13 pages, no figures



Schrodinger operators; point interactions: ground state eigenvalue; spectral optimization





An optimization problem for finite point interaction


families


Pavel Exner


Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Hlavńı 130,
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1. Introduction


Search for geometric configurations that make a given spectral quantity optimal is


a trademark topic in mathematical physics with a century long tradition reaching


back to the Faber and Krahn celebrated proof of Lord Rayleigh conjecture about the


lowest drum tone [Fa23, Kr25]. Without recalling the long and rich history we note


a recent wave of interest to the topic concerning the ground state of Robin billiards


[FK15, AFK17, KL18, KL19] and of leaky quantum structures [EL17, EL18, EK19], in


a sense the one- and two-sided aspects of the same problem.
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This brings to mind similar optimization problems for families of point interactions


somehow neglected in those recent efforts. More then a decade ago the ground state


optimization problem was solved for point interactions placed at the vertices of an


equilateral polygon [Ex06], but the work mentioned above inspires another question,


namely to consider point interactions placed at a manifold of maximum symmetry, a


circle or a sphere, and to ask about optimal configurations. We note that dealing with a


finite family of point interactions is easier that the optimization for billiards and leaky


structures since one has to deal with matrices instead of integral operators, however,


some aspects of discrete optimization may be on the contrary more involved; to illustrate


this claim one can compare the proof in [Ex06] with that used in the continuous analogue


of that particular problem [EHL06].


The two indicated problems differ substantially in the degree of difficulty. In case


of point interactions placed at a circle, both in two and three dimensions, it is easy


to guess the optimal configuration and, maybe with some effort, to confirm the guess.


The optimization on a sphere, on the other hand, is a rather hard task which reminds


about one another problem more than a century old, a search for configurations of point


charges on a sphere that minimize the electrostatic energy [Th04]. Our question will be


reduced to a similar minimization problem with a different ‘potential’ and using results


from algebraic combinatorics we will be able to find an answer in five cases with a low


number of point interactions leaving the other situations open.


We also include into the discussion the case of one-dimensional point interactions


which are less singular than their two- and three-dimensional counterparts. There is no


zero measure subset analogous to a circle or a sphere here, but we can consider such


interactions on a loop, in other words, on an interval with periodic boundary conditions.


As long as the interactions are attractive the ground state energy is again maximized


by configurations with a maximum symmetry as can be shown in the same, and even


a bit simpler way. The case of repulsive δ potentials is more complicated and in this


paper we provide a partial result only.


2. A warm up: attractive point interactions on a loop


To begin with, let us investigate the Hamiltonian describing N attractive point


interactions, N ≥ 2, of identical strength on a loop; in view of the scaling properties


of the system we may assume without loss of generality that the loop length is 2π. In


other words, we consider H = L2(I) with I = (0, 2π) and the operator written formally


as


Hα,Y = − d2


dx2
+ α


N∑
n=1


δ(x− yn) (2.1)
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with α < 0 and Y := {yj}Nj=1 such that 0 < y1 < · · · < yN < 2π, which means that


Hα,Y acts as a negative Laplacian on functions from H2(I) satisfying the conditions


ψ(yj+) = ψ(yj−) =: ψ(yj) , ψ′(yj+)− ψ′(yj−) = αψ(yj) , j = 1, . . . , N , (2.2a)


ψ(2π−) = ψ(0+) , ψ′(2π−) = ψ(0+) . (2.2b)


Alternatively, Hα,Y is the unique self-adjoint operator associated with the quadratic


form


qα,Y : qα,Y (ψ) = ‖ψ′‖2 + α
N∑
j=1


|ψ(yj)|2 (2.3)


defined on periodic functions from H1(I). It is easy to see that the spectrum of


the operator is purely discrete, σ(Hα,Y ) = {λn(α, Y )}∞n=1, arranged conventionally in


the ascending order, and the ground state eigenvalue λ1(α, Y ) is simple and negative.


Moreover, it follows easily from (2.3) and the minimax principle that λ1(α, Y ) < 0 for


α < 0; we are interested in the sets Y that optimize the ground state.


To this aim we need the resolvent of the free Hamiltonian H0 ≡ H0,Y which is at


the energy −κ2 a convolution-type integral operator with the kernel


Giκ(x− y) =
cosh(κ(π − |x− y|)


2κ sinhπκ
. (2.4)


To derive this formula one can use the explicit knowledge of the spectrum: the


eigenvaluesm2 correspond to the eigenfunctions ηm(x) = 1√
2π


eimx, m ∈ Z. Consequently,


we have


Giκ(x− y) =
∑
m∈Z


η(x)η(y)


m2 + κ2


and the sum is easily evaluated [PBM, 5.4.3.4]. It is important to note that the function


Giκ is strictly convex in the interval (0, π). In straightforward analogy with [AGHH,


Thm. II.2.1.1] one can the express the sought resolvent of Hα,Y by means of Krein’s


formula


(Hα,Y + κ2)−1 = Giκ +
N∑


j,j′=1


[Γα,Y (iκ)]−1jj′
(
Giκ(· − yj′), ·


)
Giκ(· − yj) , (2.5a)


Γα,Y (iκ) = −[−α−1δjj′ +Giκ(yj − yj′)]Nj,j′=1 . (2.5b)


This implies that negative eigenvalues of σ(Hα,Y ) are obtained as roots of the equation


det Γα,Y (iκ) = 0, in particular, λ1(α, Y ) correspond corresponds to the value of κ at


which the smallest eigenvalue of Γα,Y (iκ) vanishes. Indeed, according to [Kr53] the


eigenvalues are for any fixed α < 0 continuously decreasing functions of the energy,


and thus also of −κ in the interval (−∞, 0). The optimization, or more specifically


maximization of the ground state is then equivalent to identifying sets Y for which the


said smallest eigenvalue of −Γα,Y (iκ) is maximal.
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Theorem 2.1. Put Ỹ := { π
N


(2j − 1)}Nj=1, then for any N-point set Y and any α < 0


we have


λ1(α, Y ) ≤ λ1(α, Ỹ ) (2.6)


and the inequality is sharp if and only if Y is not congruent with Ỹ .


Proof. As mentioned above, the eigenvalue λ1(α, Y ) is simple and same is true for the


smallest eigenvalue µ1(α, Y ) of Γα,Y (iκ). The corresponding eigenfunction can be chosen


positive. If Y = Ỹ the system is invariant with respect cyclic shifts by 2π
N


which means


that the respective eigenfunction of Γα,Ỹ (iκ) is ϕ1 = 1√
N


(1, . . . , 1).


It is useful to extend Y periodically to the real line identifying the points modulo


2π and note that then all the distances djj′ = d(yj, yj′) ∈ (0, π]. By minimax principle


and (2.5b) we have


µ1(α, Y ) ≤ (ϕ1, Hα,Y ϕ1) =
1


α
− 1


N


N∑
j,j′=1


giκ(djj′) , (2.7)


where giκ(djj′) := Giκ(yj − yj′). Our aim is to show that the right-hand side does not


exceed µ1(α, Ỹ ) = (ϕ1, Hα,Ỹ ϕ1) being sharply smaller if Y is not congruent with Ỹ .


This will be for sure true if
N∑


j,j′=1


giκ(djj′) >
N∑


j,j′=1


giκ(d̃jj′)


would hold for all κ > 0 unless {djj′} = {d̃jj′} holds between the sets of distances


determining Y and Ỹ , respectively. In fact, we can avoid double counting and consider


only summation over j < j′. Rearranging the summation, we have to check that


F ({djj′}) :=


[N/2]∑
m=1


∑
|j−j′|=m


[
giκ(djj′)− giκ(d̃jj′)


]
> 0


unless {djj′} = {d̃jj′}. We recall that giκ is strictly convex in (0, π); this allows us to


apply Jensen’s inequalityto the inner sums which yields


F ({djj′}) ≥
[N/2]∑
m=1


1


νm


[
giκ


( 1


νm


∑
|j−j′|=m


djj′
)
− giκ(d̃1,1+m)


]
, (2.8)


where νm is the number of the arc between the points yj and yj+m for j = 1, . . . , n, i.e.


νm :=


{
N . . . m = 1, . . . ,


[
1
2
(N − 1)


]
1
2
N . . . m = 1


2
N for N even


and in addition, the inequality in (2.8) is sharp unless all the summands in the argument


are mutually equal. Finally, the said sum is easily computed,


1


νm


∑
|j−j′|=m


djj′ =
2πm


N
= d̃1,1+m ,


hence the right-hand side of (2.8) is zero which concludes the proof.
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3. Point interactions on a circle


Let now C be a circle of unit radius in Rν , ν = 2, 3, and consider a system of N point


interactions of equal strength placed at C. The assumed size of C does not restrict


the generality of our conclusions due to the scaling properties of the corresponding


Hamiltonians. We denote again by Y := {yj}Nj=1 ⊂ C the interaction support and


use the symbol Hα,Y for the singular Schrödinger operators with point interactions in


L2(Rν). The way to construct them is well known [AGHH, Secs. II.1 and II.4]: they


are defined on function from H2(Rν \ Y ) acting there as the negative Laplacian, while


at the points of Y boundary conditions are imposed relating the generalized boundary


values at each yj, the coefficient at the singularity (logarithmic for ν = 2, first-order


pole for ν = 3) and the next term in the expansion. The relations are linear and the


coefficient α ∈ R appearing in them characterizes the coupling strength, however, it is


not the usual coupling constant as seen from the fact that the point interaction absence


corresponds formally to α =∞.


It is also well known that σess(Hα,Y ) = [0,∞) and the existence of discrete spectrum


depends on the dimension: σdisc(Hα,Y ) holds always if ν = 2 while for ν = 3 this requires


α < αYcrit where superscript indicates that the value of the critical coupling depends on


Y ; we have αcrit = 0 for a single point interaction, for N = 2 already we have αcrit > 0.


Since our aim is again to find a configuration Y that maximizes the lowest eigenvalue,


in the three-dimensional situation we assume α < αcrit := infY α
Y
crit, and for brevity we


also set αcrit =∞ if ν = 2. The spectral problem can be again conveniently solved using


Krein’s formula which looks like (2.5a) with the matrix (2.5b) replaced by


Γα,Y (iκ) =
[
(α− ξiκ)δjj′ − (1− δjj′)Giκ(yj − yj′)


]N
j,j′=1


, (3.1)


where we have


Giκ(yj − yj′) =


{
1
2π
K0(κ|yi − yj|) . . . ν = 2


e−κ|yi−yj |


4π|yi−yj | . . . ν = 3
(3.2)


and the regularized value of Green’s function at the interaction site is


ξiκ =


{
− 1


2π


(
ln κ


2
+ γE


)
. . . ν = 2


− κ
4π


. . . ν = 3


where γE = −ψ(1) ≈ 0.57721 is the Euler-Mascheroni constant. The formula (3.2)


allows us to find the discrete spectrum of Hα,Y through solutions of the equation


det Γα,Y (iκ) = 0 and for the ground state eigenvalue we have the following result:


Theorem 3.1. For any N-point set Y ⊂ C and any α < αcrit we have


λ1(α, Y ) ≤ λ1(α, Ỹ ) , (3.3)


where Ỹ is the family of vertices of a regular N-polygon, and the inequality is sharp if


and only if Y and Ỹ are not congruent.
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Proof. The first part of the argument is analogous to the optimization of point


interaction ‘necklaces’ performed in [Ex06], hence we describe it only briefly. As in the


previous section we seek the configuration maximizing the lowest eigenvalue of Γα,Y (iκ),


in other words, we want to prove that


µ1(α, Y ) = min σ(Γα,Y (iκ)) < minσ(Γα,Ỹ (iκ)) = µ1(α, Ỹ )(iκ)) (3.4)


holds for all κ > 0. We denote giκ(`jj′) := Giκ(yj − yj′) where the different symbol


indicates that in contrast to (2.7) the distance is not measured over the perimeter of the


circle but over the respective chord, i.e. as the Euclidean distance of the points yj and


yj′ in Rν . The lowest eigenvalue of Hα,Y is simple and the corresponding eigenfunction


can be chosen positive. Furthermore, for Y = Ỹ it has the symmetry with respect


to the discrete group of rotations by multiples of the angle 2π
N


which means that the


eigenvector corresponding to µ1(α, Ỹ )(iκ) is again ϕ1 = 1√
N


(1, . . . , 1). In combination


with minimax principle this allows us to write


µ1(α, Y ) ≤ (ϕ1, Hα,Y ϕ1) = α− ξiκ −
1


N


∑
j 6=j′


giκ(`jj′) . (3.5)


According to (3.2) the function giκ(·) is strictly convex which implies an inequality


analogous to (2.8), namely


F ({`jj′}) ≥
[N/2]∑
m=1


1


νm


[
giκ


( 1


νm


∑
|j−j′|=m


`jj′
)
− giκ(˜̀


1,1+m)


]
, (3.6)


sharp unless Y and Ỹ are congruent. In contrast to the previous section, however, we


cannot hope that the right-hand side would vanish. Instead we want to prove that it is


positive, or non-negative at worst. Since giκ(·) is monotonously decreasing in (0,∞), it


is sufficient to check the inequalities


˜̀
1,m+1 ≥


1


νn


∑
|j−j′|=m


`jj′ (3.7)


for m = 1, . . . ,
[
N
2


]
. Until now the argument followed closely the reasoning of [Ex06,


Sec. 2]. The geometry of the problem there, however, is different from the present one.


In order to prove inequality (3.7) for points on the circle we express the corresponding


chord lengths in terms of their angular distances, `jj′ = 2 sin 1
2
φjj′ and ˜̀


1,m+1 = 2 sin πm
N


.


We note that 1
2
φjj′ ∈


(
0, π


2


]
which allows to employ Jensen’s inequality again, now for


concave functions, which yields∑
|j−j′|=m


1


νm
2 sin


1


2
φjj′ ≤ 2 sin


( ∑
|j−j′|=m


1


νm


1


2
φjj′
)


= 2 sin
πm


N
= ˜̀


1,m+1 ,


where the inequality is sharp unless all the angles φj,j+m are the same. This proves


(3.7), and eo ipso the claim of the theorem.
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Remark 3.1. The secular equation det Γα,Y (iκ) = 0 in combination with (3.1) shows


that the spectrum is monotonous with respect to α, i.e. we have Hα,Y ≤ Hα′,Y for


α < α′. This shows a posteriori that αcrit = α̃crit, the critical coupling for the fully


symmetric set Ỹ . Note that one can extend slightly the above reasoning to conclude


that σdisc(Hαcrit,Y ) 6= ∅ holds for any Y which is not congruent with Ỹ .


4. Point interactions on a sphere


Let us now pass to a much harder problem and consider N point interactions in R3


confined to the surface of a unit sphere S. We again denote the interaction support


by Y and ask for a configuration Ỹ which maximizes the ground state eigenvalue


λ1(α, Y ) of Hα,Y ; the question makes sense if α < αcrit. It is natural to expect that Ỹ


will exhibit the maximum possible symmetry. The relation between λ1(α, Y ) and the


lowest eigenvalue of Γα,Y (iκ) is the same as in the previous section, however, the other


ingredient of the argument that allowed us to pass to (3.5), namely the possibility to


choose ϕ1 = 1√
N


(1, . . . , 1) as the eigenfunction corresponding to the said eigenvalue, can


be justified in particular cases only.


Recall that in the circle case it was related to a particular symmetry, the invariance


of Ỹ with respect to the group of discrete rotations by multiples of 2π
N


. For point


on a sphere, such a symmetry is obvious for the smallest values, N = 2, 3, where


the Ỹ consists of antipodal points and of three points equally spaced at the equator,


respectively. For larger values the needed symmetry exists for N = 4, 6, 8, 12, 20 if the


points of Ỹ are identified with the vertices of one the five Platonic solids, tetrahedron,


cube, octahedron, dodecahedron an icosahedron, respectively. In those cases we use


(3.5) and ask about the maximizer of it right-hand side, in other words, to prove that∑
j 6=j′


giκ(˜̀
jj′) ≤


∑
j 6=j′


giκ(`jj′) (4.1)


holds, sharply so if the two sets are not congruent, where ˜̀
jj′ and `jj′ are again the


Euclidean distances between the respective points of Ỹ and Y and giκ refers to the


three-dimensional resolvent kernel (3.2).


Theorem 4.1. Let the number of points of Y be N = 2, 3, 4, 6, 12 and α < αcrit, then


we have


λ1(α, Y ) ≤ λ1(α, Ỹ ) , (4.2)


where Ỹ is the corresponding fully symmetric set described above; the inequality is sharp


if and only if Y and Ỹ are not congruent.


Proof. To begin with, we observe that the task is of the type of Thomson problem [Th04]


about an optimal distribution of N charges on the surface of a sphere, instead of the


Coulomb potential (yj, yj′) 7→ e|yj−yj′|−1 we have here the function giκ. Despite the fact


that the plum-pudding model from which it came proved soon to be physically untenable,


the question posed to a hard mathematical challenge, still far from being fully solved
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more than a century after it was formulated [Twiki]. To illustrate this claim, recall


that the problem was included in the ‘new Hilbert problems’ for the present century


[Sm98], and that a (computer assisted) proof for N = 5 was found only recently [Sch13].


Furthermore, the original problem inspired a vast activity in algebraic combinatorics,


see [CK07], [BB09] and references therein, where the analogous question is asked in


other dimensions, for other manifolds, and for other ‘potentials’.


We employ one of those generalizations. Given an N -point set Y ⊂ S we call


it an M-spherical design if for any polynomial x 7→ p(x) on R3 of total degree at


most M one replace its average over sphere by the average over Y , in other words,∫
S p(x)dx = 1


N


∑N
j=1 p(yj) holds. Let further m be the number of different inner


products between distinct points of Y , then the set is a sharp configuration it is 2m− 1


spherical design. The deep result of Cohen and Kumar [CK07, Thm. 1.2] says that


sharp configurations are universally optimal meaning that they minimize any potential


energy f : [0, 4]→ R which is completely monotonous, (−1)kf (k) ≥ 0 for all k ≥ 0, i.e.∑
j 6=j′


f(˜̀2
jj′) ≤


∑
j 6=j′


f(`2jj′) ,


sharply so if the complete monotonicity is strict.


The function giκ(·) factorizes into a product of two strictly completely monotonous


functions, hence it is also strictly completely monotonous, and it is easy to check that


the same is true for giκ
(√
·)
)
. This means that (4.1) is valid, sharply unless Y and Ỹ


are congruent, for any sharp configuration in R3. According to [CK07, Table 1] there


are five such cases:


– three simplices with N = 2 (a pair antipodal points, the inner product −1), N = 3


(equilateral triangle, the inner product −1
2
), and N = 3 (tetrahedron, the inner


product −1
3
)


– octahedron with N = 6, in other words, three-dimensional cross polytope with the


inner products −1, 0
– icosahedron, N = 12, with the inner products 1, ± 1√


5


These are exactly the configurations listed in the theorem which concludes the proof.


Remarks 4.1. (a) The configurations referring to the remaining Platonic solids, cube


and dodekahedron with the number of the different inner products m = 3 and m = 4,


respectively, do not qualify for universality; recall there neither solutions of the Thomson


problem [Twiki].


(b) As in Remark 3.1 one can check that σdisc(Hαcrit,Y ) 6= ∅ holds for N = 2, 3, 4, 6, 12


and any Y not congruent with the corresponding sharp configuration.


(c) The optimal configuration listed in the theorem are independent of α. This may not


be true for other values of N because, in contrast to the Coulomb potential of Thomson’s


problem. the coupling constant does not enter the inequality as an overall multiplier


which could be factorized out.
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5. Back to one dimension: repulsive interactions


While two- and three-dimensional point interactions are always attractive, even if in the


latter case it may not be sufficient to produce a discrete spectrum, in one dimension the


considerations of Sec. 2 cover only a part of the problem and one asks what happens if


we have α > 0. The spectrum is again determined by the secular equation which is now


det Γα,Y (k) = 0 where the resolvent kernel (2.4) in (2.5b) is replaced by


Gk(x− y) = −cos(k(π − |x− y|)
2k sin πk


(5.1)


with k > 0. The spectral threshold λ1(α, Y ) is positive and we are again interested in


the configuration Ỹ that optimizes it.


In analogy with the modifications of Faber-Krahn inequality for Robin billiards


[Ba77, FK15] one might expect that the nature of the optimizer would get switched as


α passes through zero, but as we will see it is not the case. What is important, we


cannot use the reasoning of the previous sections, for two reasons. One is that that the


function (5.1) is not convex in general, more exactly it has this property in (−π, π) only


if k < 1
2
, however, depending on the value of the coupling α the ground state λ1(α, Y )


may correspond to any number in (0, 1
2
N). What is even more important, λ1(α, Y ) no


longer corresponds to the lowest eigenvalue of Γα,Y (k) as the latter has now negative


eigenvalues which give rise to higher eigenvalues of Hα,Y for α < 0.


Using a perturbative argument, one can show that the character of the optimizer


remains preserved for weak repulsive soupling.


Theorem 5.1. In the same notation as above, we have λ1(α, Y ) ≤ λ1(α, Ỹ ) for any


N-point set Y and all |α| small enough, and the inequality is sharp unless Y and Ỹ are


congruent.


Proof. We neglect the trivial case of α = 0 and regard Hα,Y as a perturbation of


H0 ≡ H0,Y by V (x) = α
∑N


n=1 δ(x − yn). The spectrum of H0 has been mentioned


above, the eigenvalues m2 correspond to the eigenfunctions ηm(x) = 1√
2π


eimx, m ∈ Z.


The analytic perturbation theory yields the expansion


λ1(α, Y ) = cY1 α + cY2 α
2 +O(α3) , (5.2)


where the first-order coefficient cY1 = (η0, V η0) = N
2π


is independent of Y and the second-


order one is


cY2 =
∑
m 6=0


|(ηm, V η0)|2


−m2
= − 1


2π2


∞∑
m=1


1


m2


∣∣∣ N∑
j=1


eimyj
∣∣∣2 . (5.3)


The series obviously converges. Some coefficients may vanish, for instance, if Y = Ỹ


and m = 1 according to [PBM, 4.4.1.5], however, we will see that some – in fact many


– are nonzero so the sum is positive.
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Our goal is to show that the symmetric configuration Ỹ sharply maximizes the


right-hand side of (5.3), that is, it minimizes the positive value of the sum appearing


there. We rewrite the latter as


∞∑
m=1


1


m2


N∑
j,j′=1


eim(yj−yj′ ) =
∞∑
m=1


1


m2


N∑
j,j′=1


cos(m(yj − yj′))


because the contributions to the imaginary part cancel mutually. We change the order


of summation and evaluate the inner series,


N∑
j,j′=1


∞∑
m=1


cos(m(yj − yj′))
m2


=
N∑


j,j′=1


π2B2


(yj − yj′
2π


)
,


cf. [PBM, 5.4.2.7], where B2 is the Bernoulli polynomial of order two, or explicitly


∞∑
m=1


1


m2


∣∣∣ N∑
j=1


eimyj
∣∣∣2 = π2


N∑
j,j′=1


[
(yj − yj′)2 − (yj − yj′) +


1


6


]
=


1


6
π2N2 + 2π3(N − 1) + π2


∑
j,j′


(yj − yj′)2.


The last term is the only one which depends on the configuration Y ; using convexity of


the quadratic function we can estimate the sum there as follows


∑
j,j′


(yj − yj′)2 =
N−1∑
l=1


N∑
j=1


(
yj − yj+l (modN)


)2 ≥ N−1∑
l=1


( N∑
j=1


(
yj − yj+l (modN)


))2
=


1


N


N−1∑
l=1


(2πl)2 =
2


3
π2(N − 1)(2N − 1) =


∑
j,j′


(ỹj − ỹj′)2


with the sharp inequality if Y and Ỹ are not congruent, which concludes the proof.


Furthermore, a similar result is also valid for strongly repulsive point interactions.


In order to demonstrate that, let us introduce the Dirichlet operator HD,Y corresponding


to the quadratic form


qD,Y : qD,Y (ψ) = ‖ψ′‖2 , D(qD,Y ) = H1(I \ Y ) , (5.4)


in other words, Hα,D acts as the Laplacian with Dirichlet conditions imposed at the


points of Y . It is straightforward to check that Hα,Y ≤ HD,Y , hence, in particular,


λ1(α, Y ) ≤ λ1(D, Y ) holds by minimax principle. A similar argument using a comparison


of quadratic forms (2.3) for different values of α shows that λ1(·, Y ) is an increasing


function and we have


lim
α→+∞


λ1(α, Y ) = λ1(D, Y ) . (5.5)


Theorem 5.2. Suppose that Y and Ỹ are not congruent, then λ1(α, Y ) < λ1(α, Ỹ )


holds for all α large enough.
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Proof. The optimization problem for Hα,D is easy to solve because we know the spectrum


explicitly, in particular, we have λ1(D, Ỹ ) = 1
4
N2 and


λ1(D, Y ) =


(
π


max
{
dj,j+1 (modN)


})2


< λ1(D, Ỹ ) (5.6)


by assumption. The eigenvalues of Γα,Y (k) entering the secular equation det Γα,Y (k) = 0


are real analytic functions of k. Combining this fact with the implicit function theorem


and (5.5) we infer that


λ1(α, Y ) = λ1(D, Y )− cα−1 +O(α−2) and λ1(α, Ỹ ) = λ1(D, Ỹ )− c̃α−1 +O(α−2)


for some c, c̃ > 0 as α→ +∞; this in combination with (5.6) yields the sought claim.


Theorems 5.1 and 5.2 motivate us to the following guess:


Conjecture 5.1. In the described setting, λ1(α, Y ) < λ1(α, Ỹ ) holds for any α ∈ (0,∞)


unless the N-point configurations Y and Ỹ are congruent.


6. Concluding remarks


From the physical point of view configurations minimizing energy may be more


interesting as they are associated with stability. A maximizer represents an unstable


equilibrium – as the skydiver who allegedly attempted landing at the top of the Gateway


Arc learned the hard way. If we deal with attractive interactions, though, no minimizing


configurations may even exist; in the present context it is well known that if two point


interactions in Rν , ν = 2, 3, approach each other the ground state escapes to negative


infinity. At the same time, optimization may be nontrivial even if the interactions are


repulsive as the discussion of Sec. 5 shows: evenly spread interactions will not minimize


the energy if the energy cost of ‘huddling them together’ would be lower.


The above results concerning one-dimensional point interactions can be also


regarded as an optimization of the lowest spectral band threshold in periodic systems on


the line, because this quantity is associated with the lowest periodic solution, cf. [AGHH,


Sec. III.2.3] or [EKW10]. In a sense this determines a maximizer for point interactions


distributed on the line with fixed density, but this claim cannot taken literally, rather in


the way one treats usually the thermodynamic limit, taking a finite system with periodic


boundary conditions and letting its side to go to infinity.


The hardest question coming from this discussion concerns without any doubt the


sphere optimization. One might conjecture that for largeN and strong point interactions


the optimal patter would be approximately hexagonal, however, it is not likely to be


the case in the weak coupling, that is, for large positive α. Generally speaking, any


result going beyond the universally optimal configurations considered here should be


considered a success.
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