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For an infinitely extended system consisting of a finite subsystem and several reser-
voirs, the time evolution of states is studied. Initially, the reservoirs are prepared
to be in equilibrium with different temperatures and chemical potentials. If the
time evolution is L1-asymptotic abelian, (i) steady states exist, (ii) they and their
relative entropy production are independent of the way of division into a subsystem
and reservoirs, and (iii) they are stable against local perturbations. The explicit
expression of the relative entropy production and a KMS characterization of the
steady states are given. And a rigorous definition of MacLennan-Zubarev ensem-
bles is proposed. A noncommutative analog to the fluctuation theorem is derived
provided that the evolution and an initial state are time reversal symmetric.


1 Introduction


The understanding of irreversible phenomena including nonequilibrium steady
states is a longstanding problem of statistical mechanics. Various theories
have been developed so far1. One of promising approaches deals with in-
finitely extended dynamical systems2,3,4. Not only equilibrium properties, but
also nonequilibrium properties has been rigorously investigated. The latter
include analytical studies of nonequilibrium steady states, e.g., of harmonic
crystals5,6, a one-dimensional gas7, unharmonic chains8, an isotropic XY-
chain9, a one-dimensional quantum conductor10 and an interacting fermion-
spin system11.


Entropy production has been rigorously studied as well (see [11-17] , and
the references therein). Based on the idea of Ichiyanagi18, Ojima, Hasegawa
and Ichiyanagi12 derived a formula relating the relative entropy to the ther-
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modynamic entropy production for an infinitely extended driven system:


Ep(t) =
d


dt
S (ω|ωt) , (1)


where ωt is the state at time t, ω is the initial equilibrium state and S (ω|ωt)
is the C∗ generalization of the relative entropy19−22,2 a . Ojima13 generalized
this formula to include initial states ω where reservoirs are in different equi-
libria. Convergence of the entropy production to the steady-state value was
investigated as well. Recently, Jakšić-Pillet15 and Ruelle14 rediscovered and
extended his results. Also Jakšić and Pillet obtained a condition for strict
positivity of the entropy production11 (see also [16]).


On the other hand, recent progress in dynamical systems approach to
classical nonequilibrium statistical mechanics reveals a new symmetry of en-
tropy production fluctuations, known as the fluctuation theorem. It was found
numerically by Evans, Cohen and Morris23 and shown rigorously for ther-
mostated systems by Gallavotti and Cohen24. Roughly speaking, this theorem
asserts that the probability of observing the entropy production to be a(>0)
during a time interval t is exp(at) times larger than the probability of observ-
ing it to be −a asymptotically in the limit of large t. It was then extended
to transient states25, to stochastically driven systems26,27,28 and to open con-
servative systems29,31. The related topics have been extensively investigated
(see e.g., references in [29,30] ). However, its quantum generalization has not
been well studied.


In this article, the time evolution of states is investigated for a C∗ algebraic
system consisting of several (infinitely extended) heat reservoirs and a finite
subsystem with L1 asymptotic abelian property, which means that the time
evolution *-automorphism τt satisfies


∫ +∞


−∞
dt‖[τt(A), B]‖ < +∞ (2)


for enoughly many dynamical variables A and B. Note that this is one of
mixing conditions. Along the line of thoughts by Spohn and Lebowitz5, we
follow the evolution of states starting from initial states where heat reservoirs
are in equilibrium with different temperatures and chemical potentials. Then,
nonequilibrium steady states are derived as t → ±∞ limits in the weak sense.
Weak convergence of the states is guaranteed by the L1 asymptotic abelian
property. When a few conditions are satisfied in addition, the steady states
are shown to be KMS (Kubo-Martin-Schwinger) states with respect to certain


aThroughout this article, we follow Araki’s definition of relative entropy S (ω|ωt)19. It is
slightly different from the one, SBR (ωt|ω), e.g., used in 2: : SBR (ωt|ω) = −S (ω|ωt).
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*- automorphism. More interestingly, the steady states correspond to the ones
proposed by MacLennan32 and Zubarev33.


In addition, a quantum analog to the fluctuation theorem is derived for the
relative entropy production. As will be explained later, the relative entropy is
the average of the logarithm of the so-called relative modular operator, which
acts on states but cannot be reduced to left nor right multiplications (such
operators are sometimes called superoperators34). Hence, this superoperator
may be regarded as a relative entropy operator although it is not a standard
dynamical variable. We then study fluctuations of the logarithm of the relative
modular operator and show that their distribution has a symmetry claimed
by the fluctuation theorem. Note that Prigogine and his coworkers34 have
been continuously investigating a realization of entropy as a superoperator,
i.e., an operator acting on density matrices but not represented as standard
dynamical variables. Also Ojima, Hasegawa and Ichiyanagi12 studied a free
energy operator represented by the relative modular operator.


As previously mentioned, we mainly consider quantum dynamical systems
with L1 asymptotic abelian property. This condition is vaild for free Bose and
Fermi Gasses in dimensions greater than or equal to three2, certain coupled
quantum oscillators35. It is known that the condition is not valid for the one
dimensional XY model, and for some interacting fermions36. Thus in view
of mathematical rigour, our analysis is restricted to special class of quantum
systems. However recent results of spin fermion models due to Jakšić and
Pillet in [11] suggest that what we describe here is physically generic. Moreo-
ever, by sticking to the condition of L1 asymptotic abelian property, we may
exhibit an overview of nonequilibrium steady states in a concise manner.


The rest of this paper is arranged as follows. Sec. 2 is devoted to the
description of a C∗ algebra corresponding to the system. We specify precisely
the decomposition of the system into several heat reservoirs and a finite sub-
system. Corresponding to each decomposition, initial states are prepared as
KMS states, where heat reservoirs are in equilibrium with different tempera-
tures and chemical potentials. Then, the L1-asymptotic abelian property and
other assumptions on dynamics are explained. In Sec. 3, the convergence of
states at time t to steady states as t → ±∞ is shown. The steady states do
not depend on the choice of initial states of the finite subsystem nor on the
way of division. The steady states at t = ±∞ are time reversal of each other.
And the steady states are ergodic in a sense that they are stable against local
perturbations in both directions of time. We remark that the steady states
are related to the initial states via Møller morphisms. In Sec. 4, the defini-
tion of the relative entropy in C∗ algebra and the implications of the previous
works12,15 are summarized. And steady-state entropy production is shown to
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be independent of the way of division of the system into heat reservoirs and a
finite subsystem. Then, the fluctuation theorem for the logarithm of the rela-
tive modular operator is derived. In Sec. 5, the existence of a system division
with invertible Møller morphisms is assumed and we show that the steady
states may be characterized as MacLennan-Zubarev nonequilibrium ensem-
bles in a sense that they are KMS states with respect to a *-automorphism,
whose generator is represented by a linear combination of Zubarev’s local in-
tegrals of motion33 in a certain sense. Sec. 6 is devoted to the summary. Here
we give only the results and the proofs will be given elsewhere39.


2 Large Quantum Systems


2.1 Field algebra


The system S in question is described by a field algebra F2,37. Namely, F is
a C∗ algebra where the following *-automorphisms are defined:


(i) a strongly continuous one-parameter group of *- automorphisms τt


(t ∈ R), which describes time-evolution.


(ii) a strongly continuous L-parameter group of *- automorphisms α~ϕ


(~ϕ ∈ RL) satisfying α~ϕ1α~ϕ2 = α~ϕ1+~ϕ2 , which represent the gauge
transformation.


(iii) an involutive *-automorphism Θ, which is represented as Θ = α~ϕ0


with some ~ϕ0 ∈ RL.


The groups τt, α~ϕ and Θ are interrelated as


Θτt = τtΘ, Θα~ϕ = α~ϕΘ, τtα~ϕ = α~ϕτt


for all t ∈ R and ~ϕ ∈ RL. A subalgebra A ⊂ F which is invariant under
the action of α~ϕ (~ϕ ∈ RL) is called the observable algebra, which describes
observable physical quantities. The *-automorphism Θ defines the even and
odd subalgebras, respectively, F+ and F−:


F± = {A ∈ F ; Θ(A) = ±A} .


When the system involves fermions, even and odd subalgebras correspond to
dynamical variables which are sums of products of, respectively, even and odd
number of fermion creation and/or annihilation operators.


Let ~eλ ∈ RL be the unit vector whose λth element is 1, then, because
of (ii), the *-automorphisms αs~eλ


defines a strongly continuous group and its
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generator will be denoted as gλ (λ = 1, · · ·L)


gλ(A) = lim
s→0


αs~eλ
(A)−A


s


(∀A ∈ D(gλ)
)


(3)


where D(gλ) is the domain of gλ and the limit is in norm. And we assume


(iv) D(δ) ⊂ D(gλ) (λ = 1, 2, · · ·L), where δ is the generator of the time
evolution *-automorphism τt and D(δ) is its domain dense in F .


In addition to the gauge symmetry, the system is assumed to possess time
reversal symmetry:


(v) There exists an involutive antilinear *-automorphism ι such that


ιτtι = τ−t . (4)


2.2 Decomposition of the system and initial states


We consider the situation where the system S can be decomposed into N
independent infinitely extended subsystems Sj (j = 1, · · ·N), which play a
role of heat reservoirs, and a finite-degree-of-freedom subsystem S0 interacting
with all the others. More precisely, the algebra F is represented as a tensor
product of N infinite dimensional subalgebras Fj (j = 1, · · ·N) of Sj , and a
finite dimensional subalgebra F0 of S0:


F = F0 ⊗F1 ⊗ · · · ⊗ FN , (5)


such that the following conditions are satisfied:


(S1) There exists a gauge-invariant time evolution group τV
t (t ∈ R) which is


a perturbation to τt by a selfadjoint element −V ∈ A∩D(δ) and which is
a product of strongly continuous groups τ̃


(j)
t (j = 1, · · ·N) independently


acting on subalgebras Fj (j = 1, · · ·N)


τV
t = τ̃


(1)
t · · · τ̃ (N)


t . (6)


Namely, τ̃
(j)
t leaves the other subalgebras Fk invariant and it commutes


with the other groups τ̃
(k)
t :


τ̃
(j)
t (A) = A (∀A ∈ Fk , k 6= j) (7)


τ̃
(j)
t τ̃ (k)


s = τ̃ (k)
s τ̃


(j)
t (t, s ∈ R k 6= j) (8)
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(S2) The gauge *-automorphism α~ϕ is a product of strongly continuous
groups α̃


(j)
~ϕ (j = 0, 1, · · ·N) independently acting on subalgebras Fj


(j = 0, 1, · · ·N):


α~ϕ = α̃
(0)
~ϕ α̃


(1)
~ϕ · · · α̃(N)


~ϕ , (9)


and they satisfy


α̃
(j)
~ϕ (A) = A (∀A ∈ Fk , k 6= j) (10)


α̃
(j)
~ϕ1


α̃
(k)
~ϕ2


= α̃
(k)
~ϕ2


α̃
(j)
~ϕ1


(~ϕ1, ~ϕ2 ∈ RL k 6= j) (11)


The groups τ̃
(j)
t and α̃


(j)
~ϕ are interrelated as


τ̃
(j)
t α̃


(k)
~ϕ = α̃


(k)
~ϕ τ̃


(j)
t


for all j, k = 1, · · · , N , t ∈ R and ~ϕ ∈ RL. And an assumption is made for the
domains of the generators δ̃j and g̃


(j)
λ , respectively, of the strongly continuous


groups τ̃
(j)
t and α̃


(j)
s~eλ


(t, s ∈ R):


(S3) D(δ) ⊂ D(δ̃j) D(δ) ⊂ D(g̃(j)
λ ) for all j = 0, 1, · · ·N , λ = 1, · · ·L.


Then, as the condition (S1) implies that the domain of the generator δV of
τV
t is equal to D(δ): D(δV ) = D(δ), one has


δ(A) = δV (A) + i[V, A] (for A ∈ D(δ)) (12)


δV (A) =
N∑


j=1


δ̃j(A) (for A ∈ D(δ)) (13)


Individual time evolutions and gauge transformations are assumed to be time
reversal symmetric:


(S4) ιτ̃
(j)
t ι = τ̃


(j)
−t , ια̃


(j)
~ϕ ι = α̃


(j)
−~ϕ


Note that one may assume ι(V ) = V without loss of generality. Indeed, any
V can be decomposed into an even and odd elements with respect to the time
reversal operation ι:


V = Ve + Vo (14)


where Ve = 1
2{V + ι(V )} and Vo = 1


2{V − ι(V )}. On the other hand, when
the conditions (v) and (S4) are satisfied, one has


[Vo, A] = 0 , (∀A ∈ F) (15)
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and the odd part Vo does not contribute to τV
t .


As in the previous works5,9−13,15, we are interested in the evolution of
initial states where N infinitely extended heat reservoirs are in equilibrium
with different temperatures and different chemical potentials and the finite
subsystem is in an arbitrary state, which is described by a nonsingular density
matrix. As discussed in [13,15], such states are specified as a KMS state:


(S5) Let σω
x (x ∈ R) be a strongly continuous group defined by


σω
x (A) =


N∏


j=1


τ̃
(j)
−βjxα̃


(j)
βj~µjx


(
eiDSxAe−iDSx


)
, (A ∈ F) (16)


where βj and ~µj = (µ(1)
j , · · ·µ(L)


j ) are, respectively, the inverse temper-
ature and a set of chemical potentials of the jth heat reservoir. The
operator DS (∈ F0 ∩ A) is selfadjoint and exp(DS) represents an initial
state of the finite-degree-of-freedom subsystem S0. Then an initial state
ω is a KMS state with temperature −1 with respect to σω


x . Namely, ω is
a state such that, for any pair A,B ∈ F , there exists a function FA,B(x)
of x analytic in the stripe {x ∈ C; 0 > Imx > −1} and satisfies the KMS
boundary condition:


FA,B(x) = ω(Aσω
x (B)) FA,B(x− i) = ω(σω


x (B)A) (x ∈ R) (17)


Because of (S3), the domain of the generator δ̂ω of σω
x satisfies D(δ̂ω) ⊃ D(δ)


and δ̂ω is given by


δ̂ω(A) = −
N∑


j=1


{
βj


(
δ̃j(A)− µ


(j)
λ g̃


(j)
λ (A)


)}
+ i[DS , A] . (A ∈ D(δ)) (18)


Note that a decomposition without the finite subsystem is possible as well.
We note that the boundaries among subsystems can be changed in an


arbitrary way and, in some cases, it is necessary to compare two situations
corresponding to different divisions. For this purpose, we introduce a notion
of locally modified states. Consider a decomposition different from (5):


F = F ′0 ⊗F ′1 ⊗ · · · ⊗ F ′N , (19)


and a KMS state ω′ of temperature −1 with respect to


σω′
x (A) =


N∏


j=1


τ̃
′(j)
−βjxα̃


′(j)
βj~µjx


(
eiD′


SxAe−iD′Sx
)


, (A ∈ F) (20)
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where the temperatures βj and chemical potentials ~µj are the same as those
of σω


x . Then the state ω′ is said to be a locally modified state of ω if the
generators δ̂ω and δ̂ω′ of, respectively, σω


x and σω′
x are related as


δ̂ω′(A)− δ̂ω(A) = i[W,A]
(
∀A ∈ D(δ̂ω)


)
(21)


where W ∈ A is selfadjoint and D(δ̂ω) is the domain of δ̂ω. Note that, if there
exist several KMS states, locally modified states ω and ω′ may be globally
different. Note that the state ω′′, which corresponds to the same division (5),
but to a different initial state exp(D′′


S) of the finite subsystem, is a locally
modified state of ω because the generators of the defining groups of ω and ω′′


differ by a bounded derivation:


δ̂ω′′(A)− δ̂ω(A) = i[D′′
S −DS , A]


(
∀A ∈ D(δ̂ω)


)
(22)


2.3 Assumptions on initial states and dynamics


The state ωt at time t starting with the initial state ω is given by


ωt = ω ◦ τt , (23)


and its weak limits for t → ±∞ are expected to be nonequlibrium steady
states. Of course, the limits do not exist in general. As one of sufficient
conditions for the existence of the limits, we assume that the evolution is
L1(GL)-asymptotically abelian:


(A1) L1(GL)-asymptotically abelian property:
There exists a norm dense *-subalgebra GL such that


∫ +∞


−∞
dt‖[A, τt(B)]‖ < +∞ (A ∈ GL, B ∈ GL ∩ F+) (24)


∫ +∞


−∞
dt‖[A, τt(B)]+‖ < +∞ (A,B ∈ GL ∩ F−) (25)


where [·, ·]+ is the anticommutator and F± are even/odd subalgebras.


Note that there may exist more than two KMS states at low temperatures, for
example, if the quantum system undergoes the phase trasition with symmerty
breaking, the KMS states should not be unique. However, because a heat
reservoir in thermodynamics is fully characterized by its temperature and
chemical potentials, we assume that reservoir states are uniquely determined
by the KMS condition:


TasakiMatsui: submitted to World Scientific on December 10, 2002 8







(A2) Uniqueness of initial states:
There is a division of the system: F = F0 ⊗ F1 ⊗ · · · ⊗ FN into N heat
reservoirs and a finite subsystem such that, for each set of temperatures
{βj}, chemical potentials {~µj}, and an initial subsystem state eDS , there
exists a unique KMS state ω of σω


x with temperature −1. And the per-
turbation V in the time evolution *-automorphism τV


t belongs to GL.


Assumption (A2) implies the invariance of the state ω under the perturbed
time evolution τV


t . Indeed, as seen from (S1), (S2) and (S5), σω
x and τV


t


commute. Hence, the state ω◦τV
t is again a KMS state of σω


x with temperature
−1 and, by assumption (A2), it is equal to ω: ω ◦ τV


t = ω .
The L1(GL)-abelian property (A1) and V ∈ GL implies the existence of


Møller morphisms γ± defined by (cf. Prop. 5.4.10 of Ref. [2] )


lim
t→±∞


τV
t


−1
τt(A) = γ±(A) . (∀A ∈ F) (26)


To prove certain properties, the invertibility of Møller morphisms is necessary
and, in stead of (A2), we assume


(A3) Uniqueness of initial states and invertibility of Møller morphisms:
There is a division of the system: F = F1⊗· · ·⊗FN into N heat reservoirs
such that, for each set of temperatures {βj} and chemical potentials {~µj},
there exists a unique KMS state ω of σω


x with temperature −1. And the
perturbation V in the time evolution *-automorphism τV


t belongs to GL.
In addition, the Møller morphisms γ± defined in (26) are invertible.


If the perturbed time evolution τV
t admits a finite-dimensional invariant sub-


algebra, Møller morphisms are not invertible. Hence, the decomposition of
the system in (A3) should not contain the finite-dimensional subalgebra F0.


3 Steady states


3.1 Properties of steady states


Theorem 1: Existence of steady states


When the evolution τt satisfies (A1) the L1(GL)-asymptotic abelian
property, the weak limits


lim
t→±∞


ω ◦ τt(A) ≡ ω±∞(A) (∀A ∈ F) (27)


exist for each initial state ω explained in (S5). The states ω±∞ are
τt-invariant17.
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In view of thermodynamics, steady states are expected to depend only on the
global boundary conditions such as the temperatures and chemical potentials
of the reservoirs. Indeed, we have


Theorem 2: Independence of steady states on division and DS


When τt is (A1) L1(GL)-asymptotically abelian and (A2) the KMS
state for σω


x is unique, for any locally modified state ω′ of ω, one has


lim
t→±∞


ω′ ◦ τt(A) = lim
t→±∞


ω ◦ τt(A) = ω±∞(A) (∀A ∈ F) . (28)


This implies that the steady states ω±∞ are determined only by the
temperatures and chemical poteitials of the heat reservoirs, but does
not depend on the way of division into subsystems nor on the initial
state of the finite-degree-of-freedom subsystem.


For Spin Fermion models, the same result is obtained by Jakšić, and Pillet in
[11].


As an immediate consequence of Theorem 2, one has


Proposition 3: Time reversal property of the steady states


Under the assumption of Theorem 2, the two steady states are time
reversal with each other:


ω±∞ = ι∗ω∓∞ (29)


where the time reversal operation ι∗ on a state ω is defined by


ι∗ω(A) ≡ ω (ι(A∗)) . (30)


Under stronger assumptions, steady states have certain ergodicity.


Theorem 4: Stability of steady states against local disturbance


When τt is (A1) L1(GL)-asymptotically abelian, (A3) the KMS state
for σω


x is unique and the Møller morphisms γ± are invertible, the
steady states ω+∞ are stable against local pertubation in the sense


lim
t→±∞


ω+∞ (B∗τt(A)B)
ω+∞(B∗B)


= ω+∞(A) . (∀A,B ∈ F) (31)


The same is true for the state ω−∞. This corresponds to the ’return
to equilibrium’ property of equilibrium states2 and implies certain
ergodicity of the steady states.
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4 Relative entropy, its production and fluctuation theorem


4.1 Relative entropy of states over C∗ algebra


For a finite dimensional C∗ algebra, the relative entropy S(ρ2|ρ1) of two states
represented by density matrices ρ1 and ρ2 is given by


S(ρ2|ρ1) = Tr {ρ1 (log ρ1 − log ρ2)} , (32)


where Tr stands for the trace. A generalization to states over a C∗ algebra is
carried out with the aid of GNS (Gelfand-Naimark-Segal) representation and
Tomita-Takesaki theory of von Neumann algebras. We summarize the outline
following [12].


For a given C∗ algebra A, there exist a Hilbert space K, a vector Ω ∈ K
and a *-morphism π : A → B(K) from A to a set B(K) of all bounded linear
operators on K, such that (i) ω(A) = (Ω, π(A) Ω) (∀A ∈ A) and (ii) the set
{π(A)Ω|A ∈ A} is dense in K (cyclicity of the state Ω). The triple (K, Ω, π)
is called the GNS representation. A set of all B ∈ B(K) which commute with
every element of π(A) is denoted as π(A)′ (commutant of π(A)). π(A)′ is
again an algebra. Let M be a double commutant of π(A): M = π(A)′′, then
M′′ = M. An algebra like M is called a von Neumann algebra.


Given a von Neumann algebra M ⊂ B(K), a vector Ω ∈ K is called
separating if AΩ = 0 for A ∈M implies A = 0. If a vector Ω is separating and
cyclic with respect to M, there exist antilinear operators S and F satisfying


SAΩ = A∗Ω (∀A ∈M) , FA′Ω = A′∗Ω (∀A′ ∈M′) . (33)


The closure S̄ of S admits a polar decomposition:


S̄ = J∆1/2 (34)


where ∆ = S∗S̄ is positive and self-adjoint, and J is an antilinear involution.
Moreover, they satisfy JMJ = M′ and ∆itM∆−it = M. This is the outline
of Tomita-Takesaki theory.


The set


P ≡ {AJAJΩ|A ∈M} ⊂ K , (35)


is called the natural positive cone, where the bar stands for the closure. For
two vectors Ψ, Ω ∈ P which are both cyclic and separating, one defines an
operator SΨ,Ω by


SΨ,ΩAΩ = A∗Ψ . (A ∈M) (36)


Araki19 defined the relative entropy of Ψ and Ω by


S(Ω|Ψ) = (Ψ, ln∆Ψ,ΩΨ) , (37)
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where ∆Ψ,Ω ≡ S∗Ψ,ΩS̄Ψ,Ω is called the relative modular operator with S̄Ψ,Ω the
closure of SΨ,Ω. For any faithful states ω1 and ω2 on a C∗ algebra, when both
of them are represented by separating and cyclic vectors, Ψ and Ω respectively,
belonging to the same natural positive cone in a GNS representation, their
relative entropy S(ω2|ω1) is defined by


S(ω2|ω1) = S(Ω|Ψ) . (38)


In the next subsection, we investigate the temporal change of the relative
entropy S(ω|ωt) between the initial and present states.


4.2 Relative entropy and its change


Explicit expression of the relative entropy production was obtained by Ojima
et al.12,13 and Jakšić and Pillet15,11.


Theorem 5: Relative entropy [Ojima et al.12,13 and Jakšic and Pillet15,11]


The relative entropy S(ω|ωt) between the initial and present states
is given by


S(ω|ωt) =
N∑


j=1


βj


∫ t


0


ωs(J
q
j )ds− ωt(DS) + ω(DS) (39)


where ωs ≡ ω ◦ τs and Jq
j corresponds to the heat flow to the jth


reservoir:


Jq
j ≡ −δ̃j(V ) +


L∑


λ=1


µ
(j)
λ g̃


(j)
λ (V ) . (40)


Moreover if (A1) the time evolution τt is asymptotically abelian,
(i) the relative entropy production Ep(ωt) ≡ d


dtS(ω|ωt) at time t
converges to the steady state values in the limit of t → ±∞:


lim
t→±∞


Ep(ωt) = Ep(ω±∞) ≡
N∑


j=1


βjω±∞(Jq
j ) , (41)


(ii) they do not depend on the initial states of finite dimensional
subsystem, (iii) Ep(ω+∞) ≥ 0 and Ep(ω−∞) ≤ 0. Note that the
positivity of Ep(ω+∞) is consistent with thermodynamics.


NB 5.1 For finite-degree-of-freedom systems, the generators δ̃j and g̃
(j)
λ are


given by local Hamiltonians Hj and number operators N
(λ)
j as commutators:
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δ̃j(A) = i[Hj , A] and g̃
(j)
λ (A) = i[N (λ)


j , A], where Hj and N
(λ)
j commute with


each other. And the total Hamiltonian H is H =
∑N


j=1 Hj + V . Therefore,


because of −[Hj , V ] = [H, Hj ] and −[N (λ)
j , V ] = [H,N


(λ)
j ],


Jq
j = −i[Hj , V ] +


L∑


λ=1


µ
(j)
λ i[N (λ)


j , V ] =
d


dt
τt (Hj)−


L∑


λ=1


µ
(j)
λ


d


dt
τt


(
N


(λ)
j


)
,


which, indeed, represents nonsystematic energy flow to the jth reservoir.


NB 5.2 Since DS corresponds to the logarithm of density matrix describing
the initial state of the finite system, it is interesting to rewrite (39) as


− d


dt
ωt(DS) = −


N∑


j=1


βjωt(J
q
j ) +


d


dt
S(ω|ωt) (42)


which may read as follows: The entropy change of the finite subsystem
−ωt(DS) is the sum of entropy flow from the resevoirs and the entropy pro-
duction d


dtS(ω|ωt) ≡ Ep(ωt). However, as discussed elsewhere38, such an
interpretation is not correct in general, but Ep(ωt) can be identified with
thermodynamic entropy production only for very large |t|.


Under stronger assumptions, one can show the independence of the limits
on the way of division.


Theorem 6: Division independence of Ep(ω±∞)


Let ω′ be a locally modified state of ω by W . Then, if τt is (A1)
L1(GL)-asymptotically abelian, (A2) the KMS state for σω


x is unique
and DS , D′


S ,W ∈ D(δ), one has


lim
t→±∞


Ep(ω′ ◦ τt) = lim
t→±∞


Ep(ω ◦ τt) , (43)


or Ep(ω±∞) is independent of the way of division of the system.


4.3 Fluctuation theorem


In view of (37) and (38), the logarithm of the relative modular operator be-
tween the present and initial states divided by the duration t can be regarded
as the mean entropy production operator Π̂t:


Π̂t ≡ 1
t


ln ∆Ωt,Ω (44)
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where Ωt and Ω are vector representions of ωt and ω, respectively, in a GNS
representation. Since ∆Ωt,Ω is positive, Π̂t is selfadjoint and admits a spectral
decomposition:


Π̂t =
∫ +∞


−∞
λdPt(λ) (45)


where Pt(λ) is a spectral family of Π̂t. Then the expectation value of
Pt ([a, b]) ≡ Pt(b)− Pt(a− 0):


(Ωt, Pt ([a, b]) Ωt) ≡ Pr ([a, b];ωt) (46)


may be regarded as the probability of finding the values of the mean relative
entropy production within an interval [a, b] at the state ωt. As seen in the
proof of Theorem 7, the probability is uniquely determined by the initial
state and the time evolution automorphism. As a result of the time reversal
symmtery, the probability distribution Pr ([a, b]; ωt) enjoys a simple symmetry
property analogous to the Gallavotti-Cohen fluctuation theorem23−31.


Theorem 7: Fluctuation theorem


Let Pr ([a, b];ωt) (t > 0) be the probability of finding the values
of the mean relative entropy production within the interval [a, b] as
defined above. Then, if the initial state ω is time reversal symmetric,
the probability satisfies an inequality


a ≤ 1
t


log
Pr ([a, b];ωt)


Pr ([−b,−a];ωt)
≤ b (47)


for 0 ≤ a ≤ b.


NB 7.1 If the probality measure Pr ((a, b]; ωt) is absolutely continuous with
respect to a reference measure νR with a density function p(λ; ωt):


Pr ((a, b];ωt) =
∫ b


a


p(λ;ωt)dνR(λ) ,


Theorem 7 implies


p(a;ωt)
p(−a; ωt)


= eat .


This is a noncommutative extenion of the transient fluctuation theorem of
Evans-Searles25 and of the detailed fluctuation theorem of Jarzynski29. Also
if λ = a is a discrete point, one has


Pr ({a}; ωt)
Pr ({−a}; ωt)


= eat .
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For a particular value a = Ep(ω+∞), Theorem 7 implies that the probability
of finding the mean relative entropy production at the steady-state average
Ep(ω+∞) is exponentially larger than the probability of finding it at the op-
posite value −Ep(ω+∞).


4.4 Outline of the proof of Theorem 7


Because ω is τV
t -invariant, one has


ω ◦ τt(A) = ω0(YtAY ∗
t ) (48)


where a unitary element Yt is defined as a norm convergent series:


Yt = 1+
+∞∑
n=1


in
∫ t


0


dt1


∫ t1


0


dt2 · · ·
∫ tn−1


0


dtnτ−tn
(V ) · · · τ−t2(V )τ−t1(V ) . (49)


In order to give a simple explanation, Yt is assumed to be σω
x -analytic. Let


Ω and Ωt be the vector representations of ω and ωt, respectively, and let
∆Ωt,Ω be the relative modular operator, then the characteristic function for
the mean entropy production operator Π̂t is given by


Φ(ξ) ≡
(
Ωt, exp(iΠ̂tξ)Ωt


)
=


(
Ωt, ∆


iξ/t
Ωt,Ω


Ωt


)
= ω


(
Ytσ


ω
−ξ/t(Y


∗
t )


)
.


On the other hand, if ω is time reversal symmetric, the time reversal symmetry
of σω


x and the KMS boundary condition give


Φ(−ξ) = ω
(
σω
−ξ/t (Y ∗


t )Yt


)
= ω


(
Ytσ


ω
−ξ/t−i (Y ∗


t )
)


= Φ(ξ + it) . (50)


In terms of the cumulative distribution function F (λ) ≡ Pr ((−∞, λ];ωt), this
reads as


−
∫ +∞


−∞
eiξλdF (−λ) =


∫ +∞


−∞
eiξλe−λtdF (λ) ,


which gives


∫ b+0


a−0


dF (λ) =
∫ −a+0


−b−0


e−λtdF (λ) .


The desired result immediately follows from this.
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5 Characterization of steady states


5.1 KMS Characterization of states


Under the setting (S1)-(S5), the evolving state ωt is characterized as a KMS
state.


Theorem 8: KMS characterization of evolving states


The state ωt at time t is a KMS state at temperature −1 with respect
to the strongly continuous *-automorphism


σωt
x ≡ γ−1


t σω
x γt , (51)


where γt = τV
t
−1


τt, and its generator is given by


δ̂(t)
ω (A) = δ̂ω(A) + i


∫ 0


−t


ds
[
τs


(
δ̂ω(V )


)
, A


]
(52)


for all A ∈ D(δ̂(t)
ω ) = D(δ̂ω).


When the Møller morphisms γ± exist and are invertible, the steady states
ω±∞ are characterized as KMS states:


Theorem 9: KMS characterization of steady states


When (A1) the time evolution *-automorphism τt is L1(GL)- asymp-
totically abelian and (A3) the Møller morphisims γ± are invertible,
the steady states ω±∞ are KMS states at temperature −1 with re-
spect to the strong continuous *-automorphism


σω±
x ≡ γ−1


± σω
x γ± . (53)


Furthermore, if δ̂ω(V ) ∈ GL, its generator δ̂±ω satisfies


δ̂±ω (A) = δ̂ω(A) + i


∫ 0


∓∞
ds


[
τs


(
δ̂ω(V )


)
, A


]
, (54)


for all A ∈ D(δ̂ω) ∩ GL.


NB 9.1 For finite systems, the KMS state ω with respect to the *-
automorphism σω


x corresponds to the density matrix


ρω =
1
Z


exp




−


N∑


j=1


βj


(
Hj −


L∑


λ=1


µ
(j)
λ N


(λ)
j


)

 ,
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where Z is the normalization constant, βj , Hj , µ
(j)
λ and N


(λ)
j are, respectively,


the local temperature, local energy, local chemical potential and local number
operator of the jth reservoir. As discussed in NB 5.1,


τt


(
δ̂ω(V )


)
= −


N∑


j=1


βj
d


dt
τt


(
Hj −


L∑


λ=1


µ
(j)
λ N


(λ)
j


)
= −


N∑


j=1


βjτt(J
q
j ) ,


where Jq
j is a heat flow to the jth reservoir. Therefore, because of Theorem


8, the density matrix ρωt
correponding to ωt is given by


ρωt
=


1
Z


exp




−


N∑


j=1


βj


[
Hj −


L∑


λ=1


µ
(j)
λ N


(λ)
j −


∫ 0


−t


dsτs(J
q
j )


]

 ,


Note that one has ρωt
= τ−t(ρω) and this is consistent with the Liouville-von


Neumann equation for the density matrices.


NB 9.2 For infinite systems, the case when the right-hand side of (54)
generates σω±


x is most interesting. Then, if the integral


Ṽ± ≡
∫ 0


∓∞
dsτs


(
δ̂ω(V )


)
(55)


would converge, ω±∞ would be a perturbed KMS state of the initial state ω by
a self-adjoint operator Ṽ±. Moreover, NB 9.1 suggests that the corresponding
density matrices would be


ρ± =
1
Z


exp




−


N∑


j=1


βj


[
Hj −


L∑


λ=1


µ
(j)
λ N


(λ)
j −


∫ 0


∓∞
dsτs(J


q
j )


]

 . (56)


Note that such statistical ensembles for steady states were introduced by
MacLennan32 and Zubarev33.


However, if the steady state carries nonvanishing entropy production, the
integral Ṽ± does not converge since the ω-average of its integrand does not
vanish at infinities:


lim
s→±∞


ω
(
τs


(
δ̂ω(V )


))
= Ep(ω±∞) 6= 0 .


Thus, the original proposal (56) by MacLennan and Zubarev cannot be justi-
fied. Rather, the KMS states with respect to σω±


x generated by (54) should be
regarded as a precise definition of the MacLennan-Zubarev ensembles. Note
that the above observation is consistent with the result by Jakšić and Pillet11,
which asserts that the relative entropy production between the steady state
and the initial state vanishes if the former is a normal state of the latter.
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6 Summary


For an infinitely extended system consisting of a finite subsystem and several
reservoirs, we have studied the time evolution of states. Initially, the reservoirs
are prepared to be in equilibrium with different temperatures and chemical
potentials. If the time evolution is L1-asymptotic abelian and a few more
conditions are satisfied, (i) steady states exist, (ii) they and their relative
entropy production are independent of the way of division into subsystem
and reservoirs, and (iii) they are stable against local perturbations. The
relative entropy production is calculated explicitly and we have given a KMS
characterization of the steady states, which provides a rigorous meaning to the
MacLennan-Zubarev steady state ensembles. In addition, a noncommutative
analog to the fluctuation theorem is derived provided that the evolution and
an initial state are time reversal symmetric.


Before closing, we remark that the unidirectional evolution is consistent
with the time reversal symmetry of the system. To see this, let us consider
the following thought experiment: At t = 0, the system is prepared to be in
an ι∗-invariant state ω. Until time t = t1(> 0), the system evolves according
to the *-automorphism τt. At t = t1, time reversal operation ι∗ is applied.
After t = t1, the system evolves according to τt again. The state ωt at time t
is given by


ωt =
{


ω ◦ τt , (0 ≤ t < t1)
ω ◦ τt−2t1 . (t1 ≤ t) (57)


where we have used ι∗ω = ω.
Because of Theorem 1, the initial state ω evolves towards the steady


state ω+∞ and, for large t1, the state just before the time reversal operation
ωt1− = ω ◦ τt1 is close to ω+∞. On the other hand, as −t1 < 0, the state
ω ◦ τ−t1 just after the time reversal operation is close to the other steady
state ω−∞. Afterwards, the state ωt = ω ◦ τt−2t1 deviates from ω−∞ and
reaches ω at time t = 2t1. Then, the state ωt again approaches ω+∞. Thus,
the time reversal operation discontinuously changes a state ωt1−(∼ ω+∞) to
a state ωt1+(∼ ω−∞), but does not invert the evolution. In this way, the
unidirectional state evolution is consistent with the time reversal symmetry.
A similar view was given by Prigogine et al.34 for the behavior of entropy
under time reversal experiments, where dynamics was considered to increase
entropy and the time reversal operation was thought to induce a discontinuous
entropy decrease.
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