boundary xl(g) in I2(p), i.e.
(3p+ 1)/2 ≤ xl(g) < (5p+ 1)/2 is less than or equal to,
p+1.


Proof. As just proven, for a gap g in I2(p) at an order p
there exists an order pg such that the condition of (22)
holds, i.e., g ≤ ∆(pg). Then if xl(g), xr(g) are the po-
sitions of the lower and upper boundary of g, under the
conditions of the lemma the following must be true:


xl < (5p+1)/2
xl ≥ (3p+1)/2


Then, choosing pg as in Cor.4 and denoting the boundary
of no collision interval b = (p2 +1)/2:


xl ≥ xm,g > bg−1


xl < xm,g+1 ≤ bg+1


and combining the two,


p2
g−1 ≤ 5p


p2
g+1 ≥ 3p


imposing upper and lower bounds on pg, pg−1 relative to
p.
Now one can use known bounds on the distance between
consecutive primes, such as [2, 3] to express ∆(pg) in
terms of pg−1.


pg ≤ (1+α) pg−1


pg+1 ≤ (1+α) pg = (1+α)2 pg−1


∆(pg) = 1/2 (p2
g+1− p2


g−1)≤ 2α (1+β ) p2
g−1


where α, β � 1. Finally from the upper estimate on p2
g−1


earlier one can obtain the estimate of g in terms of the
current order p:


∆(pg) =≤ 2α (1+β ) p2
g−1


p2
g−1 ≤ 5p


g≤ ∆(pg)≤ 10α (1+β ) p


(23)


and given that for sufficiently large P the bounds on α can
be substantially stronger than 1/10 [3, 4], the proof is com-
plete.







4 Twin Prime Distribution


In the analysis of twin prime distributions in this section
we will use Lemmas 1, 2 and 5. For a twin pair p =
(p1, p2) we will denote the integer key k(p) = (p1−2)/3
and consider the prime set Gk and twin prime candidate
distribution Dk of order k(p).
Assume first that for a given twin prime pair p k(p) it-
self is a prime. Lemma 1 then ascertains that at least up to
3pn≥ 3k+2, pn being the next prime after k, tp-candidates
identified by the maxima of the prime set harmonics func-
tion Ck in that range will be true twin primes. The obtained
bounds on gap distributions in the first central intervals
then allow to estimate the maximum gap to the next twin
prime pair:


Lemma 6 (Twin prime gap). For a twin prime pair with a
prime key k(p)> P there will be at least one tp-candidate
cn of order k satisfying the condition: cn > p; cn− 3k ≤
k+1.


Proof. Given that p1− 1 = 3k belongs to the second in-
terval J2(k) of the prime order k: p1 − 1 = (k + 1)/2+
k, Lemma 5 provides that the distance to the next tp-
candidate cn in Dk cannot be greater than k + 1 : cn ≤
(3k+1)/2+ k+1 = (5k+3)/2.
Unless cn collides with one of the harmonics hn at an order
n higher than k, it will produce the next twin prime pair af-
ter p.
Now let’s consider the next prime after k, kn ≥ k+2. The
first collision of the prime harmonic hkn with Dk cannot
happen at the second and third intervals of kn at (3kn +
1)/2 by Lemma 2 and the next collision range of kn will
be in 2kn− 2 steps from 3kn: tn ≥ (3kn + 1)/2+ 2kn− 2.
Then:


cn ≤ (k+1)/2+ k+ k+1 = (5k+3)/2
tn ≥ (3kn +1)/2+2kn−2≥ (7k+7)/2
⇒ cn < tn


(24)


and it follows that the collision ranges at the next prime
order cannot intersect with cn. Clearly for the higher or-
ders than kn the first possible position can only be greater
than tn and no harmonic n > k can produce a collision with
cn. Then with n > cn//3 the completeness condition of
Lemma 1 is satisfied and cn must precede the next twin
prime pair.


With these results we can approach the main statement
of the twin prime distribution theorem.


Theorem 1 (Twin prime distribution). For sufficiently
large twin prime pair p with a key k(p) there exists the
next twin prime pair within the distance of k + 1 from
3k = p−1.


Proof. The case of a prime key k(p) has been proven ear-
lier in Lemma 6 so the remaining case is that of a compos-
ite key.


For a twin prime pair p let’s denote kl , kn the nearest
primes to k(p) : kl < k < kn. Then given the known bounds
on the distance between consecutive primes, the position
of the key k(p) relative to its nearest lower prime kl falls
within the second interval I2 of order kl . Indeed:


(3k+1)/2− (3kl +1)/2≤ 3/2 α kl < kl


for sufficiently large k and the position of 3k will be in the
second interval of the order kl : pos(kl) = (3kl + 1)/2 ∈
J2(kl) and the bounds of Lemma 6 on the maximum dis-
tance to the next tp-candidate apply. Then, as in the proof
of Lemma 6 earlier, with cn the next tp-candidate of the
order kl ,


tn ≥ (7k+7)/2
cn ≤ (3k+1)/2+ kl +1 < (5k+3)/2 =⇒
cn < tn


(25)


where the minimal position of kn = k+2 was assumed.
Again, as in Lemma 6 the next tp-candidate cn is immune
from collisions with the higher harmonics and by Lemma
1 must be the key of the next twin prime pair, completing
the proof of the theorem.


Numeric modeling with the first 100,000 twin prime
pairs [8] confirmed the bound of the Theorem 1 on the
distance to the next twin prime pair.
In conclusion we will reformulate the statement of the
theorem in terms of integer (versus odd step) values:


For sufficiently large twin prime pair p with the key
k(p) = (p− 2)/3 there exists the next twin prime pair
within the distance 2(k+1) from p.


5 Conclusion


Prime harmonic analysis can be applied in investigation of
prime distributions as well. As is easy to see, the condi-
tion on candidate distribution is less restrictive in the case
of single prime candidates: the condition of the cumula-
tive harmonic function for prime candidates is Cp(x) > 1
versus Cp(x) > 2 for twin primes, and the collision range
of harmonic hp has only one position, hp = 1, resulting in
higher frequency of primes and smaller gaps in gap distri-
butions.
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