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Abstract


We consider the N-body Schrödinger dynamics of bosons in the mean field limit with a
bounded pair-interaction potential. According to the previous work [AmNi], the mean field limit
is translated into a semiclassical problem with a small parameter ε → 0, after introducing an ε-
dependent bosonic quantization. The limit is expressed as a push-forward by a nonlinear flow
(e.g. Hartree) of the associated Wigner measures. These object and their basic properties were
introduced in [AmNi] in the infinite dimensional setting. The additional result presented here
states that the transport by the nonlinear flow holds for rather general class of quantum states in
their mean field limit.


2000 Mathematics subject classification: 81S30, 81S05, 81T10, 35Q55


1 Introduction
The mathematical analysis of the mean field limit of the N-body quantum dynamics of bosons started
with the work of [Hep] and [GiVe]. Since, the problem has experienced intensive investigations
using mainly the so-called BBGKY hierarchy method explained in [Spo]. Interest was focused
on studying the cases of singular interaction potential (see for example [BGM], [EY], [BEGMY],
[ESY]).


Recently, a new method was given in [FGS] (see also [FKP]) for a scalar bounded potential
which inspires this work. The convergence of the quantum dynamics are typically tested on the
above quoted articles, either on coherent states or on Hermite states. Even when such specific
choices are avoided, the convergence on arbitrary states still has to be studied.


In the work [AmNi], Wigner measures were extended to the infinite dimensional setting, as
Borel probability measures under general assumptions. It was also explained how previous weak
formulations of the mean field limit are contained in the definition of these asymptotic Wigner
measures, after a reformulation of the N-body problem as a semiclassical problem with the small
parameter ε = 1


N → 0. The basic properties of these Wigner measures were considered and they were
used to check that the mean field dynamics for the coherent states and Hermite states are essentially
equivalent.


In this paper, the problem of the mean field dynamics is considered under some restrictive as-
sumptions on the initial data. The convergence of N-body Schrödinger dynamics of bosons in the
mean field limit will be proved for a class of density operator sequences, which contains all the com-
mon examples. Remember that contrary to the finite dimensional case no natural pseudodifferential
calculus can be deformed by arbitrary nonlinear flows, and the propagation of Wigner measures as
dual objects cannot be straightforward in the infinite dimensional case. The limit is expressed as
push-forward by a nonlinear flow (e.g. Hartree) of Wigner measures associated with the sequence of
density operators. The result holds here when the pair interaction potential is bounded on L2(R2d


x,y).
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This can be considered as a regular case and subsequent work will be devoted to more singular cases
like in [FKS] with a Coulombic interaction V (x− y) = 1


|x−y| or in the derivation of cubic nonlinear
Schrödinger equations with V (x− y) = δ (x− y) like in the [ESY].


Since in the literature the non relativistic and the semi-relativistic dynamics of bosons were both
studied (see [ElSc]), an abstract setting for the linear part of the flow seems relevant. Examples are
reviewed in the last section.


We keep the same notations as in [AmNi]. The phase-space, a complex separable Hilbert space,
is denoted by Z with the scalar product 〈., .〉. The symmetric Fock space on Z is denoted by H
and


∨n Z is the n-fold symmetric (Hilbert) tensor product, so that H = ⊕n∈N
∨n Z as a Hilbert


direct sum. Algebraic direct sums or tensor products are denoted with a alg superscript. Hence
H0 =⊕alg


n∈N
∨n Z denotes the subspace of vectors with a finite number of particles. For any p,q∈N,


the space Pp,q(Z ) of complex-valued polynomials on Z is defined with the following continuity
condition: b ∈Pp,q(Z ) iff there exists a unique b̃ ∈L (


∨p Z ,
∨q Z ) such that:


b(z) = 〈z⊗q, b̃z⊗p〉 .


The subspace of Pp,q(Z ) made of polynomials b such that b̃ is a compact operator is denoted by
P∞


p,q(Z ). The Wick monomial of symbol b ∈Pp,q(Z ) is the linear operator bWick : H0 →H0
defined as follows:


bWick
|
∨n Z = 1[p,+∞)(n)


√
n!(n+q− p)!


(n− p)!
ε


p+q
2 Sn−p+q


(
b̃⊗ I∨n−p Z


)
,


where Sn is the symmetrization orthogonal projection from ⊗nZ onto
∨n Z . Remark that bWick


depends on the scaling parameter ε .
Consider a polynomial Q ∈P2,2(Z ) such that Q̃ ∈ L (


∨2 Z ) is bounded symmetric. The
many-body quantum Hamiltonian of bosons is a self-adjoint operator on H having the general
shape:


Hε = dΓ(A)+QWick, (1)


where A is a given self-adjoint operator on Z . The time evolution of the quantum system is given
by Uε(t) = e−i t


ε
Hε and U0


ε (t) = e−i t
ε


dΓ(A) for the free motion. The commutation [QWick,N] = 0
with the number operator N = dΓ(1) =


(
|z|2
)Wick, ensures the essential self-adjointness of Hε on


D(dΓ(A))∩H0 and the fact that both dynamics preserve the number.
Now we turn to the description of the nonlinear classical dynamics analogues of (1).


Let us first recall some notations from [AmNi]. Polynomials in Pp,q(Z ) admit Fréchet differentials.
For b ∈Pp,q(Z ), set


∂zb(z)[u] = ∂̄rb(z+ ru)|r=0, ∂zb(z)[u] = ∂rb(z+ ru)|r=0 ,


where ∂̄r,∂r are the usual derivatives over C. Moreover, ∂ k
z b(z) naturally belongs to (


∨k Z )∗ (i.e.:
k-linear symmetric functionals) while ∂


j
z b(z) is identified via the scalar product with an element of∨ j Z , for any fixed z ∈Z . For bi ∈Ppi,qi(Z ), i = 1,2 and k ∈ N, set


∂
k
z b1 . ∂


k
z̄ b2(z) = 〈∂ k


z b1(z),∂ k
z̄ b2(z)〉(∨k Z )∗,


∨k Z ∈Pp1+p2−k,q1+q2−k(Z ) .


The multiple Poisson brackets are defined by


{b1,b2}(k) = ∂
k
z b1.∂


k
z̄ b2− ∂


k
z b2.∂


k
z̄ b1, {b1,b2}= {b1,b2}(1).


The energy functional
h(z) = 〈z,Az〉+Q(z) , z ∈D(A),


has the associated vector field X : D(A)→Z , X(z) = Az+∂z̄Q(z) and the nonlinear field equation


i∂tzt = X(zt)
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with initial condition z0 = z ∈ D(A). For our purpose, we only need the integral form of the later
equation


zt = e−itAz− i
∫ t


0
e−i(t−s)A


∂z̄Q(zs)ds, for z ∈Z . (2)


The standard fixed point argument implies that (2) admits a unique global C0-flow on Z which is
denoted by F : R×Z →Z (i.e.: F is a C0-map satisfying Ft+s(z) = Ft ◦Fs(z) and Ft(z) solves (2)
for any z ∈ Z ). While considering the evolution of the Wick symbols, the action of the free flow
e−itA will be summarized by the next notation :


bt = b◦ e−itA : Z 3 z 7→ bt(z) = b(e−itAz) , bt ∈ ⊕alg
p,q∈NPp,q(Z ) , (3)


for any b ∈ ⊕alg
p,q∈NPp,q(Z ) and any t ∈ R.


Moreover, if zt solves (2), and Qt is defined according to (3), then wt = eitAzt solves the differential
equation


d
dt


wt =−i∂z̄Qt(wt) .


Therefore for any b ∈Pp,q(Z ), the following identity holds


d
dt


b(wt) = ∂z̄b(wt)[−i∂z̄Qt(wt)]+∂zb(wt)[−i∂z̄Qt(wt)]


= i{Qt ,b}(wt).


This yields for any z ∈Z and b ∈ ⊕alg
p,q∈NPp,q(Z ), the Duhamel formula


b◦Ft(z) = bt(z)+ i
∫ t


0
{Q,bt−t1}◦Ft1(z) dt1 , (4)


by observing that {Qt1 ,b}(wt1) = {Q,b−t1}(zt1).


2 Results
While introducing or using Wigner measures, all the arguments are carried out with extracted se-
quences (or subsequences) (εn)n∈N such that limn→∞ εn = 0, instead of considering a non countable
range (0,ε), ε > 0, of values for the small parameter ε . Without loss of generality (see [AmNi]) one
can consider a countable family (ρεn)n∈N of density matrices, ρεn ≥ 0, Tr [ρεn ] = 1, and test them
with εn-quantized (Wick, Weyl or anti-Wick) observables before taking the limit εn → 0. For the
sake of conciseness, the ε or εn parameter does not appear in the notations of quantized observables.


The first condition which characterizes our class of εn-dependent density matrices reads:


∃λ > 0 : ∀k ∈ N, Tr[Nk
ρεn ]≤ λ


k uniformly in n ∈ N ,(N = Nεn) . (H0)


Wigner measures were constructed in [AmNi, Corollary 6.14] for the sequence (ρεn)n∈N. Possibly
extracting a subsequence still denoted (εn)n∈N, there exists a Borel probability measure µ called
Wigner measure such that:


lim
εn→0


Tr[ρεn bWick] =
∫


Z
b(z) dµ(z) , for any b ∈ ⊕alg


α,β∈NP∞


α,β (Z ) , (5)


with again bWick = bWick
εn .


The statement (5) does not hold in general for all b ∈ ⊕alg
α,β∈NPα,β (Z ) and counterexamples ex-


hibiting the phenomenon of dimensional defect of compactness were given in [AmNi]. The exten-
sion of (5) to the larger class of symbols ⊕alg


α,β∈NPα,β (Z ) depends on the sequence (ρεn)n∈N and
it turns out to be an important fact when studying the mean field limit. In the following, a sequence
(ρεn)n∈N with a single Wigner measure µ will have the property (P) when:


lim
εn→0


Tr[ρεn bWick] =
∫


Z
b(z) dµ(z) , for any b ∈ ⊕alg


α,β∈NPα,β (Z ) . (P)


Here is the main theorem.
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Theorem 2.1 Let the sequence (ρεn)n∈N of density matrices, ρεn ≥ 0, Tr [ρεn ] = 1, limn→∞ εn = 0,
satisfy (H0) and (P). Then the limit


lim
n→∞


Tr[ρεn ei t
εn Hεn bWick e−i t


εn Hεn ] =
∫


Z
(b◦Ft)(z) dµ , (6)


holds for any t ∈ R and any b ∈ ⊕alg
α,β∈NPα,β (Z ) with bWick = bWick


εn .


Remark 2.2 Since F is a C0-map the r.h.s. of (6) can be written as∫
Z


(b◦Ft)(z) dµ =
∫


Z
b(z) dµt ,


where µt is a push-forward measure defined by µt(B) = µ(F−t(B)), for any Borel set B.


We refer the reader to [AmNi] for the definition of Weyl observables and the Schwartz class of
cylindrical functions Scyl(Z ).


Corollary 2.3 Let the sequence (ρεn)n∈N of density matrices, ρεn ≥ 0, Tr [ρεn ] = 1, limn→∞ εn = 0,
satisfy (H0) and (P). Then the limit


lim
εn→0


Tr[ρεn ei t
εn Hεn bWeyl e−i t


εn Hεn ] =
∫


Z
b◦Ft(z) dµ , (7)


holds for any b ∈Scyl(Z ) and any t ∈ R.


Proof. A consequence of Thm. 2.1 and [AmNi, Prop. 6.15] is that the sequence


ρεn(t) = Uεn(t)ρεnUεn(t)
∗


admits a single Wigner measure given by µt . Hence, by definition


lim
εn→0


Tr[ρεn(t) bWeyl ] = lim
εn→0


∫
pZ


F [b](ξ ) Tr[ρεn(t) W (
√


2πξ )] Lp(dξ )


=
∫


pZ
F [b](ξ )


∫
Z


e2πiRe(z,ξ ) dµt(z) Lp(dξ ) .


�
Another formulation states that the Wigner measure µt satisfies a transport equation in an integral
form.


Corollary 2.4 Let (ρεn(t))n∈N be as above and let µt denote its Wigner measure. Then t ∈ R 7→ µt
is a solution to the transport equation:


µt(b) = µ
0
t (b)+ i


∫ t


0
µs({Q,bt−s})ds , (8)


for any b ∈ ⊕alg
p,q∈NP(Z ) and where µ0


t (B) = µ(e−itAB) for any borel set B .


Proof. The relation (8) is given by testing (4) on µ = µ0 . �


3 Criteria for the property (P)


In the following, two conditions which ensure the property (P) are formulated. Recall that for any
P ∈L (Z ) the operator Γ(P) acting on H is defined by


Γ(P)|∨n Z = P⊗P · · ·⊗P


and Γ(P) is an orthogonal projector if P is too. The first criterion is a ’tightness’ assumption with
respect to the trace norm of the state


∀η > 0,∃P ∈L (Z ) finite rank orthogonal projector , ∀n ∈ N : Tr[(1−Γ(P))ρεn ] < η (T ) .
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The dual version is formulated as an equicontinuity assumption with respect to the Wick symbols:


∀p,q ∈ N, ∀η > 0,∃W0 ⊂L (
p∨


Z ,
q∨


Z ) ∀b̃ ∈W0,∀n ∈ N :
∣∣∣Tr[ρεnbWick]


∣∣∣< η , (E)


where W0 is a neighborhood of zero in L (
∨p Z ,


∨q Z ) endowed with the σ -weak topology.


Lemma 3.1 Assume that (ρεn)n∈N satisfies (H0). Then
(i) (T )⇒ (P),
(ii) (E)⇒ (P).


Proof. We aim to prove (P) for b ∈Pp,q(Z ).
(i) Start with


Tr[ρεn bWick] = Tr[ρεn Γ(P)bWick
Γ(P)]+Tr[ρεn (1−Γ(P))bWick


Γ(P)]
+ Tr[ρεn Γ(P)bWick(1−Γ(P))]+Tr[ρεn (1−Γ(P))bWick(1−Γ(P))]


Estimate all the terms containing (1−Γ(P)) in a similar way. For example, we have∣∣∣Tr[ρεn (1−Γ(P))bWick
Γ(P)]


∣∣∣ =
∣∣∣Tr[〈N〉


p+q
2 ρεn (1−Γ(P))bWick〈N〉−


p+q
2 Γ(P)]


∣∣∣ (9)


≤ Cp,q(b)
∥∥∥〈N〉 p+q


2 ρ
1/2
εn ρ


1/2
εn (1−Γ(P))


∥∥∥
1


(10)


≤ Cp,q(b)
∥∥∥〈N〉 p+q


2 ρεn〈N〉
p+q


2


∥∥∥1/2


1
‖(1−Γ(P))ρεn(1−Γ(P))‖1/2


1 (11)


≤ C̃p,q(b)Tr[ρεn(1−Γ(P))]1/2. (12)


First (10) comes from the number estimate
∥∥∥bWick〈N〉−


p+q
2


∥∥∥ ≤ Cp,q(b) then Cauchy-Schwarz in-


equality yield (11). The last estimate (12) is possible with (H0). Remark that Γ(P)bWickΓ(P) =
Γ(P)b(Pz)WickΓ(P) and that the polynomial b(Pz) ∈P∞


p,q(Z ) when P is finite rank orthogonal
projector. The hypothesis (T ) and the above argument allow to approximate Tr[ρεn bWick] by the
quantity Tr[ρεn b(Pz)Wick] using η/3 argument.
Now, write∣∣∣∣Tr[ρεn bWick]−


∫
Z


b(z)dµ


∣∣∣∣ ≤ ∣∣∣∣Tr[ρεn


(
bWick−b(Pz)Wick


)
]+Tr[ρεn b(Pz)Wick]−


∫
Z


b(Pz)dµ


+
∫


Z
[b(Pz)−b(z)]dµ


∣∣∣∣ .
So, the property (T ) and (H0) implies (P).
(ii) There exists a sequence bκ ∈P∞


p,q(Z ) such that b̃κ converges in the σ -weak topology to b̃. We
have∣∣∣∣Tr[ρεn bWick]−


∫
Z


b(z)dµ


∣∣∣∣ ≤ ∣∣∣∣Tr[ρεn


(
bWick−bWick


κ


)
]+
(


Tr[ρεn bκ(z)Wick]−
∫


Z
bκ(z)dµ


)
+
∫


Z
[bκ(z)−b(z)]dµ


∣∣∣∣ . (13)


So, (P) holds by an η/3 argument and using respectively (E), (5) and dominated convergence for
each term in the (r.h.s.) of (13). �


Remark 3.2
1) The space of bounded operators L (


∨p Z ,
∨q Z ) endowed with the σ -weak topology is not a


Baire space when Z is infinite dimensional. Otherwise, (E) and hence (P) would be fulfilled by any
sequence (ρεn)n∈N satisfying (H0), according to Banach-Steinhaus Theorem (Uniform Boundedness
Principle).
2) The hypothesis (H0) in the above lemma, can be replaced by the weaker statement (see [AmNi,
Prop.6.15])


∃C > 0 : ∀k ∈ N, Tr[Nk
ρεnNk]≤C(Ck)k


uniformly in εn. This can be interpreted as an analyticity property of t → Tr[eitN2
ρεneitN2


] in
{|t|< 1/C}, uniformly w.r.t εn.
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4 Proof of Thm. 2.1
Definition 4.1 For m ∈N, r ∈ {0, · · · ,m} and t1, · · · , tm, t ∈R, associate with any b ∈Pp,q(Z ) the
polynomial:


C(m)
r (tm, · · · , t1, t) =


1
2r ∑


]{i: γi=2}=r
{Qtm , · · · ,{Qt1 ,bt }(γ1) · · ·}(γn)︸ ︷︷ ︸


γi∈{1,2}


∈Pp−r+m,q−r+m(Z ) . (14)


Note that for shortness the dependence of C(m)
r (tm, · · · , t1, t) on b is not made explicit on the notation


and even sometimes we will write C(m)
r . By convention we set C(0)


0 (t) = bt .


We collect some statements from [AmNi]. Remember that b̃ denotes the operator b̃ = ∂
q
z̄ ∂


p
z


q!p! b(z)∈
L (


∨p Z ,
∨p Z ) associated with b ∈Pp,q(Z ).


Lemma 4.2 Let b ∈Pp,q(Z ).
(i) The following inequality holds true∣∣∣∣ ˜{Qs,bt}(2)


∣∣∣∣
L (


∨p Z ,
∨q Z )


≤ 2[p(p−1)+q(q−1)] |Q̃| |b̃|L (
∨p Z ,


∨q Z ) .


(ii) For any m ∈ N and r ∈ {0,1, . . . ,m}, we have∣∣∣∣C̃(m)
r


∣∣∣∣
L (


∨p+m−r Z ,
∨q+m−r Z )


≤ 22m−r (m
r ) (p+m− r)2r (p+m− r−1)!


(p−1)!
|Q̃|m |b̃|L (


∨p Z ,
∨q Z ) ,


when p≥ q with a similar expression when q≥ p (replace (p+m−r, p−1) with (q+m−r,q−1)) .


Proof. See [AmNi, Lemma 5.8, 5.9]. �


Lemma 4.3 For any δ > 0 there exists T > 0 such that for all 0 < t < T :


∞


∑
m=0


δ
m
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm


∣∣∣∣C̃(m)
0 (tm, . . . , t1, t)


∣∣∣∣
L (


∨p+m Z ,
∨q+m Z )


< ∞ (15)


Proof. It is enough to bound (15) in the case p≥ q. Using Lemma 4.2 (iii) with r = 0, we obtain


∞


∑
m=0


δ
m
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm


∣∣∣∣C̃(m)
0 (tm, . . . , t1, t)


∣∣∣∣≤ 2p−1|b̃|
∞


∑
m=0


(
23


δ t |Q̃|
)m


.


The r.h.s. is finite whenever 0 < t < T = (23 δ |Q̃|)−1. �
Proof of Thm. 2.1
First consider the following expansion proved in [AmNi, (50)-(52)] for any positive integer M:


Uε(t)∗bWickUε(t) =
M−1


∑
m=0


im
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm


[
C(m)


0 (tm, · · · , t1, t)
]Wick


+
ε


2


M


∑
m=1


im
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm Uε(tm)∗U0


ε (tm)
[
{Qtm ,C(m−1)


0 (tm−1, · · · , t1, t)}(2)
]Wick


U0
ε (tm)∗Uε(tm)


+iM
∫ t


0
dt1 · · ·


∫ tM−1


0
dtM Uε(tM)∗U0


ε (tM)
[
C(M)


0 (tM, · · · , t1, t)
]Wick


U0
ε (tM)∗Uε(tM) ,


where the equality holds in L (
∨s Z ,


∨s+q−p Z ) for any s ∈ N, s ≥ q− p. Multiplying on the left
the above identity by ρεn and then using number estimates with the help of (H0), yields an identity


6







on L1(H ) on which we take the trace. This leads to


Tr[ρεnUεn(t)
∗bWickUεn(t)] =


M−1


∑
m=0


im
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm Tr


[
ρεn


(
C(m)


0 (tm, · · · , t1, t)
)Wick


]
(16)


+
εn


2


M


∑
m=1


im
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm


Tr
[


ρεnUεn(tm)∗U0
εn(tm)


(
{Qtm ,C(m−1)


0 (tm−1, · · · , t1, t)}(2)
)Wick


U0
εn(tm)∗Uεn(tm)


]
(17)


+iM
∫ t


0
dt1 · · ·


∫ tM−1


0
dtM Tr


[
ρεnUεn(tM)∗U0


εn(tM)
(


C(M)
0 (tM, · · · , t1, t)


)Wick
U0


εn(tM)∗Uεn(tM)
]
. (18)


The interchange of trace and integrals on the r.h.s. is justified by the bounds on Lemma 4.2. Lemma
4.3 implies that the term of (16) and (17) are bounded by


Am = λ
m+ p+q


2 sign(t)m
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm


∣∣∣∣C̃(m)
0


∣∣∣∣
Bm = εn


∣∣Q̃∣∣(p+q+m−1)2
λ


m−1+ p+q
2 sign(t)m


∫ t


0
dt1 · · ·


∫ tm−1


0
dtm


∣∣∣∣C̃(m−1)
0


∣∣∣∣
while the remainder (18) is estimated by


|(18)| ≤ sign(t)M
∫ t


0
dt1 · · ·


∫ tM−1


0
dtM


∣∣∣∣C̃(M)
0


∣∣∣∣= CM.


By Lemma 4.2, the series ∑
∞
m=0 Am and ∑


∞
m=0 Bm converge as soon as |t| < T0 = (23λ |Q̃|)−1 while


limM→∞ CM = 0. Hence the relation (16)(17)(18) holds with M = ∞ with a vanishing third term and
a second term bounded by ∑


∞
m=0 Bm = O(εn). Therefore, we obtain


lim
εn→0


Tr[ρεnUεn(t)
∗bWickUεn(t)]−


∞


∑
m=0


im
∫ t


0
dt1 · · ·


∫ tm−1


0
dtmTr


[
ρεn


(
C(m)


0 (tm, · · · , t1, t)
)Wick


]
= 0.


Owing to the condition (P) which provides the pointwise convergence and the uniform bound of
∑


∞
m=0 Am, the Lebesgue’s convergence theorem implies


lim
εn→0


∞


∑
m=0


im
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm Tr


[
ρεn


(
C(m)


0 (tm, · · · , t1, t)
)Wick


]
=


∞


∑
m=0


im
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm


∫
Z


C(m)
0 (tm, · · · , t1, t;z) dµ . (19)


Now, we interchange the sum over m and the integrals on (t1, · · · , tm, t) with the integral over Z on
(19) simply with a Fubini argument based on the absolute convergence (written here for t > 0):


∞


∑
m=0


∫ t


0
dt1 · · ·


∫ tm−1


0
dtm


∫
Z


∣∣∣C(m)
0 (tm, · · · , t1, t;z)


∣∣∣ dµ ≤


∞


∑
m=0


(∫
Z
|z|p+q+2m dµ


) ∫ t


0
dt1 · · ·


∫ tm−1


0
dtm


∣∣∣∣C̃(m)
0 (tm, · · · , t1, t)


∣∣∣∣ .


Again (H0) and (P) imply that for all k ∈ N there exists λ > 0 such that∫
Z
|z|2k dµ = lim


εn→0
Tr[ρεn (|z|2k)Wick] = lim


εn→0
Tr[ρεnNk]≤ λ


k.


Hence, Lemma 4.3 yields for |t|< T0:


lim
εn→0


Tr[ρεnUεn(t)
∗bWickUεn(t)] =


∞


∑
m=0


im
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm


∫
Z


C(m)
0 (tm, · · · , t1, t;z)dµ


=
∫


Z


∞


∑
m=0


im
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm C(m)


0 (tm, · · · , t1, t;z) dµ ,
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where the integrand
∞


∑
m=0


im
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm C(m)


0 (z) is a convergent series in L1(µ).


The last step is the identification of the limit with the r.h.s. of (6). Indeed, an iteration of (4) reads


b(zt) = bt(z)+ i
∫ t


0
{Qt1 ,bt}(z) dt1 + i2


∫ t


0
dt1
∫ t1


0
dt2 {Qt2 ,{Qt1 ,bt}}(eit2Azt2) ,


after setting zt = Ft(z) and defining the Wick symbols bt and Qt according to (3). By induction we
obtain for any M > 1:


b◦Ft(z) = bt(z)+
M−1


∑
m=1


im
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm C(m)


0 (tm, · · · , t1, t;z)


+ iM
∫ t


0
dt1 · · ·


∫ tM−1


0
dtM C(M)


0 (tM, · · · , t1, t;eitMAztM ) .


An integration with respect to the measure µ leads to∫
Z


b◦Ft(z) dµ =
M−1


∑
n=0


in
∫ t


0
dt1 · · ·


∫ tn−1


0
dtn


∫
Z


C(n)
0 (tn, · · · , t1, t;z)dµ


+ iM
∫ t


0
dt1 · · ·


∫ tM−1


0
dtM


∫
Z


C(M)
0 (tM, · · · , t1, t;eitMAztM ) dµ .


Again the uniform estimate ∑
∞
m=0 Am when |t| < T0 and limM→∞ CM = 0, allow to take the limit as


M→ ∞. This implies for |t|< T0∫
Z


b◦Ft(z) dµ =
∞


∑
m=0


im
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm


∫
Z


C(m)
0 (tm, · · · , t1, t;z) dµ.


This proves the result for |t| < T0 and it is extended to any time by the next iteration argument.
Indeed, it is clear that ρεn(t) = Uεn(t)ρεnUεn(t)


∗ satisfies (H0) since Uεn(t) commute with N. The
property (P) holds for ρεn(t) when |t| < T0 by Remark 2.2 and Corollary 2.3. For t,s such that
|t|, |s| < T0, the sequence (ρεn(t))n∈N satisfies (H0) and (P). Therefore, the result for short times
yields


lim
εn→0


Tr[ρεn(t)Uεn(s)
∗bWickUεn(s)] =


∫
Z


b◦Fs(z) dµt =
∫


Z
b◦Ft+s(z) dµ.


�


Remark 4.4 As by product we have for any b ∈ ⊕alg
α,β∈NPα,β (Z )


b◦Ft(z) = L1(µ)−
∞


∑
m=0


im
∫ t


0
dt1 · · ·


∫ tm−1


0
dtm C(m)


0 (tm, · · · , t1, t;z) . (20)


Moreover, the arguments used in the proof of Thm. 2.1 can not ensure the pointwise absolute con-
vergence of the r.h.s. (20) for all z ∈Z .


5 Examples
Models:
M1) Let Z = L2(Rd ,dx), A = D2


x +U(x) self-adjoint and Q is a multiplication operator by 1
2V (x−y)


with V ∈ L∞(Rd).
M2) Let Z = L2(Rd ,dx), A =


√
D2


x +m2 +U(x) self-adjoint and Q as above.
M3) When Z = Cd ∼R2d


x,ξ , one recovers the standard semiclassical limit problem and the condition
(P) is always satisfied if (H0) is satisfied. We refer for example the reader to [CRR] [Ger] [GMMP]
[HMR] [LiPa] [Mar] [Rob] for various results about this topic.


Density operator Sequences:
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1) Every sequence (ρεn)n∈N valued in a compact set of the Banach space of trace class operators has
the Wigner measure δ0. If in addition (ρεn)n∈N satisfies (H0) then (P) holds true.
2) Let (ρεn)n∈N as in 1) and satisfying (H0) and let (zn)n∈N be a sequence of Z such that limn→∞


|zn− z|= 0. Then ρ̃εn = W (
√


2
iε zn)ρεnW (−


√
2


iε zn) admits the unique Wigner measure µ = δz where z
and (P) holds true. The push-forward measure is µt = δzt .


3) Let (zn)n∈N be a sequence valued in a compact set of Z . So ρεn = |z⊗[ε−1
n ]


n 〉〈z⊗[ε−1
n ]


n | satisfies (H0)
and the property (P) and admits the Wigner measures 1


2π


∫
π


0 δeiθ zdθ where z is any cluster point of
(zn)n∈N. Several other examples can be obtained by superposition, see [AmNi].
4) Let (zn)n∈N be a sequence such that |zn| = 1 in Z converging weakly to 0. Then (P) fails for
ρεn = |E(zn)〉〈E(zn)| with E(zn) = W (


√
2


iε zn)|Ω〉, although (H0) holds.
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