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1. Introduction


Consider the system


~ut − A~uxx = ~h(t) for (x, t) ∈ [0, π]× [0,∞),


with ~u(0, t) = ~v(t), ~u(π, t) = ~0, and ~u(x, 0) = ~g(x),
(1.1)


where~h,~v : R≥0 → R
N and~g : [0, π] → R


N for someN ≥ 2 are unknown, with


~g(x) = (g1(x), g2(x), ..., gN(x))
T .


The solution of system (1.1) is a real vector function given by


~u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))
T .


The regularity of~u is related to the smoothness of{~h,~v,~g}. Similar to the work
in [4], which was devoted to the studies of the single parabolic equation of this
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kind, in the present work we are not focused on the well-posedness of (1.1). We are
interested in the following inverse problem:


What information about the solution~u is sufficient


to uniquely determine the vector functions{~h,~v,~g}?


Inverse problems for the scalar heat equation have been studied extensively (see
[1], [2], [4] and the references therein). An inverse sourceproblem for the multidi-
mensional heat equation in which the source was assumed to bea finite sum of point
sources was considered in [3]. The inverse problem there wasto find the location
and the intensity of these point sources from the experimental data. The existence of
stationary solutions of certain systems of parabolic equations was studied actively
in recent years, see for instance [5] and [6] and the references therein.


We will use〈 , 〉 to denote the standard inner product onL2[0, π]. That is,


〈G,F 〉 =


∫ π


0


G(x)F (x)dx. (1.2)


Clearly, (1.2) induces the following norm onL2[0, π]:


‖F‖ =


√


∫ π


0


F 2(x)dx.


We extend the inner product notation to the situation where the first argument is a
vector function, for which each component is an element ofL2[0, π]. In this case
the result is obtained by computing the inner product of eachcomponent with the
second argument. For example,


〈~g, F 〉 =
(


〈g1, F 〉, . . . , 〈gN , F 〉
)T


=


(


∫ π


0


g1(x)F (x)dx, . . . ,


∫ π


0


gN(x)F (x)dx


)T


=


∫ π


0


~g(x)F (x)dx.


(1.3)


Similarly,


〈~u(·, t), F 〉 =


∫ π


0


~u(x, t)F (x)dx


=


(


∫ π


0


u1(x, t)F (x)dx, . . . ,


∫ π


0


uN(x, t)F (x)dx


)T


,


giving a vector valued function oft.
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Let fm(x) =


√


2


π
sin(mx) for m ∈ N = {1, 2, . . . }. Then


fm(0) = fm(π) = 0, ‖fm‖ = 1 and −
d2fm


dx2
(x) = m2fm(x) for 0 ≤ x ≤ π,


so that{fm(x)}∞m=1 is the orthonormal set of the eigenfunctions of the one dimen-
sional negative Dirichlet Laplacian on the interval[0, π].


Let y ∈ (0, π) such that
y


π
is irrational. (This happens, for example, ify is


rational.) Then it can be shown that


fm(y) 6= 0 (1.4)


for all m ∈ N.
Let


~um(t) = 〈~u(·, t), fm〉


for m ∈ N. Our main statement is as follows.


Theorem 1. SupposeN ≥ 2 andA is a constant realN×N diagonalizable matrix
for which all of the eigenvalues are positive reals. Then knowing the functions


{~u1(t), ~u3(t), ~u(y, t)} , (1.5)


for all t ≥ 0, is sufficient to uniquely determine the triple
{


~h,~v,~g
}


.


This theorem is a generalization of Theorem 1 of [4], which establishes the corre-
sponding result for a single heat equation (i.e. forN = 1). Let us proceed to the
proof of our main result.


2. Proof.


Proof of Theorem 1.From our assumptions, it follows that there exists an invertible
real matrixP such that


PAP−1 = D = diag(d1, . . . , dN),


whered1, d2, . . . , dN > 0 are the eigenvalues ofA and, hence,


PA = DP. (2.1)


By means of (2.1), multiplying the partial differential equation in (1.1) on the left
byP gives


P~ut −DP~uxx = P~h(t). (2.2)
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Let us introduce new vector functions:


ũ(x, t) := P~u(x, t) and h̃(t) := P~h(t).


This allows us to write (2.2) (which is simply the PDE portionof the main system
(1.1)) in terms of̃u andh̃. Before doing so, we define


ṽ(t) := P~v(t) and g̃(x) := P~g(x).


Now we can write the system in terms of the new variables:


∂ũ


∂t
−D


∂2ũ


∂x2
= h̃(t),


with ũ(0, t) = ṽ(t), ũ(π, t) = ~0 and ũ(x, 0) = g̃(x).


(2.3)


The reason that we have done this is that (2.3) consists ofN fully decoupled scalar
equations, allowing for solutions to be more easily obtained.


Form ∈ N = {1, 2, . . . } let


ũm(t) = 〈ũ(·, t), fm〉 and g̃m = 〈g̃, fm〉 ∈ R
N ,


where the inner product is defined in (1.3). It follows that


g̃(x) =


∞
∑


m=1


g̃mfm(x). (2.4)


We look for the solution to (2.3) in the form


ũ(x, t) =
∞
∑


m=1


ũm(t)fm(x) =
∞
∑


m=1


〈


ũ(·, t), fm


〉


fm(x). (2.5)


It is a standard result that such a solution exists. Taking the inner product offm
with each side of the system of partial differential equations in (2.3) yields


〈


∂ũ


∂t
−D


∂2ũ


∂x2
, fm


〉


= h̃(t)〈1, fm〉, (2.6)


where1(x) = 1 for all x ∈ [0, π]. Letting


cm = 〈1, fm〉 =


∫ π


0


fm(x)dx =


{ √


2
π


2
m


if m is odd


0 if m is even,
(2.7)


we rewrite (2.6) as
∫ π


0


∂ũ


∂t
(x, t)fm(x)dx−


∫ π


0


D
∂2ũ


∂x2
(x, t)fm(x)dx = h̃(t)cm.
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Assuming the sufficient regularity of̃u, the first integral gives
dũm


dt
. Using integra-


tion by parts twice on the second integral, we arrive at


dũm(t)


dt
+Dm2ũm(t) = Df ′


m(0)ṽ(t) + cmh̃(t), (2.8)


for m ∈ N. Equation (2.8) decouples intoN scalar linear equations of the form
y′ +Ky = a(t), which can be easily solved. The initial condition for (2.8)is


ũm(0) = 〈ũ(·, 0), fm〉 = 〈g̃, fm〉 = g̃m. (2.9)


Recall that for a diagonal matrix, such asD = diag(d1, . . . , dN), and a scalar
m2t, exponentiation is termwise, so that


e−Dm2t = diag
(


e−d1m
2t, . . . , e−dNm2t


)


.


From (2.8) we calculate that


ũm(t) = e−Dm2tg̃m +


∫ t


0


e−Dm2(t−s)
[


Df ′
m(0)ṽ(s) + cmh̃(s)


]


ds. (2.10)


We now suppose that
{~u1(t), ~u3(t), ~u(y, t)}


(referred to as the data) are known, and we set about constructing the unknowns
{


~h,~v,~g
}


. Let


F̃1(t) := ũ1(t)− e−Dtg̃1 and F̃3(t) := ũ3(t)− e−9Dtg̃3. (2.11)


Then Equation (2.10), form = 1 andm = 3, gives


F̃1(t) =


∫ t


0


e−D(t−s)
[


Df ′
1(0)ṽ(s) + c1h̃(s)


]


ds


and F̃3(t) =


∫ t


0


e−9D(t−s)
[


Df ′
3(0)ṽ(s) + c3h̃(s)


]


ds


(2.12)


respectively. By differentiating the formulas in (2.12) and rearranging, we obtain


Df ′
1(0)ṽ(t) + c1h̃(t) = e−Dt d


dt


[


eDtF̃1(t)
]


,


and Df ′
3(0)ṽ(t) + c3h̃(t) = e−9Dt d


dt


[


e9DtF̃3(t)
]


.


(2.13)


We treat (2.13) as a2N-dimensional linear system with unknownsṽ(t) and h̃(t).
Its 2N × 2N coefficient matrixM has the block form


M =


(


Df ′
1(0) c1I


Df ′
3(0) c3I


)


,
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whereI is theN × N identity matrix andf ′
m(0) = m


√


2
π
. Since each of the


four blocks in this representation ofM are diagonal, an easy computation gives
detM =


(


32
3π


)N
detD 6= 0. It now follows that system (2.13) admits a unique so-


lution, meaning that̃v and h̃ are uniquely determined by the right-hand sides of
(2.13).


Note that form = 1, 3, we have


ũm(t) = 〈ũ(·, t), fm〉 = 〈P~u(·, t), fm〉 =


∫ π


0


P~u(x, t)fm(x)dx


= P


∫ π


0


~u(x, t)fm(x)dx = P~um(t).


Also, from the definition of̃gm in (2.9), we have


g̃m = ũm(0) = P~um(0).


This means that̃F1(t) and F̃3(t), as defined in (2.11), can be calculated from the
data in (1.5). This, in turn, means thatṽ(t) andh̃(t) can be computed from the data.
We then calculate


~v(t) = P−1ṽ(t) and ~h(t) = P−1h̃(t).


Now we work towards determining~g in terms of the data. By combining (2.5) and
(2.10) atx = y, we have


ũ(y, t) =
∞
∑


m=1


e−Dm2tg̃mfm(y) + w̃(y, t), (2.14)


where


w̃(y, t) =
∞
∑


m=1


fm(y)


∫ t


0


e−Dm2(t−s)[Df ′
m(0)ṽ(s) + cmh̃(s)]ds


an expression written in terms of known functions (sinceṽ andh̃ have already been
calculated from the data). Also, noting thatũ(y, t) = P~u(y, t), it is clear that the
left side of (2.14) is determined by the data (1.5). Thus, theonly unknowns in (2.14)
areg̃m for m ∈ N.


Let q̃(y, t) = ũ(y, t)− w̃(y, t). Thenq(y, t) is known as well and, from (2.14),
satisfies


q̃(y, t) =


∞
∑


m=1


e−Dm2tg̃mfm(y)


= e−Dtg̃1f1(y) + e−4Dtg̃2f2(y) + e−9Dtg̃3f3(y) + . . .


(2.15)
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We now perform a sequence of limits. The first limit is simply eDtq̃(y, t) ast ap-
proaches∞, which equals̃g1f1(y). That is,


g̃1f1(y) = lim
t→∞


[


eDtq̃(y, t)
]


.


For the second limit, we subtract the first term of the series in (2.15) to the other
side and multiply by e4Dt, so that the limit gives̃g2f2(y). That is,


g̃2f2(y) = lim
t→∞


e4Dt
[


q(y, t)− e−Dtg̃1f1(y)
]


.


Continuing in this fashion, we are able to calculateg̃mfm(y) for eachm ∈ N.
By Equation (1.4), eachfm(y) is non-zero and sõgm has now been determined
for eachm ∈ N. Then, by (2.4) the vector functioñg is determined. Finally,
~g(x) = P−1g̃(x).


Thus, the triple
{


~h(t), ~v(t), ~g(x)
}


is uniquely determined and can in fact be


calculated from the given data{~u1(t), ~u3(t), ~u(y, t)} , t ≥ 0.


Remark: We note that the initial data could be{~ui(t), ~uj(t), ~u(y, t)}, as long as the
resulting matrixM is non-singular, which is the case as long as the2× 2 matrix


M∗ =


(


f ′
i(0) ci
f ′
j(0) cj


)


is non-singular. Noting thatf ′
m(0) = m


√


2


π
and thatcm is given in (2.7), it follows


thatM∗ is non-singular as long asi 6= j and at least one ofi andj is odd. In such a


case, it would still be possible to calculate
{


~h(t), ~v(t), ~g(x)
}


from the data.
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