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1. Introduction


In the present article we study the the existence of stationary solutions of the fol-
lowing nonlocal integro-differential equation


∂u


∂t
= −D(−∆)su+


∫


Rd


K(x− y)g(u(y, t))dy+ f(x), d = 4, 5, (1.1)


with
3


2
−


d


4
< s < 1, which is relevant to the cell population dynamics. The space


variablex here corresponds to the cell genotype,u(x, t) stands for the cell density
as a function of their genotype and time. The right side of this problem describes
the evolution of cell density by means of the cell proliferation, mutations and cell
influx. The anomalous diffusion term in this context is corresponding to the change
of genotype via small random mutations, and the integral term describes large mu-
tations. Functiong(u) designated the rate of cell birth depending onu (density
dependent proliferation), and the kernelK(x− y) denotes the proportion of newly
born cells changing their genotype fromy to x. We assume here that it depends on
the distance between the genotypes. Finally, the last term in the right side of (1.1)
stands for the influx or efflux of cells for different genotypes.
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The operator(−∆)s in problem (1.1) describes a particular case of the anoma-
lous diffusion actively treated in the context of differentapplications in plasma
physics and turbulence [7], [20], surface diffusion [14], [18], semiconductors [19]
and so on. Anomalous diffusion can be described as a random process of particle
motion characterized by the probability density distribution of jump length. The
moments of this density distribution are finite in the case ofnormal diffusion, but
this is not the case for the anomalous diffusion. Asymptoticbehavior at infinity of
the probability density function determines the values of the power of our negative
Laplace operator (see [17]). The operator(−∆)s is defined by viertue of the spec-


tral calculus. In the present article we will consider the case of
3


2
−


d


4
< s < 1. A


similar equation in the case of the standard Laplace operator in the diffusion term
was studied recently in [32].


We setD = 1 and prove the existence of solutions of the problem


−(−∆)su+


∫


Rd


K(x− y)g(u(y))dy+ f(x) = 0,
3


2
−


d


4
< s < 1, (1.2)


whered = 4, 5. Let us consider the case when the linear part of this operator
does not satisfy the Fredholm property. Consequently, the conventional methods
of nonlinear analysis may not be applicable. We use solvability conditions for non
Fredholm operators along with the method of contraction mappings.


Consider the problem


−∆u + V (x)u− au = f, (1.3)


whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant and the
scalar potential functionV (x) is either zero identically or converges to0 at infinity.
For a ≥ 0, the essential spectrum of the operatorA : E → F corresponding to
the left side of equation (1.3) contains the origin. Consequently, such operator does
not satisfy the Fredholm property. Its image is not closed, for d > 1 the dimension
of its kernel and the codimension of its image are not finite. The present article
deals with the studies of certain properties of the operators of this kind. Note that
elliptic equations with non Fredholm operators were studied actively in recent years.
Approaches in weighted Sobolev and Hölder spaces were developed in [2], [3],
[4], [5], [6]. The non Fredholm Schrödinger type operatorswere treated with the
methods of the spectral and the scattering theory in [21], [27], [26]. The Laplacian
with drift from the point of view of non Fredholm operators was considered in [29]
and linearized Cahn-Hilliard problems in [24] and [30]. Nonlinear non Fredholm
elliptic equations were treated in [28] and [31]. Importantapplications to the theory
of reaction-diffusion problems were developed in [9], [10]. Operators without
Fredholm property arise also when studying wave systems with an infinite number
of localized traveling waves (see [1]). In particular, whena = 0 the operatorA
is Fredholm in some properly chosen weighted spaces (see [2], [3], [4], [5], [6]).
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However, the case ofa 6= 0 is significantly different and the method developed
in these works cannot be applied. Front propagation problems with anomalous
diffusion were considered actively in recent years (see e.g. [22], [23]). The form
boundedness criterion for the relativistic Schrödinger operator was proved in [16].
In work [15] the authors establish the imbedding theorems and study the spectrum
of certain pseudodifferential operators.


Let us setK(x) = εK(x), whereε ≥ 0 and suppose that the assumption below
holds.


Assumption 1. Consider
3


2
−


d


4
< s < 1,whered = 4, 5. Let f(x) : Rd → R be


nontrivial, such thatf(x) ∈ L1(Rd) and (−∆)
3


2
−sf(x) ∈ L2(Rd). Assume also


thatK(x) : Rd → R andK(x) ∈ L1(Rd). In addition,(−∆)
3


2
−sK(x) ∈ L2(Rd),


such that
Q :=


∥∥(−∆)
3


2
−sK(x)


∥∥
L2(Rd)


> 0.


We choose the space dimensionsd = 4, 5, which is relevant to the solvability
conditions for the linear Poisson type problem (4.34) formulated in Lemma 6 below.
From the point of view of applications, the space dimensionsare not limited to
d = 4, 5 because the space variable is correspondent to the cell genotype but not
to the usual physical space. Let us use the Sobolev inequality for the fractional
Laplacian (see Lemma 2.2 of [12], also [13])


‖f(x)‖
L


2d
d−6+4s (Rd)


≤ cs‖(−∆)
3


2
−sf(x)‖L2(Rd),


3


2
−
d


4
< s < 1, d = 4, 5 (1.4)


along with Assumption 1 above and the standard interpolation argument, which
gives us


f(x) ∈ L2(Rd) (1.5)


as well. On the real line our equation was studied in [34] onlyfor 0 < s <
1


4
based


on the solvability conditions for the analog of (4.34) whend = 1. In two dimensions


the similar results were obtained in [35] with0 < s <
1


2
. In R


3 our problem was


treated in [33] for
1


4
< s <


3


4
. As distinct from the situations in lower dimensions


d = 1, 2 and similarly to the present case ofd = 4, 5, in three dimensions we were
able to use the Sobolev inequality for the fractional Laplacian. For the technical
purposes, we use the Sobolev spaces


H2s(Rd) :=
{
u(x) : Rd → R | u(x) ∈ L2(Rd), (−∆)su ∈ L2(Rd)


}
, 0 < s ≤ 1,


whered = 4, 5, equipped with the norm


‖u‖2H2s(Rd) := ‖u‖2L2(Rd) +
∥∥(−∆)su


∥∥2
L2(Rd)


. (1.6)
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By virtue of the standard Sobolev embedding in dimensionsd = 4, 5, we have


‖u‖L∞(Rd) ≤ ce‖u‖H3(Rd), (1.7)


wherece > 0 is the constant of the embedding. Here


‖u‖2H3(Rd) := ‖u‖2L2(Rd) +
∥∥(−∆)


3


2u
∥∥2
L2(Rd)


. (1.8)


When the nonnegative parameterε vanishes, we arrive at the linear Poisson type
problem (4.34). By means of Lemma 6 below along with Assumption 1, equation
(4.34) admits a unique solution


u0(x) ∈ H2s(Rd),
3


2
−


d


4
< s < 1,


such that no orthogonality relations are required. By virtue of Assumption 1, since


(−∆)
3


2u0(x) = (−∆)
3


2
−sf(x) ∈ L2(Rd),


we obtain for the unique solution of linear problem (4.34) that u0(x) ∈ H3(Rd).
Let us seek the resulting solution of nonlinear equation (1.2) as


u(x) = u0(x) + up(x). (1.9)


Evidently, we derive the perturbative equation


(−∆)sup(x) = ε


∫


Rd


K(x− y)g(u0(y) + up(y))dy, (1.10)


where
3


2
−


d


4
< s < 1, d = 4, 5. Let us denote a closed ball in the Sobolev space


as
Bρ := {u(x) ∈ H3(Rd) | ‖u‖H3(Rd) ≤ ρ}, 0 < ρ ≤ 1. (1.11)


We look for the solution of problem (1.10) as the fixed point ofthe auxiliary non-
linear equation


(−∆)su(x) = ε


∫


Rd


K(x− y)g(u0(y) + v(y))dy, d = 4, 5, (1.12)


with
3


2
−


d


4
< s < 1 in ball (1.11). For a given functionv(y) this is an equation


with respect tou(x). The left side of (1.12) involves the non Fredholm operator


(−∆)s : H2s(Rd) → L2(Rd).


Its essential spectrum fills the nonnegative semi-axis[0,+∞). Hence, this operator
has no bounded inverse. The similar situation appeared in works [28] and [31] but


4







as distinct from the present case, the equations studied there required orthogonality
conditions. The fixed point technique was used in [25] to estimate the perturbation
to the standing solitary wave of the Nonlinear Schrödinger(NLS) equation when
either the external potential or the nonlinear term in the NLS were perturbed but
the Schrödinger operator involved in the nonlinear problem there had the Fredholm
property (see Assumption 1 of [25], also [8]). The existenceof pulses for local
and nonlocal reaction- diffusion equations was established via the Leray-Schauder
method in [11] using the operators which possessed the Fredholm property as well.
Let define the interval on the real line


I :=
[
− ce‖u0‖H3(Rd) − ce, ce‖u0‖H3(Rd) + ce


]
(1.13)


along with the closed ball in the space ofC2(I) functions, namely


DM := {g(z) ∈ C2(I) | ‖g‖C2(I) ≤ M}, M > 0. (1.14)


Here the norm
‖g‖C2(I) := ‖g‖C(I) + ‖g′‖C(I) + ‖g′′‖C(I), (1.15)


with ‖g‖C(I) := maxz∈I |g(z)|. We make the following technical assumption on the
nonlinear part of equation (1.2).


Assumption 2. Let g(z) : R → R, such thatg(0) = 0 and g′(0) = 0. We also
assume thatg(z) ∈ DM and it is not equal to zero identically on the intervalI.


Let us explain why we impose conditiong′(0) = 0. Assume here that the Fourier
image of the kernelK(x) is positive in the wholeR2, which is common in many bi-
ological applications. Ifg′(0) < 0, then the essential spectrum of the corresponding
operator is in the left-half plane. This operator is Fredholm, and conventional meth-
ods of nonlinear analysis are applicable here. Ifg′(0) ≥ 0, then the operator does
not satisfy the Fredholm property, and the goal of this work is to establish the exis-
tence of solutions in such case where usual methods are not applicable. The method
developed in the present article can be used forg′(0) = 0 but not forg′(0) > 0.
This is the reason we impose such condition on the nonlinearity.


We introduce the operatorTg, such thatu = Tgv, whereu is a solution of
equation (1.12). Our first main result is as follows.


Theorem 3. Let Assumptions 1 and 2 hold. Then equation (1.12) defines themap
Tg : Bρ → Bρ, which is a strict contraction for all0 < ε < ε∗ for someε∗ > 0.
The unique fixed pointup(x) of this mapTg is the only solution of problem (1.10) in
Bρ.


Apparently, the resulting solution of equation (1.2) givenby (1.9) will be non-
trivial becuase the source termf(x) is nontrivial andg(0) = 0 due to our assump-
tions. We make use of the following trivial statement.
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Lemma 4. For R ∈ (0,+∞) andd = 4, 5 consider the function


ϕ(R) := αRd−4s +
1


R4s
,


3


2
−


d


4
< s < 1, α > 0.


It attains the minimal value atR∗ :=


(
4s


α(d− 4s)


) 1


d


, which is given by


ϕ(R∗) =


(
α


4s


) 4s
d


d


(d− 4s)
d−4s


d


.


Our second main statement deals with the continuity of the fixed point of the
mapTg which existence was established in Theorem 3 above with respect to the
nonlinear functiong.


Theorem 5. Let j = 1, 2, the assumptions of Theorem 3 hold, such thatup,j(x)
is the unique fixed point of the mapTgj : Bρ → Bρ, which is a strict contraction for
all 0 < ε < ε∗j andδ := min(ε∗1, ε


∗
2). Then for all0 < ε < δ the bound


‖up,1 − up,2‖H3(Rd) ≤ C‖g1 − g2‖C2(I), d = 4, 5 (1.16)


holds, whereC > 0 is a constant.


Let us proceed to the proof of our first main proposition.


2. The existence of the perturbed solution


Proof of Theorem 3.Let us choose arbitrarilyv(x) ∈ Bρ and denote the term
involved in the integral expression in the right side of problem (1.12) as


G(x) := g(u0(x) + v(x)).


We use the standard Fourier transform


φ̂(p) :=
1


(2π)
d
2


∫


Rd


φ(x)e−ipxdx, d = 4, 5. (2.17)


Evidently, we have the bound


‖φ̂(p)‖L∞(Rd) ≤
1


(2π)
d
2


‖φ(x)‖L1(Rd). (2.18)


We apply (2.17) to both sides of problem (1.12). This gives us


û(p) = ε(2π)
d
2


K̂(p)Ĝ(p)


|p|2s
.
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Hence, for the norm we obtain


‖u‖2L2(Rd) = (2π)dε2
∫


Rd


|K̂(p)|2|Ĝ(p)|2


|p|4s
dp. (2.19)


As distinct from works [28] and [31] with the standard Laplacian in the diffusion
term, here we do not try to control the norm


∥∥∥∥∥
K̂(p)


|p|2s


∥∥∥∥∥
L∞(Rd)


.


Instead, let us estimate the right side of (2.19) by means of the analog of inequality
(2.18) applied to functionsK andG with R > 0 as


(2π)dε2
∫


|p|≤R


|K̂(p)|2|Ĝ(p)|2


|p|4s
dp+ (2π)dε2


∫


|p|>R


|K̂(p)|2|Ĝ(p)|2


|p|4s
dp ≤


≤ ε2‖K‖2L1(Rd)


{
1


(2π)d
‖G(x)‖2L1(Rd)|S


d|
Rd−4s


d− 4s
+


1


R4s
‖G(x)‖2L2(Rd)


}
. (2.20)


Here and further downSd stands for the unit sphere centered at the origin and|Sd|
for its Lebesgues measure. Due to the fact thatv(x) ∈ Bρ, we derive


‖u0 + v‖L2(Rd) ≤ ‖u0‖H3(Rd) + 1.


Sobolev embedding (1.7) yields


|u0 + v| ≤ ce(‖u0‖H3(Rd) + 1).


EqualityG(x) =


∫ u0+v


0


g′(z)dz with the intervalI defined in (1.13) gives us


|G(x)| ≤ supz∈I |g
′(z)||u0 + v| ≤ M |u0 + v|.


Hence,
‖G(x)‖L2(Rd) ≤ M‖u0 + v‖L2(Rd) ≤ M(‖u0‖H3(Rd) + 1).


Clearly,G(x) =


∫ u0+v


0


dy
[ ∫ y


0


g′′(z)dz
]
. This yields


|G(x)| ≤
1


2
supz∈I |g


′′(z)||u0 + v|2 ≤
M


2
|u0 + v|2,


such that


‖G(x)‖L1(Rd) ≤
M


2
‖u0 + v‖2L2(Rd) ≤


M


2
(‖u0‖H3(Rd) + 1)2. (2.21)
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Hence, we obtain the estimate from above for the right side of(2.20) as


ε2‖K‖2L1(Rd)M
2(‖u0‖H3(Rd) + 1)2


{
(‖u0‖H3(Rd) + 1)2|Sd|Rd−4s


4(2π)d(d− 4s)
+


1


R4s


}
,


with R ∈ (0,+∞). Lemma 4 gives us the minimal value of the expression above.
Thus,‖u‖2


L2(Rd) ≤


≤ ε2‖K‖2L1(Rd)M
2(‖u0‖H3(Rd) + 1)2+


8s
d


(
|Sd|


16s


) 4s
d


d


(2π)4s(d− 4s)
. (2.22)


Obviosly, by means of (1.12) we have


(−∆)
3


2u(x) = ε(−∆)
3


2
−s


∫


Rd


K(x− y)G(y)dy.


By virtue of the analog of estimate (2.18) applied to function G along with (2.21)
we arrive at


‖(−∆)
3


2u‖2L2(Rd) ≤ ε2‖G‖2L1(Rd)Q
2 ≤ ε2


M2


4
(‖u0‖H3(Rd) + 1)4Q2. (2.23)


Thus, by means of the definition of the norm (1.8) along with inequalities (2.22)
and (2.23) we obtain the upper bound for‖u‖H3(Rd) given by


ε(‖u0‖H3(Rd) + 1)2M


[
‖K‖2


L1(Rd)
(‖u0‖H3(Rd) + 1)


8s
d
−2d


(2π)4s(d− 4s)


(
|Sd|


16s


) 4s
d


+
Q2


4


] 1


2


≤ ρ


for all ε > 0 small enough. This means thatu(x) ∈ Bρ as well. If for a certain
v(x) ∈ Bρ there exist two solutionsu1,2(x) ∈ Bρ of problem (1.12), their difference
w(x) := u1(x)− u2(x) ∈ L2(Rd) satisfies


(−∆)sw = 0.


Since the operator(−∆)s,
3


2
−


d


4
< s < 1 considered on the wholeRd does not


possess nontrivial square integrable zero modes,w(x) vanishes inRd. Hence, prob-
lem (1.12) defines a mapTg : Bρ → Bρ for all ε > 0 sufficiently small.


Our goal is to prove that this map is a strict contraction. We choose arbitrarily
v1,2(x) ∈ Bρ. The argument above yieldsu1,2 := Tgv1,2 ∈ Bρ as well. By virtue of
equation (1.12) we obtain


(−∆)su1(x) = ε


∫


Rd


K(x− y)g(u0(y) + v1(y))dy, (2.24)
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(−∆)su2(x) = ε


∫


Rd


K(x− y)g(u0(y) + v2(y))dy, (2.25)


where
3


2
−


d


4
< s < 1, d = 4, 5. Let us define


G1(x) := g(u0(x) + v1(x)), G2(x) := g(u0(x) + v2(x))


and apply our standard Fourier transform (2.17) to both sides of problems (2.24)
and (2.25). This gives us


û1(p) = ε(2π)
d
2


K̂(p)Ĝ1(p)


|p|2s
, û2(p) = ε(2π)


d
2


K̂(p)Ĝ2(p)


|p|2s
.


Evidently,


‖u1 − u2‖
2
L2(Rd) = ε2(2π)d


∫


Rd


|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|
2


|p|4s
dp.


Apparently, it can be bounded from above by means of inequality (2.18), since


ε2(2π)d
∫


|p|≤R


|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|
2


|p|4s
dp+


+ε2(2π)d
∫


|p|>R


|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|
2


|p|4s
dp ≤


≤ ε2‖K‖2L1(Rd)


{
|Sd|


(2π)d
‖G1(x)−G2(x)‖


2
L1(Rd)


Rd−4s


d− 4s
+


‖G1(x)−G2(x)‖
2
L2(Rd)


R4s


}
,


with R ∈ (0,+∞). Let us use the equality


G1(x)−G2(x) =


∫ u0+v1


u0+v2


g′(z)dz.


Thus,


|G1(x)−G2(x)| ≤ supz∈I |g
′(z)||v1(x)− v2(x)| ≤ M |v1(x)− v2(x)|.


Therefore,


‖G1(x)−G2(x)‖L2(Rd) ≤ M‖v1 − v2‖L2(Rd) ≤ M‖v1 − v2‖H3(Rd).


Clearly,


G1(x)−G2(x) =


∫ u0+v1


u0+v2


dy
[ ∫ y


0


g′′(z)dz
]
.
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We derive the estimate from above forG1(x)−G2(x) in the absolute value as


1


2
supz∈I |g


′′(z)||(v1 − v2)(2u0 + v1 + v2)| ≤
M


2
|(v1 − v2)(2u0 + v1 + v2)|.


By means of the Schwarz inequality we arrive at the upper bound for the norm
‖G1(x)−G2(x)‖L1(Rd) given by


M


2
‖v1 − v2‖L2(Rd)‖2u0 + v1 + v2‖L2(Rd) ≤


≤ M‖v1 − v2‖H3(Rd)(‖u0‖H3(Rd) + 1). (2.26)


Hence, we obtain the estimate from above for the norm‖u1(x)− u2(x)‖
2
L2(Rd) as


ε2‖K‖2L1(Rd)M
2‖v1 − v2‖


2
H3(Rd)


{ |Sd|


(2π)d
(‖u0‖H3(Rd) + 1)2


Rd−4s


d− 4s
+


1


R4s


}
.


Lemma 4 enables us to minimize the expression above overR ∈ (0,+∞) to derive
the upper bound for‖u1(x)− u2(x)‖


2
L2(Rd) given by


ε2‖K‖2L1(Rd)M
2‖v1 − v2‖


2
H3(Rd)


|Sd|
4s
d (‖u0‖H3(Rd) + 1)


8s
d


(2π)4s(4s)
4s
d


d


d− 4s
. (2.27)


By means of formulas (2.24) and (2.25) we have


(−∆)
3


2 (u1 − u2)(x) = ε(−∆)
3


2
−s


∫


Rd


K(x− y)[G1(y)−G2(y)]dy.


Using inequalities (2.18) and (2.26) we derive


‖(−∆)
3


2 (u1 − u2)‖
2
L2(Rd) ≤ ε2Q2‖G1 −G2‖


2
L1(Rd) ≤


≤ ε2Q2M2‖v1 − v2‖
2
H3(Rd)(‖u0‖H3(Rd) + 1)2. (2.28)


Due to (2.27) and (2.28) the norm‖u1 − u2‖H3(Rd) can be bounded from above by
the expressionεM(‖u0‖H3(Rd) + 1)×


×


{
‖K‖2


L1(Rd)|S
d|


4s
d (‖u0‖H3(Rd) + 1)


8s
d
−2


(2π)4s(4s)
4s
d


d


d− 4s
+Q2


} 1


2


‖v1−v2‖H3(Rd). (2.29)


Thus, the mapTg : Bρ → Bρ defined by problem (1.12) is a strict contraction for all
values ofε > 0 sufficiently small. Its unique fixed pointup(x) is the only solution
of equation (1.10) in the ballBρ. The resultingu(x) ∈ H3(Rd) given by (1.9) is a
solution of problem (1.2).
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Let us proceed to proving the second main statement of our work.


3. The continuity of the fixed point of the mapTg


Proof of Theorem 5.Clearly, for all0 < ε < δ we have


up,1 = Tg1up,1, up,2 = Tg2up,2.


Thus
up,1 − up,2 = Tg1up,1 − Tg1up,2 + Tg1up,2 − Tg2up,2.


Hence,


‖up,1 − up,2‖H3(Rd) ≤ ‖Tg1up,1 − Tg1up,2‖H3(Rd) + ‖Tg1up,2 − Tg2up,2‖H3(Rd).


By virtue of estimate (2.29), we derive


‖Tg1up,1 − Tg1up,2‖H3(Rd) ≤ εσ‖up,1 − up,2‖H3(Rd),


whereεσ < 1 since the mapTg1 : Bρ → Bρ under the given assumptions is a strict
contraction and the positive constant


σ := M(‖u0‖H3(Rd) + 1)


{
‖K‖2


L1(Rd)
|Sd|


4s
d (‖u0‖H3(R)d + 1)


8s
d
−2


(2π)4s(4s)
4s
d


d


d− 4s
+Q2


} 1


2


.


Thus, we arrive at


(1− εσ)‖up,1 − up,2‖H3(Rd) ≤ ‖Tg1up,2 − Tg2up,2‖H3(Rd). (3.30)


Note that for our fixed pointTg2up,2 = up,2 and denoteξ(x) := Tg1up,2. Apparently


(−∆)sξ(x) = ε


∫


Rd


K(x− y)g1(u0(y) + up,2(y))dy, (3.31)


(−∆)sup,2(x) = ε


∫


Rd


K(x− y)g2(u0(y) + up,2(y))dy, (3.32)


where
3


2
−


d


4
< s < 1. DenoteG1,2(x) := g1(u0(x) + up,2(x)) andG2,2(x) :=


g2(u0(x) + up,2(x)). Let us apply the standard Fourier transform (2.17) to both
sides of problems (3.31) and (3.32). This gives us


ξ̂(p) = ε(2π)
d
2


K̂(p)Ĝ1,2(p)


|p|2s
, ûp,2(p) = ε(2π)


d
2


K̂(p)Ĝ2,2(p)


|p|2s
.


Clearly,


‖ξ(x)− up,2(x)‖
2
L2(Rd) = ε2(2π)d


∫


Rd


|K̂(p)|2|Ĝ1,2(p)− Ĝ2,2(p)|
2


|p|4s
dp.
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Evidently, it can be estimated from above using (2.18), suchthat


ε2(2π)d
∫


|p|≤R


|K̂(p)|2|Ĝ1,2(p)− Ĝ2,2(p)|
2


|p|4s
dp+


+ε2(2π)d
∫


|p|>R


|K̂(p)|2|Ĝ1,2(p)− Ĝ2,2(p)|
2


|p|4s
dp ≤


≤ ε2‖K‖2L1(Rd)


{
|Sd|


(2π)d
‖G1,2 −G2,2‖


2
L1(Rd)


Rd−4s


d− 4s
+


‖G1,2 −G2,2‖
2
L2(Rd)


R4s


}
,


whereR ∈ (0,+∞). Let us use the equality


G1,2(x)−G2,2(x) =


∫ u0(x)+up,2(x)


0


[g′1(z)− g′2(z)]dz.


Hence


|G1,2(x)−G2,2(x)| ≤ supz∈I |g
′
1(z)− g′2(z)||u0(x) + up,2(x)| ≤


≤ ‖g1 − g2‖C2(I)|u0(x) + up,2(x)|.


Thus
‖G1,2 −G2,2‖L2(Rd) ≤ ‖g1 − g2‖C2(I)‖u0 + up,2‖L2(Rd) ≤


≤ ‖g1 − g2‖C2(I)(‖u0‖H3(Rd) + 1).


Another useful identity would be


G1,2(x)−G2,2(x) =


∫ u0(x)+up,2(x)


0


dy
[∫ y


0


(g′′1(z)− g′′2(z))dz
]
.


Clearly,


|G1,2(x)−G2,2(x)| ≤
1


2
supz∈I |g


′′
1(z)− g′′2(z)||u0(x) + up,2(x)|


2 ≤


≤
1


2
‖g1 − g2‖C2(I)|u0(x) + up,2(x)|


2.


Therefore,


‖G1,2 −G2,2‖L1(Rd) ≤
1


2
‖g1 − g2‖C2(I)‖u0 + up,2‖


2
L2(Rd) ≤


≤
1


2
‖g1 − g2‖C2(I)(‖u0‖H3(Rd) + 1)2. (3.33)
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This yields the estimate from above for the norm‖ξ(x)− up,2(x)‖
2
L2(Rd) as


ε2‖K‖2L1(Rd)(‖u0‖H3(Rd)+1)2‖g1−g2‖
2
C2(I)


[ |Sd|(‖u0‖H3(Rd) + 1)2


4(2π)d
Rd−4s


d− 4s
+


1


R4s


]
.


Such expression can be easily minimized overR ∈ (0,+∞) by virtue of Lemma 4.
We derive the estimate‖ξ(x)− up,2(x)‖


2
L2(Rd) ≤


≤ ε2‖K‖2L1(Rd)(‖u0‖H3(Rd) + 1)2+
8s
d ‖g1 − g2‖


2
C2(I)


|Sd|
4s
d


(16s)
4s
d (2π)4s


d


d− 4s
.


Formulas (3.31) and (3.32) give us


(−∆)
3


2 ξ(x) = ε(−∆)
3


2
−s


∫


Rd


K(x− y)G1,2(y)dy,


(−∆)
3


2up,2(x) = ε(−∆)
3


2
−s


∫


Rd


K(x− y)G2,2(y)dy.


Using (2.18) and (3.33), the norm‖(−∆)
3


2 [ξ(x) − up,2(x)]‖
2
L2(Rd) can be bounded


from above by


ε2‖G1,2 −G2,2‖
2
L1(Rd)Q


2 ≤
ε2Q2


4
(‖u0‖H3(Rd) + 1)4‖g1 − g2‖


2
C2(I)


.


Therefore,‖ξ(x)− up,2(x)‖H3(Rd) ≤ ε‖g1 − g2‖C2(I)×


×(‖u0‖H3(Rd) + 1)2


[
‖K‖2


L1(Rd)
(‖u0‖H3(Rd) + 1)


8s
d
−2|Sd|


4s
d


(16s)
4s
d (2π)4s


d


d− 4s
+


Q2


4


] 1


2


.


By means of inequality (3.30), the norm‖up,1 − up,2‖H3(Rd) can be estimated from
above by


ε


1− εσ
(‖u0‖H3(Rd) + 1)2×


×


[
‖K‖2


L1(Rd)(‖u0‖H3(Rd) + 1)
8s
d
−2|Sd|


4s
d


(16s)
4s
d (2π)4s


d


d− 4s
+


Q2


4


] 1


2


‖g1 − g2‖C2(I),


which completes the proof of the theorem.


4. Auxiliary results


Below we state and prove the solvability conditions for the linear Poisson type
equation with a square integrable right side


(−∆)su = f(x), x ∈ R
d, d = 4, 5, 0 < s < 1. (4.34)
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This statement was established in the one of our previous works but we provide the
argument here for the convenience of the readers. We designate the inner product
as


(f(x), g(x))L2(Rd) :=


∫


Rd


f(x)ḡ(x)dx, d = 4, 5, (4.35)


with a slight abuse of notations when the functions involvedin (4.35) are not square
integrable. Indeed, iff(x) ∈ L1(Rd) andg(x) ∈ L∞(Rd), then the integral in the
right side of (4.35) is well defined. The technical statementbelow is easily proved
by applying the standard Fourier transform (2.17) to both sides of equation (4.34).


Lemma 6. Let 0 < s < 1, f(x) : Rd → R, d = 4, 5 andf(x) ∈ L1(Rd) ∩
L2(Rd). Then equation (4.34) admits a unique solutionu(x) ∈ H2s(Rd).


Proof. First of all, let us note that under the given conditions any square inte-
grable solution of equation (4.34) will belong toH2s(Rd) as well. Indeed, ifu(x) ∈
L2(Rd) satisfies (4.34) with a square integrable right side, we have(−∆)su ∈
L2(Rd), such that by means of the definition of the norm (1.6), we obtain u(x) ∈
H2s(Rd).


To establish the uniqueness of solutions for our problem, wesuppose that equa-
tion (4.34) possesses two solutionsu1,2(x) ∈ H2s(Rd). Then their difference
w(x) = u1(x)− u2(x) ∈ H2s(Rd) satisfies the homogeneous equation


(−∆)sw = 0.


Since the operator(−∆)s : H2s(Rd) → L2(Rd) does not have any nontrivial zero
modes,w(x) will vanish inRd.


Let us apply Fourier transform (2.17) to both sides of problem (4.34). This
yields


û(p) =
f̂(p)


|p|2s
=


f̂(p)


|p|2s
χ{p∈Rd | |p|≤1} +


f̂(p)


|p|2s
χ{p∈Rd | |p|>1}, (4.36)


whereχA denotes the characteristic function of a setA ⊆ R
d. Clearly, the second


term in the right side of (4.36) can be estimated in the absolute value from above by
|f̂(p)| ∈ L2(Rd) due to the one of our assumptions. By means of inequality (2.18),
we estimate the norm


∥∥∥∥∥
f̂(p)


|p|2s
χ{p∈Rd | |p|≤1}


∥∥∥∥∥


2


L2(Rd)


≤
‖f‖2


L1(Rd)


(2π)d


∫ 1


0


|Sd||p|d−1−4sd|p| =


=
‖f‖2


L1(Rd)


(2π)d
|Sd|


d− 4s
< ∞


by virtue of our assumptions.
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Note that by proving the lemma above we establish the solvability of equation
(4.34) inH2s(Rd), d = 4, 5 for all values of the power of the negative Laplace
operator0 < s < 1, such that no orthogonality conditions are required for theright
sidef(x).
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