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SPECTRAL IDENTITIES FOR SCHRÖDINGER OPERATORS


NAMIG J. GULIYEV


Abstract. We obtain a system of identities relating boundary coefficients


and spectral data for the one-dimensional Schrödinger equation with boundary


conditions containing rational Herglotz–Nevanlinna functions of the eigenvalue
parameter. These identities can be thought of as a kind of mini version of the


Gelfand–Levitan integral equation for boundary coefficients only.


1. Introduction and main result


In our recent papers, we solved various direct and inverse spectral problems for
boundary value problems generated by the one-dimensional Schrödinger equation


− y′′(x) + q(x)y(x) = λy(x) (1)


and the boundary conditions


y′(0)


y(0)
= −f(λ),


y′(π)


y(π)
= F (λ), (2)


where f and F are rational Herglotz–Nevanlinna functions. As the papers [3] and [5]
show, for summable and distributional potentials respectively, their spectral theory
is mostly analogous to the classical case when the coefficients f and F in (2) are
constants. There also appear some new phenomena. For example, two spectra may
no longer be sufficient to determine the coefficients of (1)-(2) uniquely [4] and it is
quite possible for eigenfunctions not to be a basis for L2(0, π), even after removing
some of them [6]. However, it is still possible to determine the coefficients of (1)-
(2) from the knowledge of its spectral data consisting of the eigenvalues and the
so-called norming constants (see (7) below). The purpose of this short paper is
to establish some simple identities relating the boundary coefficients (i.e., f and
F ) and the spectral data of (1)-(2) with a real-valued potential q ∈ L1(0, π), and
which, in particular, allow one to find the boundary coefficients in a much more
direct way. Remarkably, some of the objects that we use in this paper, namely the
polynomial ωf and the matrices of (4), are very similar to, but not quite identical
with, those encountered in other areas of mathematics [8].


Apart from being interesting in their own right, eigenvalue problems with bound-
ary conditions dependent on the eigenvalue parameter have found numerous appli-
cations in various fields of science. For example, they have recently been considered
in the literature in connection with such diverse areas as heat transfer [1], string
theory [7], fluid dynamics [9], biology [10], mathematical finance [13], and quan-
tum computing [14]. Interestingly, the last-mentioned paper also discusses some
identities of the kind considered in Remark 1 below.
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We now recall some necessary notation from [3] related to rational Herglotz–
Nevanlinna functions. Each such function can be written as


f(λ) = h0λ+ h+


d∑
k=1


δk
hk − λ


(3)


with h0 ≥ 0, h ∈ R, δk > 0, and h1 < . . . < hd. To every function f of this form
we assign two polynomials f↑ and f↓ by writing this function as


f(λ) =
f↑(λ)


f↓(λ)
,


where


f↓(λ) := h′0


d∏
k=1


(hk − λ), h′0 :=


{
1/h0, h0 > 0,


1, h0 = 0.


We also associate to f its index


ind f :=


{
2d+ 1, h0 > 0,


2d, h0 = 0,


which counts each finite pole of this function twice and its pole at infinity (if any)
once. To each rational Herglotz–Nevanlinna function f we also assigned in [3] a
monic polynomial


ωf (λ) := (−1)b
ind f


2 cλf↓
(
λ2
)
− (−1)d


ind f
2 ef↑


(
λ2
)
,


where b·c and d·e are the usual floor and ceiling functions.
Now we are ready to introduce the main players of this paper. Denote by λn the


eigenvalues of the boundary value problem (1)-(2) and by γn its norming constants
defined by (7) below. Consider the sums of the series


σk :=


∞∑
n=0


λkn
γn
, k = 0, 1, . . . , ind f − 1


and


σind f :=
∑
n<L


λind fn


γn
+
∑
n=L


(
λind fn


γn
− 1


π


)
+
∑
n>L


(
λind fn


γn
− 2


π


)
with


L :=
ind f + indF


2
,


whose convergence is an immediate consequence of the asymptotics of the eigenval-
ues and the norming constants [3, Theorem 4.2]. Alternatively, their convergence
also follows from the proof below (see Section 2). On the other hand, the above
polynomial ωf can be written as


ωf (λ) = λind f+1 + ω1λ
ind f + . . .+ ωind f+1.


It turns out that these two (ind f + 1)-tuples σ0, . . ., σind f and ω1, . . ., ωind f+1 are
related in a rather simple way.


Theorem. The following identities hold:


(−1)kω1−k +


b(ind f+1−k)/2c∑
i=−bk/2c


σind f−i−kω2i+k = 0, k = 0, 1, . . . , ind f (4)
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with the convention that ω0 = 1 and ωm = 0 if m < 0. Moreover, this system is
uniquely solvable, both when either ω1, . . ., ωind f+1 or σ0, . . ., σind f are treated as
variables.


We will prove this theorem in the next section. It is interesting to note that the
system (4) resembles, in a sense, the Gelfand–Levitan integral equation. Indeed,
the numbers ωk are defined in terms of the coefficient f and play the role of the
Gelfand–Levitan kernel. The numbers σk, on the other hand, are defined in terms
of the eigenvalues and the norming constants, and thus play the role of the other
function of two variables from the Gelfand–Levitan equation, usually denoted by
f(·, ·) or F (·, ·).


Remark 1. The above theorem allows one to determine f in terms of the coefficients
of the polynomials f↓ and f↑. It is also possible to obtain some identities involving
the coefficients in the representation (3). Recall that [3, Section 2.2] the boundary
value problem (1)-(2) can also be stated as an eigenvalue problem for a self-adjoint
operator in a Hilbert space of the form L2 ⊕ CM for a suitable M , namely


M :=


⌈
ind f


2


⌉
+


⌈
indF


2


⌉
.


Parseval’s identity for the eigenvectors of this operator yields the identities


1


δk
=


∞∑
n=0


1


γn


(
f↓(λn)


λn − hk


)2


, k = 1, . . . , d


and
1


h0
=


∞∑
n=0


f2↓ (λn)


γn
,


including the possibility that both sides of this last identity are infinite. However, it
seems that we still need the above theorem to determine h1, . . ., hd, or equivalently
f↓. Such identities were obtained in [2] for the case when ind f = indF = 2.


Remark 2. Of course, all of the above identities have their counterparts for the right
endpoint. One only needs to replace γn by β2


nγn everywhere, where βn is defined
by (6) below. This can be proven by repeating the corresponding arguments for the
left endpoint. A much shorter proof can also be given, based on a simple symmetry
argument: for the boundary value problem of the form (1)-(2) with q(x), f , and
F replaced by q(π − x), F , and f respectively, the roles of the solutions ϕ and ψ
defined by (5) are interchanged, and hence that problem has the same eigenvalues
λn and the norming constants β2


nγn.


In addition to being interesting for their own sake, these identities also have a
multitude of applications to inverse problems. For example, as we have already
pointed out, they allow one to avoid the whole machinery of [3] and compute the
coefficients of f directly. Moreover, for constant f (i.e., when ind f = 0), the
system (4) consists of only one identity and this identity is a key ingredient in
Korotyaev and Chelkak’s parametrization of sets of isospectral problems [11]. The
identities (4) also play an important role in the solution of the two-spectra inverse
problem [4] for boundary value problems of the form (1)-(2).


The result of this paper can also be useful in the so-called incomplete inverse
problems. To determine the boundary value problem (1)-(2) completely, one needs
to know all of the eigenvalues and the norming constants. But if we have some
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extra information about the coefficients of this boundary value problem, a part of
this spectral data can be omitted (see, e.g., [3, Section 4.6], [16], and the references
therein). In particular, if the boundary coefficients f and F are known and some of
the eigenvalues and the norming constants are missing, with the number of missing
ones not exceeding ind f + indF + 2, then the identities (4) (and their counterparts
for the right endpoint, mentioned in Remark 2) give us algebraic equations for these
missing ones.


2. Proof


Before turning to the proof, we need some more definitions and preliminary re-
sults. Let ϕ(x, λ) and ψ(x, λ) be the solutions of (1) satisfying the initial conditions


ϕ(0, λ) = f↓(λ), ϕ′(0, λ) = −f↑(λ), ψ(π, λ) = F↓(λ), ψ′(π, λ) = F↑(λ). (5)


Then the eigenvalues of the boundary value problem (1)-(2) coincide with the zeros
of the characteristic function


χ(λ) := F↑(λ)ϕ(π, λ)− F↓(λ)ϕ′(π, λ) = f↓(λ)ψ′(0, λ) + f↑(λ)ψ(0, λ)


and for each eigenvalue λn there exists a unique number βn 6= 0 such that


ψ(x, λn) = βnϕ(x, λn). (6)


We define the norming constants as


γn :=


∫ π


0


ϕ2(x, λn) dx+ f ′(λn)ϕ2(0, λn) + F ′(λn)ϕ2(π, λn), (7)


where the second (respectively, the third) summand on the right-hand side is omit-
ted if λn coincides with one of the poles of the function f (respectively, F ). The
three sequences {λn}n≥0, {βn}n≥0, and {γn}n≥0 are related by the identity ([3,
Lemma 2.1])


χ′(λn) = βnγn. (8)


The solution ψ and its first derivative with respect to x satisfy the asymptotic
estimates


ψ(0, λ) = λindF/2 cos


(√
λ+


indF


2


)
π


+


(
1


2


∫ π


0


q(x) dx+ Ω1


)
λ(indF−1)/2 sin


(√
λ+


indF


2


)
π


+ o
(
λ(indF−1)/2e| Im


√
λπ|
)


and


ψ′(0, λ) = λ(indF+1)/2 sin


(√
λ+


indF


2


)
π


−
(


1


2


∫ π


0


q(x) dx+ Ω1


)
λindF/2 cos


(√
λ+


indF


2


)
π


+ o
(
λindF/2e| Im


√
λπ|
)
,
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which in turn imply the asymptotic formula


χ(λ) = λL+1/2 sin
(√


λ+ L
)
π


−
(


1


2


∫ π


0


q(x) dx+ ω1 + Ω1


)
λL cos


(√
λ+ L


)
π + o


(
λLe| Im


√
λπ|
)


for the characteristic function. These estimates can be obtained by expressing ψ
as a linear combination of the cosine- and sine-type solutions and using the well-
known estimates for them. Another possible way to obtain these formulas is to
observe that they all are (up to a change in sign) the characteristic functions of
problems of the form (1)-(2) (with the Dirichlet condition at the left endpoint in
the case of ψ(0, λ) and the Neumann condition in the case of ψ′(0, λ)) and then
apply a lemma of Marchenko and Ostrovskii (see [12, Lemma 3.4.2]) to their infinite
product representations (cf. [4, Appendix A]).


We are now going to obtain the identities (4) as a consequence of a well-known
result from complex analysis: if g is a meromorphic function satisfying the estimate


sup
|λ|=RN


|g(λ)| = o


(
1


RN


)
with


RN :=


(
N − L− 1


2


)2


,


then the sum of the residues of this function, defined as 1
2πi limN→∞


∫
|λ|=RN


g(λ) dλ,


is zero [15, Lemma 3.2].
It is convenient to consider the cases of odd and even ind f separately. However,


since the arguments are very similar in both cases, we give the details only for the
former case. Taking g(λ) = λjψ(0, λ)/χ(λ) and g(λ) = λjψ′(0, λ)/χ(λ) respectively
in the above result for j = 0, 1, . . . , d− 1 and using (8), we obtain


∞∑
n=0


λjnf↓(λn)


γn
=


∞∑
n=0


λjnβnf↓(λn)


χ′(λn)
=


∞∑
n=0


Resλ=λn


λjψ(0, λ)


χ(λ)
= 0


and
∞∑
n=0


λjnf↑(λn)


γn
=


∞∑
n=0


λjnβnf↑(λn)


χ′(λn)
= −


∞∑
n=0


Resλ=λn


λjψ′(0, λ)


χ(λ)
= 0,


which are exactly the identities (4) for k = 2, 3, . . . , ind f . To obtain the case k = 1
we take


g(λ) =
λdψ(0, λ)


χ(λ)
− (−1)d


λ
.


Finally, the case k = 0 is obtained by taking


g(λ) =
(−λ)dψ′(0, λ)


χ(λ)
+ λ−1/2 cot


(√
λ+ L


)
π


+


(
1


2


∫ π


0


q(x) dx+ ω1 + Ω1


)
λ−1 cot2


(√
λ+ L


)
π


+


(
1


2


∫ π


0


q(x) dx+ Ω1


)
λ−1
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and using the above asymptotic formulas for ψ, ψ′, and χ together with the obvious
equalities


Resλ=(n−L)2 λ
−1/2 cot


(√
λ+ L


)
π =


{
2
π , n > L,
1
π , n = L


and


Resλ=(n−L)2 λ
−1 cot2


(√
λ+ L


)
π =


{
− 2
π2(n−L)2 , n > L,


− 2
3 , n = L.


We now turn to uniqueness. When ωs are treated as variables, taking into
account the fact that all the equations of the system (4) except the one with k = 0
contain only ωs with indices of the same parity, this system can be solved in two
steps: one first determines ωk with k of the same parity as ind f (i.e., those coming
from f↓) and then finds the remaining ones. More precisely, if ind f = 2d+ 1 then
the subsystem of (4) consisting of the equations with odd k is a system of linear
equations with respect to ω1, ω3, . . ., ω2d+1 whose matrix is a strictly positive
definite Hankel matrix, and is thus uniquely solvable (see the proof of [4, Lemma
2.1] for details). Now it only remains to observe that the matrix of the subsystem
of (4) with even k is the same strictly positive definite Hankel matrix as above.
Similarly, if ind f = 2d then ω2, ω4, . . ., ω2d are uniquely determined from the
subsystem of (4) consisting of the equations with nonzero even k, ω1 is then found
from the equation with k = 0, and finally the remaining ωs are determined from
the equations with odd k.


Finally, when σs are treated as variables, the determinant of the system (4) is
simply equal to the resultant of the polynomials f↓ and f↑, up to a possible change
in sign. As these two polynomials have no common roots, their resultant is nonzero.
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