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1. Introduction


Measurements in a gravitational field are most easily interpreted through the
use of a system of locally inertial coordinates. For an observer following a
timelike geodesic worldline, Fermi coordinates provide such a system. The met-
ric expressed in Fermi coordinates near the worldline is Minkowskian to first
order, with second order corrections in the space coordinates away from the
geodesic path [1]. Fermi-Walker coordinates [2], the natural generalization to
non-geodesic timelike paths, also induce a Minkowski metric along the path. In
this case, there are first order corrections, but they depend only on acceleration.
Corrections due to curvature do not appear until the second order terms in the
space coordinates. Applications of these coordinate systems are voluminous.
They include the study of tidal dynamics, gravitational waves, statistical me-
chanics, and quantum gravity effects [3, 4, 5, 6, 7, 8, 9].


Under general conditions, a timelike path has a neighborhood on which a Fermi-
Walker coordinate system can be defined [10]. Some general results are known
for expansions of the metric in these coordinates. In [11] Li and Ni derived the
third order expansion of the metric and second order expansion of the equations
of motion in Fermi-Walker coordinates for general spacetimes, and in [12] they
found expansions of the connection coefficients, metric, and geodesic equations
in Fermi coordinates to third order, fourth order, and third order respectively,
and gave an iteration scheme for calculation to higher order. Marzlin investi-
gated weak gravitational fields in [5] and found the expansion of the Minkowski
metric with small perturbations to infinite order in Fermi-Walker coordinates.


For particular spacetimes and special timelike paths, some explicit transforma-
tion formulas are known. For example, in [3], exact coordinate transformations
were constructed for specific paths in de Sitter and Gödel spacetimes, but the
calculations for those examples were possible only because exact solutions for
certain spacelike geodesics could be obtained in closed form. This is not possi-
ble in general. In [13] the coordinate transformation mapping the Kerr metric
written in standard Boyer-Lindquist coordinates to its corresponding form in
Fermi coordinates was approximated for a path with fixed space coordinates,
but the methods used are not general.


To our knowledge, completely general and easily usable transformation formulas
to and from Fermi-Walker (and therefore Fermi) coordinates do not appear in
the literature. This paper fills that gap. We calculate an explicit formula for the
general transformation, and inverse transformation, from a priori coordinates
to Fermi-Walker coordinates for arbitrary spacetimes, in the form of Taylor ex-
pansions. The expansions are valid in sufficiently small neighborhoods of any
timelike path. In one direction, from a priori coordinates to Fermi-Walker co-
ordinates, the coefficients for the n + 2 order terms involve n-th order partial
derivatives of connection coefficients along the given timelike path in Fermi-
Walker coordinates. Thus, using the results of [11] and [12], the transformation
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law we provide in this direction is immediately available up fourth order for
Fermi-Walker coordinates and to fifth order for Fermi coordinates (in the case
that the timelike path is geodesic). The transformation formula for the other
direction, given by Theorem 3 below, from Fermi-Walker to a given coordinate
system, is completely self-contained and is exact in the case that the coordinate
transformation from Fermi-Walker coordinates is real analytic. We elaborate on
this matter in Section 4. Our methods are more direct than those of [13], which
require the solutions of systems of equations dependent on metric coefficients.
Our method may in principle be used to calculate coordinate expansions and
Jacobians to arbitrarily high order and is completely general.


In Section 2 we introduce notation and define Fermi-Walker coordinates. In Sec-
tion 3, using the fact that covariant derivatives of coordinate 1-forms are tensors,
we calculate the Jacobian matrix for the transformation from Fermi-Walker co-
ordinates to a priori coodinates. Section 4 gives the general transformations
laws in both directions. In Section 5 we illustrate the use of our formulas with
examples. Section 6 gives concluding remarks.


2. Fermi-Walker coordinates


Let (M, g) be a four-dimensional Lorentzian Cn manifold. For convenience
we assume that n ≥ 4, but if necessary the results that follow may be read-
ily adapted for smaller n. The Levi-Civita connection is denoted by ∇, and
throughout we use the sign conventions of Misner, Thorne and Wheeler [2]. A
timelike path is a smooth map from an open interval on the real line to M ,
whose tangent vector is timelike. A vector field X is said to be Fermi-Walker
transported along a timelike path σ if X satisfies the Fermi-Walker equations,
which in coordinate form are given by,


F~u(Xα) ≡ ∇~u Xα + Ωα
βXβ = 0 . (1)


Here ~u is the four-velocity along σ (i.e., the unit tangent vector), Ωα
β = aαuβ −


uαaβ, and aα is the four-acceleration. As usual greek indices run over 0, 1, 2, 3
and lower case latin over 1, 2, 3. It is well-known and easily verified that
F~u(~u) = ~0, and if vector fields X and Y are Fermi-Walker transported along
σ, the scalar product XβYβ is invariant along σ. Thus, a tetrad of vectors,
Fermi-Walker transported along σ and orthonormal at one point on σ, is nec-
essarily orthonormal at all points on the path. Moreover, such tetrads may be
constructed so that one of the orthonormal vectors is the tangent vector ~u.


Let σ(τ) denote the parameterization of σ by proper time τ , and let e0(τ),
e1(τ), e2(τ), e3(τ) be an orthonormal Fermi-Walker transported tetrad along σ,
with e0 = ~u. The Fermi-Walker coordinates x0, x1, x2, x3 relative to this tetrad
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on σ are given by,


x0
(


expσ(τ)(λ
jej(τ)


)


= τ


xK
(


expσ(τ)(λ
jej(τ)


)


= λK ,
(2)


where exponential map, expp(~v), denotes the evaluation at affine parameter 1
of the geodesic starting at the point p in the spacetime, with initial derivative ~v,
and it is assumed that the λj are sufficiently small so that the exponential maps
in (2) are defined. From the theory of differential equations, a solution to the
geodesic equations depends smoothly on its initial data so it follows from Eq. (2)
that Fermi-Walker coordinates are smooth. Moreover, it follows from [10] that
there exists a neighborhood U of σ on which the map (x0, x1, x2, x3) : U → R
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is well-defined, and it is a diffeomorphism onto the image of U . We refer to such
a map as a Fermi-Walker coordinate chart (xA, U) for σ. By construction, it is
a nonrotating coordinate system for the observer σ [15, 2, 16].


Let {yα} be an arbitrary coordinate system on M defined on an open set con-
taining a portion (or all) of the timelike path σ. We refer to {yα} as a priori


coordinates. We assume that the metric tensor is known in the a priori coor-
dinates, and that connection coefficients may therefore be readily computed in
these coordinates. Henceforth, we use Greek indices and lower case Latin indices
exclusively for the a priori coordinates. In addition, we adopt the convention
that the indices A, B, C, D, E take the values 0, 1, 2, 3, while the indices I, J, K, L
are restricted to 1, 2, 3, and we use these upper case Latin indices exclusively
for Fermi-Walker coordinates. Following this notation, the Fermi-Walker tetrad
vectors, e0(τ), e1(τ), e2(τ), e3(τ), along σ are given by,


eα
A = eα


A(τ) =
∂yα


∂xA


∣


∣


∣


σ
, (3)


where the right side is evaluated at x0 = τ and xK = 0. The four-by-four
matrix eα


A(τ) is thus the restriction to σ of the Jacobian of the coordinate
transformation yα = yα(xA). The inverse of this Jacobian matrix is given by


eA
α = eA


α (τ) ≡ ∂xA


∂yα


∣


∣


∣


σ
. (4)


Finally, we mention that the non zero connection coefficients in Fermi-Walker
coordinates, evaluated on σ, are given by [2]:


Γ0
K0 = ΓK


00 = aK . (5)


In the case that σ is a geodesic so that ~a = 0, all connection coefficients on σ
vanish. However, partial derivatives of connection coefficients, with respect to
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Fermi-Walker coordinates, on σ are in general not zero. In the case of Fermi co-
ordinates, these derivatives along with expansion of the metric tensor to second
order in the space variables, were computed in [1, 14]. Higher order derivatives
and higher order expansions of the metric in Fermi and Fermi-Walker coordi-
nates are given in [11, 12, 4].


3. The Jacobian


In this section, we begin by calculating Taylor polynomials, centered at a par-
ticular point on the timelike path σ(τ), for 1-form fields, in the Fermi-Walker
variables, x0, x1, x2, x3. Without loss of generality, we may expand about the
point σ(τ = 0). The Taylor expansion for a 1-form field VA(x0, x1, x2, x3) has
the form,


VA(x0, x1, x2, x3) = VA + xB ∂VA


∂xB
+


1


2
xCxB ∂2VA


∂xC∂xB
+ · · · (6)


where, on the right side, VA and its derivatives are evaluated at (τ, 0, 0, 0), with
τ = 0. Here and in what follows the ellipsis indicates either an infinite sum
or a finite sum with remainder (in the case that the field V is smooth but not
analytic).


The 0th order terms in Eq. (6) may be calculated directly from the Jacobian
on σ,


VA(τ, 0, 0, 0) = eα
A(τ)Vα(σ(τ)) (7)


Formulas for the higher order terms in (6) may be deduced from the fact that
covariant derivatives and multiple covariant derivatives of tensors are tensors,


∇BVA


∣


∣


∣


σ
= eβ


B eα
A ∇βVα (8)


∇C∇BVA


∣


∣


∣


σ
= eγ


C eβ
B eα


A ∇γ∇βVα (9)


· · ·
with analogous third and higher covariant derivative expressions. Thus, from
Eq. (8) it follows immediately that,


∂VA


∂xB
(τ, 0, 0, 0) = eβ


B eα
A ∇βVα + ΓC


ABeγ
CVγ , (10)


Similarly, from Eq. (9),


∂2VA


∂xC∂xB
(τ, 0, 0, 0) = eγ


C eβ
B eα


A ∇γ∇βVα + ΓD
AB,CVD + ΓD


AB


∂VD


∂xC


+ ΓD
AC∇DVB + ΓD


CB∇AVD


(11)
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Combining Eq. (11) with Eq. (10) gives,


∂2VA


∂xC∂xB
(τ, 0, 0, 0) = eγ


C eβ
B eα


A ∇γ∇βVα + ΓD
AB,C eδ


DVδ


+ ΓD
AB[eγ


C eδ
D ∇γVδ + ΓE


DC eǫ
EVǫ]


+ ΓD
AC eδ


D eβ
B∇δVβ + ΓD


CB eα
A eδ


D∇αVδ


(12)


where ΓA
BD,C ≡ ∂


∂xC ΓA
BD and all terms on the right side are evaluated at σ(τ).


Explicit formulas for nth order partial derivatives with respect to Fermi-Walker
coordinates of the 1-form field {VA} may be similarly obtained in terms of nth
order covariant derivatives in the a priori coordinate system {yα} and n − 1st
and lower order derivatives of the connection coefficients with respect to Fermi-
Walker coordinates at the point σ(τ). Thus, the Taylor coefficients in Eq. (6)
are given by formulas in the a priori coordinates on σ.


Theorem 1. In a neighborhood of a point σ(τ) on the timelike path σ, the
Jacobian of the transformation from Fermi-Walker coordinates (x0, x1, x2, x3)
to a priori coordinates (y0, y1, y2, y3) is given by,


Jα
A(x) ≡ ∂yα


∂xA
(x0, x1, x2, x3)


= eα
A + xB


{


ΓC
ABeα


C − eβ
B eη


A Γα
βη


}


+
1


2
xCxB


{


eγ
C eβ


B eη
A


(


Γµ
γηΓα


βµ + Γµ
γβΓα


µη − Γα
βη,γ


)


+ eα
DΓD


AB,C + ΓD
AB


(


ΓE
DC eα


E − eγ
C eη


D Γα
γη


)


− ΓD
AC eδ


D eβ
BΓα


βδ − ΓD
CB eµ


A eη
DΓα


µη


}


+ · · ·


(13)


Proof. Without loss of generality, take τ = 0. The Taylor expansion given by
Eq. (6) is valid in some neighborhood Bσ(0) of σ(0). Let a point p ∈ Bσ(0)


have a priori coordinates (y0, y1, y2, y3) and let V be a 1-form field on Bσ(0)


whose components relative to {yα} are Vα(y0, y1, y2, y3). Corresponding to the
a priori coordinates (y0, y1, y2, y3) there is a unique set of Fermi-Walker coordi-
nates (x0, x1, x2, x3). Then by virtue of this correspondence, Eq. (6) determines
a map J which transforms the components Vα(y0, y1, y2, y3) of V at p to the
Fermi-Walker components VA(x0, x1, x2, x3).


We may in particular apply the map J to each of the following elements of the
canonical basis of the contangent space at p:
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dy0
∣


∣


∣


p
= (1, 0, 0, 0)


dy1
∣


∣


∣


p
= (0, 1, 0, 0),


dy2
∣


∣


∣


p
= (0, 0, 1, 0),


dy3
∣


∣


∣


p
= (0, 0, 0, 1)


(14)


Eq. (6) may be used to compute J(dyα
∣


∣


∣


p
) to find the Fermi-Walker coordinates


of dyα
∣


∣


∣


p
, that is, the α-th row, (∂yα/∂x0, ∂yα/∂x1, ∂yα/∂x2, ∂yα/∂x3), of the


Jacobian matrix of the transformation yα = yα(x0, x1, x2, x3). In matrix form,


the A-th component, Jα
A(x), at (x0, x1, x2, x3) of J(dyα


∣


∣


∣


p
) is given by,


Jα
A(x) =


∂yα


∂xA
(x0, x1, x2, x3) (15)


Now, setting Vη = δα
η (the delta function) in Eqs. (7), (10), (12), and (6), so


that ∇βVη = −Γα
βη(σ(0)), yields Eq. (13) for the Jacobian matrix.�


4. Transformation of coordinates


In this section, we use the Jacobian (13) to find coordinate transformations of
the form yα = yα(x0, x1, x2, x3) and xA = xA(y0, y1, y2, y3). Let the Taylor
expansion for yα be given by,


yα(x0, x1, x2, x3) = yα
0 + bα


AxA + cα
ABxAxB + dα


ABCxAxBxC + · · · (16)


where yα
0 = yα(0, 0, 0, 0) = yα(σ(0)). Taking partial derivatives of both sides of


Eq. (16) with respect to xA and comparing with Eq. (13) yields the following
coefficients to third order,


bα
A = eα


A


2cα
AB = ΓC


ABeα
C − eβ


B eη
A Γα


βη


3!dα
ABC = eγ


C eβ
B eη


A


(


Γµ
γηΓα


βµ + Γµ
γβΓα


µη − Γα
βη,γ


)


+ eα
DΓD


AB,C + ΓD
AB


(


ΓE
DC eα


E − eγ
C eη


D Γα
γη


)


− ΓD
AC eδ


D eβ
BΓα


βδ − ΓD
CB eµ


A eη
DΓα


µη


(17)
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Remark 1. Eq (16) applied to yα(x0, 0, 0, 0) gives the expansion σ(τ) =
σ(0) + σ′(0)τ + 1


2σ′′(0)τ2 + · · · . Similarly, the expansion for yα(0, x1s, 0, 0)
gives coordinates for points lying on a spacelike geodesic orthogonal to σ(τ) at
τ = 0.


For the purpose of inverting the series (16), we employ of the following notation,


Xα ≡ eα
AxA = bα


AxA (18)


Y α ≡ yα(x0, x1, x2, x3) − yα
0 (19)


2Cα
βγ ≡ 2cα


ABeA
β eB


γ = ΓC
AB eA


β eB
γ eα


C − Γα
βγ (20)


3!Dα
δλη ≡ 3!dα


ABCeA
δ eB


λ eC
η


= −Γα
δλ,η + Γα


µλΓµ
δη + Γα


δµΓµ
λη + ΓD


AB,C eA
δ eB


λ eC
η eα


D


+ ΓD
AB


[


−eA
δ eB


λ eµ
DΓα


µη + ΓE
DC eA


δ eB
λ eC


η eα
E


]


−
[


ΓD
ACΓα


λµ eA
δ eC


η + ΓD
CBΓα


µδ eB
λ eC


η


]


eµ
D (21)


with analogous definitions for higher order coefficients. Note that the coefficients
Cα


βγ , Dα
δλη, etc. are symmetric in the subscript indices. Eq. (16) can now be


rewritten in the form of a series that is easily invertible,


Y α = Xα + Cα
βγXβXγ + Dα


δληXδXλXη + · · · (22)


It is readily verified that the Taylor expansion for Xα is,


Xα = Y α − Cα
βγY βY γ + (2Cα


βλCβ
δη − Dα


δλη)Y δY λY η + · · · (23)


Thus, from Eqs. (18) and (19) we may write,


xA = eA
α (yα − yα


0 ) − eA
αCα


βγ(yβ − yβ
0 )(yγ − yγ


0 )


+ eA
α (2Cα


βλCβ
δη − Dα


δλη)(yδ − yδ
0)(y


λ − yλ
0 )(yη − yη


0 ) + · · ·
(24)


Remark 2. Eq. (24) may be easily recast as an expansion about any fixed
point σ(τ0) on σ(τ). This is accomplished by redefining eA


α ≡ eA
α (τ0) and


yα
0 ≡ yα(σ(τ0)) in Eqs. (17), (18) - (21), (24), and replacing x0 by x0 − τ0


in Eq. (24).


For Theorem 2 below, we now make the assumption that the tangent vector
∂/∂y0 is timelike in U so that y0 ≡ t may be selected as a time coordinate in
the the a priori coordinate system (t, y1, y2, y3). We assume further that τ is an
increasing function τ(t) of t along σ so that σ may be parameterized by t. This
excludes causality violations along σ. Employing a standard abuse of notation,
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we write σ(t) for this parameterization of σ (as opposed to σ(τ(t))). Similarly,
the Fermi-Walker tetrad eα(τ) may be reparameterized by t and we denote that
parameterization by eα(t) and Eqs. (20) and (21) are correspondingly modified.


Theorem 2. With the notation and assumptions of the preceding paragraph,
the Taylor expansion for the transformation from a priori coordinates to Fermi-
Walker coordinates in a neighborhood of σ is given by,


xA(t, y1, y2, y3) = τ(t)δA
0


+ eA
k (t)(yk − yk


0 (t)) − eA
α (t)Cα


jk(yj − yj
0(t))(y


k − yk
0 (t))


+ eA
α (t)(2Cα


βjC
β
ik − Dα


ijk)(yi − yi
0(t))(y


j − yj
0(t))(y


k − yk
0 (t))


+ · · · ,


(25)


where as before i, j, k = 1, 2, 3, and yα
0 (t) ≡ yα(σ(t)).


Proof. For a given point p ∈ U with a priori coordinates (t, y1, y2, y3), Eq.
(24) may be revised so as to be an expansion about the point σ(t). This is
accomplished by redefining eA


α ≡ eA
α (t) and yα


0 ≡ yα(σ(t)) in Eqs. (17) - (21).
Since y0


0 = t = y0, Eq. (24) becomes a polynomial in y1, y2, y3 with coefficients
that depend on t yielding Eq. (25).�


Remark 3. For the purpose of numerical computations, the expressions for the
coefficients in Eq. (25), as well as for Eqs. (13), (16), and (24) may be simplified
by using Eqs. (33), (34), and (35) which appear below in the proof of Theorem 3.


Remark 4. Fermi-Walker coordinates along σ(t) determine a foliation of a
neighborhood of σ by space slices, each with constant τ = x0 coordinate. Given
the coordinates (t, y1, y2, y3) of a point p near σ(t), Eq. (25) may be used to
locate the space slice containing p by estimating x0.


We next find a series for the inverse transformation to Eq. (25). In Theorem 3


below, δ
(α)
γ represents the coordinate 4-tuple for dyα given by Eqs. (14). The


parentheses enclosing the index α indicate that δ
(α)
γ should be understood as a


(0, 1) tensor in the calculations of the coefficients in (26) below, rather than as
a (1, 1) tensor.


Theorem 3. For a point p with Fermi-Walker coordinates (τ, x1, x2, x3) suffi-
ciently close to the timelike path σ(τ), the a priori coordinates (y0, y1, y2, y3)
of p are given by,
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yα(τ, x1, x2, x3) = yα(τ, 0, 0, 0) + eα
J1


(τ)xJ1


+
1


2
(∇µ2


δ(α)
µ1


)eµ1


J1
(τ)eµ2


J2
(τ)xJ1xJ2


+
1


3!
(∇µ3


∇µ2
δ(α)
µ1


)eµ1


J1
(τ)eµ2


J2
(τ)eµ3


J3
(τ)xJ1xJ2xJ3 + · · ·


+
1


n!
(∇µn


· · ·∇µ2
δ(α)
µ1


)eµ1


J1
(τ) · · · eµn


Jn
(τ)xJ1 · · ·xJn + · · · ,


(26)


where yα(τ, 0, 0, 0) = σα(τ). If yα is an analytic function of (τ, x1, x2, x3), Eq.
(26) is an infinite series. If not, it should be interpreted as a Taylor polynomial
as indicated above.


Before proving Theorem 3 we give the following Corollary, which is an imme-
diate consequence of Theorem 3. However, we also include an independent,
elementary proof to which we refer in the proof of Theorem 3.


Corollary. With the same assumptions as in Theorem 3, yα may be expressed
directly in terms of the a priori connection coefficients as follows,


yα(τ, x1, x2, x3) = yα(τ, 0, 0, 0) + eα
K(τ)xK


− 1


2
Γα


βγ(σ(τ))eβ
J (τ)eγ


K(τ)xJxK


+
1


3!


{


2Γα
βµ(σ(τ))Γµ


γδ(σ(τ)) − Γα
βγ,δ(σ(τ))


}


× eδ
I(τ)eβ


J (τ)eγ
K(τ)xIxJxK + · · ·


(27)


Proof of the Corollary. Eqs. (2) may be expressed as the evaluation at s = 1
of the solution yα(s) of the initial value problem,


d2yα


ds2
+ Γα


βγ


dyβ


ds


dyγ


ds
= 0


yα(0) = σα(τ)


dyα


ds
(0) = xKeα


K(τ)


(28)


From the initial conditions, the Taylor expansion for yα(s) has the form,


yα(s) = σα(τ) + eα
K(τ)xKs + aα


2


s2


2
+ aα


3


s3


3!
+ · · · (29)


Similarly,
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Γα
βγ(y(s)) = Γα


βγ(σ(τ)) + Γα
βγ,δ(σ(τ))(yδ(s) − σδ(τ)) + · · · (30)


In a standard way, substituting Eqs. (29) and (30) into the geodesic equation
(28), to solve for coefficients yields,


yα(s; τ, x1, x2, x3) = σα(τ) + seα
K(τ)xK


− s2


2
Γα


βγ(σ(τ))eβ
J (τ)eγ


K(τ)xJxK


+
s3


3!


{


2Γα
βµ(σ(τ))Γµ


γδ(σ(τ)) − Γα
βγ,δ(σ(τ))


}


× eδ
I(τ)eβ


J (τ)eγ
K(τ)xIxJxK + · · ·


(31)


The result now follows by setting s = 1. �


Remark 5. Using the methods of the preceding proof, it is straightforward to
compute higher order terms in Eq. (27). For a well-written treatment of the
analogous development of Riemann normal coordinates see [17, 18].


Proof of Theorem 3. The initial value problem (28) may be reformulated in
Fermi-Walker coordinates as,


d2XA


ds2
+ ΓA


BC


dXB


ds


dXC


ds
= 0


X(0) = (τ, 0, 0, 0)


dX


ds
(0) = (0, x1, x2, x3)


(32)


where τ is fixed. The solution is a linear function of the affine parameter s given
by X(s) = (τ, sx1, sx2, sx3), which together with Eq. (32) yields,


ΓA
IJxIxJ = 0 (33)


at any point on σ and all choices of (x1, x2, x3). Since ΓA
IJ is symmetric in its


two lower indices, and since Eq. (33) holds for all x, it follows that ΓA
IJ = 0, a


fact already noted in the remarks preceding Eq. (5). However, differentiating
the geodesic equation in (32) with respect to s and using the linearity of the
solution yields,


ΓA
IJ,KxIxJxK = 0 (34)


at any point on σ, and differentiating repeatedly yields the analogous higher
order identities,
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ΓA
J1J2,J3···Jn


xJ1 · · ·xJn = 0, (35)


where the comma indicates that the connection coefficient is differentiated with
respect to xJ3 , · · · , xJn , and the result is then evaluated at any point on σ.


For fixed τ , the Taylor expansion for yα(τ, x1, x2, x3) is given by,


yα(τ, x1, x2, x3) = yα(τ, 0, 0, 0) +
∂yα


∂xK
(τ, 0, 0, 0)xK + · · · (36)


Let δ
(α)
γ represent the coordinate 4-tuple for dyα given by Eqs. (14), as described


above. Then V
(α)
K = Jγ


Kδ
(α)
γ = ∂yα/∂xK gives the components of the same 1-


form in Fermi-Walker coordinates. Thus, Eq. (36) may be written as,


yα(τ, x1, x2, x3) =yα(τ, 0, 0, 0) + V
(α)
K (τ, 0, 0, 0)xK


+
∂V


(α)
K


∂xJ
(τ, 0, 0, 0)xKxJ


+
1


3!


∂2V
(α)
K


∂xI∂xJ
(τ, 0, 0, 0)xIxKxJ + · · ·


(37)


Combining Eqs. (7), (10), (11) with Eqs. (33) and (34) gives the following
formulas for the first, second, and third order terms in Eq. (37),


V
(α)
K (τ, 0, 0, 0)xK = δ(α)


µ1
eµ1


K (τ)xK = eα
K(τ)xK


∂V
(α)
K


∂xJ
(τ, 0, 0, 0)xJxK =(∇µ2


δ(α)
µ1


) eµ2


J (τ)eµ1


K (τ)xJxK


∂2V
(α)
K


∂xI∂xJ
(τ, 0, 0, 0)xIxKxJ =(∇µ3


∇µ2
δ(α)
µ1


)eµ3


I (τ)eµ2


J (τ)eµ1


K (τ)xIxJxK


(38)


The analogous formula for the general nth order coefficients may be deduced
using Eq. (35) and the higher order analogs to Eq. (9) as follows,


(∇Jn
· · · ∇J2


VJ1
)xJ1 · · ·xJn =


(


∂


∂xJn


∇Jn−1
· · · ∇J2


VJ1


)


xJ1 · · ·xJn


=


(


∂


∂xJn


∂


∂xJn−1


∇Jn−2
· · · ∇J2


VJ1


)


xJ1 · · ·xJn


= · · ·


=
∂n−1VJ1


∂xJn · · · ∂xJ2


xJ1 · · ·xJn ,


(39)
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where all multiple derivatives and covariant derivatives are evaluated at (τ, 0, 0, 0).
�


Remark 6. A derivation of the transformation formulas in this paper may be
carried out in the reverse direction. An alternative derivation of Eq. (16), and
thereafter Eq. (13), is possible by starting with Eq. (27) or (26). Eq. (16)
results by computing Taylor expansions in τ of the coefficients of Eq. (27) and
collecting terms. For that purpose, Eq. (1) applied to eα


K(τ) may be used to
compute deα


K(0)/dτ . These derivatives may be expressed in terms of connection
coefficients in Fermi-Walker coordinates.


5. Examples


In this section we illustrate Theorems 2 and 3 of the previous section using three
examples. In the first example, Example 1, we evaluate Eq. (25) to O(2) for the
case of a circular geodesic orbit around the central mass M in Schwarzschild
spacetime. In Example 2 we use Eq. (27) to calculate yα(τ, x1, x2, x3) for a
timelike trajectory with fixed space coordinates in the de Sitter universe, ob-
taining to O(4) Chicone and Mashhoon’s [3] exact result. In the third example,
we compute coordinates relative to a Zero Angular Momentum Observer frame
in Kerr spacetime.


Example 1. We take as the a priori coordinates the usual coordinates in
Schwarzschild spacetime, those of the Schwarzschild observer, y0 = t, y1 =
r, y2 = θ, y3 = φ, in which the metric is given as,


ds2 = −
(


1 − 2M


r


)


dt2 +
dr2


(


1 − 2M


r


) + r2(dθ2 + sin2 θdφ2) (40)


In these coordinates, the circular geodesic orbit around the central mass, with
radius corresponding to radial coordinate r0, is given by,


σ(t) = (t, r0, π/2, βt) (41)


where β ≡
√


M/r3
0. We note that r0 > 3M is necessary for a timelike geodesic


orbit, and that stable orbits are possible only for r0 > 6M . Thus, in the lan-
guage of Theorem 2, y1


0(t) = r0, y2
0(t) = π/2, and y3


0(t) = βt.


It is easily computed that,


τ = τ(t) =


√


r0 − 3M


r0
t ≡ αt. (42)


For ease of notation, let,


13







X = 1 − 2M


r0


ǫ =
r0 − 2M


√


r0(r0 − 3M)


l = r0


√


M


r0 − 3M
,


(43)


so that ǫ is the energy per unit mass of a test particle on the orbit, and l is
its angular momentum per unit mass. A version of Eq. (4) for this example is
[7, 9],


e0 = (ǫ, 0, 0,−l) , (44)


e1 =


(


l
√


X sin(αβt)


r0
,
cos(αβt)√


X
, 0,− ǫr0 sin(αβt)√


X


)


, (45)


e2 = (0, 0, r0, 0) , (46)


e3 =


(


−l
√


X cos(αβt)


r0
,
sin(αβt)√


X
, 0,


ǫr0 cos(αβt)√
X


)


, (47)


where the ordering of components is given by (t, r, θ, φ). Using Eqs. (20) and
(25) we readily obtain the functions xA(t, r, θ, φ) to O(2),


x0 = αt − l


r0
r (φ − βt) + · · · , (48)


x1 = e1
r(r − r0) +


e1
φ


r0
(φ − βt)


+
e1


r


2


[


Γr
rr(r − r0)


2 + Γr
θθ(θ − π/2)2 + Γr


φφ(φ − βt)2
]


+ · · · , (49)


x2 = r(θ − π/2) + · · · , (50)


x3 = e3
r(r − r0) +


e3
φ


r0
r(φ − βt)


+
e3


r


2


[


Γr
rr(r − r0)


2 + Γr
θθ(θ − π/2)2 + Γr


φφ(φ − βt)2
]


+ · · · , (51)


where the Γα
βγ are the Schwarzschild connection coefficients evaluated at r = r0


and θ = π/2. It is straightforward to compute higher order terms, but our
purpose here is merely illustration of method.
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Following Remark 4, we see from Eq. (48) that


∣


∣x0 − αt
∣


∣ ≈ l


r0
r |φ − βt| . (52)


The left side of Eq. (52) vanishes at points on the circular orbit and increases
with azimuthal deviation from βt off the orbit and also with increasing radial
distance from the central mass. To second order, a point with Schwarzschild
coordinates (t, r, θ, φ) = (t, r, θ, βt) lies on the space slice consisting of all points
(sufficiently close to σ) with Fermi time coordinate x0 = αt. Thus, ignoring
higher order corrections, we see that the two-dimensional surface consisting of
fixed time coordinate t and fixed φ = βt is simultaneous both for Schwarzshild
and Fermi observers, i.e., it lies in the intersection of the Fermi and Schwarzshild
space slices at Schwarzschild time t. As r0 → ∞, x0 → t and the simultaneous
events in Fermi coordinates become simultaneous for the Schwarzschild observer
at spacelike infinity, as expected.


Example 2. The de Sitter metric is given by,


ds2 = −dt2 + e2Ht
[


d(y1)2 + d(y2)2 + d(y3)2
]


, (53)


where H is a constant. Consider the timelike path σ(t) = (t, y1, y2, y3) with
fixed a priori space coordinates (y1, y2, y3). In Fermi coordinates, this path
is parameterized as σ(τ) = (τ, 0, 0, 0). Note that from Eq. (53), τ = t. An
orthonormal tetrad along σ(τ) is given by,


e0 = (1, 0, 0, 0), (54)


e1 = (0, e−Ht, 0, 0), (55)


e2 = (0, 0, e−Ht, 0), (56)


e3 = (0, 0, 0, e−Ht). (57)


This tetrad is parallel transported along the observer’s geodesic (Chicone and
Mashhoon [3]). The connection coefficients are


Γi
it = H, Γt


ii = e2HtH, i = 1, 2, 3, (for y1, y2, y3). (58)


The O(4) contribution in Eqs. (26) and (27) is given by


1


4!


(


∇ν∇µ∇βδ(α)
γ


)


eν
Ieµ


Jeβ
Keγ


LxIxJxKxL =
(


−Γ
(α)
γβ,µ,ν + 4Γ


(α)
σβ,νΓσ


γµ + 2Γ
(α)
σβΓσ


γµ,ν + Γ
(α)
γβ,λΓλ


νµ


− 4Γ
(α)
σβΓσ


λγΓλ
νµ + 2Γ


(α)
σλΓσ


γµΓλ
βν


)


eν
Ieµ


Jeβ
Keγ


LxIxJxKxL. (59)
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Using Eq. (27) and (59) above, we obtain after simple calculation (a large
number of terms vanish)


t = yt = τ − 1


H


[


(HR)2


2
+


(HR)4


12
+ O(6)


]


, (60)


yi = e−Hτ


[


xi +
xi


3
(HR)2 + O(5)


]


, (61)


where HR = H
√


(x1)2 + (x2)2 + (x3)2. Our results above agree with Eqs. (26)
and (27) of ref. [3] to fourth order. It is also not difficult to deduce a recurrence
relation for the nth order terms for Eq. (26) in this paper, thus recovering the
exact result in ref. [3] for this example.


Example 3. The Kerr metric in Boyer-Lindquist coordinates is given by


ds2 = −ρ2∆


Σ
dt2 +


Σ


ρ2
sin2 θ(dφ − ωdt)2 +


ρ2


∆
dr2 + ρ2dθ2, (62)


where


ρ2 = r2 + a2 cos2 θ, (63)


∆ = r2 − 2Mr + a2, (64)


Σ =
(


r2 + a2
)2 − a2∆sin2 θ, (65)


ω = − gtφ


gφφ


=
2Mar


Σ
. (66)


We consider a Zero Angular Momentum Observer (ZAMO) (or a Locally Non
Rotating Frame (LNRF) [19]) at some fixed r and θ. The ZAMO’s tetrad vectors
are


e0 =


(
√


Σ


ρ2∆
, 0, 0,


2Mar
√


ρ2∆Σ


)


, (67)


e1 =


(


0,


√


∆


ρ2
, 0, 0


)


, (68)


e2 =


(


0, 0,
1
√


ρ2
, 0


)


, (69)


e3 =


(


0, 0, 0,


√


ρ2


Σ sin2 θ


)


, (70)


where the ordering of components is given by (t, r, θ, φ). We now go to the
equatorial plane, θ = π/2, and fix the other coordinates t = 0, r = r0, φ = 0.
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Eqs. (67)-(70), evaluated at that spacetime point give the initial condition, or
the τ = 0 value, of a Fermi-Walker transported tetrad along the circular path
of a zero angular momentum observer with tangent vector e0. Using Eq. (27)
with y0 = t, y1 = r, y2 = θ, y3 = φ, and the above tetrad at τ = 0, we obtain


t = −Γt
rφer


1e
φ
3x1x3 + · · · , (71)


r = r0 + er
1x


1 − 1
2Γr


rr (er
1)


2 (
x1
)2 − 1


2Γr
θθ


(


eθ
2


)2 (
x2
)2


− 1
2Γr


φφ


(


eφ
3


)2
(


x3
)2


+ · · · , (72)


θ = π
2 + eθ


2x
2 − Γθ


θre
θ
2e


r
1x


1x2 + · · · , (73)


φ = eφ
3x3 − Γφ


φre
φ
3er


1x
1x3 + · · · , (74)


where at θ = π/2, r = r0, letting ∆(r0) ≡ ∆0, we have


Γt
rφ = −aM(a2 + 3r2


0)


r2
0∆0


, Γr
rr =


a2 − r0M


r0∆0
, (75)


Γr
θθ = −∆0


r0
, Γr


φφ = − (r3
0 − a2M)∆0


r4
0


, (76)


Γθ
θr =


1


r0
, Γφ


φr =
r2
0(r0 − 2M) − a2M


r2
0∆0


. (77)


6. Concluding remarks


Theorem 3 gives the exact transformation formula from Fermi-Walker coordi-
nates to arbitrary coordinates in general spacetimes. In particular, Eq. (26)
gives explicit coefficients for expansions in terms of Fermi-Walker coordinates
to arbitrarily high order. The transformation in the reverse direction is given
by Theorem 2, with the Jacobian given by Eq. (13).


Some generalizations of the results of this paper are straightforward. Extensions
to Riemannian manifolds and to Lorentzian manifolds of arbitrary dimension
n > 2 are easily carried out. Using the methods of this paper, extensions to
submanifolds beyond timelike paths are also possible. A version of Theorem 3
is readily available for the case of Riemann normal coordinates on a Rieman-
nian manifold M by applying Theorem 3 to the product manifold of M with
the real line, with a suitable product metric. We note that the expansion of
a 1-form field beginning with Eq. (6) is easily generalized to arbitrary tensor
fields, including the metric tensor, but Fermi-Walker expansions for the metric
tensor are already available via different methods [12].
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Rigorous error estimates for the Taylor polynomials of the coordinate trans-
formations developed in this paper would be useful in some circumstances, as
would a rigorous lower bound for the radius of a tubular neighborhood of an
arbitrary timelike path on which Fermi-Walker coordinates are valid. Different
techniques are required for the solution of those problems.
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