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Siegel disks are domains around fixed points of holomorphic maps in which the maps are locally
linearizable (i.e., become a rotation under an appropriate change of coordinates which is analytic in
a neighborhood of the origin). The dynamical behavior of the iterates of the map on the boundary of
the Siegel disk exhibits strong scaling properties which have been intensively studied in the physical
and mathematical literature.


In the cases we study, the boundary of the Siegel disk is a Jordan curve containing a critical point of
the map (we consider critical maps of different orders), and there exists a natural parameterization
which transforms the dynamics on the boundary into a rotation. We compute numerically this
parameterization and use methods of harmonic analysis to compute the global Hölder regularity of
the parameterization for different maps and rotation numbers.


We obtain that the regularity of the boundaries and the scaling exponents are universal numbers
in the sense of renormalization theory (i.e., they do not depend on the map when the map ranges in
an open set), and only depend on the order of the critical point of the map in the boundary of the
Siegel disk and the tail of the continued function expansion of the rotation number. We also discuss
some possible relations between the regularity of the parameterization of the boundaries and the
corresponding scaling exponents.


PACS numbers: 05.45.Df, 02.30.Nw, 05.10.-a, 05.10.Cc


According to a celebrated theorem by Siegel,
under certain arithmetic conditions, the dynami-
cal behavior of the iterates of a holomorphic map
around a fixed point of the map is very simple –
the iterates of the map fill densely analytic topo-
logical circles around the critical point. In the
domain around the critical behavior where the it-
erates exhibit such behavior – called Siegel disks,
– there exists a complex analytic change of vari-
ables that makes the map locally a multiplica-
tion by a complex number of modulus 1. On the
boundary of a Siegel disk, however, the dynami-
cal behavior of the iterates of the map is dramati-
cally different – for example, the boundary is not
a smooth curve. The iterates on the boundary
of the Siegel disk exhibit scaling properties that
have motivated the development of a renormaliza-
tion group description. The dynamically natural
parameterization of the boundary of the Siegel
disk has low regularity. We compute accurately
the natural parameterization of the boundary and
apply methods from Harmonic Analysis to com-
pute the Hölder exponents of the parameteriza-
tions of the boundaries for different maps with
different rotation numbers and with different or-
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ders of criticality of their critical points.


I. INTRODUCTION


Siegel disks – the domains around fixed points of holo-
morphic maps in which the map is locally linearizable
(defined in more detail in Section II) – are among the
main objects of interest in the dynamics of holomorphic
maps. Their boundaries have surprising geometric prop-
erties which have attracted the attention of both math-
ematicians and physicists. Notably, it was discovered
in [1, 2] that in some cases there were scaling relations
for the orbit, which suggested that the boundary was a
fractal object. Since then this phenomenon has been a
subject of extensive numerical and mathematical studies
[3–12].


In this paper, we report some direct numerical calcu-
lations of the Hölder regularity of these boundaries for
different rotation numbers of bounded type and for dif-
ferent maps.


The main conclusion of the numerical calculations in
this paper, is that, for the cases we consider, the bound-
aries of the Siegel disks are Cκ curves for some κ > 0,
and we can compute numerically the value of κ. Even if
we – obviously – consider only a finite number of cases,
we expect that the results are significative for the Siegel
disks of polynomials with rotation numbers which have
an eventually periodic continued fraction.


The values of the Hölder regularity κ are, up to the
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error of our computation, universal in the sense of renor-
malization group analysis, namely that they are indepen-
dent of the map in a small neighborhood in the space of
maps. We also performed computations for maps whose
rotation numbers have the same “tail” of their continued
fraction expansion, and found that our numerical results
depend only on the tail.


Our computation of the Hölder regularity are based
on the method introduced in [13], which is a numerical
implementation of several constructions in Littlewood-
Paley theory. This method was also used in [14–17].


For the case of the golden mean rotation number, the
fact that the boundaries of Siegel disks are Hölder was
proved in [5] assuming the existence of the fixed point of
the renormalization operator conjectured in [2]. The ex-
istence of a fixed point of a slightly different (and presum-
ably equivalent) renormalization operator was proved
in [4]. It seems that a similar argument will work for
other rotation numbers with periodic continued fraction
expansion provided that one has a fixed point of the
appropriate renormalization operator. These arguments
provide bounds to the Hölder regularity κ, based on prop-
erties of the fixed point of the renormalization operator.


Our computations rely on several rigorous mathemat-
ical results in complex dynamics. Notably, we will use
that that for bounded type rotatation numbers and poly-
nomial maps, the boundary of the Siegel disk is a Jordan
curve, and contains a critical point [18]. See also [19, 20]
for other results in this direction. We recall that a num-
ber is bounded type means that the entries in the contin-
ued fraction of this number are bounded. Equivalently,
a number σ is of constant type if and only if for every
natural n and integer m we have |σn−m|−1 ≤ νn−1 [21].


It is also known in the mathematical literature that
for non-Diophantine rotation numbers (a case we do not
consider here and which indeed seems out of reach of
present numerical experiments), it is possible to make the
circle smooth [22–24] or, on the contrary, not a Jordan
curve [25, 26].


The plan of this paper is the following. In Section II
we give some background on Siegel disks and explain how
to parameterize their boundaries, Section III is devoted
to the numerical methods used and the results on the
regularity of the boundaries of the Siegel disks and the
scaling properties of the iterates. In Section IV we con-
sider some connections with geometric characteristics of
the Siegel disk (in particular, its area), in Section V we
derive an upper bound on the regularity, and in the final
Section VI we recapitulate our results.


II. SIEGEL DISKS AND THEIR BOUNDARIES


A. Some results from complex dynamics


In this section we summarize some facts from complex
dynamics, referring the reader to [27, 28] for more details.


We consider holomorphic maps of C that have a fixed


point, and study their behavior around this point. With-
out loss of generality, in this section we assume that the
fixed point is the origin, so that the maps have the form


f(z) = az + O(z2) . (1)


(For numerical purposes, we may find more efficient to
use another normalization.) We are interested in the case
that |a| = 1, i.e., a = e2πiσ, where σ ∈ [0, 1) is called the
rotation number of f . In our case, we take f to be a
polynomial, so that the domain of definition of the map
f is not an issue.


The stability properties of the fixed point depend
crucially on the arithmetic properties of σ. The cel-
ebrated Siegel’s Theorem [29–31] guarantees that, if σ
satisfies some arithmetic properties (Diophantine condi-
tions), then there is a unique analytic mapping h (called
“conjugacy”) from an open disk of radius r (called the
Siegel radius) around the origin, B(0, r), to C in such a
way that h(0) = 0, h′(0) = 1, and


f ◦ h(z) = h(az) . (2)


We note that the Siegel radius is a geometric property
of the Siegel disk. It is shown in [32] that h can be
characterized as the conformal mapping from B(0, rs) to
the Siegel disk mapping 0 to 0 and having derivative 1.
Later in Section IVA, we will show how the Siegel disk
can be computed effectively in the cases we consider.


We refer to [33, 34] for some mathematical devel-
opments on improving the arithmetic conditions of the
Siegel theorem. In this paper we only consider rotation
numbers that satisfy the strongest possible Diophantine
properties. Namely, we assume that σ is of bounded type
and, in particular, perform our computations for num-
bers with eventually periodic continued fraction expan-
sions (see Section II C for definitions). In this case, there
is an elementary proof of Siegel’s Theorem [35].


Let rS stand for the radius of the largest disk for which
the map h exists. The image under h of the open disk
B(0, rS) is called the Siegel disk, D, of the map f . For
r < rS, the image of each circle {w ∈ C : |w| = r}
under h is an analytic circle. The boundary, ∂D, of the
Siegel disk, however, is not a smooth curve for the cases
considered here.


The paper [1] contains numerical observations that
suggest that the dynamics of the map f on ∂D satisfies
some scaling properties. These scaling properties were
explained in certain cases by renormalization group anal-
ysis [2, 4, 11, 12, 36]. These scaling properties suggest
that the boundaries of Siegel disks can be very interesting
fractal objects.


Clearly, the Siegel disk cannot contain critical points
of the map f . It was conjectured in [1] that the boundary
of the Siegel disk contains a critical point. The existence
of critical points on the boundary depends on the arith-
metic properties of σ and it may be false [25], but it is
true under the condition that the rotation number is of
bounded type [18], which is the case we consider in this
paper. See also [37].
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FIG. 1: Critical points c and Siegel disks of the map (3) for
σ = 〈1∞〉 = 1
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In Figure 1 we show the Siegel disks of the map


f(z) = e2πiσz + z2 (3)


for different rotation numbers σ (for the notations for
σ see Section IIC). In all cases the only critical point,
c = − 1


2e2πiσ, is simple: f ′(c) = 0, f ′′(c) = 2 6= 0.
In this paper we study maps of the form


fm,σ,β(z) =
1
β


e2πiσ [gm+1(z)− (1− β)gm(z)] , (4)


where m ∈ N, β is a complex parameter, and the function
gm : C → C is defined as


gm(z) =
1


m + 1
[
1− (1− z)m+1


]
.


Let f be a map of the form (1), and c be its criti-
cal point that belongs to the boundary of the Siegel disk
of this map (we will only consider cases where ∂D con-
tains one critical point). Let d be the multiplicity of the
critical point c, i.e., f (k)(c) = 0 for k = 1, 2, . . . , d, and
f (d+1)(c) 6= 0. We will call d the order of the critical
point.


Noticing that, for the map (4),


f ′m,σ,β(z) = e2πiσ(1− z)m


(
1− z


β


)
,


we see that fm,σ,β(0) = 0, f ′m,σ,β(0) = e2πiσ, and, more
importantly, if β 6= 1, the point z = 1 is a zero of f ′m,σ,β
of multiplicity m, while, for β = 1, the point z = 1 is


FIG. 2: Siegel disks of the maps fd,〈2∞〉,1+3i (given by (4))
with critical point c = 1 of order d = 1 (outermost curve),
d = 5, and d = 20 (innermost curve) – see text for details.


a zero of f ′m,σ,β of multiplicity m + 1. As long as the
critical point z = β is outside the closure of the Siegel
disk, the scaling properties of the iterates on ∂D in the
case of Diophantine σ are determined by the order d of
the critical point z = 1. Below by “critical point” we
will mean the critical point that belongs to ∂D. One of
the goals of this paper is to study how the regularity and
the scaling properties depend on the order of the critical
point.


In Figure 2 we show about 16 million iterates of the
critical point c = 1 of the maps fd,〈2∞〉,1+3i for order
d = 1, 5, and 20, of the critical point c = 1 (the other
critical point, β = 1+3i, is not in the closure of the Siegel
disks, so is irrelevant for the problem studied). Note that,
especially for highly critical maps, the iterates approach
the critical point very slowly because the modulus of the
scaling exponent becomes close to 1 (see Table II).


B. Parameterization of the boundary of a Siegel
disk


In the cases considered here, the boundaries of Siegel
disks cannot be written in polar coordinates as r = R(θ)
(because some rays θ = const intersect ∂D more than
once). In this section we explain how to parameterize
∂D, and define the functions whose regularity we study
numerically.


Once we know that a critical point c is in the boundary
of the Siegel disk D (which in the cases we consider is
guaranteed by the results of [18]), it is easy to obtain a
parameterization of the boundary which semiconjugates
the map f to a rotation.


It is known from the mathematical theory that h –
which is univalent in the open disk B(0, rS) – can be ex-
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tended to the boundary of B(0, rS) as a continuous func-
tion thanks to the Osgood-Taylor-Carathéodory Theo-
rem (see, e.g., [38, Section 16.3] or [39, Section IX.4]).


A dynamically natural parameterization χ of ∂D is ob-
tained by setting


χ(t) = h
(
rS e2πi(t+θ)


)
, (5)


where θ is a constant to be chosen later. From (2), it
follows that


f ◦ χ(t) = χ(t + σ) (6)


with χ(0) = c. Since we know that in our cases the
critical point c is in ∂D, |h−1(c)| = rS, and we can choose
θ so that


χ(0) = h(rS e2πiθ) = c . (7)


In summary, the function χ : T → C defined by (5) and
(7) is a parameterization of ∂D such that the dynamics
of the map f on ∂D is a rotation by σ on the circle T,
and χ(0) is the critical point.


Iterating n times (6) for t = 0, and using (7), we obtain


χ(nσ) = fn(c) . (8)


Since the rotation number σ of f is irrational, the num-
bers nσ (taken mod 1) are dense on the circle T, and the
iterates fn(c) of the critical point c are dense on ∂D as
well. Hence, using equation (8), we can compute a large
number of values of χ by simply iterating f .


Our main object of interest are the real, <χ, and imag-
inary, =χ, parts of the function χ. In Figure 3 we have
shown the graphs of the real and imaginary parts of χ pa-
rameterizing the boundary of the Siegel disk of the map
(3) for two different rotation numbers.


C. Continued fraction expansions and rational
approximations


In this section, we collect some of the notation on con-
tinued fraction expansions.


Let A = (a1, a2, . . . , ap) be a finite sequence of p
natural numbers aj ∈ N; for brevity, we will usually
omit the commas and write A = (a1a2 . . . ap). Let
B = (b1b2 . . . bq) be another sequence of natural num-
bers bj ∈ N, j = 1, 2, . . . , q, AB := (a1a2 . . . apb1b2 . . . bq)
stand for the concatenation of A and B, and An stand for
AA · · ·A (n times). Let |A| = p denote the length of A.


For a ∈ N define the function Fa : (0, 1) → (0, 1) by


Fa(x) :=
1


a + x
. Similarly, for A = (a1a2 . . . ap), define


the function FA : (0, 1) → (0, 1) as the composition


FA(x) := Fa1 ◦ Fa2 ◦ · · · ◦ Fap
(x) .
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FIG. 3: Graphs of the real (solid lines) and the imaginary
(dashed lines) parts of the map χ corresponding to ∂D of the
map (3) for σ = 〈1∞〉 (thin lines) and σ = 〈5∞〉 (thick lines)
– cf. Figure 1.


Let 〈B〉 stand for the number whose continued fraction
expansion (CFE) is given by the numbers in the se-
quence B:


〈B〉 = 〈b1b2 . . . bq〉 :=
1


b1 +
1


b2 +
1


. . . +
1
bq


;


the numbers bj are called the (partial) quotients of 〈B〉.
A number σ = 〈a1a2 . . .〉 is of bounded type if all numbers
ai (i ∈ N) are bounded above by some constant M .


We are especially interested in studying numbers with
CFEs of the form


〈AB∞〉 := lim
n→∞


〈ABn〉 ,


which are called eventually periodic (or preperiodic).
Since each number of this type is a root of a quadratic
equation with integer coefficients (see [40, Theorem 176]),
such numbers are also called quadratic irrationals. We
will call A the head and B∞ the tail, B the period, and
|B| the length of the period of the CFE.


If two quadratic irrationals have the same tail, they
are said to be equivalent. One can prove that σ and ρ are
equivalent if and only if σ = (ιρ+λ)/(µρ+ν), where the
integers ι, λ, µ and ν satisfy ιν − λµ = ±1 [40, Theorem
175].


D. Scaling exponents


Let f be a map of the form (1) with an eventually
periodic rotation number σ = 〈AB∞〉 with length of its
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period q = |B|, and let c be the critical point of f on ∂D
(and there are no other critical points on ∂D). Let


Pm


Qm
= 〈ABm〉 , (9)


where Pm and Qm are natural numbers that have no
common factors. Define the scaling exponent


α := lim
m→∞


fQm+1(c)− c


fQm(c)− c
. (10)


This exponent is a complex number that depends on the
tail B of the CFE of σ and on the order of the critical
point c, but does not depend on the head A or on details
about the map f .


If the length |B| of the tail B of the CFE of the rotation
number of the map is more than 1, then B is determined
only up to a cyclic permutation, and the argument of the
complex number α is different for different choices. That
is why we give our data only for |α|.


III. HÖLDER REGULARITY AND SCALING
PROPERTIES OF THE BOUNDARIES OF


SIEGEL DISKS – NUMERICAL METHODS AND
RESULTS


A. Some results from harmonic analysis


Let κ = n +κ′, where n ∈ {0, 1, 2, . . .}, and κ′ ∈ (0, 1).
We say that a function φ : T → T has (global) Hölder
regularity κ and write φ ∈ Cκ(T) if κ = n + κ′ is the
largest number for which φ(n) exists and for some con-
stant C > 0 satisfies∣∣∣φ(n)(t)− φ(n) (s)


∣∣∣ ≤ C |t− s|κ
′


∀ t, s ∈ T .


We call attention to the fact that we do not allow κ to be
an integer since otherwise the definition of Hölder so that
the characterizations we discuss later must be modified.
In our problem, κ turns out to be non-integer, so that
the characterizations we discuss apply.


In the mathematical literature, there are many char-
acterizations of the Hölder regularity of functions. Some
surveys that we have found useful are [41, 42].


In the paper [13], we developed implementations of
several criteria for determining Hölder regularity numer-
ically based on harmonic analysis, and assessed the reli-
ability of these criteria. In this paper, we only use one of
them, namely the method that we called the Continuous
Littlewood-Paley (CLP) method which has been used in
[14–17]. The CLP method is based on the following the-
orem [41, 42]:


Theorem III.1. A function φ ∈ Cκ(T) if and only if
for some η > 0 there exists a constant C > 0 such that
for all τ > 0 and η ≥ 0∥∥∥∥(


∂


∂τ


)η


e−τ
√
−∆ φ


∥∥∥∥
L∞(T)


≤ C τκ−η , (11)


where ∆ stands for the Laplacian: ∆φ(t) = φ′′(t).


Note that one of the consequences of Theorem III.1 is
that if the bounds (11) hold for some η, they hold for any
other η. Even if from the mathematical point of view, all
values of η would give the same result, it is convenient
from the numerical point of view to use several to assess
the reliability of the method.


B. Algorithms used


The algorithm we use is based on the fact that(
∂
∂τ


)η
e−τ


√
−∆ is a diagonal operator when acting on a


Fourier representation of the function: if


φ(t) =
∑
k∈N


φ̂k e−2πikt ,


then(
∂


∂τ


)η


e−τ
√
−∆φ(t) =


∑
k∈N


(−2π|k|)η e−2πτ |k| φ̂k e−2πikt .


The Fourier transform of the function φ can be com-
puted efficiently if we are given the values of φ(t) on a
dyadic grid, i.e., at the points tm = 2−Mm, where M is
some natural number and m = 0, 1, . . . , 2M −1. Unfortu-
nately, the computation indicated in (8) gives the values
of the function χ = <χ + i=χ on the set {nσ}N


n=0 of
translations by the irrational number σ. Therefore, we
need to perform some interpolation to find the approxi-
mate values of χ on the dyadic grid, after which we Fast
Fourier Transform (FFT) can be computed efficiently.


Hence, the algorithm to assess the regularity is the
following.


1. Locate the critical point c (such that f ′(c) = 0).


2. Use equation (8) to obtain the values of the function
χ at the points {nσ}N


n=0 for some large N .


3. Interpolate <χ and =χ to find their approximate
values on the dyadic grid {2−Mm}2


M−1
m=0 .


4. For a fixed value of η, compute the value of the left
hand side of (11) for several values of τ by using
FFT (for φ = <χ and separately for φ = =χ); do
this for several values of η.


5. Fit the decay predicted by (11) to find the regular-
ity κ.


Let us estimate the cost in time and storage of the
algorithm above keeping 2M values of the function. Of
course, locating the critical point c is trivial. Iteration
and interpolation require O(2M ) operations. Then, each
of the calculations of (11) requires two FFT, which is
O(2M ln(2M )) = O(M 2M ). In the computers we used
(with about 1 GB of memory) the limiting factor was
the storage, but keeping several million iterates of f and
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FIG. 4: Plot of log10 | ( c<χ)k| vs. log10 |k| for the map (3) with
σ = 〈1∞〉 – see text for details.


computing 223 ≈ 8×106 Fourier coefficients of <χ and =χ
was quite feasible. (Note that a double precision array of
223 double complex numbers takes 227 bytes = 128 MB
and one needs to have several copies.)


The iterates fn(c) were computed by using extended
precision with GMP – an arbitrary-precision extension
of C language [43]. This extra precision is very useful to
avoid that the orbit scales. Note that the critical points
are at the boundary of the domains of stability, so that
they are moderately unstable.


The extended precision is vitally important in com-
puting the scaling exponents α. To obtain each value in
Table II, we computed several billion iterates of the crit-
ical point of the map. To reduce the numerical error, we
used several hundred digits of precision.


C. Visual explorations


In Figures 4 and 5 we have plotted (with impulses)
the modulus of the Fourier coefficients (<̂χ)k versus |k|
on a log-log scale (for several million values of k) for the
boundary of the Siegel disk corresponding to the map
(3) for rotation numbers σ equal to 〈1∞〉 and 〈5∞〉, and
order of the critical point d = 1 (the same cases as the
ones in Figures 1 and 3). The self-similar structure of
the boundary of the Siegel disk is especially clearly vis-
ible in the “straightened-out” graph of the spectrum –
in Figure 6 we plotted log10 |k (<̂χ)k| vs. log10 |k| for the
same spectra as in Figures 4 and 5. The width of each of
the periodically repeating “windows” in the figure (i.e.,
the distance between two adjacent high peaks) is approx-
imately equal to | log10 σ|, where σ is the corresponding
rotation number. The periodicity in the Fourier series
has been related to some renormalization group analysis
in phase space [44].


FIG. 5: Plot of log10 | ( c<χ)k| vs. log10 |k| for the map (3) with
σ = 〈5∞〉 – see text for details.


FIG. 6: Plot of log10 |k ( c<χ)k| vs. log10 |k| for the map (3)
with σ = 〈1∞〉 (top), σ = 〈5∞〉 (bottom) – see text for details.


To illustrate the effect of the order of criticality on
the Fourier spectrum of <χ, we showed in Figure 7 the
“straightened-out” graphs of the spectra, log10 |k (<̂χ)k|
versus log10 |k|, of the function <χ corresponding to the
maps fd,〈2∞〉,1+3i for orders d = 1, 5, 20 (the Siegel disks
of these maps were shown in Figure 2). For all plots in
this figure we used the same scale in vertical direction.
An interesting observation – for which we have no concep-
tual explanation at the moment – is that the variability
of the magnitudes of the Fourier coefficients decreases as
the order of the critical point increases.


Figures 8 and 9 illustrate the CLP method (Theo-
rem III.1) in practice. In the top part of each figure
we have plotted on a log-log scale the norms in the left-
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FIG. 7: Plot of log10 |k ( c<χ)k| vs. log10 |k| for the maps
fd,〈2∞〉,1+3i with d = 1, 5, 20.


-7 -6 -5 -4 -3 -2 -1 0


0


10


20


30


40


= 6


= 5


= 1


η


= 2


= 3


= 4


η


η


η


η


η


-7 -6 -5 -4 -3 -2 -1 0


0


= 6


= 5


= 1


η


= 2


= 3


= 4


η


η


η


η


η


FIG. 8: Top: Plot of log10 Nη(τ) vs. log10 τ for the map (3)
with σ = 〈1∞〉. Bottom: Plot of the first differences between
the vertical coordinates of adjacent points in the top figure.


-7 -6 -5 -4 -3 -2 -1 0


0


10


20


30


40


= 6


= 5


= 1


η


= 2


= 3


= 4


η


η


η


η


η


-7 -6 -5 -4 -3 -2 -1 0


0


FIG. 9: Top: Plot of log10 Nη(τ) vs. log10 τ for the map (3)
with σ = 〈5∞〉. Bottom: Plot of the first differences between
the vertical coordinates of adjacent points in the top figure.


hand side of (11),


Nη(τ) :=
∥∥∥∥(


∂


∂τ


)η


e−τ
√
−∆<χ


∥∥∥∥
L∞(T)


, (12)


as functions of τ , for η = 1, 2, . . . , 6 for the map (3) with
for rotation numbers 〈1∞〉 and 〈5∞〉, respectively. For
each value of η, the “line” consists of 400 points corre-
sponding to 400 different values of τ for which we have
computed the corresponding norm.


The bottom parts of Figures 8 and 9 show the behavior
of the first differences between the vertical coordinates of
adjacent points from the top parts of the figures. Clearly,
the points in the top parts do not lie on exact straight
lines but have small periodic (as functions of log τ) dis-
placements. To make this more clear in the bottom part
of Figure 9, we have plotted the points for η = 6 with
larger circles, and have connected them with lines.


We would like to point out that the bound (11) is only
an upper bound. However, the discrete scaling invariance
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TABLE I: Global Hölder regularity κ for maps with rotation
numbers σ = 〈k∞〉 (k = 1, 2, 3, 4, 5) and critical point of or-
der d.


d 〈1∞〉 〈2∞〉 〈3∞〉 〈4∞〉 〈5∞〉
1 0.621 0.617 0.607 0.596 0.578
2 0.432 0.427 0.417 0.404 0.388
3 0.328 0.324 0.313 0.300 0.291
4 0.263 0.260 0.252 0.244 0.232
5 0.220 0.217 0.210 0.203 0.193
6 0.189 0.186 0.180 0.174 0.163


10 0.121 0.120 0.115 0.111 0.105
15 0.084 0.082 0.079 0.077 0.074
20 0.064 0.063 0.061 0.058 0.055


of the Siegel disk at small scales – manifested also by the
existence of the “periodic windows” in Figure 6 – implies
that the leading behavior of log10 Nη(τ) as a function of
log10 τ is indeed linear, and that (11) is close to being
saturated.


The discrete scaling invariance at small scales allows
for log10 Nη(τ) as a function of log10 τ to have small pe-
riodic corrections superimposed on the leading linear be-
havior. Our calculations are precise enough that these
corrections to the leading behavior are clearly visible.
The bottom parts of Figures 8 and 9 show exactly these
corrections.


The form of these small periodic corrections depends
in a complicated way on the the behavior of the Fourier
coefficients in the “periodic windows” in the Fourier spec-
trum. The presence of this periodic corrections is a good
indicator of the ranges of t which are large enough that
the asymptotic behaviour has started to take hold, but
small enough so that they are not dominated by the
round-off and truncation error. In our previous works
[13, 15], we have also found periodic corrections to the
scaling in other conjugacies related to the regularity of
conjugacies of other critical objects.


D. Numerical values of the Hölder regularity


In Table I we give the computed values of the global
Hölder regularities of the real and imaginary parts of the
dynamically natural parameterizations χ (5), (7) of the
boundaries of the Siegel disks. We studied maps of the
form (4), with different values of β, and with different
orders d of the critical point in ∂D; some runs with the
map (3) (for which the critical point is simple) were also
performed.


To obtain each value in the table, we performed the
procedure outlined in Section III B for at least two maps
of the form (4). For each map we plotted the points from
the CLP analysis for η = 1, 2, . . . , 6 as in the top parts
of Figures 8 and 9, looked at the differences between the
vertical coordinates of adjacent points (i.e., at graphs like
in the bottom parts of Figures 8 and 9), and selected a
range of values of log10 τ for which the differences oscil-


late regularly. For this range of log10 τ , we found the
rate of decay of the norms Nη(τ) (12) by measuring the
slopes, κ− η, from which we computed the regularity κ.


The accuracy of these values is difficult to estimate,
but a conservative estimate on the relative error of the
data in Table I is about 3%.


We have also computed the regularity κ and the scaling
exponent α of several maps with rotation numbers with
the same tails of the continued fraction expansion but
with different heads.


Within the accuracy of our computations, the results
did not depend on the head, which is consistent with the
predictions of the renormalization group picture.


E. Importance of the phases of Fourier coefficients


In Figure 6 we saw that the modulus of the Fourier
coefficients of <χ and =χ decreases very approximately
as ∣∣∣(<̂χ)k


∣∣∣ ≤ C


|k|
,


∣∣∣(=̂χ)k


∣∣∣ ≤ C


|k|
. (13)


and that these bounds come close to be saturated in-
finitely often. This seems to be true independent of what
the rotation number is.


This rate of decay of the Fourier coefficients would be
implied by <χ and =χ being C1, but from (13) we can-
not conclude that <χ and =χ are even continuous (note,
for example, that the function f(x) =


∑∞
k=1


1
k cos kx is


discontinuous at x = 0). It is well-known from harmonic
analysis that the phases of the Fourier coefficients play a
very important role, and changing the phases of Fourier
coefficients changes the regularity of the functions (see,
e.g., [45])


∞∑
k=2


1
k1/4


e2πikx ∼ 1
|x|3/4


as |x| → 0 ,


while


∞∑
k=2


ei
√


k


k1/4
e2πkx ∼ 1


|x|2
as |x| → 0 .


In Figure 10 we depict the phases of the Fourier co-
efficients of <χ for the map f0,〈1∞〉,1 whose only critical
point, c = 1, is simple (i.e., of order d = 1). We see
that, for small k, the phases have a repeated pattern. If
we consider k ∈ Ij := [σ−j , σ−j−1] (where σ = 〈1∞〉 is
the golden mean), we see that the phase restricted to Ij


has a pattern very similar to Ij+1, except that the lat-
ter is reversed and amplified. Of course, since the phase
only takes values between −π and π, the amplification of
the patterns can only be carried out a finite number of
times until the absolute values of the phases reach π, af-
ter which they will start “wrapping around” the interval
[−π, π]. Unfortunately, to see this effect numerically, we







9


FIG. 10: Plot of the phases of the Fourier coefficients
(vs. log10 |k|) of <χ for the map f0,〈1∞〉,1.


would need hundreds of millions of Fourier coefficients,
which at the moment is out of reach.


Given the above observation, it is natural to study the
distribution of the phases of the Fourier coefficients in
an interval of self-similarity. In Figure 11 we present the
histogram of the phases in the interval k ∈ I24 ∪ I25 =


FIG. 11: Histogram of some of the phases shown in Figure 10
(from I24 ∪ I25).


[σ−24, σ−26] (i.e., of about 170,000 phases). We note that
the histogram is very similar to a Gaussian. This vi-
sual impression is confirmed by using the Kolmogorov-
Smirnov test, shown in Figure 12. Recall that the
Kolmogorov-Smirnov test consists in plotting the empiri-
cal distribution versus the theoretical one (for details see,
e.g., [46, Chapter 7]). If indeed the empirical distribution
was a sample of the theoretical distribution, we would
get a set of points close the diagonal. The Kolmogorov-
Smirnov test is available in many statistical packages (we
used the package R, in which the command qqnorm gives


FIG. 12: Kolmogorov-Smirnov test for normality of the
phases in I24 ∪ I25.


a KS-test and the command qqline displays the result
of a fitted Gaussian). The Kolmogorov-Smirnov test re-
veals that, as expected (since the variable is an angle),
the distribution of the phases has discrepancies with a
Gaussian near the edges, −π and π. Nevertheless, there
is a remarkably good fit away from these edges. For the
intervals we chose, most of the data points are indeed out
of the edges.


F. Data on the scaling exponents


In Table II we give the values of the modulus of the
scaling exponent α for maps of the form (3) with orders
d = 1, . . . , 6, 10, 15, 20, 40, 60, 80, 100 of the critical point
and rotation numbers σ = 〈k∞〉 with k = 1, . . . , 5. We
believe that the numerical error in these values does not
exceed 2 in the last digit.


In [3], the author computed the scaling exponents for
maps with rotation number 〈1∞〉 and critical point of
different orders d, and suggested that the behavior of α
for large d is


|α〈1∞〉,d| ∼ 1−
A〈1∞〉


d
as d →∞ . (14)


We studied the same problem for other rotation num-
bers and, taking advantage of the extended precision, we
carried out the computation for rather high degrees of
criticality (≈ 300), see Table II. In Figure 13 we plotted
1/(1− |α|) versus d for five rotation numbers. Our data
that for high values of d the modulus of α tends to 1 for
any rotation number. The values of the constants Aσ in
(14) for rotation numbers 〈k∞〉 with k = 1, 2, 3, 4, 5 are
approximately 0.646, 1.168, 1.531, 1.960, 1.925, respec-
tively (the linear regression was based on the values for
d = 40, . . . , 300).
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TABLE II: Values of |α| for maps of the form fd,σ,β (4) with different rotation numbers σ and orders d of the critical point.


d 〈1∞〉 〈2∞〉 〈3∞〉 〈4∞〉 〈5∞〉
1 0.74193223170 0.5811130545 0.484541021 0.424632459 0.385769294
2 0.81215810740 0.686013947 0.607281233 0.55822367 0.5268809
3 0.853450202 0.7508249 0.6852424 0.6441419 0.6179964
4 0.88014575 0.793968 0.738015 0.7027580 0.680345
5 0.8987131 0.824557 0.775859 0.7450319 0.725425
6 0.912340 0.847314 0.804246 0.7768796 0.759458


10 0.943087 0.89962 0.87026 0.851416 0.839375
15 0.960463 0.92977 0.90881 0.895266 0.88658
20 0.969717 0.94601 0.92971 0.919149 0.91236
40 0.984450 0.97211 0.96356 0.9579 0.9544
60 0.989504 0.981138 0.975314 0.97151 0.96906
80 0.9920788 0.98575 0.981334 0.97845 0.97658


100 0.993638 0.98854 0.98499 0.98267 0.98116
200 0.996793 0.99422 0.99242 0.991241 0.99048
300 0.997857 0.99613 0.99493 0.994140 0.99363


0 50 100 150 200 250 300
0


100


200


300


400


500


FIG. 13: Plot of 1/(1− |α|) vs. d for rotation numbers 〈1∞〉
(circles), 〈2∞〉 (squares), 〈3∞〉 (diamonds), 〈4∞〉 (triangles),
〈5∞〉 (pluses).


IV. CALCULATION OF THE SIEGEL RADIUS
AND THE AREA OF THE SIEGEL DISK


As a byproduct of our calculations we can obtain rather
precise values of two quantities of mathematical interest:
the area of the Siegel disk and the Siegel radius.


A. Calculation of Siegel radius


We note that the parameterization, χ, of the boundary
∂D is related to the conjugacy h (2) by (5). Then, the
Fourier coefficients of χ satisfy |χ̂−k| = |hk| rk


S for k ∈ N,
where hk are the Taylor coefficients of h (recall that h0 =
0 and h1 = 1). As shown in [32, 47], one can get the all
the coefficients hk by equating terms of like powers in (2),


and this gives infinitely many different ways to compute
rS. In particular, since h1 = 1, we have rS = |χ̂−1|. Since
we also have h2 = f2/[a(a − 1)] and |a| = 1, we obtain
r2
S = |a − 1||χ̂−2|/|f2| (where f1 = a, f2, . . . are the


Taylor coefficients of the function f). Similar formulas
for higher order terms are also available.


B. Calculation of the area of the Siegel disk


Since h(rSz) is a univalent mapping from the unit disk
to the Siegel disk, we can use the area formula [48]


Area = π


∞∑
k=1


k|hk|2 = π


∞∑
k=1


kr−2k
S |χ̂−k|2 . (15)


For polynomials, the Siegel disk is bounded so that
the sum in (15) is finite. This is compatible with the
observation (13), but it shows that the bound cannot be
saturated very often.


In Table III we give the values of the areas of the Siegel
disks of the map fd,σ,β (4) (we believe that the error
does not exceed 2 in the last digit). Since the series (15)
converges slowly, we computed the partial sums of the
first Qn terms in (15), where Qn are the denominators
of the best rational approximants, Pm/Qm = 〈km〉, to
the rotation number σ = 〈k∞〉 (cf. (9)), and then per-
formed Aitken extrapolation on these values. Because of
the repeating “periodic windows” in the Fourier spectra
(shown in Figures 4, 5, 6, 7), these partial sums tend to
the area of the Siegel disk geometrically, and Aitken ex-
trapolation gives good results. In our computations we
used 223 ≈ 8× 106 Fourier coefficients of χ.


Clearly, the area of a Siegel disk depends on the partic-
ular choice of the map f , i.e., is non-universal. Perhaps
the only universal characteristic that can be extracted is
the rate of convergence in the Aitken extrapolation, but
we have not studied this problem in detail.
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TABLE III: Areas of the Siegel disks for maps of the form fd,〈k∞〉,1+3i (see (4)) with different rotation numbers σ and orders
d of the critical point.


d 〈1∞〉 〈2∞〉 〈3∞〉 〈4∞〉 〈5∞〉
1 1.3603361 1.3586530 1.3611085 1.3652030 1.3693337
2 0.895659 0.893442 0.893605 0.89408 0.89367
3 0.65986 0.65766 0.65664 0.6553 0.65308
4 0.5190 0.5170 0.51550 0.5133 0.5104
5 0.4262 0.4244 0.4226 0.4200 0.4170
6 0.3607 0.3591 0.3573 0.354 0.3515


10 0.2214 0.2203 0.2187 0.2163 0.2137
15 0.148 0.147 0.146 0.144 0.1421
20 0.111 0.110 0.109 0.107 0.106


TABLE IV: Upper bounds on the Hölder regularity κmax (16)
for maps of the form fd,σ,β (4) with rotation numbers σ =
〈k∞〉 (k = 1, 2, 3, 4, 5) and critical point of order d.


d 〈1∞〉 〈2∞〉 〈3∞〉 〈4∞〉 〈5∞〉
1 0.6203 0.6159 0.6064 0.5933 0.5783
2 0.4324 0.4276 0.4175 0.4039 0.3890
3 0.3293 0.3252 0.3164 0.3047 0.2922
4 0.2653 0.2618 0.2543 0.2443 0.2338
5 0.2219 0.2189 0.2124 0.2039 0.1949
6 0.1906 0.1880 0.1823 0.1749 0.1670


10 0.1218 0.1200 0.1163 0.1114 0.1063
15 0.0838 0.0826 0.0800 0.0766 0.0731
20 0.0639 0.0630 0.0610 0.0584 0.0557


V. AN UPPER BOUND OF THE REGULARITY
OF THE CONJUGACY


As pointed out in [13, Section 8.2], one can find upper
bounds for the regularity in terms of the scaling expo-
nents.


Recall that χ : T → ∂D conjugates (the restriction
to ∂D of) the map f : ∂D → ∂D to the rigid rotation
rσ : T → T : t 7→ t + σ (where σ is the rotation number
of f), namely, χ ◦ rσ = f ◦ χ. Let us consider only rota-
tion numbers of the form σ = 〈k∞〉, and let the natural
numbers Qm and the scaling exponent α be defined by
(9) and (10). Then closest returns of the iterates of 0 ∈ T
of rσ and the iterates of c ∈ ∂D to the starting points 0
and c, respectively, are governed by the scaling relations


rQm
σ (0) = C1σ


m + o(σm) ,


|fQm(c)− c| = C2|α|m + o(|α|m) .


So that we obtain that h(C1σ
m) ≈ C2|α|m.


This is impossible if h is Cκ with


κ > κmax ≡ log |α|/ log σ (16)


and the right-hand side of (16) is not an integer.
In Table IV, we give the values of the upper bound to


the regularity κmax (16) for maps with rotation numbers
and order of the critical point. To compute these values,
we used the values for |α| from Table II (and the exact


values for the rotation numbers). We have kept only four
digits of accuracy, although the error of these numbers
is smaller (their relative error is the same as the relative
error of the values of |α|).


Clearly, within the numerical error, the values of the
regularities from Table I (obtained from applying the
CLP method) are equal to the upper bounds on the reg-
ularity from Table IV (obtained from the scaling expo-
nents).


This is in contrast with the results in [13], where similar
bounds based on scaling were found to be saturated by
some conjugacies but not by the inverse conjugacy.


For maps with highly critical points, if (16) holds,
then the asymptotic behavior of |α| (14) implies that
the asymptotic behavior of the limit on the regularity
becomes


κmax,σ ∼
log


∣∣1− Aσ


d


∣∣
log σ


≈ Aσ


| log |σ||
1
d


as d →∞ .


(17)


VI. CONCLUSIONS


We have considered Siegel disks of polynomials with
some quadratic fields and with different degrees of critical
points.


We have made extended precision calculations of scal-
ing exponents and a parameterization of the boundary.
This allows us to compute the regularity of the boundary
using methods of harmonic analysis.


The regularity of the boundary seems to be univer-
sal, depend only on the tail of the continued fraction ex-
pansion and saturate some easy bounds in terms of the
continued fraction expansion.


We have identified several regularities of the Fourier se-
ries of the conjugacy. Namely, it seems that, irrespective
of the rotation number, we have 0 < lim sup |kχ̂k| < ∞.
There seems to be a regular distribution of the phases of
the Fourier coefficients which follows a Gaussian law.


We have also extended the results of [3] on the depen-
dence of scaling exponents on the degree of the critical
point to higher degrees and to other rotation numbers.
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séminaire Bourbaki, Vol. 1986/87.
[35] R. de la Llave, J. Math. Phys. 24, 2118 (1983).
[36] A. Stirnemann, Nonlinearity 7, 943 (1994).
[37] J. T. Rogers, Jr., in Progress in Holomorphic Dynamics


(Longman, Harlow, 1998), vol. 387 of Pitman Res. Notes
Math. Ser., pp. 41–49.


[38] P. Henrici, Applied and Computational Complex Analy-
sis. Vol. III (Wiley-Interscience, New York, 1974).


[39] R. B. Burckel, An Introduction to Classical Complex
Analysis. Vol. 1 (Academic Press, New York, 1979).


[40] G. H. Hardy and E. M. Wright, An Introduction to the
Theory of Numbers (Oxford, 1990).


[41] E. M. Stein, Singular Integrals and Differentiability Prop-
erties of Functions (Princeton University Press, Prince-
ton, N.J., 1970).


[42] S. G. Krantz, Exposition. Math. 1, 193 (1983).
[43] GMP, The GNU Multiple Precision Arithmetic Library


home page, http://www.swox.com/gmp/ (2008).
[44] B. I. Shraiman, Phys. Rev. A (3) 29, 3464 (1984).
[45] A. Zygmund, Trigonometric Series. Vol. I, II, Cam-


bridge Mathematical Library (Cambridge University
Press, Cambridge, 2002), 3rd ed.


[46] D. J. Sheskin, Handbook of Parametric and Nonparamet-
ric Statistical Procedures (Chapman & Hall/CRC, Boca
Raton, FL, 2007), 4th ed.


[47] R. de la Llave, in Smooth Ergodic Theory and Its Appli-
cations (Seattle, WA, 1999) (Amer. Math. Soc., Provi-
dence, RI, 2001), pp. 175–292.


[48] W. Rudin, Real and Complex Analysis (McGraw-Hill,
New York, 1987), 3rd ed.







