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in order to conform with Maxwell field theory. By contrast, this work presents the
time-symmetric fields as the foundation of Dirac bi-spinors. Even so, accidentally we
discover a novel explanation of the emergence of exclusively retarded radiation from
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1 Introduction


1.1 Historical Context


Direct Particle Interaction, henceforth DPI, is a version of electromagnetism distinct
from the Maxwell theory that was first proposed by Schwarzschild [1], Tetrode [2],
and Fokker [3], in which the EM fields and potentials are not independent dynamical
variables, and the only electromagnetic contribution to the action comes from direct
interaction between 4-currents. All electromagnetic energy and momentum is to be
accounted for in the interaction between charges, so that any EM energy leaving a
charge must be destined for absorption by another charge. Accordingly DPI does not
admit strictly vacuum degrees of freedom, strictly on-shell photons, or radiation ex-
actly as portrayed by field theory. Since its inception a challenge for DPI has been
an explanation for the observational evidence apparently in favor of exclusively re-
tarded radiation.1 Though Wheeler and Feynman [4],[5] showed that radiation-like
behavior, including radiation reaction, could arise within DPI if the future is suffi-
ciently absorbing, the subsequent discovery of accelerating cosmological expansion
rendered their explanation untenable because the universe is nearly transparent on the
forward light-cone [6],[7] (see also the works by Pegg [8],[9]). The books by Hoyle
and Narlikar [10],[11] and Davies [[6] are recommended for a comprehensive review
of Direct Particle Interaction.


1.2 Relation to other work


Clifford Formalism The focus of this work is on exposing the classical foundations
of Quantum Theory, employing Clifford algebra primarily as an intermediate tool,
eventually departing from the Clifford formalism to obtain Dirac bi-spinors that are
strictly compliant with the traditional Dirac Theory. We share with Hestenes [12],[13]
(see also [14]) that the Dirac equation be founded on real (versus complex) quantities,
though there are differences both in how that is implemented here, and in the outcome.
As shown by Rodriguez [15],[16], the Clifford object that is the operand of the Dirac-
Hestenes equation operator is not a Dirac bi-spinor, and does not share the same Fierz
Identities as those of the Dirac bi-spinor that is the focus of this work (see [17]).2


Pilot Wave Model This work has in common with the pilot wave model of de Broglie
[18],[19] and Bohm [20]-[23] in both the non-relativistic (Schrödinger) domain and
its relativistic extension (for example [24],[25]) that the electron is a classical point
charge following flow lines generated by a ‘field’. The book by Holland [26] is rec-
ommended for a thorough exposition of the de Broglie Bohm theory. See [27]-[29]
for journal-paper reviews of the Broglie Bohm theory, including its extension to quan-
tum field theory. In common with those extensions, and of relevance to this work, the


1 An outcome of this work is that the observational facts are compatible with a different interpretation.
2 The Fierz Identities are bi-linear relationships between the different n ∈ [0,4] blades in the outer


product ψψ (i.e. between the
〈
ψψ


〉
n
) as a consequence of the reduced number of degrees of freedom in a


multivector restricted to this form.







EM Foundation of Quantum Theory 3


original - Schrödinger domain - model has since been re-cast by Hiley [30], [31], [24]
in terms of Clifford algebra.


Though the psi-field and associated quantum potential of the pilot wave model are
sufficient for the task of reproducing standard theory, the de Broglie Bohm model is
silent on the origin of the field. Even so, that model is to be credited for its pioneering
role in expanding the language employed to ‘explain’ QM to include a classical par-
ticle (in addition to the wavefunction) and by providing an example of a successful
epistemological alternative to the Bohr / Copenhagen doctrine.


Random Walks There have been efforts to mimic the Schrödinger and Dirac equa-
tions with classical diffusion processes / random walks by Nagasawa [35], Nelson
[36],[37], Ord [38]-[40] and others, e.g. [41]. Though Nelson in particular seems to
have had some success in reproducing quantum behavior from diffusion processes,
the rules governing the jump probabilities do not appear to have a strong physical mo-
tivation. It is important that all of these have in common that in order to establish a
‘classical’ probability distribution that matches those of QM the diffusion jump prob-
ability at x are not Markovian, but depend on the (probabilistic) history of visits to x.
Possibly there is a connection with the ensembles of mutually exclusive possibilities
that play a prominent role in this work.


Time-Symmetric Presentations of QM Though Cramer [45]-[47] does not attempt
to give an explicit electromagnetic foundation for the wavefunction, his ‘Transac-
tional Interpretation’ of QM captures something of role of time-symmetric exchanges
in this work that are crucial to the emergence of Dirac dynamics from an entirely
classical EM framework. Cramer’s casting - in the non-relativistic domain - of the
Schrödinger wavefunction and its charge conjugate as ‘offer’ and ‘accept’ waves ap-
proximately correspond, respectively, with the retarded and advanced components of
time-symmetric exchanges.


The theory of weak-value measurements due to Aharonov, Albert, and Vaidman
[48] that grant equal status to the initial and final boundary conditions on the wave-
function has helped draw attention to the time-symmetry already present in traditional
quantum theory, but which derives, according to this work, from the time-symmetry
of the EM fields that underlie the wavefunction. Sutherland [49]-[51] makes a case
for retro-causal influences underpinning QM, granting the final boundary condition
employed to explain weak-value measurement the same status as the initial bound-
ary condition, with the effect that the wavefunction at all intermediate times depends
symmetrically on both – in all cases. With this construction he is able to give an en-
tirely local ‘ontological explanation’ for entangled-state behavior such as in the Bell
experiment which does not refer to a preferred frame. The claim here is not that QM
is at fault predictively, or that its predictions are at odds with special relativity, but that
the particle and wavefunction can be given an ontological status at all intermediate
times consistent with special relativity.


Price, Wharton, Evans and Miller [53]-[56], have argued not only that the non-
locality intrinsic to QM is suggestive of retro-causal influences, but have suggested
(correctly, from the perspective of this work) this be taken as evidence of a direct
particle interaction foundation of quantum dynamics.
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Barut Zanghi Paper Barut and Zanghi [57] showed how to reproduce the algebraic
structure of the observables of the Dirac Theory with a classical theory of a point
charge augmented with spinor degrees of freedom. The goal of that work was not to
reproduce the Dirac equation, however. Its achievement was in constructing a clas-
sical analog that was faithful to the Dirac equation so that ‘canonical quantization’
reproduces the algebra of the observables of the Dirac theory. By contrast this work
reproduces not only the Dirac equation ‘ab initio’ from a particular variant of clas-
sical EM theory (and therefore the algebra of its observables) but also the attendant
machinery of eigenvalue selection by observation, neither of which were the aim or
focus of the Barut-Zanghi work.


2 Direct Particle Interaction


2.1 Action


The electromagnetic direct particle interaction is


IDPI = −


∫
d4x


∫
d4x′G


(
x− x′


)
j (x)◦ j


(
x′
)


(1)


where


G (x) =
1


4π
δ
(
x2


)
⇒ ∂2G (x) = δ4 (x)


j (x) = |e|
∫


dλv (λ)δ4 (x−q (λ)) ; v (λ) =
dq (λ)


dλ
.


(2)


j is a Lorentz vector, q (λ) is a Lorentz vector, v is a 4-vector and also a Lorentz
vector when λ is a Lorentz scalar. A double strike font signifies the object is to be
considered an element of Cl1,3 (R) rendered in M4 (C), where appropriate. (An ex-
ception introduced later is the EM multivector, which is in Cl1,3 (C)). x and q (λ) are
also Lorentz vectors, but so-written are considered to be represented more conven-
tionally, i.e. in R4 with Minkowski norm, and x2 = xµxµ etc. Where necessary we
refer to components in 3+1 D, e.g. x = (t,x). Hence, since they all refer to the same
object, q (λ) � q (λ) �


(
q0 (λ) ,q (λ)


)
.


Due to the structure of (1) an anti-symmetric component of G (x) makes no contri-
bution to the action. Consequently DPI effectively mandates a Green’s function that
is invariant under negation of any of the coordinates, and is thereby distinguished
from traditional theory by its restriction to time-symmetric interactions relative to the
sources.


Let the currents be broken into segments parameterized by laboratory time t:
q (λ)→{q1 (t) ,q2 (t) , . . . ,qN (t)} each with constant sign of dql (t)/dt, and where q0


l (t) =


t. The current in (2) is then


j (x) =


N∑
l=1


jl (x) ; jl (x) = elvl (t)δ3 (x−ql (t)) ; vl (t) = (1,vl (t)) (3)
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where vl (t) = dql (t)/dt. Using (3) in (1) and denying self-action leads to


IDPI →−


N∑
k,l=1;k,l


∫
d4x


∫
d4x′G


(
x− x′


)
jk (x)◦ jl


(
x′
)


=−


N∑
k,l=1;k,l


ekel


4π


∫
dt


∫
dt′δ


(
s2


k,l
(
t, t′


))
vk (t)◦vl


(
t′
) (4)


where sk,l (t, t′) = qk (t)−ql (t′).


2.2 Adjunct fields


Classical Current With reference to the second part of (4) the subsequent introduc-
tion of x to denote pre-existing R4 spacetime is an intermediate computational tool.
This applies to the current (2), which in DPI therefore has a derivative status rela-
tive to q (t). To be consistent with the adjunct potential as coined by Wheeler and
Feynman (see below) the subjects of (2) and (3) should be called adjunct currents.


Adjunct Potential The adjunct potential [4],[5] generated by the lth charge is


Al (x) =


∫
d4x′G


(
x− x′


)
jl


(
x′
)


=
el


4π


∫
dt′vl


(
t′
)
δ
((


x−ql
(
t′
))2


)
(5)


a consequence of which is
∂2Al (x) = jl (x) . (6)


The total adjunct potential from N charges is


A (x) =


N∑
l=1


Al (x) . (7)


We will also need to refer to the potential of all but the lth current


Al (x) = A (x)−Al (x) . (8)


The technique of distinguishing between fields according to their origin is due to
Leiter [58]. Note that x in A (x) should not be taken to imply a pre-existing R4


spacetime ’canvas’; direct particle interaction grants the adjunct potential a physi-
cally meaningful role only on the worldline of a charge.


The Lorenz gauge is mandated by the structure of (5), in particular because the
Green’s function G (x, x′)→G (x− x′) depends only on the coordinate difference x−
x′:3


�∂◦Al (x) =


∫
d4x′�∂G


(
x− x′


)
◦ jl


(
x′
)


=


∫
d4x′G


(
x− x′


)
�∂
′


◦ jl
(
x′
)


= 0. (9)


3
�∂ = γµ∂µ has the usual meaning. a ◦ b = (ab + ba)/2 is the scalar product of two Clifford vectors.


Likewise a◦b = aµbµ.
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Clearly (9) implies �∂◦A (x) = 0. Applying (5) and (8) to Eq. (4) gives


IDPI = −


N∑
l=1


∫
d4xjl (x)◦Al (x) = −


∫
d4xj (x)◦A (x)− Isel f (10)


where


Isel f = −


N∑
l=1


∫
d4xjl (x)◦Al (x) . (11)


Note that the ql (t) are the only dynamical degrees of freedom - the action is not
extremized by variation of the Al (x).


Properties The adjunct potential of direct particle interaction differs from a potential
of traditional field theory in that the adjunct potential:


i) Is always sourced.
ii) Necessarily satisfies the Lorenz gauge condition.


iii) Is time-symmetric relative to the source.
iv) Is physically consequential only where it originates and where it is terminated.45


Consequent to iv) is that the solutions of ∂2A = 0 are everywhere physically inconse-
quential.


Adjunct Faraday The adjunct Faraday bi-vector is 6


Fl = Fl (x) = �∂∧Al = �∂Al−�∂◦Al = �∂Al. (12)


We will need also


F (x) =


N∑
l=1


Fl (x) , Fl (x) = F (x)−Fl (x) . (13)


Taking into account (6) (using �∂
2 = ∂2) the ‘field equations’ appear to be those of the


Maxwell electrodynamics in the Lorenz gauge


�∂Al = Fl, �∂Fl = jl (14)


though Al and Fl are under-constrained by (14) because they admit an unphysical
complementary function solution to ∂2Al = 0.


Eq. (4) is time-reparameterization invariant wherein t plays the role of a ‘speed
parameter’ for the space-time curve q = q (t) in R4. Accordingly the worldlines in (4)


4 The Wheeler and Feynman adjunct potential satisfies i), ii) and iii) only. The termination requirement
iv) is understood but not built in to the structure. Their adjunct potential is mathematically indistinguishable
from a field-theory potential satisfying the same conditions (i.e. just i), ii) and iii) ) because it is non-zero
on all future and past oriented null rays passing through the worldline of the source. On that basis Hoyle
and Narlikar have argued (incorrectly from the point of view of this work) that the electromagnetic direct
action stress-energy is essentially no different from that of the Maxwell theory.


5 Feynman subsequently changed his position on the role of self-action, and so by implication on the
status of the adjunct potential at its source.


6 a∧b = (ab−ba)/2 is the anti-symmetric product of two vectors.
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can be parameterized with any monotonic function of t. Alternatively the action can
be written without any reference to t, for example as


IDPI = −
e2


4π


N∑
k,l=1;k,l


∫ ∫
dqk ◦dqlδ


(
(qk −ql)2


)
. (15)


From the absence of x in the actions (4) and (15) it can be inferred that any gener-
alized Fourier space representation of the adjunct current and potential will have a
status equal to that of the x-space representation. Representation independence of the
fields will play a role in the description of dynamics of the currents.


2.3 Time-Symmetry


The DPI action employs a Green’s function that is time-symmetric. Accordingly the
adjunct potential and Faraday are time-symmetric relative to their source. The physi-
cal content of DPI however is restricted to the interactions at both ends of a light-like
connection. These null ray line segments extend along the forward and backward light
cone from a nominally local charge. Their angular distribution and their distribution
in time (forwards versus backwards) depend on the distribution of other charges in
space and time. Taking into account Cosmological evolution this distribution will
not generally be time-symmetric - except perhaps at the future conformal singularity.
Further, potentials superpose, with the result that the total incoming response poten-
tial might in extreme cases vanish, even though it is the result of any number of other,
distant charges.7 Broadly then, though DPI is a time-symmetric theory, the manifes-
tation of that property depends on the actual distribution of matter.


In contrast with earlier attempts to reconcile DPI with observation, in this work
we allow for the possibility that the advance component of the DPI adjunct potential
is not, in general, canceled at its source by the response of other charges. An out-
come is that the universal system of charges can remain tightly coupled by whatever
symmetric component remains, post recombination. In Section 5 the totality of DPI
modes are shown to correspond to those of an elastic lattice with optical and acoustic
branches. The modes of the optical branch correspond very closely to the vacuum
modes of field theory, thereby explaining the emergence of retarded radiation with-
out appeal to a thermodynamic arrow of time. The acoustic modes are subsequently
shown to underpin the Dirac wavefunction. Effectively, this work resolves the dif-
ficulties attributed to DPI with a re-interpretation of the supposed deficiency as the
foundation of QM.


7 This is the foundation of the Wheeler-Feynman absorber theory, wherein the presumed complete
future absorption results in complete cancellation of the advanced component of the response.
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3 Light-speed charge in a given potential


3.1 Light-speed motion


We depart from classical traditional by asserting light-speed motion of the electron


v2
l (t) = 0∀l ∈ [1,N] . (16)


Justifications for this assertion are:


i) The time-symmetric interaction appears to demand that the mass be dynamically
determined,8 which (16) achieves, though not uniquely so.9


ii) The self-energy of a classical light-speed charge is ill-defined by traditional clas-
sical theory, which ambiguity can be removed in favor of a (definite) finite energy
in that limit - without affecting the predictions of classical theory at subluminal
speeds [60].


iii) The eigenvalues of the velocity operator for the Dirac electron are ±1.
iv) The Dirac Equation is an outcome of this (classical) analysis.


Eq. (16) can be enforced via a semi-holonomic constraint in an action


ILS = −
1
2


N∑
l=1


∫
dtµl (t)v2


l (t) (17)


extremized by variation of µl (t). For ILS to be a Lorentz scalar the µl (t) must trans-
form as dt. Alternatively each path can be parameterized with a monotonically in-
creasing Lorentz scalar, including an appropriately defined frame-independent time.
It turns out however that the Euler equations will be such as to grant µl (t) the appro-
priate transformation property automatically.10


With (10) the full action is


I = ILS + IDPI = −


N∑
l=1


∫
dt


(
1
2
µl (t)v2


l (t) + elvl (t)◦Al (ql (t))
)


(18)


Al (ql (t)) is the adjunct potential of all but the lth charge evaluated on the path of the
lth charge. It is the ‘incoming’ adjunct potential relative to the current with label l.
The Euler equations are the corresponding Newton-Lorentz equations 11


d
dt


[
µl (t)vl (t)


]
= el


〈
Fl (ql (t))vl (t)


〉
1


(19)


8 To be submitted.
9 A property of the time-symmetric interaction is that the adjunct potential response of other nominally


distant charges to the motion of the local charge is contemporaneous with the motion of the latter. The
causal loop is closed with the requirement that the local electron motion in the presence of the incoming
response potential is consistent with the motion that brought about that response. In the work cited here
electron mass appears as an eigenvalue of the fields of that exchange.


10 This outcome is an automatic consequence of the relationship (22) established with the potential,
which is a true Lorentz vector.


11 〈〉1 extracts the vector part of its Clifford operand, 〈〉2 extracts the bi-vector part, etc.







EM Foundation of Quantum Theory 9


where, using an over-dot to identify the target of �∂,〈
Fl (ql (t))vl (t)


〉
1


=


[
�∂
[
vl (t)◦


·


Al (x)
]]


x=ql(t)
−


dAk (ql (t))


dt
(20)


in which terms (19) can be written


d
dt


[
µl (t)vl (t) + elAl (ql (t))


]
= el


[
�∂
[
vl (t)◦


·


Al (x)
]]


x=ql(t)
. (21)


The left–hand side is the time rate of change of the total (mechanical plus electromag-
netic) 4-momentum of the local charge. The electromagnetic part of the momentum
is specific to the charge ‘in’ the potential Al at ql (t).


3.2 First integral of Newton-Lorentz equation


Null Incoming Potential Suppose initially that the incoming potential is null. Then a
particular solution of (21) is


µl (t)vl (t) + elAl (ql (t)) = 0 (22)


and the total momentum is zero. The time-component of (22) gives that


µl (t) = −elφl (ql (t)) (23)


and therefore


vl (t) = Al (ql (t))/φl (ql (t))⇒ vl (t) = Al (ql (t))/φl (ql (t)) . (24)


Hence the null current follows the flow lines of an incoming null adjunct potential. 12


General Case Any non-null potential can be decomposed into null components. It
will turn out to be useful to decompose the incoming Faraday in an analogous way,
which in combination will give rise to 4 distinguishably different null potentials. Ini-
tially we presume that the charge follows just one of those null potentials, accepting
the possibility of subsequent revision to account for the presence of the other po-
tentials. It turns out that however that it is always possible to find a decomposition
in which the 4 null paths are independent of each other, provided the potentials are
modes of the acoustic branch (see below). Optical branch mode potentials (Section
5.1) require separate treatment however.


To implement this strategy let an arbitrary incoming potential be decomposed into
r null potentials


Al (x) =


r∑
n=1


Al,n (x) ; A2
l,n


(x) = 0 (25)


where for now the number of terms r in the decomposition is left undetermined. Each
Al,n (x) generates a set of flow-lines, the possible occupancy of each member of which


12 Since only derivatives of the incoming potential appear in (21) it follows that a more general solution
is µl (t)vl (t) + elAl (ql (t)) = elul for any constant vector ul.







10 Michael Ibison


by a charge will initially be considered independently, in accord with the above. Then
the solution (24) can be applied to each of these:


vl,n (t) = Al,n
(
ql,n (t)


)
/φl,n


(
ql,n (t)


)
;


[
Al,n


(
ql,n (t)


)]2
= 0 (26)


Here ql,n (t) is the worldline of the lth charge following the flow-line of the nth null
potential in an r-fold decomposition of the potential of all other charges. Provided
the Al,n (x) independently satisfy the Lorenz gauge then it is straight-forward to show
that


dφl,n
(
ql,n (t)


)
/dt =


[
�∂◦Al,n (x)


]
x=ql,n(t)


= 0. (27)


It follows that the paths ql,n (t) that satisfy (26) are the characteristics of φl,n, i.e. on
which φl,n is constant. In particular


φl,n
(
ql,n (t)


)
= φl,n


(
ql,n (0)


)
. (28)


Connection with de Broglie Bohm Model Eq. (26) with (28) is the classical electro-
magnetic foundation of the de Broglie Bohm pilot-wave mechanism, consistent with
which is the absence of a role in the dynamics for magnitude of the 4-potential. When
however the description is subsequently extended to cover an ensemble of charges the
time-component of the null potential (which in this context can be equated with the
‘magnitude’) will be ‘re-purposed’ to carry information about the occupation proba-
bilities of the flow lines.


3.3 Signs of mass and charge


The stipulation that the time component of vl (t) is equal to 1 forces the parameteriza-
tion of all particles to be in the same direction along the time dimension. Informally
this means that all charges proceed forwards in time, regardless of the sign of the
charge. To align with convention we also arrange for the sign of the dynamic mass to
be positive. Taking into account (28), the time component of the nth potential in an
r-fold decomposition of (22) is


µl,n (t) = µl,n (0) = −el,nφl,n
(
ql,n (0)


)
. (29)


A positive constant mass therefore requires


µl,n (0) = |e|
∣∣∣∣φl,n


(
ql,n (0)


)∣∣∣∣⇒ el,n = −|e|sgn
(
φl,n


(
ql,n (0)


))
. (30)


The sign of the charge is the negative of the sign of φl,n
(
ql,n (0)


)
, which implies a


restriction of electron / positron flow-lines to the positive / negative ’half-cycles’ of a
time-varying potential and a corresponding restriction on the current vector (Section
7.2).
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4 Ensembles


4.1 Sum over mutually exclusive possibilities


Eq. (26) with (28) is the first order differential equation 13


dql,n (t)
dt


=
1


φl,n
(
ql,n (0)


)Al,n
(
ql,n (t)


)
;


[
Al,n


(
ql,n (t)


)]2
= 0. (31)


If Al,n (x) is given then in principle ql,n (t) can be found by solving (31). Taking into
account (30) the 4-current jl (x) in (3) must be distinguished accordingly as one of
jl,n (x) for n ∈ [1,r]


jl,n (x) = −
|e|δ3 (


x−ql,n (t)
)∣∣∣∣φl,n


(
ql,n (0)


)∣∣∣∣ Al,n
(
ql,n (t)


)
= −
|e|δ3 (


x−ql,n (t)
)∣∣∣∣φl,n


(
ql,n (0)


)∣∣∣∣ Al,n (x) (32)


where ql,n (t) is a solution of (31). Let us write


ql,n (t) = δl,n (t) + ql,n (0) (33)


where δl,n (0) = 0, ie δl,n (t) is the particular solution of (31) that passes through the
origin at t = 0. We now form a statistically-weighted ensemble, summing the currents
(32) over the initial conditions. Let pl,n


(
ql,n (0)


)
be the weight of the nth null current


passing through x = ql,n (0) at t = 0. Then{
jl,n (x)


}
=


∫
d3ql,n (0) pl,n


(
ql,n (0)


)
jl,n (x) (34)


is an ensemble current, the members of which are mutually exclusive when there is
just one local charge. Consider the particular weights


pl,n
(
ql,n (0)


)
=


∣∣∣∣φl,n
(
ql,n (0)


)∣∣∣∣ β2
/
|e| =


∣∣∣∣φl,n
(
0,ql,n (0)


)∣∣∣∣ β2
/
|e| (35)


where β is a constant with dimensions L−1. Substitution of (35) and (32) into (34)
and using (33) gives{


jl,n (x)
}
= −β2


∫
d3ql,n (0)δ3 (


x−ql,n (t)
)
Al,n (x) = −β2Al,n (x) . (36)


The ensemble current
{
jl,n (x)


}
is conserved iff each of Al,n (x) satisfy the Lorenz


gauge, and vice-versa. Despite appearances, Eq. (35) is not a restriction on the weights
because φl,n


(
ql,n (0)


)
is not given. A consequence of (36) is that φl,n (x) (now) satisfies


a homogeneous coupled differential equation (see Section 5), for which φl,n
(
ql,n (0)


)
can be cast as a boundary condition - with no constraint on its functional form.


We now form an r-fold ensemble of the null ensemble currents:


{jl (x)} =
r∑


n=1


{
jl,n (x)


}
= −β2Al (x) (37)


13 Here we revert to a component representation of the Lorentz vectors to avoid discussion of functions
of Clifford vectors necessitated by writing dql,n (t)/dt = Al,n


(
ql,n (t)


)
/φl,n


(
ql,n (t)


)
.
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where we used (25). Introducing the ensemble adjunct potential


{Al (x)} =
∫


d4x′G
(
x− x′


) {
jl


(
x′
)}


(38)


the ensemble version of (14) is


�∂ {Al (x)} = {Fl (x)} , �∂ {Fl (x)} = −β2Al (x) . (39)


These ensembles simulate smooth fields satisfying differential equations. They hide
the constraint that the adjunct potential is physically consequential only at the point
of contact with the charge. And in the form (39) they hide the non-linear constraint
that the generators of the flow lines for the current are null.


4.2 Post hoc enforcement of mutual exclusion


Nothing in the above enforces mutual exclusion; the pl,n
(
ql,n (0)


)
above appear to be


independent. By contrast, if it is known that there is just one particle then mutual
exclusivity of flow-line occupancy requires 14


pl,n
(
ql,n (0) ,q′l,n (0)


)
= δ3


(
ql,n (0)−q′l,n (0)


)
pl,n


(
ql,n (0)


)
(40)


and suitably extended to cover higher orders of correlation. An implementation, vi-
able at least in a single particle theory, is to compute the dynamics at first ignoring
mutual exclusion, treating (34) as an ordinary integral and (37) as an ordinary sum -
i.e. both in the sense of a superposition - and enforce mutual exclusion only on prod-
ucts of mutually exclusive possibilities. For example, squaring {jl (x)} in (37), and
supposing for simplicity that n ∈ {1,2}, one has


{jl (x)}2 =
{
jl,1 (x)


}2
+


{
jl,2 (x)


}2
+ 2


{
jl,1 (x)


}
◦
{
jl,2 (x)


}
(41)


The first two terms on the right are null, the third term vanishes because it is the
product of two-mutually exclusive possibilities, and therefore {jl (x)} is effectively
null. This property extends to the


{
jl,n (x)


}
given by (42): squaring (37), one has{


jl,n (x)
}2


=


∫
d3a


∫
d3bpl,n (a) pl,n (b)jl,n (x;a)◦ jl,n (x;b) (42)


To remove the mutually-exclusive terms one can make the replacement


pl,n (a) pl,n (b)→ pl,n (a,b) = pl,n (a)δ3 (a−b) (43)


whereupon (42) becomes{
jl,n (x)


}2
=


∫
d3apl,n (a)


[
jl,n (x;a)


]2
= 0. (44)


as required.


14 If a and b are discrete and mutually exclusive then p (a|b) = δa,b, and Bayes Theorem p (a,b) =


p (a|b) p (b) becomes p (a,b) = δa,b p (b) = δa,b p (a).
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The SU(2) representation of a null vector can be ‘factorized’ as an outer-product
of Weyl spinors. A null Faraday, which turns out also to play a prominent role in the
dynamics, can be similarly factorized. Subsequently we show that nullity is automat-
ically preserved when the dynamics is expressed in terms of Weyl spinors rather than
Lorentz vectors and bi-vectors. Further, and of relevance to the above, mutual exclu-
sion can be then enforced by requiring that products of Weyl spinors that are factors
of mutually exclusive null currents do not contribute to expectation of observables.
This issue is briefly revisited in Section 8. The suggestive connection with the anti-
commutators of QFT is not discussed in this document however, which is primarily
focused on the single particle theory.


4.3 Back reaction


If the incoming potential is insensitive to flow-line occupancy then it is no different
from the ensemble of incoming potentials, in which case


Al,n (x) =
{
Al,n (x)


}
⇒Al (x) =


{
Al (x)


}
. (45)


Sensitivity of the potential to flow-line occupancy connotes a ‘back-reaction’ from
the larger system and is ignored here because doing so achieves the goal of this work,
which is convergence with Dirac theory in Minkowski space-time. Using (45) in (39)
gives


�∂ {Al (x)} = {Fl (x)} , �∂ {Fl (x)} = −β2
{
Al (x)


}
(46)


Note that the relationship (46) is exclusively between ensembles. There is no corre-
sponding direct relationship between particular members of the ensemble jl (x) and
Al (x).15


5 Normal Modes


5.1 Acoustic and optical branches


Eqs. (46) are equivalent to


∂2 {Al (x)} = −β2
{
Al (x)


}
(47)


subject to the constraints


�∂◦ {Al (x)} = �∂◦
{
Al (x)


}
= 0. (48)


Eq. (47) is a differential difference equation. The same information can be represented
in a pair of homogeneous differential equations, which can be constructed with the
help of an equation ‘adjoint’ to (47). Suppressing arguments


∂2
{
Al


}
= −β2


N∑
k=1;k,l


{
Ak


}
= −β2


N∑
k=1;k,l


[{A}− {Ak}] = −β2
[
(N −1) {A}−


{
Al


}]
. (49)


15 Each member current is delta-valued on the worldline of the charge, whereas every incoming potential
- every member of {A (x)} - is a smooth function of co-dimension 1 in R4 on the double light-cone of its
source.
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Here {A} is the total ensemble potential


{A} =


N∑
l=1


{Al} = {Al}+
{
Al


}
(50)


using which (49) can be written just in terms of {Al} and
{
Al


}
∂2


{
Al


}
= −β2


[
(N −1) {Al}+ (N −2)


{
Al


}]
. (51)


Eqs. (47) and (51) form the coupled system[
∂2, β2


(N −1)β2, ∂2 + (N −2)β2


] [
{Al}{
Al


} ] = 0. (52)


Adding the two rows gives an equation for the total adjunct potential[
∂2 + κ2


]
{A} = 0 (53)


where κ = β
√


N −1. Subtracting the second row from N −1 times the first row gives[
∂2−β2


]{∼
Al


}
= 0 (54)


where {∼
Al


}
= {Al}−


{
Al


}
/ (N −1) (55)


is an anti-symmetric combination of the potential of the local charge and the poten-
tial of all other distant charges, as it acts on the local charge. The relative weights are
such that the potentials of distant charges contribute coherently. The anti-symmetry
is suggestive of an analogy with the optical modes of an elastic lattice, whereas {A}
represents the symmetric modes of a coupled N-particle system, analogous to the
acoustic modes of an elastic lattice. Eq. (53) is a Klein-Gordon equation for the total
adjunct ensemble potential {A} with mass-frequency κ. Given N ∼ 1080 say, this is of
order 1040 times the magnitude of β in (54). If κ corresponds to a known elementary
particle then βmust be tiny. If for example κ is the Compton frequency of the electron
with wavelength 2.4× 10−12m, then the wavelength associated with β is of order of
the present Hubble radius, and the frequency has a period of order of the Cosmo-


logical age. At frequencies much greater than this
{∼
Al


}
behaves like a free (vacuum)


potential:16,17


∂2
{∼
Al


}
≈ 0. (56)


Eq. (56) is a novel demonstration of the existence of endogenous quasi-vacuum
modes in a DPI theory, without recourse to special boundary conditions presumed
in earlier work. Examination of the connection with retarded EM radiation is outside
the scope of this report, which is focused on the origin of the Dirac equation.


16 Due to the sign of β2 in (54) the lowest non-negative energy mode has zero energy (no time varia-
tion) and a corresponding (Hubble radius) spatial variation. Note that, however small, β forces agreement
between field theory and direct particle interaction on the necessity that the (free) potential satisfies the
Lorenz gauge.


17 Given light-speed motion of the source, this will occur as the acceleration approaches 10−10 m/s2


from above, suggestive of a connection with anomalous dispersion of velocities in the outer arms of spiral
galaxies (e.g. as characterized by MOND).
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5.2 Acoustic branch with no radiation


If it is known that no radiation is present, i.e.
{∼
Al


}
= 0, then (55) gives that the in-


coming and locally-generated adjunct ensemble potentials are proportional,


{Al} =
{
Al


}
/ (N −1) (57)


in which case the total potential is


{A} = {Al}+
{
Al


}
= N {Al} (58)


and the local potential {Al} satisfies the Klein-Gordon equation (53). It follows from
(57) that under these conditions (of no radiation), the local current is proportional to
its own potential as


{jl} = −κ
2 {Al} (59)


and Eq. (47) now reads [
∂2 + κ2


]
{Al} = 0 (60)


with the subsidiary condition


�∂◦ {Al} = 0. (61)


5.3 EM multivector


The Lorenz gauge constraint can be incorporated into the dynamics via the ensemble
multivector


{Ql} = κ {Al}+ i {Fl} (62)


(where {Fl} = �∂ {Al}), in which terms (60) and (61) can be combined into the ‘multi-
vector Dirac equation’ [


�∂+ iκ
]
{Ql} = 0. (63)


Hereafter we refer to any linear combination of the potential and Faraday as an ‘EM
multivector’ (to distinguish it from any other multivector containing other non-zero
blades). We note in passing that in the Majorana representation (63) can be expressed
entirely in terms of real quantities. Suppressing the particle label and re-writing as
(63) [[


�∂+ iκ
]
/i
]
[{Q}/i] = 0


then


[
�∂+ iκ


]
/i =



∂
∂x + κ − ∂


∂z 0 ∂
∂y −


∂
∂t


− ∂
∂z − ∂


∂x + κ − ∂
∂y + ∂


∂t 0
0 − ∂


∂y −
∂
∂t


∂
∂x + κ − ∂


∂z
∂
∂y + ∂


∂t 0 − ∂
∂z − ∂


∂x + κ


 (64)
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and, expressed in terms of contra-variant components,


{Q}/i =






κAx −Ey −κAz + By Ez−Bx −κφ+ κAy + Bz + Ex
−κAz−By −κAx −Ey κφ− κAy + Bz + Ex −Ez + Bx


Ez + Bx −κφ− κAy−Bz + Ex κAx + Ey −κAz + By
κφ+ κAy−Bz + Ex −Ez−Bx −κAz−By −κAx + Ey



 .


(65)
It is established in Section 6 that Q transforms like the outer product of a Dirac bi-
spinor with its adjoint. By contrast, each of the individual columns in Q in (65) do
not transform like a Dirac bi-spinor, even though in any frame each of those columns
satisfies a Dirac-like equation.


6 Dirac Equation


6.1 Multivector projections


Eq. (63) is a coupled first order system in the components of the potential and Fara-
day. The focus of this work is on the ensemble current, which can found from so-
lutions of (63) provided the conditions described in Section 3.2 are met. If so then
each flow line of each of the null components of that current is a possible - mutually
exclusive - path for the local electron.


One could form a Dirac equation of sorts by right multiplication of (63) with a
constant 4-vector to project onto C4. But {Ql (x)} times a constant 4-vector does not
transform as a bi-spinor (see below). By contrast a Lorentz invariant 4-vector (bi-
spinor) description of the dynamics can be obtained from a projection of the phase-
space representation of the Clifford Multivector, because in that representation there
is no constraint that the projection 4-vector be constant. The dimensionality of {Ql (x)}
mandates there are 4 such independent projections that generate 4 Dirac equations,
each associated with a different conserved current.


6.2 Multivector eigenvectors (Dirac bi-spinors)


Phase-space representation We suppress the particle index l, and distinguish be-
tween real-space, phase-space, and Fourier domain functions by their arguments. Us-
ing the transform convention


f (k) =


∫
d4xeik◦x f (x)⇒ f (x) = (2π)−4


∫
d4ke−ik◦x f (k) (66)


let
f (x,k) = e−ik◦x f (k) (67)


for any function f (k) so that


f (x) = (2π)−4
∫


d4k f (x,k) . (68)
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In these terms the multivector (62) is


{Q (x,k)} = κ {A (x,k)}+ i {F (x,k)} = [κ+k] {A (x,k)} (69)


and (63) can be written as either of 18[
�∂+ iκ


]
{Q (x,k)} = i [κ−k] {Q (x,k)} = 0. (70)


The second of (70) can be written


P− (k) {Q (x,k)} = 0 (71)


where Pσ (k) = (κ+σk)/2κ, σ = ±1, are a complementary pair of projection matrixes
each with rank 2. Consequently, {Q (x,k)} has rank 2, and can be decomposed, there-
fore, as the sum of two outer-products of 4-component vectors in C4, though the form
of that decomposition is constrained by conditions on {Q (x,k)} due to the reality of
the underlying potential and Faraday, and – relatedly - the symmetries of their matrix
representations.


Substitution of (69) into (70) gives the Klein-Gordon type condition k2 = κ2. The
two roots can be accommodated by reduction of the dimensionality of the k-space
integrations, replacing (68) with


{Q (x)} = (2π)−3
∫


d3k
(
{Q+ (k)}eik◦x + {Q− (k)}e−ik◦x


)
(72)


where
k =


(
k0,k


)
; k0 = +


√
κ2 + k2. (73)


One infers from (68) that


{Q (x,k)} = 2π
(
{Q+ (k)}eik◦x + {Q− (k)}e−ik◦x


)
δ
(
k0−


√
κ2 + k2


+


)
(74)


Since {Q (x,k)} has rank 2, {Q+ (k)} and {Q− (k)} must each have at least rank 1.
(Because {Q+ (k)}eik◦x and {Q− (k)}e−ik◦x are functionally independent from the point
of view of a Fourier decomposition of solutions of (70) it cannot be the case that one
of these has rank 2, and the other rank 0.) Taking {Q (x,k)} to be the more fundamental
physical quantity, we now seek rank 1 representations of {Q+ (k)} and {Q− (k)} that
have sufficient degrees of freedom to satisfy symmetry constraints on {Q (x,k)}.


Relativistic Covariance Corresponding to a Lorentz transformation


xµ→ x′µ = Lµνxν; LT L = 1 (75)


where L = {Lµν}, the transformation rule for �∂ is


�∂→ �∂
′


= S�∂S
−1 (76)


for a constant matrix S (L). One finds


�∂ = γµ
∂


∂xµ
→ γν


∂


∂x′µ
= γν


∂xµ


∂x′ν
∂


∂xµ
= γν


(
L−1


)µ
ν


∂


∂xµ
(77)


18 k is �k of the traditional Feynman slash notation.
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and therefore S (L) is the solution of


S (L)γµS−1 (L) = γν
(
L−1


)µ
ν


(78)


which up to an overall scalar factor is [62]


S (L) = e[γb,γa]ωab
; ωab =


(
gab−Lab


)
/8. (79)


Since �∂ is a proto-typical vector it follows that the potential must transform likewise


{A (x)} →
{
A′


(
x′
)}


= S {A (x)}S−1 (80)


and therefore


{F (x)} = �∂ {A (x)} →
{
F ′


(
x′
)}


= �∂
′ {
A′


(
x′
)}


= S {F (x)}S−1. (81)


Consequently


{Q (x)} →
{
Q′


(
x′
)}
S {Q (x)}S−1 (82)


and (70) is invariant under Lorentz transformations:[
�∂+ iκ


]
{Q (x)} →


[
�∂
′


+ iκ
] {
Q′


(
x′
)}


= S
[
�∂+ iκ


]
{Q (x)}S−1 = 0. (83)


It follows from (82) that {Q (x)} transforms as an outer-product of Dirac-theory bi-
spinors ψ (x), the transformation rule for which (see for example [62]) is ψ′ (x′) =


Sψ (x). Since {Q (x,k)} has rank two it must be decomposable in M4 (C) as


{Q (x,k)} = r (x,k) s (x,k) + u (x,k)v (x,k) (84)


where r, s transform as Dirac bi-spinors, s,v transform as adjoint bi-spinors, and the
overbar has the traditional meaning for a bi-spinor ψ that ψ = ψ†γ0.


Consistent with (84), and taking into account the discussion above, we now seek
a sufficient decomposition of {Q+ (k)} and {Q− (k)} in (72) as


{Q+ (k)} = r (k) s (k) , {Q− (k)} = u (k)v (k) (85)


whereupon (72) becomes


{Q (x)} = (2π)−3
∫


d3k
(
r (k) s (k)eik◦x + u (k)v (k)e−ik◦x


)
. (86)


We have not used the ensemble notation for the bi-spinors because r (k) and s (k) in
(85) for example are outer-product vector factors of an ensemble - they do not each
represent an ensemble of bi-spinors.
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Restriction to Cl1,3 (R) The degrees of freedom in r, s s,v must be restricted to con-
form with intrinsic symmetries of the gamma matrixes


γµ = γ0γµ†γ0 = γ0Cγµ∗Cγ0. (87)


The first of (87) applied to a real-space potential and Faraday yield


γ0
{
A† (x)


}
γ0 = {A (x)} (88)


and


γ0
{
F † (x)


}
γ0 = γ0


[
�∂ {A (x)}


]†
γ0 = γ0


{
A† (x)


}←
�∂
†


γ0 = {A (x)}
←


�∂ = −{F (x)} (89)


and therefore
γ0 [i {F (x)}]†γ0 = i {F (x)} . (90)


Applied to (62) these give


{Q (x)} = γ0
{
Q† (x)


}
γ0. (91)


A similar application of the second of (87) leads to


{Q (x)} = γ0C
{
Q∗ (x)


}
Cγ0. (92)


Recalling (66), (67) and (68), the phase-space representations of {A}, {F }, and {Q}
must have the same symmetries, and therefore


{Q (x,k)} = γ0
{
Q† (x,k)


}
γ0 = γ0C


{
Q∗ (x,k)


}
Cγ0. (93)


The first of these implies that Q (x)γ0 and Q (x,k)γ0 are Hermitian. Applied to (86)
the decomposition is restricted to


{Q (x)} = (2π)−3
∫


d3k
(
r (k) s (k)eik◦x + s (k)r (k)e−ik◦x


)
. (94)


Denoting the charge-conjugate of a bi-spinor by ψc = γ0Cψ∗, the second of (93)
connotes charge conjugation invariance of the whole matrix, which requires rc (k) =


s (k)⇔ r (k) = sc (k), and therefore


{Q (x)} = (2π)−3
∫


d3k
[
ψ
(


1
2 k


)
ψc


(
1
2 k


)
eik◦x +ψc


(
1
2 k


)
ψ
(


1
2 k


)
e−ik◦x


]
(95)


for some bi-spinor ψ (k). Through a change of scale of the integration (95) can be
written


{Q (x)} = π−3
∫


d3k
[
ψ (x,k)ψc (x,k) +ψc (x,k)ψ (x,k)


]
(96)


where
ψ (x,k) = ψ (k)eikc◦x (97)


and where the wave-vector is now


kc =
(
k0


c ,k
)
; k0


c =


√
κ2


c + k2
+ , κc = κ/2. (98)
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The subscript c alludes to the Compton frequency, which is half the frequency of the
rest-frame adjunct potential. Eq. (96) implies that {Q− (k)} =


{
Qc


+ (k)
}
, and also that


(72) could be written more efficiently as


{Q (x)} = π−3
∫


d3k
(
{Q (k)}eik◦x +


{
Qc (k)


}
e−ik◦x


)
(99)


where {
Qc (k)


}
= γ0C


{
Q∗ (k)


}
Cγ0 (100)


where
{Q (k)} = ψ (k)ψc (k) . (101)


6.3 Dirac Equation


Applying (68) to (74), a Fourier phase factor form of the multivector differential
equation (63) is [


�∂+ iκ
]
{Q (x,k)} = 0. (102)


With the substitution (99) Eq. (63) can also be expressed in the form[
�∂+ iκ


]
{Q (k)}eik◦x = 0 (103)


with the component form of k given in (73). This is sufficient because the charge
conjugate of (103) takes care of the second term in (99). Expressed instead in terms
of the eigenvector decomposition (101), Eq. (103) is[


�∂+ iκ
]
ψ (k)ψc (k)eik◦x = 0⇒


[
�∂+ iκc


]
ψ (k)ψc (k)eikc◦x = 0. (104)


Using (97) it follows that a sufficient condition for the satisfaction of (63) is that each
phase-space component ψ (x,k), ∀x,k satisfies the Dirac equation[


�∂+ iκc
]
ψ (x,k) = i [κc +kc]ψ (x,k) = 0. (105)


7 Dirac Currents


7.1 Electron-positron current


Solutions {Ql (x)} of (63) can be assembled from solutions ψ (x,k) of (105) using
(96), the bi-vector and vector parts of which are the ensemble Faraday and ensemble
potential, respectively. The latter is 19


{A (x)} =
1
π3κ


∫
d3k


[〈
ψ (x,k)ψc (x,k)


〉
1


+
〈
ψc (x,k)ψ (x,k)


〉
1


]
. (106)


19 The Minkowski components of a Clifford vector V =
〈
ψψc


〉
1


= Vµγµ are Vµ = ψcγµψ.
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The ensemble potential is proportional to an ensemble of local currents through (59).
Specifically


{j (x)} = −
2κc


π3


∫
d3k


[〈
ψ (x,k)ψc (x,k)


〉
1


+
〈
ψc (x,k)ψ (x,k)


〉
1


]
, (107)


where we used κ = 2κc. Let us confirm that {A (x)} and therefore {j (x)} satisfy the
Lorenz gauge condition. Suppressing arguments


∂◦ {A} =
1
π3κ


∫
d3k


〈
�∂
[〈
ψψc


〉
1


+
〈
ψcψ


〉
1


]〉
0


=
1
π3κ


∫
d3k


[
ψc
↔


�∂ψ+ψ
↔


�∂ψ
c
]
. (108)


This vanishes because �∂ψ = −iκcψ, �∂ψc = −iκcψ
c, ψ


←


�∂ = iκcψ, and ψc
←


�∂ = iκcψ
c
. Hence


{j (x)} is a conserved current. Due to (35) we will refer to the {j (x)} given by (107) as
the electron-positron ensemble current. The overall factor 2κc/π


3 can be replaced to
comply with a normalization condition on the charge.


To facilitate a physical interpretation of the current we express the ψ in terms of
the eigenvectors of charge conjugation. These are Majorana bi-spinors, which will be
denoted here by a change of font to ψ. They can be projected out of an arbitrary ψ
using


ψσe (x,k) = P̂σe


[
ψ (x,k)


]
=


1
2
[
ψ (x,k) +σeψ


c (x,k)
]
. (109)


The inverse relations are


ψ (x,k) =ψ+ (x,k) +ψ− (x,k) , ψc (x,k) =ψ+ (x,k)−ψ− (x,k) . (110)


Substitution of (110) into (96) gives


{Q (x)} =
2
π3


∫
d3k


[
ψ+ (x,k)ψ+ (x,k)−ψ− (x,k)ψ− (x,k)


]
(111)


in which terms (107) is


{j (x)} = −
4κc


π3


∫
d3k


[〈
ψ+ (x,k)ψ+ (x,k)


〉
1
−


〈
ψ− (x,k)ψ− (x,k)


〉
1


]
. (112)


Using the defining property (109) it can be shown that outer-products of Majorana
bi-spinors have vector and bi-vector parts only - all other Clifford blades vanish -
as do all bi-linear combinations of the vector and bi-vector parts. These constraints
can be represented by expressing the individual outer-products of the Majorana bi-
spinors above in terms of electron and positron multivectors Qσe where, suppressing
arguments {


Qσe


}
=ψσeψσe = κ


{
Aσe


}
+ i


{
Fσe


}
, (113)


and where, suppressing braces, the component forms of the potential and Faraday
satisfy


Aσe = φσe


(
1, Êσe × B̂σe


)
, Eσe ·Bσe = B2


σe −E2
σe = 0. (114)(


Eσe ,Bσe ,Aσe


)
are mutually orthogonal therefore. Note that the individual


{
Qσe


}
do


not satisfy the multi-vector Dirac equation (63). Of particular relevance here is that
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(114) implies that Aσe is null, and therefore that (110) is a decomposition of the total
current into 2 null currents. Their further decomposition into polarized null currents
is discussed below. At fixed t the ensemble {j (x)} therefore comprises 4 null currents
of each charge species passing through every x.20


Upon substitution of (97) into (109) the outer-products in (111) and (112) become


ψσe (x,k)ψσe (x,k) = 1
4


[
ψ (k)ψ (k) +ψc (k)ψc (k)


]
+
σe
4


[
ψc (k)ψ (k)e−2ikc◦x +ψ (k)ψc (k)e2ikc◦x


] . (115)


Hence at fixed k the two terms in (112) each comprise an oscillatory component
offset by a constant mean. Moreover, the magnitude of the mean is the same for both
species. Consequently the static terms cancel upon substitution of (115) into (112),
leaving


{j (x)} = −
κc


π3


∫
d3k


[〈
ψc (k)ψ (k)


〉
1


e−2ikc◦x +
〈
ψ (k)ψc (k)


〉
1


e2ikc◦x
]
. (116)


The electron-positron current (112) is purely sinusoidal therefore, as would be ex-
pected of a solution of the Klein-Gordon equation.


The time component of each current is proportional to


ψσe (x,k)γ0ψσe (x,k) = ψ (k)γ0ψ (k) +σeRe
{
ψ (k)γ0ψc (k)e−2ikc◦x


}
(117)


Since
ψσe (x,k)γ0ψσe (x,k) =ψ†σe


(x,k)ψσe (x,k) > 0 (118)


and
ψ (k)γ0ψ (k) = ψ† (k)ψ (k) > 0 (119)


it follows from (117) that the sign of the charge is determined solely by the sign of the
static term. The two terms in (112),


〈
ψ− (x,k)ψ− (x,k)


〉
1


and −
〈
ψ+ (x,k)ψ+ (x,k)


〉
1
,


are the currents of opposite signed species of equal mass. Nominally these are elec-
trons and positrons, though which term corresponds to which species depends on the
sign of the overall factor.


7.2 Traditional Dirac current


The electron and positron bi-spinorsψ− andψ+ independently solve the Dirac equa-
tion, and contribute independently to the electron and positron currents in (112) (the
cross terms vanish). In the Majorana representation they are respectively purely real
and purely imaginary - or vice-versa - up to an overall phase factor. A input to this
presentation of DPI is that the individual members of the current ensemble are al-
ways null. By contrast the ensemble current is generally non-null. It will be non-null
in the case of (112) due to interference between the electron and positron currents.21


A purely electron ensemble current is constrained to move at light speed, therefore.


20 And therefore r = 4 in (37).
21 I.E.: not as a result of interference between bi-spinors.
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In the Majorana representation consider now the composition


ψ (x,k) =ψ(1)
− (x,k) + iψ(2)


− (x,k) . (120)


For definiteness we can take ψ− to be real, from which it is inferred the second term
in (120) mimics the positron contribution to the total wavefunction. The implication
of the subscript however is that it contribute to the total current with the same sign as
the first term, i.e. so that


{jDirac (x)} =
4κc


π3


∫
d3k


[〈
ψ(1)
− (x,k)ψ


(1)
− (x,k)


〉
1


+


〈
ψ(2)
− (x,k)ψ


(2)
− (x,k)


〉
1


]
(121)


and therefore


{jDirac (x)} =
2κc


π3


∫
d3k


〈
ψ (x,k)ψ (x,k)


〉
1


(122)


where we used 〈ψcψc〉1 = 〈ψψ〉1. This is the traditional Dirac current, to be compared
with (107). Evidently (122) is the particle current without regard for the sign of the
charge.22 It remains conserved because the currents of the two charge species are in-
dependently conserved. Eq. (122) can also be interpreted as a purely electron current
provided the sign of φ in (29) is associated with the mass rather than the charge (as
it is in (30)). Hence the Dirac current fixes the sign of the charge in exchange for
indeterminacy in the sign of the energy, swapping their status relative to the electron-
positron current.


7.3 External Coupling


Eq. (122) is a non-null ensemble current of a single charge species. Appropriately
interpreted there no problem with its use as a generator of exclusively electronic flow
lines from solutions of the free Dirac equation. There is a problem however with the
appearance of that current in the interaction


Lint = −


∫
d4x {j Dirac (x)} ◦A ext (x) (123)


where A ext (x) is a vacuum potential 23 This is because (123) couples an EM potential
to a current without regard for the sign of the charge carrier, or because it couples
positive and negative energy states - depending on the interpretation given to {j Dirac}.
Use of (123) is the source of well-known problems with the traditional presentation
of the single particle Dirac theory. Discussion of alternative forms of the interaction
within a single particle theory is outside the scope of this work.


22 Relatedly, unlike (116), Eq. (122) is not a solution of the Klein-Gordon equation.
23 In the context of this work, more accurately it is the anti-symmetric


{∼
Al


}
that solves 55.
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7.4 Dynamic independence of the currents


Each charge current can be further analyzed into two null independently conserved
currents distinguished by their polarization.24 A projector with the required properties
(see for example [62]) is


Pσp =
1
2


[
1 +σpγ5n


]
; σp = ±1 (124)


where n is any vector satisfying n ◦ kc = 0 and n2 = −1. Denoting the projections
by ψσp,σe = Pσpψσe , the electron-positron ensemble current (112) associated with a
general solution of (105) can be decomposed into 4 null components


{j (x)} =
1
π3


∑
σp,σe=±1


σe


∫
d3k


{
jσp,σe (x,k)


}
(125)


where {
jσp,σe (x,k)


}
= −4κcσe


〈
ψσp,σe (x,k)ψσp,σe (x,k)


〉
1
. (126)


The absence in the current of cross terms of the formψσp,σe (x,k)ψσ′p,σ
′
e
(x,k) where


σ′p,σ
′
e differ from σp,σe is an outcome of the properties of the charge and polar-


ization projectors. In this work these represent 4 potentially coinciding ensembles of
possible paths of a light-speed charge following the flow lines of a null potential, as
described in Section 3.2. Crucial to the applicability of the method of Section 3.2 to
the general case that the incoming potential and Faraday are non-null is that these
currents are dynamically independent. Specifically, this requires that the Faraday of
each current does not act on any of the other 3 currents, which is that a charge fol-
lowing the flow lines of a potential does not experience a Lorentz force from any of
the other 3 potentials. Extending (113) to{


Qσp,σe


}
: =ψσp,σeψσp,σe = κ


{
Aσp,σe


}
+ i


{
Fσp,σe


}
(127)


the requirement can be expressed as〈{
Fσp,σe


} {
Aσ′p,σ


′
e


}〉
1


= 0 (128)


except perhaps when σp = σ′p and σe = σ′e. It turns out that this constraint can be
satisfied, and forces a particular association between the bi-vector and vector parts of
each of the 4 possible outer products in (126). A proof will be given elsewhere. Here
we quote the result, which is that the condition (128) is met if{


Fσp,σe


}
= �∂


{
Aσp,σ̄e


}
. (129)


Notice that the Faraday part of the outer product in (113) does not derive from the
potential part of the same outer product. Hence the Majorana bi-spinor ψ+ is the
generator of the electron potential and the positron Faraday, for example.25


24 We use polarization rather than spin because the electron and positron multi-vectors alone do not gen-
erate angular momentum. This follows from the decomposition (113) consistent with the remarks in 7.1,
together with the fact that spin angular momentum is a Clifford pseudo-vector. Any angular momentum, if
present, must be a joint property of the electron and positron multivectors therefore.


25 Or vice-versa.
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8 Superposition, anti-commutation, and wavefunction collapse


Eq. (125) is an integral superposition of an outer-product of phase-space bi-spinors,
each term corresponding to a single Fourier k-space component of the current. The
constraint that the current is null will be satisfied if each of the


{
jσp,σe (x,k)


}
- i.e. for


each possible σp,σe,k over all x - is mutually exclusive. Under these conditions each
term in the superposition (i.e. the integrand) is a candidate for the role of sole con-
tributor to a single instance current, whose relative magnitude therefore corresponds
to the probability of that being the case in any single instance.


Mutual exclusion of each contribution is a consequence of a particular decompo-
sition (of the current vector into Majorana bi-spinors) in which the contributing terms
are individually null. The Majorana bi-spinors and the Dirac equation they satisfy de-
rive from factorization of the multivector 26. Mutual exclusion therefore applies to
solutions of the Dirac equation, represented in any function space.


From the perspective of this work the freedom to choose the function space orig-
inates in the Dirac multi-vector equation, not in the Dirac equation. The distinction
is important because singular value decomposition of the multivector does not gener-
ally commute with transformation of the function space. The Fourier space bi-spinors
appearing in (105) differ from the Fourier transform of real-space solutions of the real
space Dirac equation, for example.


This distinction can be removed by attributing the property of mutual exclusion
to the bi-spinors - rather than to the null currents they generate. This requires that
the bi-spinors be treated as delta-correlated in whatever function space the current is
expressed. Delta-correlation can be enforced through appropriate anti-commutation
rules. In a discrete function space they can be achieved simply by striking out off-
diagonal terms in the density matrix. In all cases the amplitude of the remaining
diagonal terms will retain their role as the probabilities of each term being the sole
contribution to the current in any single instance, in that representation.


9 Summary


The Dirac Equation is shown to derive from an equation for the Clifford multivector
of the time-symmetric potential and Faraday of classical direct particle electrodynam-
ics. The probabilistic aspect is seen to be a consequence of embedding the dynamics
of a single current in an ensemble of hypothetical currents. Wavefunction collapse
/ representation-independent eigenvalue selection is shown to be a consequence of
non-linear constraints on the solutions of a linear differential equation.


Acknowledgements I am very grateful to H.S.H. Prince Hans-Adam II of Lichtenstein for his patient
long-standing support, without which this paper would not have been written.


26 More accurately: singular value decomposition.
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