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1. Introduction


Consider the equation
−∆u + V (x)u− au = f, (1.1)


whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant andV (x)
is a function tending to0 at infinity. If a ≥ 0, then the essential spectrum of the
operatorA : E → F , which corresponds to the left side of equation (1.1) contains
the origin. As a consequence, this operator does not satisfythe Fredholm property.
Its image is not closed, ford > 1 the dimension of its kernel and the codimension
of its image are not finite. In the present work we will study some properties of the
operators of this kind. We recall that elliptic problems with non-Fredholm operators
were treated extensively in recent years (see [16], [17], [18], [19], [20], [21],
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[23], [24], also [5]) along with their potential applications to the theory of reaction-
diffusion equations (see [7], [8]). In the particular case whena = 0 the operatorA
satisfies the Fredholm property in some properly chosen weighted spaces [1], [2],
[3], [4], [5]. However, the case whena 6= 0 is considerably different and the method
developed in these works is not applicable.


One of the important questions concerning equations with non-Fredholm opera-
tors is their solvability. We address it in the following setting. Letfn be a sequence
of functions in the image of the operatorA, such thatfn → f in L2(Rd) asn → ∞.
Denote byun a sequence of functions fromH2(Rd) such that


Aun = fn, n ∈ N.


Since the operatorA does not satisfy the Fredholm property, the sequenceun may
not be convergent. We call a sequenceun such thatAun → f a solution in the
sense of sequences of equationAu = f (see [15]). If such sequence converges to
a functionu0 in the norm of the spaceE, thenu0 is a solution of this equation.
Solution in the sense of sequences is equivalent in this sense to the usual solution.
However, in the case of the non Fredholm operators, this convergence may not hold
or it can occur in some weaker sense. In this case, solution inthe sense of sequences
may not imply the existence of the usual solution. In the present work we will find
sufficient conditions of equivalence of solutions in the sense of sequences and the
usual solutions. In the other words, the conditions on sequencesfn under which
the corresponding sequencesun are strongly convergent. Solvability in the sense of
sequences for the sums of non Fredholm Schrödinger type operators was studied in
[25].


In the present article we would like to exploit these ideas for the fourth order
differential operators without the Fredholm property. In the first part of the work
we study the equation


∆2u− a2u = f(x), x ∈ R
d, d ∈ N, (1.2)


wherea > 0 is a constant and the right side is square integrable. The problem
analogous to (1.2) but with the standard Laplace operator inthe context of the solv-
ability in the sense of sequences was considered in [26]. Note that for the operator
∆2 − a2 : H4(Rd) → L2(Rd) the essential spectrum fills the semi-axis[−a2, ∞)
such that its inverse fromL2(Rd) to H4(Rd) is not bounded.


Let us write down the corresponding sequence of equations with n ∈ N as


∆2un − a2un = fn(x), x ∈ R
d, d ∈ N, (1.3)


where the right sides converge to the right side of (1.2) inL2(Rd) asn → ∞. The
inner product of two functions


(f(x), g(x))L2(Rd) :=


∫


Rd


f(x)ḡ(x)dx, (1.4)
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with a slight abuse of notations when these functions are notsquare integrable.
Indeed, iff(x) ∈ L1(Rd) andg(x) is bounded, then clearly the integral in the right
side of (1.4) makes sense, like for instance in the case of functions involved in the
orthogonality relations of Theorems 1 and 2 below. Let use the spacesH2(Rd) and
H4(Rd) equipped with the norms


‖u‖2H2(Rd) := ‖u‖2L2(Rd) + ‖∆u‖2L2(Rd) (1.5)


and
‖u‖2H4(Rd) := ‖u‖2L2(Rd) + ‖∆2u‖2L2(Rd) (1.6)


respectively. Throughout the article, the sphere of radiusr > 0 in R
d centered at


the origin will be denoted bySd
r . First of all, we formulate the solvability relations


for problem (1.2).


Theorem 1.Leta > 0, f(x) ∈ L2(Rd), d ∈ N andxf(x) ∈ L1(Rd).


a) Whend = 1, problem (1.2) admits a unique solutionu(x) ∈ H4(R) if and only if
(
f(x),


e±i
√
ax


√
2π


)


L2(R)


= 0 (1.7)


holds.


b) Whend ≥ 2, equation (1.2) possesses a unique solutionu(x) ∈ H4(Rd) if and
only if (


f(x),
eipx


(2π)
d


2


)


L2(Rd)


= 0, p ∈ Sd√
a a.e. (1.8)


holds.


Then we turn our attention to the issue of the solvability in the sense of se-
quences for our problem.


Theorem 2. Let a > 0, n ∈ N andfn(x) ∈ L2(Rd), d ∈ N, such thatfn(x) →
f(x) in L2(Rd) asn → ∞. Let in additionxfn(x) ∈ L1(Rd), n ∈ N, such that
xfn(x) → xf(x) in L1(Rd) asn → ∞.


a) Whend = 1, let the orthogonality relations
(
fn(x),


e±i
√
ax


√
2π


)


L2(R)


= 0 (1.9)


hold for all n ∈ N. Then problems (1.2) and (1.3) admit unique solutionsu(x) ∈
H4(R) and un(x) ∈ H4(R) respectively, such thatun(x) → u(x) in H4(R) as
n → ∞.
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b) Whend ≥ 2, let the orthogonality relations
(
fn(x),


eipx


(2π)
d


2


)


L2(Rd)


= 0, p ∈ Sd√
a a.e. (1.10)


hold for all n ∈ N. Then problems (1.2) and (1.3) have unique solutionsu(x) ∈
H4(Rd) andun(x) ∈ H4(Rd) respectively, such thatun(x) → u(x) in H4(Rd) as
n → ∞.


We use the hat symbol to denote the standard Fourier transform


f̂(p) :=
1


(2π)
d


2


∫


Rd


f(x)e−ipxdx, p ∈ R
d, d ∈ N. (1.11)


(1.11) will be needed to establish the statements of our Theorems 1 and 2.
In the second part of the work we study the equation


(−∆+ V (x))2u− a2u = f(x), x ∈ R
3, a > 0, (1.12)


with the square integrable right side. The corresponding sequence of approximate
equations forn ∈ N is given by


(−∆+ V (x))2un − a2un = fn(x), x ∈ R
3, a > 0, (1.13)


with the right sides converging to the right side of (1.12) inL2(R3) asn → ∞.
Let us make the following technical assumptions on the scalar potential involved
in problem above. Note that the conditions onV (x), which is shallow and short-
range will be analogous to those formulated in Assumption 1.1 of [17] (see also
[18], [19]). However, for the technical purposes we will adda few extra regularity
assumptions. The essential spectrum of our Schrödinger operator fills the nonnega-
tive semi-axis (see e.g. [10]).


Assumption 3.The potential functionV (x) : R3 → R satisfies the estimate


|V (x)| ≤ C


1 + |x|3.5+δ


with someδ > 0 andx = (x1, x2, x3) ∈ R
3 a.e. such that


4
1


9


9


8
(4π)−


2


3‖V ‖
1


9


L∞(R3)‖V ‖
8


9


L
4
3 (R3)


< 1 and
√
cHLS‖V ‖


L
3
2 (R3)


< 4π. (1.14)


Moreover,|∇V (x)|, ∆V (x) ∈ L∞(R3).
Here and further downC will stand for a finite positive constant andcHLS given


on p.98 of [12] is the constant in the Hardy-Littlewood-Sobolev inequality
∣∣∣
∫


R3


∫


R3


f1(x)f1(y)


|x− y|2 dxdy
∣∣∣ ≤ cHLS‖f1‖2


L
3
2 (R3)


, f1 ∈ L
3


2 (R3).
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By virtue of Lemma 2.3 of [17], under Assumption 3 above on thepotential
function, the operator−∆+V (x) onL2(R3) is self-adjoint and unitarily equivalent
to−∆ via the wave operators (see [11], [14])


Ω± := s− limt→∓∞eit(−∆+V )eit∆,


where the limit is understood in the strongL2 sense (see e.g. [13] p.34, [6] p.90).
Hence(−∆+ V (x))2 : H4(R3) → L2(R3) has only the essential spectrum


σess((−∆+ V (x))2 − a2) = [−a2, ∞)


and no nontrivialL2(R3) eigenfunctions. Its functions of the continuous spectrum
satisfy


(−∆+ V (x))2ϕk(x) = |k|4ϕk(x), k ∈ R
3, (1.15)


in the integral formulation the Lippmann-Schwinger equation for the perturbed
plane waves (see e.g. [13] p.98)


ϕk(x) =
eikx


(2π)
3


2


− 1


4π


∫


R3


ei|k||x−y|


|x− y| (V ϕk)(y)dy (1.16)


and the orthogonality conditions


(ϕk(x), ϕq(x))L2(R3) = δ(k − q), k, q ∈ R
3. (1.17)


In particular, when the vectork = 0, we haveϕ0(x). Let us denote the generalized
Fourier transform with respect to these functions using thetilde symbol as


f̃(k) := (f(x), ϕk(x))L2(R3), k ∈ R
3. (1.18)


(1.18) is a unitary transform onL2(R3). The integral operator involved in (1.16) is
being denoted as


(Qϕ)(x) := − 1


4π


∫


R3


ei|k||x−y|


|x− y| (V ϕ)(y)dy, ϕ ∈ L∞(R3).


Let us considerQ : L∞(R3) → L∞(R3). Under Assumption 3, by virtue of Lemma
2.1 of [17] the operator norm‖Q‖∞ is estimated from above by the quantityI(V ),
which is the left side of the first inequality in (1.14), such thatI(V ) < 1. We have
the following proposition dealing with the solvability of equation (1.12).


Theorem 4. Let the constanta > 0, Assumption 3 holds,f(x) ∈ L2(R3) and in
additionxf(x) ∈ L1(R3). Then problem (1.12) admits a unique solutionu(x) ∈
H4(R3) if and only if


(f(x), ϕk(x))L2(R3) = 0, k ∈ S3√
a a.e. (1.19)
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holds.


Our final main statement is devoted to the solvability in the sense of sequences
of problem (1.12).


Theorem 5. Let the constanta > 0, Assumption 3 holds,n ∈ N and fn(x) ∈
L2(R3), such thatfn(x) → f(x) in L2(R3) asn → ∞. Let in additionxfn(x) ∈
L1(R3), n ∈ N, such thatxfn(x) → xf(x) in L1(R3) asn → ∞ and the orthogo-
nality relations


(fn(x), ϕk(x))L2(R3) = 0, k ∈ S3√
a a.e. (1.20)


hold for all n ∈ N. Then equations (1.12) and (1.13) have unique solutionsu(x) ∈
H4(R3) andun(x) ∈ H4(R3) respectively, such thatun(x) → u(x) in H4(R3) as
n → ∞.


Note that (1.19) and (1.20) are the orthogonality conditions to the functions of
the continuous spectrum of our Schrödinger operator, as distinct from the Limiting
Absorption Principle in which one needs to orthogonalize tothe standard Fourier
harmonics (see e.g. Lemma 2.3 and Proposition 2.4 of [9]).


2. Solvability in the sense of sequences in the no potential case


Proof of Theorem 1.Obviously, ifu(x) ∈ L2(Rd) is a solution of (1.2) with a square
integrable right side, it belongs toH4(Rd) as well. Indeed, directly from (1.2) we
have∆2u(x) ∈ L2(Rd). This implies thatu(x) ∈ H4(Rd) via the norm definition
(1.6).


To prove the uniqueness of solutions for our equation, let ussuppose that (1.2)
has two square integrable solutionsu1(x) andu2(x). Then their differencew(x) :=
u1(x)− u2(x) ∈ L2(Rd) as well. Evidently, it solves the equation


∆2w = a2w.


Since the operator∆2 has no nontrivial square integrable eigenfunctions in the
whole space, we have thatw(x) = 0 vanishes inRd.


We apply the standard Fourier transform (1.11) to both sidesof problem (1.2)
and arrive at


û(p) =
f̂(p)


|p|4 − a2
. (2.21)


Clearly, the right side of (2.21) can be easily written as


f̂(p)


2a(|p|2 − a)
− f̂(p)


2a(|p|2 + a)
. (2.22)
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Obviously, the second term in (2.22) can be bounded from above in the absolute
value by


|f̂(p)|
2a2


∈ L2(Rd)


due to the one of our assumptions. Let us recall the proof of the part a) of Lemma 5
of [24] and the argument to establish the result of the part a)of Lemma 6 of [24].
Hence, the first term in (2.22) is square integrable if and only if (1.7) holds in one
dimension and (1.8) ford ≥ 2.


Let us turn our attention to establishing the solvability inthe sense of sequences
for our equation in the no potential case.


Proof of Theorem 2.Let us supposeu(x) andun(x), n ∈ N are the unique solutions
of problems (1.2) and (1.3) inH4(Rd), d ∈ N respectively and it is known that
un(x) → u(x) in L2(Rd) asn → ∞. Then it can be easily verified thatun(x) →
u(x) in H4(Rd) asn → ∞ as well. Indeed, from equations (1.2) and (1.3) we easily
obtain that


∆2(un(x)− u(x)) = a2(un(x)− u(x)) + (fn(x)− f(x)).


Clearly, this gives us


‖∆2(un(x)− u(x))‖L2(Rd) ≤ a2‖un(x)− u(x)‖L2(Rd) + ‖fn(x)− f(x)‖L2(Rd) → 0


asn → ∞ due to our assumptions. By virtue of the result of the parts a)and b) of
Theorem 1, problem (1.3) has a unique solutionun(x) ∈ H4(Rd), n ∈ N. Let us
recall the statement of the part a) of Lemma 3.3 of [26]. Hence, under the given
conditions we arrive at the limiting orthogonality relations


(
f(x),


e±i
√
ax


√
2π


)


L2(R)


= 0


in one dimension and
(
f(x),


eipx


(2π)
d


2


)


L2(R)


= 0, p ∈ Sd√
a a.e.


for d ≥ 2. Therefore, by virtue of the results of the parts a) and b) of Theorem 1
above, problem (1.2) possesses a unique solutionu(x) ∈ H4(Rd). Let us apply the
standard Fourier transform (1.11) to both sides of (1.2) and(1.3). This yields


û(p) =
f̂(p)


|p|4 − a2
, ûn(p) =


f̂n(p)


|p|4 − a2
, n ∈ N. (2.23)


7







This allows us to writêun(p)− û(p) as


f̂n(p)− f̂(p)


2a(|p|2 − a)
− f̂n(p)− f̂(p)


2a(|p|2 + a)
, n ∈ N. (2.24)


Obviously, the second term in (2.24) can be estimated from above in the absolute


value by
|f̂n(p)− f̂(p)|


2a2
. Thus


∥∥∥∥∥
f̂n(p)− f̂(p)


2a(|p|2 + a)


∥∥∥∥∥
L2(Rd)


≤ ‖fn(x)− f(x)‖L2(Rd)


2a2
→ 0, n → ∞


via the one of our assumptions. Let us recall the proof of the part a) of Theorem
1.1 of [26] ford = 1 and the argument to establish the statement of the part a) of
Theorem 1.2 of [26] ford ≥ 2. Therefore, the first term in (2.24) tends to zero in
theL2(Rd), d ∈ N norm asn → ∞ as well. This gives us that


‖un(x)− u(x)‖H4(Rd) → 0, n → ∞,


which completes the proof of our theorem.


3. Solvability in the sense of sequences with a scalar potential


Proof of Theorem 4.First of all we observe that it is sufficient to solve problem
(1.12) inH2(R3), since such solution will belong toH4(R3) as well. Indeed, it can
be trivially shown that


(−∆+V (x))2u = ∆2u+V 2(x)u−2V (x)∆u−u∆V (x)−2∇V (x).∇u, (3.25)


whereu(x) is a solutions of (1.12) belonging toH2(R3). The dot symbol in the last
term in the right side of (3.25) stands for the standard scalar product of two vectors
in R


3. We observe that the left side of identity (3.25) is square integrable, which
easily follows from (1.12) withf(x) ∈ L2(R3) as assumed. The second term in the
right side of (3.25) belongs toL2(R3) since the scalar potentialV (x) is bounded
via Assumption 3. The third term in the right side of (3.25) issquare integrable
sinceV (x) ∈ L∞(R3) and∆u ∈ L2(R3) as assumed. The last two terms in the
right side of (3.25) belong toL2(R3) because∆V (x) and|∇V (x)| are bounded due
to Assumption 3. Hence, by virtue of equality (3.25) we have∆2u(x) ∈ L2(R3),
which implies thatu(x) ∈ H4(R3).


To establish the uniqueness of solutions for our equation, we suppose that there
exist u1(x), u2(x) ∈ H4(R3) satisfying (1.12). Then their differencew(x) :=
u1(x)− u2(x) ∈ H4(R3) solves the equation


(−∆+ V (x))2w = a2w.
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But the operator(−∆ + V (x))2 : H4(R3) → L2(R3) does not have any nontrivial
eigenfunctions as discussed above. Therefore,w(x) = 0 a.e. inR3.


Let us apply the generalized Fourier transform (1.18) with respect to the func-
tions of the continuous spectrum of our Schrödinger operator to both sides of prob-
lem. (1.12). This yields


ũ(k) =
f̃(k)


|k|4 − a2
. (3.26)


The right side of formula (3.26) can be easily written as


g̃1(k) + g̃2(k) =
f̃(k)


2a(|k|2 − a)
− f̃(k)


2a(|k|2 + a)
. (3.27)


Obviously, the second term in the right side of (3.27) can be easily bounded from
above in the absolute value by


|f̃(k)|
2a2


∈ L2(R3),


becausef(x) ∈ L2(R3) due to the one of our assumptions. Moreover, the image of
g̃2(k) under the inverse of the transform (1.18) will satisfy the equation


−∆g2(x) + V (x)g2(x) + ag2(x) = −f(x)


2a
. (3.28)


SinceV (x) ∈ L∞(R3) andf(x) ∈ L2(R3) as assumed andg2(x) ∈ L2(R3), we
deduce from equation (3.28) that∆g2(x) ∈ L2(R3), such thatg2(x) ∈ H2(R3).
Evidently, the functiong1(x) solves the equation


−∆g1(x) + V (x)g1(x)− ag1(x) =
f(x)


2a
(3.29)


and its image under transform (1.18) is the first term in the right side of equality
(3.27). Let us recall the result stated in the part a) of Theorem 1.2 of [17]. Hence
g1(x) ∈ L2(R3) (and equivalentlyg1(x) ∈ H2(R3), since the right side of equation
(3.29) is square integrable and the scalar potential function V (x) is bounded as
assumed) if and only if orthogonality condition (1.19) holds. Sinceu(x) ∈ H2(R3),
it will belong toH4(R3) as well as discussed above.


Let us proceed to the proof of our last main statement concerning the solvability
in the sense of sequences.


Proof of Theorem 5.First of all, we establish that ifu(x) andun(x), n ∈ N are
the uniqueH4(R3) solutions of (1.12) and (1.13) respectively andun(x) → u(x) in
H2(R3) asn → ∞, then we haveun(x) → u(x) in H4(R3) asn → ∞ as well.
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Indeed, from (1.12) and (1.13) we easily obtain that


(−∆+ V (x))2(un(x)− u(x)) = a2(un(x)− u(x)) + (fn(x)− f(x)), n ∈ N.


Thus


‖(−∆+ V (x))2(un(x)− u(x))‖L2(R3) ≤ a2‖un(x)− u(x)‖H2(R3)+


+‖fn(x)− f(x)‖L2(R3) → 0, n → ∞
as assumed. Evidently, we have the identity


(−∆+ V (x))2(un − u) = ∆2(un − u) + V 2(x)(un − u)− 2V (x)∆(un − u)−


−(un − u)∆V (x)− 2∇V (x).∇(un − u), (3.30)


whereu(x) andun(x) are the solutions of equations (1.12) and (1.13) respectively
belonging toH4(R3). Sinceun(x) → u(x) in H2(R3) asn → ∞, as assumed, we
have here


un(x) → u(x), ∇un(x) → ∇u(x), ∆un(x) → ∆u(x)


in L2(R3) asn → ∞ andV (x), |∇V (x)|,∆V (x) are bounded functions due to our
Assumption 3 above. Therefore, the second, the third and thelast two terms in the
right side of identity (3.30) tend to zero inL2(R3) asn → ∞, which implies that
∆2un → ∆2u in L2(R3) asn → ∞ as well. By means of norm definition (1.6) we
obtain thatun(x) → u(x) in H4(R3) asn → ∞.


By virtue of Theorem 4 above, equation (1.13) admits a uniquesolutionun(x) ∈
H4(R3), n ∈ N. We recall the statement of the part a) of Lemma 3.3 of ( [26]).
Hence, under our assumptions we obtain the limiting orthogonality relation


(f(x), ϕk(x))L2(R3) = 0, k ∈ S3√
a a.e.


Note that the functions of the continuous spectrum of our Schrödinger operator are
bounded under the given conditions due to Corollary 2.2 of [17]. Then by means of
Theorem 4 above equation (1.12) possesses a unique solutionu(x) ∈ H4(R3). Let
us apply the generalized Fourier transform (1.18) to both sides of equations (1.12)
and (1.13). We arrive at


ũ(k) =
f̃(k)


|k|4 − a2
, ũn(k) =


f̃n(k)


|k|4 − a2
, n ∈ N. (3.31)


This allows us to express̃un(k)− ũ(k) as


g̃1,n(k)−g̃1(k)+g̃2,n(k)−g̃2(k) =
f̃n(k)− f̃(k)


2a(|k|2 − a)
− f̃n(k)− f̃(k)


2a(|k|2 + a)
, n ∈ N, (3.32)


10







where


g̃1,n(k) =
f̃n(k)


2a(|k|2 − a)
, g̃2,n(k) = − f̃n(k)


2a(|k|2 + a)
,


g̃1(k) and g̃2(k) are given in formula (3.27). Clearly,g2,n(x) is a solution of the
equation


−∆g2,n(x) + V (x)g2,n(x) + ag2,n(x) = −fn(x)


2a
(3.33)


andg2(x) solves (3.28). Evidently,̃g2,n(k) can be easily estimated from above in
the absolute value by


|f̃n(k)|
2a2


∈ L2(R3), (3.34)


sincefn(x) is square integrable as assumed. From (3.32) we easily deduce that


|g̃2,n(k)− g̃2(k)| ≤
|f̃n(k)− f̃(k)|


2a2
,


such that


‖g2,n(x)− g2(x)‖L2(R3) ≤
‖fn(x)− f(x)‖L2(R3)


2a2
→ 0


asn → ∞ as assumed. By means of (3.33) along with (3.28) we arrive at


‖∆(g2,n(x)− g2(x))‖L2(R3) ≤ (‖V (x)‖L∞(R) + a)‖g2,n(x)− g2(x)‖L2(R3)+


+
1


2a
‖fn(x)− f(x)‖L2(R3) → 0


asn → ∞ according to our assumptions. Therefore, by means of the norm defini-
tion (1.5) we have thatg2,n(x) → g2(x) in H2(R3) asn → ∞.


Obviously,g1,n(x) solves the equation


−∆g1,n(x) + V (x)g1,n(x)− ag1,n(x) =
fn(x)


2a
(3.35)


andg1(x) is a solution to (3.29). By virtue of the result of the part a) of Theorem 1.4
of [26] under the given conditions, we haveg1,n(x) ∈ H2(R3), such thatg1,n(x) →
g1(x) in H2(R3) asn → ∞. Therefore,un(x) → u(x) in H2(R3) asn → ∞. This
implies thatun(x) → u(x) in H4(R3) asn → ∞ as discussed above.
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