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Abstract


This paper is devoted to the scattering of photons at electrons in models of
non-relativistic quantum mechanical particles coupled minimally to the soft modes
of the quantized electromagnetic field. We prove existence of scattering states
involving an arbitrary number of asymptotic photons of arbitrarily high energy.
Previously, upper bounds on the photon energies seemed necessary in the case of
n > 1 asymptotic photons and non-confined, non-relativistic charged particles.


1 Introduction


In this paper we study the scattering of electromagnetic fields at charged particles
in the standard (or Pauli-Fierz) model of non-relativistic quantum electrodynamics.
The first problem to be addressed in this context concerns the existence of asymptotic
electromagnetic fields. In the case where the asymptotic radiation consists of one photon
only, there is a simple solution to this problem [4]: first a propagation estimate is used
to turn an upper bound on the energy distribution of the charged particles into an
upper bound on their asymptotic propagations speeds. Propagation speeds strictly
below the speed of light are achieved in non-relativistic models with an energy bound
that is sufficiently low. In relativistic models, any finite energy bound is sufficient.
By Huygens’s principle, the strength of interaction of a freely propagating photon and
charged particles below the speed of light decays at an integrable rate. Hence, by
Cook’s argument, the proof is complete. This paper is concerned with the case of
non-relativistic particles and the existence of electromagnetic fields consisting of n ≥ 1
photons. This problem can be reduced to the case n = 1 by imposing a suitable bound
on the energy of the asymptotic radiation [4]. We show that such a bound is not
necessary: the one-photon result from [4] generalized readily to an arbitrary number
of asymptotic photons and so do the key elements of its proof. The main result of
this paper is Theorem 1.1, below. It will be used in a forthcoming analysis of photo-
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ionization and it allows one to simplify the definitions of the scattering operators for
Rayleigh and Compton scattering [5, 6, 7].


Note that the phenomenon of massive particles moving faster than the speed of light,
which is at the heart of the problem solved in this paper, does occur in (pseudo-) rel-
ativistic models describing massive particles inside a space-filling background material
with index of refraction larger than one. It is not merely an artefact of non-relativistic
models.


To describe our result in mathematical terms, we confine ourselves to a one-electron
system and we neglect the spin of the electron. By the methods to be described one can
equally handle systems of arbitrary (finite) numbers of charged particles from several
species. The Hilbert-space H of our system is thus the tensor product L2(R3) ⊗ F
where


F := ⊕n≥0


[
Sn ⊗n L2(R3 × {1, 2})


]
denotes the symmetric Fock space over L2(R3×{1, 2}), the space of transversal photons.
Here Sn denoted the projection on L2(R3×{1, 2})n onto the subspace of the symmetric
functions of (k1, λ1), . . . , (kn, λn) ∈ R3×{1, 2}. Let Nf denote the number operator in
F and let a(h) and a∗(h) be the usual annihilation and creation operators associated
with a function h ∈ L2(R3 × {1, 2}). That is, for Ψ ∈ D(N1/2


f ),


[a∗(h)Ψ](n) =
√


nSn(h⊗Ψ(n−1)),


where Ψ(n) denotes the n-photon component of Ψ. The annihilation operator a(h) is
the adjoint of a∗(h). For the Hamiltonian of the system we choose


H = (p + α
3
2 A(αx))2 + V + Hf , (1.1)


where Hf denotes the field energy operator, which is the second quantization of the
operator in L2(R3 × {1, 2}) defined by multiplication with ω(k) = |k|, and A(αx) is
the UV-cutoff quantized vector potential in Coulomb gauge, that is,


A(αx) = a(Gx) + a∗(Gx), Gx(k, λ) :=
κ(k)√
2|k|


ε(k, λ)e−iαk·x,


where ε(k, λ) ∈ R3, λ = 1, 2, are orthonormal polarization vectors perpendicular to k
and κ ∈ S(R3) is an ultraviolet cutoff chosen from the space S(R3) of rapidly decreasing
functions. The operator V is a multiplication operator with a real-valued function from
L2


loc(R3) denoted by V as well. We assume that V is infinitesimally operator bounded
with respect to the Laplacian ∆, which is satisfied by the Coulomb potentials of all
atoms and molecules. The Hamiltonian H is self-adjoint on the domain of −∆ + Hf


and essentially self-adjoint on any core of this operator [11, 10]. We have chosen atomic
units where ~, the speed of light c, and 2mα2, which is four times the Rydberg-energy,
are equal to one. Here and in (1.1) α denotes the fine structure constant, which is equal
to half of the Bohr radius in our units.


The main purpose of this paper is to establish existence of scattering states of the
form


a∗+(h1) · · · a∗+(hn)Ψ, hi ∈ L2(R3 × {1, 2}) (1.2)
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or a∗−(h1) · · · a∗−(hn)Ψ where the asymptotic creation operators a∗±(hi) are given by


a∗±(h)Ψ = lim
t→±∞


eiHta∗(hi,t)e−iHtΨ, hi,t := e−iωthi, (1.3)


and defined on the space of vectors Ψ ∈ D(|H|1/2) for which the limit (1.3) exists.
Formally it is clear that


e−iHta∗±(h1) · · · a∗±(hn)Ψ


= a∗(h1,t) · · · a∗(hn,t)e−iHtΨ + o(1), (t → ±∞). (1.4)


Hence the vector (1.2) describes a state containing n photons with given wave functions
h1, . . . , hn whose dynamics is asymptotically free in the distant future in the sense of
equation (1.4). An important subspace of H which belongs to the domain of all asymp-
totic field operators is the space of bound states, ∪λ<ΣHλ, where Hλ = Ran1(−∞,λ](H)
is the spectral subspace of H associated with the interval (−∞, λ], and Σ is the ion-
ization threshold of the Hamiltonian H:


Σ = lim
R→∞


(
inf


ϕ∈DR, ‖ϕ‖=1
〈ϕ, Hϕ〉


)
, (1.5)


where DR := {ϕ ∈ D(H)|χ(|x| ≤ R)ϕ = 0}. In a state Ψ ∈ Hλ the electron is
exponentially localized in the sense that eε|x|Ψ ∈ H for ε sufficiently small [9]. The
following theorem is our main result.


Theorem 1.1. Let E < Σ + 1
4α2 , N ∈ N and h1, ..., hN ∈ L2(R3 × {1, 2}) with


∑
λ=1,2


∫
|hl(k, λ)|2(|k|2 +


1
|k|


)dk < ∞


for l = 1, ..., N . Then for each Ψ ∈ Ran1(−∞,E](H) the limit


lim
t→∞


eitHa#(h1,t) · · · a#(hN,t)e−itHΨ (1.6)


exists for any given succession of creation operators a# = a∗ and annihilation operators
a# = a and it equals


a#
+(h1) · · · a#


+(hN )Ψ. (1.7)


An analog result holds for the limit t → −∞.


This theorem shows, in particular, that the domain of an asymptotic annihilation
or creation operator a#


+(h), with h, ωh, ω−1/2h ∈ L2(R3 × {1, 2}) contains the span of
all vectors of the form (1.7) with h1, ..., hN and Ψ ∈ H satisfying the assumptions of
Theorem 1.1.


Theorem 1.1 is to be compared with Theorem 6 of [4]. It shows that the bound on
the photon energies imposed there is unnecessary. In the case N = 1 the statement of
Theorem 1.1 and its proof below reduce to the Theorem 4, (i) from [4] and the proof
given there. Suitable adjustments of that proof allow us to prove existence of the limit


3







(1.6) for arbitrary N ≥ 1. That (1.6) agrees with the composition of the operators
a#


+(h1), . . . , a
#
+(hN ) applied to Ψ is established in a second, independent step.


The main ingredients for the proof of (1.6) are a propagation estimate for the
electron and stationary phase arguments for the evolution of the photon, that is, Huy-
gens’ principle. The condition that the energy distribution of Ψ is supported below
E < Σ + 1


4α2 implies that the (kinetic) energy of an ionized electron described by Ψ
is strictly below 1


4α2 which is mc2/2 in our units. Hence the speed of that electron is
strictly below the speed of light. See the introduction of [4] for detailed explanations
of these ideas.


Previous to this paper the existence of asymptotic creation and annihilation op-
erators was established in [12, 1] for massive bosons, in [3, 2] for (massless) photons
in explicitly solvable models from non-relativistic QED, and in [13, 8] for massless
bosons in spin-boson models. In [4] the existence of many-photon scattering states is
established both in non-relativistic, and in pseudo-relativistic models from QED.


Acknowledgement: M.G. thanks Heinz Siedentop and Laszlo Erdös for the hospi-
tality at the University of Munich, where this paper was finished.


2 The Proof


We divide the proof of Theorem 1.1 into two parts, the existence of the limit in (1.6)
is established in Proposition 2.1 and the equality of (1.6) and (1.7) is Proposition 2.3.
We begin by introducing some useful notations. The inner product of two functions
f, g ∈ L2(R3 × {1, 2}) is denoted by 〈f, g〉, that is,


〈f, g〉 :=
∑


λ=1,2


∫
f(k, λ)g(k, λ)dk.


By L2
ω(R3 × {1, 2}) we denote the space of functions f ∈ L2(R3 × {1, 2}) with


‖f‖2
ω :=


∑
λ=1,2


∫
|f(k, λ)|2(1 + ω(k)−1) dk < ∞.


The assumption on hl in Theorem 1.1 means that both hl and ωhl belong to L2
ω(R3 ×


{1, 2}). Note that L2
ω(R3×{1, 2}) is isomorphic to the space L2


T,ω of square integrable
functions f : R3 → C3 with respect to (1 + ω(k)−1) dk, satisfying k · f(k) = 0, almost
everywhere. Given a choice of polarization vectors ε(k, λ), k ∈ R3, λ ∈ {1, 2} perpen-
dicular to k, this isomorphism ε : L2(R3×{1, 2}) → L2


T,ω is expressed by the equation
(εf)(k) :=


∑
λ ε(k, λ)f(k, λ). If h = (h1, ..., hN ) with hl ∈ L2(R3 × {1, 2}) then


a#(h) := a#(h1) · · · a#(hN )


where each factor a#(hl) may be either an annihilation operator or a creation operator
on Fock space.


Proposition 2.1. Let h = (h1, ..., hN ) ∈ [L2
ω(R3 × {1, 2})]N , E < Σ + 1


4α2 and Ψ =
1(−∞,E](H)Ψ, then


a#
±(h)Ψ := lim


t→±∞
eitHa#(ht)e


−itHΨ (2.1)
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exists and there is a constant C(N,E), such that


‖a#
±(h)1(−∞,E](H)‖ ≤ C(N,E)


N∏
l=1


‖hl‖ω. (2.2)


The proof of this Proposition is based on the methods developed in [4], and in
particular on the propagation estimate


∞∫
1


dt


tµ
‖1{|x|≥vt}e


−itHg(H)Ψ‖2 ≤ C‖(1 + |x|)
1
2 g(H)Ψ‖2, (2.3)


which holds for µ > 1/2 and g ∈ C∞
0 (R) with sup{λ ∈ R : g(λ) 6= 0} < Σ + v2/4.


Proof. We pick g ∈ C∞
0 (R) with supp(g) ⊂ (−∞,Σ + 1


4α2 ), g = 1 on (−∞, E], so that
g(H) = 1 on Ran1(−∞,E](H). By (A.1) and by part b) of Lemma A.1, the operator
eitHa#(ht)e−itHg(H) is bounded uniformly in t ∈ R. Hence it suffices to prove existence
of


lim
t→∞


eitHa#(ht)e
−itHg(H)Ψ (2.4)


for vectors Ψ in the dense subspace D(〈x〉
1
2 ) of H, where 〈x〉 denotes the operator of


multiplication with 〈x〉 = (1+x2)
1
2 in Hel. We first prove existence of the limit (2.4) for


h = f = (f1, ..., fN ) with functions fl for which εfl belongs to C∞
0 (R3\{0}, C3). For no-


tational simplicity, we confine ourselves to the case, where a#(f
t
) = a∗(f1,t) · · · a∗(fN,t).


In the general case 〈Gx, fl,t〉 needs to be replaced by −〈Gx, fl,t〉 whenever a#(fl,t) de-
notes an annihilation operator, which does not effect our estimates.


By Cook‘s argument, the limit of Ψ(t) = eitHa#(f
t
)e−itHg(H)Ψ as t → ∞ exists,


provided that
∞∫
1


∥∥∥ d


dt
Ψ(t)


∥∥∥dt < ∞. (2.5)


To prove (2.5), we choose ε > 0 so small, that sup(suppg) < Σ + 1
4α2 (1 − 2ε)2 and


we pick χ1, χ2 ∈ C∞(R, [0, 1]), such that χ1 + χ2 = 1, χ1(s) = 0 for s ≤ 1 − 2ε and
χ1(s) = 1 for s ≥ 1− ε. Let χ1,t(x) := χ1(α|x|/t) and χ2,t(x) := χ2(α|x|/t). Then


Ψ′(t) = ieitH [(p + α
3
2 A(αx))2, a∗(f


t
)]e−itHg(H)Ψ


=
N∑


l=1


eitH2iα
3
2 〈Gx, fl,t〉a∗(f1,t) · · · a∗(fl−1,t) (2.6)


·(p + α
3
2 A(αx))a∗(fl+1,t) · · · a∗(fN,t)e−itHg(H)Ψ,


where the three components of 〈Gx, fl,t〉 ∈ C3 are to be considered as multiplication
operator in Hel. Since supp(χ2,t) ⊆ {x ∈ R3 : α|x|


t < 1−ε} and |∇k(iαk ·x− iω(k)t)| =
|αx− t k


|k| | > |t|ε on this set, it follows, by stationary phase arguments, that


|〈Gx, fl,t〉χ2,t(x)| ≤ cl


1 + t2
, (2.7)
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while for all x ∈ R3 and all t ∈ R


|〈Gx, fl,t〉| ≤
cl


1 + |t|
(2.8)


by Theorem XI.18 in [14]. We write 〈Gx, fl,t〉 = 〈Gx, fl,t〉χ1,t + 〈Gx, fl,t〉χ2,t and esti-
mate the two contributions to (2.6) separately. By Lemma A.1 and (2.7) the contribu-
tion of 〈Gx, fl,t〉χ2,t to (2.6) is integrable with respect to t ∈ R. As for the contribution
of 〈Gx, fl,t〉χ1,t, due to (2.8) it is enough to prove integrability with respect to t ∈ [1,∞)
of


1
t
χ1,ta


∗(f1,t) · · · a∗(fl−1,t)(p + α
3
2 A(αx))a∗(fl+1,t) · · · a∗(fN,t)e−itHg(H)Ψ


=
1
t
a∗(f1,t) · · · a∗(fl−1,t)(p + α


3
2 A(αx))a∗(fl+1,t) · · · a∗(fN,t)χ1,te


−itHg(H)Ψ


+
1
t
(i∇χ1,t)a∗(f1,t) · · · a∗(fl−1,t)a∗(fl+1,t) · · · a∗(fN,t)e−itHg(H)Ψ. (2.9)


Since |∇χ1,t| = O(t−1) the second term of (2.9) is of order O(t−2), hence integrable.
In the first term we use


χ1,t = (H + i)−Nχ1,t(H + i)N − [(H + i)−N , χ1,t](H + i)N


= (H + i)−Nχ1,t(H + i)N −
N∑


k=1


(H + i)−k+1[(H + i)−1, χ1,t](H + i)k


= (H + i)−Nχ1,t(H + i)N +
N∑


k=1


(H + i)−k[H,χ1,t](H + i)k−1 (2.10)


and we claim, that each term in (2.9) originating from the sum of commutators in
(2.10) is of order O(t−2) due to the additional t−1 from [H,χ1,t]. Let‘s prove this for
the contribution from p in p + α


3
2 A(αx). To this end we set


a∗(f
(l),t


) := a∗(f1,t) · · · a∗(fl−1,t)a∗(fl+1,t) · · · a∗(fN,t)


and gk(H) := (H + i)k−1g(H). By the Cauchy-Schwarz inequality


‖a∗(f
(l),t


)p(H + i)−k[H,χ1,t]gk(H)‖2 ≤ ‖p2(H + i)−k[H,χ1,t]gk(H)‖


‖a(f
(l),t


)a∗(f
(l),t


)(H + i)−k[H,χ1,t]gk(H)‖. (2.11)


Since
[H,χ1,t] = (−2i∇χ1,t)(p + α


3
2 A(αx))−∆χ1,t (2.12)


the first factor of (2.11) is bounded by


‖p2(H + i)−1‖
(
2‖∇χ1,t‖ ‖(p + α


3
2 A(αx))(H + i)−1‖ ‖gk+1(H)‖


+|∆χ1,t| ‖gk(H)‖
)


= O(t−1)


and the second factor is bounded by


C‖(Hf + 1)N [H,χ1,t]gk(H)‖ (2.13)
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thanks to (A.1) and Lemma A.2. Equation (2.12) and the Cauchy-Schwarz inequality
yield:


‖(Hf + 1)N [H,χ1,t]gk(H)‖ ≤ C


t


(
α


3
2 ‖(Hf + 1)NA(αx)gk(H)‖


+‖p2gk(H)‖
1
2 ‖(Hf + 1)2Ngk(H)‖


1
2 +


1
t
‖(Hf + 1)Ngk(H)‖


)
, (2.14)


which is again O(t−1).
So far, we have shown that


1
t
χ1,ta


∗(f1,t) · · · a∗(fl−1,t)(p + α
3
2 A(αx))a∗(fl+1,t) · · · a∗(fN,t)e−itHg(H)Ψ


=
[
a∗(f1,t) · · · a∗(fl−1,t)(p + α


3
2 A(αx))a∗(fl+1,t) · · · a∗(fN,t)(H + i)−N


]
1
t
χ1,te


−itHF (H)Ψ +O(
1
t2


), (2.15)


where F (x) = (x+ i)Ng(x). By (A.2), the norm of the operator in brackets is bounded
uniformly in time. For the norm of the vector this operator is applied to, we have


∞∫
1


dt


t
‖χ1,te


−itHF (H)Ψ‖ (2.16)


≤


[ ∞∫
1


dt t−
5
4


] 1
2
[ ∞∫


1


dt t−
3
4 ‖1{|x|≥ |t|


α
(1−ε)}e


−itHF (H)Ψ‖2


] 1
2


≤ 2
√


C‖(1 + |x|)
1
2 F (H)Ψ‖.


by the propagation estimate (2.3) with µ = 3
4 . The norm ‖(1 + |x|)


1
2 F (H)Ψ‖ is finite,


because F (H)D(〈x〉
1
2 ) ⊆ D(〈x〉


1
2 ) by Lemma 20 of [4]. This concludes the proof of


Proposition 2.1 in the case where hj = fj and εfj belongs to C∞
0 (R3\{0}, C3). For


the proof in the general case, where hj ∈ L2
ω(R3 × {1, 2}), we use that C∞


0 (R3\{0})-
functions are dense in L2


T,ω, which follows from the fact, that the projection ϕ(k) 7→
ϕ(k) − k


‖k‖2 〈ϕ(k),k〉 of a vector ϕ(k) onto the component perpendicular to k leaves
C∞


0 (R3\{0}) invariant. Hence for given ε > 0 there exist functions fj ∈ L2
ω(R3×{1, 2}),


such that εfj ∈ C∞
0 (R3\{0}, C3) and ‖fj − hj‖ω < ε. Using


a∗(ht)− a∗(f
t
) =


N∑
l=1


a∗(h1,t) · · · a∗(hl−1,t)a∗(hl,t − fl,t)a∗(fl+1,t) · · · a∗(fN,t)


and Lemma A.1 we obtain


sup
t∈R


‖eitH(a∗(ht)− a∗(f
t
))e−itHg(H)Ψ‖ (2.17)


≤ CN


N∑
n=1


‖h1‖ω · · · ‖hl−1‖ω‖hl − fl‖ω‖hl+1‖ω · · · ‖hN‖ω ≤ Cε.


Hence existence of the limit a∗+(f)g(H)Ψ implies, that the limit a∗+(h)g(H)Ψ exists as
well, and the bound (2.2), valid for f , extends to h ∈ [L2


ω(R3 × {1, 2})]N .
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The following Lemma generalizes the well-known identity [iH, a#
±(h)] = a∗±(iωh) to the


asymptotic N -photon annihilation and creation operators a#
±(h) defined by Proposi-


tion 2.1.


Lemma 2.2. Suppose that E < Σ + 1
4α2 . Then for all h ∈ [L2


ω(R3 × {1, 2})]N and all
t ∈ R


e−itHa#
±(h)eitH = a#


±(ht) (2.18)


on Ran1(−∞,E](H). If h and ωlh := (h1, ..., hl−1, ωhl, hl+1, ..., hN ) belong to L2
ω(R3 ×


{1, 2})N , then a#
±(h)Ran1(−∞,E](H) ⊂ D(H) and


[
iH, a#


±(h)
]


=
N∑


l=1


a#
±(iωlh) (2.19)


on Ran1(−∞,E](H).


Proof. Equation (2.18) is obvious from the definition of a#
±(h). Now let Φ ∈ D(H) and


suppose that Ψ = 1(−∞,E](H)Ψ. By (2.18),


〈eiHtΦ, a#
±(h)eiHtΨ〉 = 〈Φ, a#


±(ht)Ψ〉 (2.20)


for all t ∈ R and we would like to differentiate both sides with respect to t. The left
hand side is differentiable because a#


±(h)1(−∞,E](H) is a bounded operator and because
eiHtΦ and eiHtΨ are differentiable. Hence the right hand side, t 7→ 〈Φ, a#


±(ht)Ψ〉, must
be differentiable as well. To compute its derivative, we use that∥∥∥∥1


ε
(hl,ε − hl) + iωhl


∥∥∥∥
ω


→ 0, (ε → 0), (2.21)


as well as (2.2). Statement (2.21) follows from the assumption on hl, which implies
that both (1 + ω−1)1/2hl and (1 + ω−1)1/2ωhl belong to L2(R3 × {1, 2}). We conclude
that


〈iHΦ, a#
±(h)Ψ〉+ 〈Φ, a#


±(h)iHΨ〉 = −
〈
Φ,


N∑
l=1


a#
±(iωlh)Ψ


〉
. (2.22)


Since H = H∗, it follows that a#
±(h)Ψ ∈ D(H), and that (2.19) holds.


The following Proposition shows, that (1.6) and (1.7) are equal and hence concludes
the proof of Theorem 1.1.


Proposition 2.3. Suppose that hl, ωhl ∈ L2
ω(R3 × {1, 2}) for l = 1, . . . , N , and let


h = (h1, ..., hN ). If E < Σ + 1
4α2 and Ψ = 1(−∞,E](H)Ψ, then


a#
±(h)Ψ = a#


±(h1) · · · a#
±(hN )Ψ, (2.23)


where a#
±(hj), depending on j may be a creation or an annihilation operator.
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Proof. We show that
a∗±(h)Ψ = a∗±(h1)a∗±(h(1))Ψ (2.24)


where h(1) := (h2, ..., hN ). Then the proposition follows by induction in N .
From a∗(ht) = a∗(h1,t)a∗(h


(1)
t ) it follows that


a∗±(h)Ψ− eitHa∗(h1,t)e−itHa∗±(h(1))Ψ


= a∗±(h)Ψ− eitHa∗(ht)e
−itHΨ


+eitHa∗(h1,t)e
−itH


(
eitHa∗(h(1)


t )e−itHΨ− a∗±(h(1))Ψ
)


where the first two term on the right hand side cancel each other in the limits t → ±∞
by Proposition 2.1. In the third term we insert 1 = (H + i)−1(H + i). Since the norm
of a∗(h1,t)(H + i)−1 is bounded uniformly in t ∈ R, it remains to estimate the norm of


(H + i)
(
eitHa∗(h(1)


t )e−itHΨ− a∗±(h(1))Ψ
)


= eitHa∗(h(1)
t )e−itH(H + i)Ψ− a∗±(h(1))(H + i)Ψ


+
[
H, eitHa∗(h(1)


t )e−itH − a∗±(h(1))
]
Ψ.


Again, in the limits t → ±∞, the first two terms cancel each other by Proposition 2.1
and because (H + i)Ψ ∈ Ran1(−∞,E](H). Using (2.19) to evaluate the commutator we
obtain [


H, eitHa∗(h(1)
t )e−itH − a∗±(h(1))


]
Ψ


=
N∑


l=2


eitH2α
3
2 〈Gx, hl,t〉a∗(h2,t) · · · a∗(hl−1,t)


·
(
p + α


3
2 A(αx)


)
a∗(hl+1,t) · · · a∗(hN,t)e−itHΨ


+
N∑


l=2


(
eitHa∗(ωlh


(1)
t )e−itHΨ− a∗±(ωlh


(1))Ψ
)
.


We claim that all terms of these two sums vanish in the limits t → ±∞. For the
terms of the second sum this follows from Proposition 2.1 thanks to the assumption
ωlh ∈ [L2


ω(R3 × {1, 2})]N . The terms from the first sum contain a factor 〈Gx, hl,t〉,
where


sup
x∈R3


∣∣〈Gx, hl,t〉
∣∣ → 0, (t →∞). (2.25)


This is clear from (2.8) in the case where
∑


λ ε(k, λ)hl(k, λ) belongs to C∞
0 (R3\{0}),


and from there this result extends to all hl by the usual approximation argument. From
(2.25) and estimates similar to those used in the proof of Proposition 2.1, we see that
the terms of the first sum vanish as well, as t → ±∞. This establishes Equation (2.24)
which concludes the proof.
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A Operator bounds


In this appendix we collect estimates on operator norms that are used in the proofs of
this paper.


Lemma A.1.


a) For every α ∈ R, the operator p2(H + i)−1 is bounded.


b) For every α and every n ∈ N the operator Hn
f (H + i)−n is bounded.


c) For every N ∈ N there is a constant CN , such that for all h1, ..., hN ∈ L2
ω(R3 ×


{1, 2}) and all l ∈ {1, ..., N}


‖a∗(ht)(Hf + 1)−
N
2 ‖ ≤ CN


N∏
l=1


‖hl‖ω, (A.1)∥∥∥a∗(h1,t) · · · a∗(hl−1,t)(p + α
3
2 A(αx))


a∗(hl+1,t) · · · a∗(hN,t)(H + i)−N
∥∥∥ ≤ CN


N∏
m=1
m6=l


‖hm‖ω (A.2)


Proof. By assumption on V , D(Hel) = D(p2), hence p2(Hel + i)−1 is bounded. Since
D(H0) = D(H), see [10], it follows, that


p2(H + i)−1 = p2(Hel + i)−1(Hel + i)(H0 + i)−1(H0 + i)(H + i)−1


is bounded. Part (b) is Lemma 5 in [4], and bound (A.1) is the statement of Lemma 17
in that paper. Bound (A.2) for the contribution from A(αx) follows from (A.1), point-
wise in x ∈ R3. As for the contribution from p, we note that


‖a∗(h(l),t)p(H + i)−NΨ‖2 ≤ ‖p2(H + i)−NΨ‖‖a(h(l),t)a
∗(h(l),t)(Hf + 1)−N‖


‖(Hf + 1)N (H + i)−NΨ‖,


by the Cauchy-Schwarz inequality. The factors on the right hand side are finite by
(A.1) and the parts (a) and (b) that we wave just established.


Lemma A.2. For all m,n ∈ N the operator


(Hf + 1)n(H + i)−m(Hf + 1)−n (A.3)


is bounded.


Proof. Let R := (H + i)−1 and Φ(h) = a(h) + a∗(h) in this proof, where h ∈ L2(R3 ×
{1, 2}). Since


(Hf + 1)nRm(Hf + 1)−n = ((Hf + 1)nR(Hf + 1)−n)m


it suffices to prove boundedness of (A.3) for m = 1, which is equivalent to showing that
[(Hf + 1)n, R](Hf + 1)−n is bounded. We recall from [4], Appendix B, that


[(Hf + 1)n, R](Hf + 1)−n =
n∑


l=1


(
n


l


)
adl


Hf
(R)(Hf + 1)−l,
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where ad0
Hf


(R) = R and adn+1
Hf


(R) = [Hf , adn
Hf


(R)]. We claim that adl
Hf


(R) is a
bounded operator for all l ∈ N. To prove this we note that A(x) = Φ(Gx) and we
define


W0 := H −H0 = 2α
3
2 p · Φ(Gx) + α3Φ(Gx)2


and


Wl := adl
Hf


(W0) = 2α
3
2 (−i)lp · Φ(ilωlGx)


+ α3
l∑


k=0


(
l


k


)
(−i)lΦ(ikωkGx)Φ(il−kωl−kGx). (A.4)


From [Hf , R] = −RW1R and [Hf ,Wj ] = Wj+1 we obtain, by induction in l, that


adl
Hf


(R) =
l∑


j1,...,jk=1
1≤k≤l


cj1,...,jk
RWj1R · · ·Wjk


R (A.5)


with combinatorial factors cj1,...,jk
∈ Z. By (A.4) and Lemma A.1 the operators


Wj1R, . . . ,Wjk
R are bounded. Hence (A.5) shows that adl


Hf
(R) is bounded for all


l ∈ N.
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[13] Matthias Hübner and Herbert Spohn. Radiative decay: nonperturbative ap-
proaches. Rev. Math. Phys., 7(3):363–387, 1995.


[14] Michael Reed and Barry Simon. Methods of modern mathematical physics. III.
Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1979. Scat-
tering theory.


12







