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1 Introduction


In this paper we study the spectral and scattering theory for the Hamiltonian


HNelson = h⊗ I + I ⊗
∫


R3


|k|a†(k)a(k)dk + Φ(x)


describing the electron coupled to a (scalar) radiation field in the Nelson
model ([15]), a simplified model of nonrelativistic quantum electrodynamics.
The Hamiltonian acts on the state space defined by HNelson = L2(R3


x) ⊗ F ,
where


F =
∞⊕


n=0


⊗n
sL


2(R3
k)


is the boson Fock space, ⊗n
s being the n-fold symmetric tensor product;


h = −1
2
∆x + V (x), in L2(R3


x),


is the electron Hamiltonian, where V is the decaying real potential describing
the interaction between the electron and the nucleus; a(k) and a†(k) are,
respectively, the annihilation and the creation operator;∫


R3


|k|a†(k)a(k)dk


is the photon energy operator; and the interaction between the field and the
electron is given by


Φ(x) = µ


∫
R3


χ(k)√
|k|
{
e−ikxa†(k) + eikxa(k)


}
dk,


where µ > 0 is the coupling constant, and χ(k) is the ultraviolet cut-off
function, on which we impose the following assumption, using the standard
notation 〈k〉 = (1 + k2)1/2.


Assumption 1.1. Assume that the function χ(k) is O(3)-invariant, strictly
positive, smooth, and monotonically decreasing as |k| → ∞. Moreover,
|χ(k)| ≤ C〈k〉−N for a sufficiently large N .


In this paper we study the restriction of HNelson to the subspace with
less than two photons. Let P denote the projection onto the subspace H of
HNelson given by


H = H0 ⊕H1, H0 = L2(R3
x), H1 = L2(R3


x)⊗ L2(R3
k),
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which consists of states with less than two photons. Then we consider the
Hamiltonian H = PHNelsonP on this space. With respect to the direct sum
decomposition H = H0 ⊕H1, H has the following matrix representation


H =


(
−1


2
∆ + V µ〈g|
µ|g〉 −1


2
∆ + V + |k|


)
.


Here we have defined the operators |g〉 : H0 → H1 and 〈g| : H1 → H0 by


(|g〉u0)(x, k) = g(x, k)u0(x), (〈g|u1)(x) =


∫
R3


g(x, k)u1(x, k)dk,


where the function g(x, k) is given by


g(x, k) =
χ(k)e−ixk√


|k|
. (1.1)


We write


g0(k) = |g(x, k)| = χ(k)√
|k|
. (1.2)


It is obvious that |g〉 is bounded from H0 to H1, and that 〈g| is its adjoint.
We assume that V is −1


2
∆-bounded with relative bound less than one, so


that H is a selfadjoint operator with the domain


D(H) = H2(R3)⊕
(
H2(R3)⊗ L2(R3) ∩ L2(R3)⊗ L2


1(R
3)
)
.


Here L2
1(R


3) denotes the usual weighted L2-space, given by


L2
1(R


3) = L2(R3, 〈k〉2dk),


and H2(R3) is the Sobolev space of order 2. Our goal is to describe the
dynamics of this model. In what follows û is the Fourier transform of u
with respect to the x variables, Dx = −i∂/∂x and Dy are the gradients with
respect to x and y, respectively. Here y is the variable dual to k.


We denote by H0 the operator H with V ≡ 0, the Hamiltonian for the
free electron-photon system. H0 is translation invariant, and it commutes
with the total momentum Dx ⊕ (Dx + k). Thus, if we introduce the Hilbert
space K = C⊕ L2(R3) and define the unitary operator


U : H 3
(
u0


u1


)
7→
(
ũ0(p)
ũ1(p, k)


)
=


(
û0(p)


û1(p− k, k)


)
∈ L2(R3


p;K), (1.3)


then, with respect to the decomposition L2(R3
p;K) =


∫ ⊕
R3 Kdp, we have


UH0U
∗ =


∫ ⊕


R3


H0(p)dp, H0(p) =


(
1
2
p2 µ〈g0|


µ|g0〉 1
2
(p− k)2 + |k|


)
, (1.4)
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where |g0〉 : C 3 c 7→ cg0(k) ∈ L2(R3) and 〈g0| is its adjoint. Our first result
is the following theorem on the spectrum of H0(p). We define for p ∈ R3:


λc(p) = min
k∈R3


{1
2
(p− k)2 + |k|} =


{
1
2
|p|2 for 0 ≤ |p| ≤ 1,


|p| − 1
2


for 1 < |p|,


and, for (p, λ) in the domain Γ− = {(p, λ) : λ < λc(p)}, define


F (p, λ) = 1
2
p2 − λ−


∫
µ2g0(k)


2dk
1
2
(p− k)2 + |k| − λ


. (1.5)


It will be shown in Section 2 that


• The function F (p, λ) is real analytic, and the derivative with respect
to λ is negative: Fλ(p, λ) < 0.


• There exists ρc > 1 such that the equation F (p, λ) = 0 for λ has a
unique solution λ◦(p), when |p| ≤ ρc, and no solution, when |p| > ρc.


• The function λ◦(p) is O(3)-invariant, real analytic for |p| < ρc, λ◦(0) <
0, and it is strictly increasing with respect to ρ = |p|.


Theorem 1.2. The reduced operator H0(p) has the following properties:
(1) When |p| < ρc, the spectrum σ(H0(p)) of H0(p) consists of a simple eigen-
value λ◦(p) and the absolutely continuous part [λc(p),∞). The normalized
eigenfunction associated with the eigenvalue λ◦(p) can be given by


ep(k) =
1√


−Fλ(p, λ◦(p))


 1
−µg0(k)


1
2
(p− k)2 + |k| − λ◦(p)


 . (1.6)


(2) When |p| ≥ ρc, σ(H0(p)) = [λc(p),∞) and is absolutely continuous.


It follows from Theorem 1.2 that the spectrum σ(H0) of H0 is given by


σ(H0) = [Σ,∞), Σ = λ◦(0), (1.7)


and that it is absolutely continuous.
We write B(r) for the open ball {p : |p| < r} and define


Hone =
{ 1


(2π)3/2


∫
eixph(p)ep(k)dp : h ∈ L2(Bρc)


}
⊂ H
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with the obvious Hilbert space structure. The space Hone corresponds to the
space of so called one-particle states ([6]). The operator H0(p) is a rank two
perturbation of (


1
2
p2 0
0 1


2
(p− k)2 + |k|


)
,


and the Kato-Birman theorem and Theorem 1.2 yield the following theorem
on the asymptotic behavior of e−itH0 .


Theorem 1.3. For any f ∈ H there uniquely exist f1 =


(
f1,0


f1,1


)
∈ Hone and


f2,1,± ∈ H1 such that, as t→ ±∞,∥∥∥∥e−itH0f −
(


e−itλ◦(Dx)f1,0


e−ikxe−itλ◦(Dx)f1,1


)
−
(


0
eit∆/2−it|k|f2,1,±


)∥∥∥∥→ 0,


and the map f 7→ (f1, f2,1,±) is unitary from H onto Hone ⊕ L2(R6).


This result shows, in particular, that an electron with large momentum
|p| > ρc in the vacuum state does not survive. One might associate this
phenomenon to Cherenkov radiation, in the sense that the electron of high
speed always carries one photon. However, it is not clear how relevant this
description is. Usually Cherenkov radiation is described differently, in a
classical electrodynamic context, see for example [12].


When V 6= 0, we prove the following results. The following assumption
on V is too strong for some of our results, however, we always assume it in
what follows without trying to optimize the conditions on V .


Assumption 1.4. The potential V is real valued, C2 outside the origin, and
V (x), x · ∇V (x) and (x · ∇)2V (x) are −∆-compact and converge to 0 as
|x| → ∞.


Under this assumption the spectrum of h = −1
2
∆ + V has an absolutely


continuous part [0,∞). If h has no negative eigenvalues, we let E0 = 0.
Otherwise, the eigenvalues are denoted E0 < E1 ≤ . . . < 0. They are discrete
in (−∞, 0). Zero may be an eigenvalue, but there are no positive eigenvalues
under Assumption 1.4.


Definition 1.5. (1) The set Θ(H) = {E0, E1, . . .} ∪ {Σ} ∪ {0} ∪ {λ◦(ρc)} is
called the threshold set for H.
(2) We say that V is short range, if, in addition to Assumption 1.4, it satisfies
the following condition: V ∈ L2


loc(R
3) and for any 0 < c1 < c2 <∞∫ ∞


1


(∫
c1≤|x|≤c2


|V (tx)|2dx
)1/2


dt <∞.
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Theorem 1.6. Let V satisfy Assumption 1.4 and Σess = min{E0,Σ}. Then:
(1) The spectrum σ(H) of H consists of the absolute continuous part [Σess,∞)
and the eigenvalues, which may possibly accumulates at Θ(H).
(2) Assume h has at least one strictly negative eigenvalue, i.e. E0 < 0.
Then the bottom of the spectrum inf σ(H) is an isolated eigenvalue of H and
inf σ(H) ≤ Σ + E0 (< Σess).


For the possible asymptotic profiles of the wave packet e−itHf as t→ ±∞,
we prove the existence of the following two wave operators.


Theorem 1.7. (1) Assume that V is short range. Then, for f ∈ H, the
following limits exist:


W0±f = lim
t→±∞


eitHe−itH0f . (1.8)


(2) Let φ ∈ L2(R3) be an eigenfunction of h with eigenvalue E: hφ = Eφ.
Suppose |φ(x)| ≤ C〈x〉−β for some C > 0 and β > 2. Then, for f ∈ L2(R3


k)
the following limits exist:


WE,φ
± f = lim


t→±∞
eitH


(
0


e−itE−it|k|φ(x)f(k)


)
. (1.9)


We remark that eigenfunctions actually decay exponentially in many
cases, but eigenfunctions at a threshold may only decay polynomially.


There is a renewed interest in the Nelson model HNelson recently, which
was first studied in detail in [15], and a large number of papers have appeared
(we refer to [5] and [6] and references therein for earlier works and a physical
account of the model). In [5] and [6], the spectral and scattering theory of
HNelson (V = 0 in [6]) has been studied in detail, when the infrared cutoff is
imposed on the interaction, in addition to the ultraviolet cutoff. In particular,
the essential spectrum is located, the existence of the ground state is proved,
and the asymptotic completeness (AC) of scattering is established in the
range of energy below the ionization energy ([5]), and in the range of energy,
where the propagation speed of the dressed electron is smaller than 1 ([6]),
under the additional condition that the coupling constant µ is sufficiently
small. In many papers the atom is modelled by either −1


2
∆+V with compact


resolvent (confining potential), or the atom is replaced by a finite level system
(spin-boson Hamiltonian). For the spin-boson Hamiltonian, the spectral and
scattering theory has been studied in detail in subspaces with less than three
photons in [13], less than four in [19], and with an arbitrary finite number of
photons in [8]. For models with confining potentials, after the works for the
exactly solvable model with harmonic potentials ([1]) and its perturbation
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([18]), [3] extensively studied the model with general confining potentials and
proved in particular (AC), when photons are assumed to be massive (see the
recent paper by Gérard [9] for the massless case).


In this paper we deal with the model with massless photons, without
infrared cutoff, with arbitrary large coupling constant, and with a decay-
ing potential, which allows ionization of the electron. However, the number
of photons is restricted to less than two, and the problem with an infinite
number of soft photons is avoided. Nonethelss, the model retains the diffi-
culties arising from the singularity of the photon dispersion relation |k|, the
different dispersion relations of the electron and the photon, and the photon-
electron interaction, which is foreign to the mind accustomed to the classical
two body interaction. We think, therefore, that the complete understanding
of this very simple model is important (and unavoidable) for understanding
models of quantum electrodynamics, which are intrinsically more difficult.


Finally, let us outline the contents of this paper. In §2 we study in detail
the function F (p, z) and show, in particular, the properties stated before
Theorem 1.2. In §3 we prove Theorem 1.2. The existence of the isolated
eigenvalue of H0(p) will be shown by examining its resolvent and identifying
the eigenvalues with zeros of F (p, λ); the absolute continuity will be shown
by establishing the Mourre estimate for H0(p) and proving the absence of
eigenvalues by elementary calculus. In §4 we then prove Theorem 1.3 via the
Birman-Kato theorem and study the propagator e−itH0 in the configuration
space. In §5 we prove Theorem 1.6. We show σess(H) = [Σess,∞) by adapting
the “geometric” proof of the HVZ theorem, the corresponding result for N -
body Schrödinger operators; we prove that the singular continuous spectrum
is absent from H, and that the eigenvalues of H are discrete in R \ Θ(H),
by applying the Mourre estimate for H with the conjugate operator A =
Ax + Ay, Ax, Ay being the generator of the dilation. This Mourre estimate,
however, is not suitable for proving the so called minimal velocity estimate, an
indispensable ingredient for proving (AC) of the wave operators by the now
standard methods (cf. e.g. [6]). This is because our Ay 6= i[|Dy|, y2], and A
cannot be directly related to the dynamical variables associated with H. For
proving the existence of the ground state it suffices to show inf σ(H) ≤ Σ+E0,
since Σess = min{Σ, E0}, Σ < 0, and furthermore E0 < 0 by assumption. We
prove this by borrowing the argument of [10]. Finally in §6, we prove the
existence of the wave operators (1.8) and (1.9). The proof of completeness
of the wave operators is still missing, mainly because of the aforementioned
lack of the minimal velocity estimate.
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2 Properties of the function F (p, λ)


In this section we study the function F (p, z), defined for (p, z) ∈ R3 × (C \
[0,∞)) by (1.5):


F (p, z) = 1
2
p2 − z −


∫
µ2g0(k)


2dk
1
2
(p− k)2 + |k| − z


. (2.1)


The following Lemma is obvious.


Lemma 2.1. (1) For each z ∈ C \ [0,∞), F (p, z) is O(3)-invariant with
respect to p ∈ R3.
(2) ∓ ImF (p, z) > 0, when ± Im z > 0.
(3) Let K ⊂ C \ [0,∞) be a compact set. Then |F (p, z)| → ∞ as |p| → ∞,
uniformly with respect to z ∈ K.


We will write F (ρ, z) = F (p, z), ρ = |p|, and Fρ(ρ, z) will denote the
derivative of F (ρ, z) with respect to ρ. We will use the notation F (p, z) and
F (ρ, z) interchangeably. Let G(p, k) = 1


2
(p − k)2 + |k|. Then elementary


computations show that for each fixed p the function k → G(p, k) has a
global minimum, which we denote by λc(p). Due to the invariance, it is only
a function of ρ. Thus we will also denote it by λc(ρ). We have


λc(ρ) =


{
1
2
ρ2 for 0 ≤ ρ ≤ 1,


ρ− 1
2


for 1 < ρ.
(2.2)


Note that this function is only once continuously differentiable. We use the
notation Γ− for the domain {(p, λ) ∈ R3 × R : λ < λc(|p|)} of R4 also for
denoting the corresponding two dimensional domain


Γ− = {(ρ, λ) ∈ R2 : ρ ≥ 0, λ < λc(ρ)}.


It is obvious that F (ρ, λ) is real analytic on Γ− with respect to (ρ, λ). Later
we will also need the domain


Γ+ = {(ρ, λ) ∈ R2 : ρ ≥ 0, λ > λc(ρ)}.
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Lemma 2.2. The derivatives satisfy Fλ(ρ, λ) < 0 and Fρ(ρ, λ) > 0 in Γ−,
and F (ρ, λ) is strictly decreasing with respect to λ and is strictly increasing
with respect to ρ.


Proof. We set µ = 1 in the proof. Direct computation shows


∂F


∂λ
= −1−


∫
g0(k)


2dk


(1
2
(p− k)2 + |k| − λ)2


< 0. (2.3)


To prove Fρ > 0, it suffices to show that Fp1(p, λ) > 0, when p1 ≥ 0, p2 =
p3 = 0, as F is O(3)-invariant. We compute


∂F


∂p1


= p1 +


∫
g0(k)


2(p1 − k1)dk


(1
2
(p− k)2 + |k| − λ)2


= p1 −
∫


g0(p+ k)2k1dk


(1
2
k2 + |p+ k| − λ)2


. (2.4)


The last integral (including the sign in front) can be written in the form∫
R2


{∫ ∞


0


(
g0(p1 − k1, k


′)2


(1
2
k2 + |(p1 − k1, k′)| − λ)2


− g0(p1 + k1, k
′)2


(1
2
k2 + |(p1 + k1, k′)| − λ)2


)
k1dk1


}
dk′,


where k′ = (k2, k3) ∈ R2 and, for p1, k1 > 0,


g0(p1 − k1, k
′)2 > g0(p1 + k1, k


′)2,√
(p1 − k1)2 + (k′)2 ≤


√
(p1 + k1)2 + (k′)2.


The first inequality follows from Assumption 1.1. Thus the integral is posi-
tive, and the lemma follows.


Remark 2.3. A computation via spherical coordinates yields for (ρ, λ) ∈ Γ−


F (ρ, λ) = 1
2
ρ2 − λ


− 2πµ2


ρ


∫ ∞


0


g0(r)
2r log


(
1 +


2ρr
1
2
(r − ρ)2 + r − λ


)
dr. (2.5)


Lemma 2.4. There exist a constant ρc > 1 and a function λ◦ : [0, ρc] → R
with the following properties:
(i) λ◦(0) < 0, (ρc, λ◦(ρc)) ∈ γ ≡ {(ρ, λc(ρ)) : ρ ≥ 0}, and


Ξ = {(ρ, λ◦(ρ)) : 0 ≤ ρ < ρc} ⊂ Γ−. (2.6)


(ii) F (ρ, λ◦(ρ)) = 0, ρ ∈ [0, ρc].
(iii) λ◦ is real analytic for 0 < ρ < ρc.
(iv) λ◦ρ(ρ) > 0 for 0 < ρ < ρc.
(v) There are no other zeros of F (ρ, λ) in Γ−, than those given by Ξ in (2.6).
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Proof. We examine the behavior of F (ρ, λ) on the curve γ. Taking the limit
λ ↑ λc(ρ) in (2.5), we have (recall (2.2), and also |p| = ρ)


F (ρ, λc(ρ)) = −2πµ2


ρ


∫ ∞


0


|χ(r)|2 log


(
1 +


4ρ


r + 2(1− ρ)


)
dr < 0


for ρ ≤ 1, and it is increasing for ρ > 1 and diverges to ∞ as ρ→∞. Indeed,
we have, using (2.2) and (2.5),


F (ρ, λc(ρ)) = 1
2
(ρ− 1)2 − 2πµ2


ρ


∫ ∞


0


|χ(r)|2 log


(
1 +


4ρr


(r − ρ+ 1)2


)
dr


for ρ > 1, and it is evident that limρ→∞ F (ρ, λc(ρ)) = ∞. By a change of
variable,


F (ρ+ 1,λc(ρ+ 1))


= 1
2
ρ2 − 2πµ2


ρ+ 1


∫ ∞


0


|χ(r)|2 log


(
1 +


4r(ρ+ 1)


(r − ρ)2


)
dr


= 1
2
ρ2 − 2πµ2ρ


ρ+ 1


∫ ∞


0


|χ(ρr)|2 log


(
1 +


4r(1 + 1
ρ
)


(r − 1)2


)
dr


= ρ
[


1
2
ρ− 2πµ2


ρ+ 1


∫ ∞


0


|χ(ρr)|2 log


(
1 +


4r(1 + 1
ρ
)


(r − 1)2


)
dr
]
.


This is manifestly increasing for ρ > 0. Thus, there exists a unique ρc > 1
such that F (ρ, λc(ρ)) changes sign from − to + at ρ = ρc. It follows, since
F (ρ, λ) in Γ− is decreasing with respect to λ and F (ρ, λ) →∞ as λ→ −∞
that the function λ → F (ρ, λ) has a unique zero λ◦(ρ) for 0 ≤ ρ ≤ ρc. It
satisfies (ρ, λ◦(ρ)) ∈ Γ− for 0 ≤ ρ < ρc and also λ◦(0) < 0. By the implicit
function theorem, λ◦(ρ) is real analytic, and λ◦ρ(ρ) > 0 for 0 < ρ < ρc.


The last statement follows from the explicit formulae above.


As above, we will also consider λ◦ as a function of p, through ρ = |p|.
The Hessian is given by


∇2
pλ◦(p) = λ◦ρρ(ρ)p̂⊗ p̂+ λ◦ρ(ρ)


1− (p̂⊗ p̂)


ρ
.


Here we write p̂ = p/|p|, and p̂ ⊗ p̂ denotes the matrix with entries p̂j p̂k. A
straightforward computation yields


det∇2
pλ◦(p) =


1


ρ2
λ◦ρρ(ρ)(λ◦ρ(ρ))


2. (2.7)
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Remark 2.5. The second derivative λ◦ρρ(ρ) at ρ = 0 is called the effective
mass of the dressed electron. Due to (2.4), we have Fρ(0, λ) = 0, and hence


λ◦ρ(0) = −Fρ(0, λ◦(0))


Fλ(0, λ◦(0))
= 0.


Using (2.5), one can compute Fρρ(ρ, λ), and then take the limit ρ ↓ 0 to get
the result


Fρρ(0, λ◦(0)) = 1− 2πµ2


3


∫ ∞


0


χ(r)2r
r2 − 6r + 6λ◦(0)


(1
2
r2 + r − λ◦(0))3


. (2.8)


The integral in this expression can be evaluated explicitly in the case χ(r) ≡ 1
for r ≥ 0. The value is negative for all λ◦(0) < 0. Thus we conjec-
ture (perhaps with an additional assumption on χ) that we always have
Fρρ(0, λ◦(0)) > 0 (taking the sign in front of the integral into account). For
|µ| small we have this result, without additional conditions on χ.


Now using implicit differentiation and the result Fρ(0, λ◦(0)) = 0, we find


λ◦ρρ(0) = −Fρρ(0, λ◦(0))


Fλ(0, λ◦(0))
. (2.9)


We recall from (2.3) that Fλ(0, λ◦(0)) ≤ −1. Thus we conjecture that we
always have a positive effective mass (perhaps with an additional condition
on χ). Let us note that λ◦ρ(0) = 0 and the monotonicity of λ◦(ρ) imply
λ◦ρρ(0) ≥ 0.


3 Spectrum of H0(p) and H0


In this section we first carry out the separation of mass in detail, and then
we prove Theorem 1.2.


3.1 Separation of the center of mass


It is easy to see that the Hamiltonian of the free electron-photon system


H0 =


(
−1


2
∆ µ〈g|


µ|g〉 −1
2
∆ + |k|


)
.


commutes with the spatial translations


τj(s) :


(
u0(x)
u1(x, k)


)
7→
(


u0(x+ sej)
eiskju1(x+ sej, k)


)
, s ∈ R, j = 1, 2, 3.
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Hence H0 and the generators


Pj =


(
−i∂/∂xj 0


0 −i∂/∂xj + kj


)
(3.1)


of τj(s) can simultaneously be diagonalized. Thus, if we introduce the Hilbert
space K = C ⊕ L2(R3) and the unitary operator U : H → L2(R3


p;K) =∫ ⊕
R3 Kdp by (1.3), then we have the direct integral decomposition UH0U


∗ =∫ ⊕
R3 H0(p)dp as in (1.4), where


H0(p) =


(
1
2
p2 0
0 1


2
(p− k)2 + |k|


)
+


(
0 µ〈g0|


µ|g0〉 0


)
≡ H00(p) + T, (3.2)


and T is a rank two perturbation of H00(p). H0(p) is essentially the operator
known as the Friedrichs model. Thus, it is standard to compute its resolvent
and, if we write


(H0(p)− z)−1f̃ =


(
ũ0(p, z),
ũ1(p, k, z)


)
, f̃ =


(
f̃0,


f̃1(k)


)
, (3.3)


we have


ũ0(p, z) =
1


F (p, z)


(
f̃0 − µ


∫
g0(k)f̃1(k)dk


1
2
(p− k)2 + |k| − z


)
, (3.4)


ũ1(p, k, z) =
f̃1(k)


1
2
(p− k)2 + |k| − z


− µg0(k)ũ0(p, z)
1
2
(p− k)2 + |k| − z


. (3.5)


3.2 Proof of Theorem 1.2


We prove here Theorem 1.2 on the spectrum of a reduced operator H0(p).
In what follows ρc is the threshold momentum defined in Lemma 2.4.


As was shown in Lemmas 2.2 and 2.4, F (p, z) is an analytic function of
z ∈ C \ [λc(p),∞), it has a simple zero at λ◦(p), when |p| < ρc, and has no
zero, when |p| ≥ ρc. It follows from (3.3)–(3.5) that C \ [λc(p),∞) 3 z 7→
(H0(p) − z)−1 is meromorphic with a simple pole at λ◦(p), if |p| < ρc, and
that it is holomorphic, if |p| ≥ ρc. Hence:


1. If |p| < ρc, H0(p) has an eigenvalue λ◦(p), and (−∞, λc(p)) \ {λ◦(p)} ⊂
ρ(H0(p)), the resolvent set of H0(p).


2. If |p| ≥ ρc, (−∞, λc(p)) ⊂ ρ(H0(p)).
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By virtue of (3.3)–(3.5), we can compute the eigenprojection Ep for H0(p)
associated with the eigenvalue λ◦(p) as follows:


Ep = − s-lim
z→λ◦(p)


(z − λ◦(p))(H0(p)− z)−1 = ep ⊗ ep.


Thus λ◦(p) is simple, and ep is a normalized eigenvector, see (1.6) and (2.3).
Due to the decomposition (3.2) it is clear that σess(H0(p)) = [λc(p),∞).


Using Mourre theory [14] we show in Lemma 3.1 that [λc(p),∞) is an ab-
solutely continuous component of the spectrum, the singular continuous
spectrum is empty, and eigenvalues are discrete in this set. In the follow-
ing Lemma 3.3 we then show that there are no eigenvalues embedded in
[λc(p),∞). This concludes the proof of the theorem.


We take η ∈ C∞(R3) such that η(k) = 1 for |k| > 1 and η(k) = 0 for
|k| < 1/2 and define a vector field Xr(k) on R3 by Xr(k) = η(k/r)∇kG(p, k)
for a small parameter r > 0. Recall that G(p, k) = 1


2
(p− k)2 + |k|. We then


define a one-parameter family of auxiliary operators Ar by


Ar =


(
0 0
0 Ar


)
, Ar =


i


2
(Xr(k) · ∇k +∇k ·Xr(k)) ,


and let D = C ⊕ C∞
0 (R3). The vector field Xr(k) is smooth, Xr(k) = 0


when |k| < r/2, and its derivatives are bounded. Hence it generates a flow
k → Φr(t, k) of global diffeomorphisms on R3, such that Φr(t, k) = k for
|k| < r/2, and for some c > 0


e−c|t||k| ≤ |Φr(t, k)| ≤ ec|t||k|, e−c|t| ≤ ‖∇kΦr(t, k)‖ ≤ ec|t| (3.6)


for all k ∈ R3 and t ∈ R. It follows that if we define


Jr(t)


(
c


u(k)


)
=


(
c√


det(∇kΦr(t, k))u(Φr(t, k))


)
,


then Jr(t) is a strongly continuous unitary group on K, such that Jr(t)D = D,
t ∈ R, and it satisfies


−i d
dt
Jr(t)


(
c


u(k)


) ∣∣∣
t=0


=


(
0


Aru(k)


)
.


Thus Ar is essentially selfadjoint on D, and we denote its closure again by
Ar, such that Jr(t) = eitAr .


Lemma 3.1. Let I be a bounded open interval such that I ⊂ (λc(p),∞) \
{p2/2}. Then there exist r > 0, such that Ar is a conjugate operator of H0(p)
at E ∈ I in the sense of Mourre, viz.
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(1) D is a core of both Ar and H0(p).


(2) We have that eitArD(H0(p)) ⊂ D(H0(p)), and sup|t|<1 ‖H0(p)e
itAru‖ <


∞ for u ∈ D(H0(p)).


(3) The form i[H0(p),Ar] on D is bounded from below and closable, and the
associated selfadjoint operator i[H0(p),Ar]


0 satisfies D(i[H0(p),Ar]
0) ⊇


D(H0(p)).


(4) The form, defined on D(Ar)∩D(H0(p)) by [[H0(p),Ar]
0,Ar], is bounded


from D(H0(p)) to D(H0(p))
∗.


(5) There exist α > 0, δ > 0, and a compact operator K, such that


P (E, δ)i[H0(p),Ar]
0P (E, δ) ≥ αP (E, δ) + P (E, δ)KP (E, δ),


where P (E, δ) is the spectral projection of H0(p) for the interval (E −
δ, E + δ).


Thus (λc(p),∞) ⊆ σac(H0(p)), σsc(H0(p)) ∩ (λc(p),∞) = ∅, and the point
spectrum of H0(p) is discrete in (λc(p),∞) \ {p2/2}.


Proof. We first show statements (1) ∼ (4) hold for Ar for any r > 0. (1)
is obvious. (2) is also evident because D(H0(p)) = C ⊕ L2


2(R
3) and the


diffeomorphisms k → Φr(t, k) satisfy the bound (3.6). On D we compute the
commutator


i[H00(p),Ar] =


(
0 0
0 i[G(p, k), Ar]


)
≡ L(p). (3.7)


Here we have


i[G(p, k), Ar] = η(k/r)|∇kG(p, k)|2 = η(k/r)|k + k̂ − p|2 ≥ 0, (3.8)


and it behaves like (|k| + 1)2 for large k. Since g0(k) = χ(k)/
√
|k|, χ is


smooth and decays rapidly at infinity and Xr(k) = 0 for |k| < r/2, it follows
that Arg0 is C∞ and rapidly decaying at infinity, such that


i[T,Ar] =


(
0 µ〈Arg0|


µ|Arg0〉 0


)
has an extension to a bounded rank two operator. Thus i[H0(p),Ar] is
bounded from below, closable, and the associated selfadjoint operator has
the same domain as H0(p). This proves (3). (4) holds due to (3.8) and the
arguments used in establishing (3).
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To prove (5), fix p ∈ R3 and E ∈ (λc(p),∞)\{p2/2}. (Recall λc(p) is the
unique minimum of k → G(p, k) and λc = p2/2 is attained by k = 0 if |p| ≤ 1,
and λc(p) = |p|−1/2 is attained by the unique solution k = kc(p) = (|p|−1)p̂
of ∇kG(p, k) = k + k̂ − p = 0, if |p| ≥ 1, see (2.2).) Then E 6= G(p, 0) and
E 6= G(p, kc(p)) and, by continuity, there exist r > 0 and δ > 0, such that


0 < δ < 1
2
min{|E − 1


2
p2|, |E − λc(p)|}, (3.9)


and such that


|G(p, k)− E| > 2δ if |k| < 2r or |k − kc(p)| < 2r. (3.10)


Then |G(p, k)− E| ≤ 2δ implies |k| > 2r and |k − kc(p)| > 2r, and hence


η(k/r)|∇kG(p, k)|2 = |∇kG(p, k)|2 ≥ r2. (3.11)


Indeed, for |p| ≤ 1 + r, |k| > 2r implies


|∇kG(p, k)| ≥ |k + k̂| − |p| ≥ 1 + 2r − |p| ≥ r


and, if |p| ≥ 1 + r, we have p = kc(p) + k̂c(p) and


|∇kG(p, k)| = |k + k̂ − kc(p)− k̂c(p)| ≥ |k − kc(p)| > 2r.


Thus, if φ0 ∈ C∞
0 (R) is such that φ0(λ) = 0 for |λ| > 2δ, we have


φ0(H00(p)− E) =


(
0 0
0 φ0(G(p, k)− E)


)
and, by virtue of (3.11),


φ0(H00(p)− E)L(p)φ0(H00(p)− E) ≥ r2φ0(H00(p)− E)2.


Thus, if we choose r and δ as above, statement (5) holds with α = r2 and
this δ by virtue of the following lemma.


Lemma 3.2. Let φ ∈ C∞
0 (R), and let L(p) be given by (3.7). Then the


operator L(p){φ(H0(p))− φ(H00(p))} is a compact operator.


Proof. Let φ̃ be a compactly supported almost analytic extension of φ. Then
writing R0(p, z) = (H00(p)− z)−1 and R(p, z) = (H0(p)− z)−1, we have


φ(H0(p))− φ(H00(p)) =
1


2πi


∫
C


∂zφ̃(z)R0(p, z)TR(p, z)dz ∧ dz, (3.12)


see [4, Theorem 8.1]. Here R0(p, z) commutes with L(p) and L(p)T is a
compact operator, as T is of rank two, and RanT ⊂ D(L(p)). Since (3.12)
is the norm limit of the Riemann sums, the lemma follows.
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Lemma 3.3. We have σpp(H0(p)) ∩ [λc(p),∞) = ∅.


Proof. We recall from Assumption 1.1 that g0(k) > 0 for all k ∈ R3 \ {0},
g0 is smooth away from k = 0 and rapidly decaying at infinity. If λ is an
eigenvalue, then there exists a non-zero vector (c, f) ∈ C⊕L2(R3), such that


µ〈g0, f〉+ 1
2
p2c = λc, (3.13)


µg0(k)c+ {1
2
(p− k)2 + |k|}f(k) = λf(k). (3.14)


We show that these equations lead to a contradiction, if (|p| , λ) ∈ Γ+.
We write G(p, k) = 1


2
(p− k)2 + |k| as previously. It is easy to see that


Sλ = {k : G(p, k)− λ = 0}


has Lebesgue measure zero. (This will be checked in what follows.) This
result will imply c 6= 0, because {1


2
(p − k)2 + |k| − λ}f(k) = 0 otherwise,


which implies f(k) = 0 almost everywhere, a contradiction.
We divide the proof into a number cases.


Case 1. Assume |p| > 1 and λ > λc(p) = |p| − 1
2
.


(i) Assume first λ 6= 1
2
p2. Then 0 6∈ Sλ, and the gradient


∇kG(p, k) = k − p+ k̂ (3.15)


does not vanish on Sλ (it vanishes only when λ = λc(p)). Therefore Sλ is a
smooth hypersurface (of Lebesgue measure zero), and we have


f(k) =
cµg0(k)


G(p, k)− λ
6∈ L2(R3).


This is a contradiction.
(ii) Consider now the subcase λ = 1


2
p2. Then besides k = 0 the equation


G(p, k)− λ = 1
2
k2 − p · k + |k| = 0


has a root k0 6= 0, and around any 0 6= k0 ∈ Sλ, Sλ is a smooth hypersurface,
because ∇kG(p, k0) 6= 0. Thus f cannot be in L2(R3) by the argument given
above.
Case 2. Assume |p| ≤ 1 and λ > λc(p) = 1


2
p2. Then Sλ does not contain


k = 0, and the gradient (3.15) does not vanish, since |k+ k̂| > 1 ≥ |p|. Hence
Sλ is again a nonempty hypersurface, and f 6∈ L2.
Case 3. Consider now the threshold case λ = λc(p).
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(i) If |p| > 1, then λc(p) is the minimum of R3 3 k → G(p, k) at the critical
point k = kc(p), where the Hessian satisfies


∇2
kG(p, k) = I +


I − k̂ ⊗ k̂


|k|
.


Hence kc(p) is a Morse type critical point, and


0 ≤ G(p, k)− λ ≤ 1
2
|k − kc(p)|2


near k = kc(p). Hence Sλ = {kc(p)} (obviously of Lebesgue measure zero),


|f(k)| = |cµg0(k)|
|G(p, k)− λ|


≥ C
g0(k)


|k − kc(p)|2
,


and f cannot be square integrable.
(ii) If |p| = 1, then λ = λc(p) = 1


2
p2 = 1


2
and, if we let θ be the angle between


k and p,


G(p, k)− λ = −p · k + 1
2
k2 + |k| = 1


2
r2 + r(1− cosθ) ≥ 0, r = |k|.


Hence Sλ = {0} is a single point and, by using polar coordinates, we have∫
|f(k)|2dk =


∫
|cµ|2g0(k)


2dk


|G(p, k)− λ|2


= C


∫ ∞


0


∫ π


0


4g0(r)
2r2sinθdθdr


r2(r + 2(1− cosθ))2
(C = 2π|cµ|2)


= 4C


∫ ∞


0


g0(r)
2


(∫ 2


0


1


(r + 2t)2
dt


)
dr


= 8C


∫ ∞


0


χ(r)2dr


r2(r + 4)
= ∞,


as χ(0) > 0. Thus again λ cannot be an eigenvalue.
(iii) Finally we consider the case |p| < 1 and λ = λc(p) = 1


2
p2. In this case


G(p, k)− λ = 1
2
k2 + |k| − p · k ≥ |k|(1− |p|),


hence Sλ = {0}, and |G(p, k)− λ| ≤ C|k| for small |k|. Then,


f(k) =
cµg0(k)


G(p, k)− λ
6∈ L2(R3),


since f(k) has a singularity |k|−3/2 at k = 0.
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Remark 3.4. Since the Hamiltonian H0(p) is essentially a Friedrich Hamil-
tonian, it is possible to give a different proof of Theorem 1.2, by proving the
limiting absorption principle for H0(p) on (λc(p),∞) \ {1


2
p2}. In order to do


this one studies the boundary values limε↓0 F (ρ, λ± iε) for (ρ, λ) ∈ Γ+, and
then uses the explicit representation for the resolvent given in (3.4) and (3.5).
The argument in Lemma 3.3 is then needed only in the cases λ = λc(p) and
λ = 1


2
p2.


3.3 Resolvent and spectrum of H0


From the equations (3.3), (3.4), and (3.5), we derive the formula for the
resolvent:


(H0 − z)−1


(
f0


f1


)
=


(
G0(x, z)
G1(x, k, z)


)
. (3.16)


Lemma 3.5. Let z 6∈ R. Then we have


Ĝ0(p, z) =
1


F (p, z)


(
f̂0(p)− µ


∫
g0(k)f̂1(p− k, k)


1
2
(p− k)2 + |k| − z


dk


)
, (3.17)


Ĝ1(p, k, z) =
f̂1(p, k)


1
2
p2 + |k| − z


− µg0(k)Ĝ0(p+ k, z)
1
2
p2 + |k| − z


, (3.18)


where F (p, z) is given by (2.1).


Since λ◦ρ(ρ) > 0 for 0 < ρ < ρc, Theorem 1.2 implies the following
theorem, by well-known results on the spectrum of an operator with a direct
integral representation, see for example [17, Theorem XIII.85].


Theorem 3.6. The spectrum of H0 is absolutely continuous and is given by
σ(H0) = [Σ,∞), where Σ = λ◦(0) < 0.


Remark 3.7. In quantum field theory one is often interested in the joint
spectrum of (H0, P ), where the components of the momentum are given in
(3.1). Such results follow immediately from the results in this section. In
particular, we see that in our case the eigenvalue λ◦(p) generates an isolated
shell in the joint spectrum.


4 The behavior of e−itH0


In this section we prove Theorem 1.3 and study the asymptotic behavior as
t→ ±∞ of e−itλ◦(Dx) in the configuration space.
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4.1 Proof of Theorem 1.3


By virtue of Theorem 1.2, e−itH0(p) can be decomposed as


e−itH0(p) = e−itλ◦(p)Ep + e−itH0(p)Pac(H0(p)),


where we set Ep = 0, when |p| ≥ ρc. Here H0(p) is a rank two perturba-
tion of H00(p), H00(p) has a simple isolated eigenvalue 1


2
p2 and the abso-


lutely continuous spectrum [λc(p),∞). The absolutely continuous subspace
is Kac(H00(p)) = {0} ⊕ L2(R3). It follows by the celebrated Kato-Birman
theorem (see for example [16]) that the limits


s-lim
t→±∞


eitH00(p)e−itH0(p)Pac(H0(p)) = Ω±
0 (p)


exist, and furthermore that the wave operators Ω±
0 (p) are partial isometries


with initial set Kac(H0(p)) = Pac(H0(p))K and final set {0}⊕L2(R3). Thus,
as t→ ±∞, we have for any f̃ ∈ K∥∥∥e−itH0(p)f̃ − e−itλ◦(p)Epf̃ − e−itH00(p)Ω±


0 (p)f̃
∥∥∥
K
→ 0 (4.1)


and ‖f̃‖2 = ‖Epf̃‖2 + ‖Ω±
0 (p)f̃‖2.


If we write, with û denoting the Fourier transform of u with respect to
the x variables as previously,


f =


(
f0


f1


)
∈ H, and EpU f(p) =


(
f̂1,0(p)


f̂1,1(p, k)


)
∈ K for |p| < ρc


then, with the understanding that f̂1,0(p) = f̂1,1(p, k) = 0, when |p| ≥ ρc, we
have


U∗
(∫ ⊕


R3


e−itλ◦(p)Epdp


)
U f =


(
e−itλ◦(Dx)f1,0(x)


e−ikxe−itλ◦(Dx)f1,1(x, k)


)
. (4.2)


Since Ep is the one dimensional projection onto the space spanned by ep(k),
we have


f̂1,0(p) =
−1


Fλ(p, λ◦(p))


(
f̂0(p)− µ


∫
g0(k)f̂1(p− k, k)dk


1
2
(p− k)2 + |k| − λ◦(p)


)
,


and


f̂1,1(p, k) =
−µg0(k)f̂1,0(p)


1
2
(p− k)2 + |k| − λ◦(p)


.
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The operator
(∫ ⊕


R3 Epdp
)


is the orthogonal projection onto {h(p)ep(k) : h ∈
L2(Bρc)} and ∥∥∥∥U∗


(∫ ⊕


R3


Epdp


)
U f


∥∥∥∥2


H
= ‖f1,0‖2


H0
+ ‖f1,1‖2


H1
. (4.3)


If we write


Z± ≡ U∗
(∫ ⊕


R3


Ω±
0 (p)dp


)
U, Z±f =


(
0


f2,1,±


)
,


then Z± are unitary from U∗
(∫ ⊕


R3 Kac(H0(p))dp
)


onto {0} ⊕ L2(R6), and


U∗
[∫ ⊕


R3


e−itH00Ω±
0 (p)dp


]
U f =


(
0


e−it(−1
2
∆+|k|)f2,1,±


)
. (4.4)


We insert the relation (4.1) into the identity e−itH0 = U∗( ∫ ⊕
R3 e


−itH0(p)dp
)
U ,


and use the identities (4.2) and (4.4). Theorem 1.3 follows.


4.2 Behavior in configuration space


As the operator e−it(−1
2
∆+|k|) has been well studied, we concentrate on the


operator e−itλ◦(Dx)v(x) for the case t > 0. When v̂ ∈ C∞
0 (B(ρc)), we may


apply the method of stationary phase to


v(t, x) =
1


(2π)3/2


∫
e−itλ◦(p)+ixpv̂(p)dp.


The points of stationary phase are determined by the equation


t∇λ◦(p) = x. (4.5)


It follows from (2.7) that det∇2
p(p) can vanish only for p with |p| = ρ satis-


fying λ◦ρρ(ρ) = 0. By the real analyticity of λ◦(ρ) it follows that these zeros
are isolated in (0, ρc), with 0 and ρc as possible accumulation points. Thus


{ρ ∈ (0, ρc) : λ◦ρρ(ρ) = 0} = {ρj}j=M,...,N ,


a strictly increasing sequence, or the set is empty. Here we use M and N to
distinguish between the following cases. M = 1, if zeros do not accumulate
at 0. In that case we also use ρ0 = 0 below. 1 ≤ N < ∞, if the zeroes do
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not accumulate at ρc. In that case we introduce ρN+1 = r < ρc. We take
M = −∞ or N = ∞, if the zeroes accumulate at 0 or ρc, respectively.


We consider only the case M = −∞ and N = ∞. The other cases require
simple modifications in the arguments below. Define


Gj = {p ∈ R3 : ρj < |p| < ρj+1}, j ∈ Z. (4.6)


We restrict our considerations to a set Gj, j ∈ Z. The equation (4.5) has a
unique solution of the form p(x/t) = x̂ρ(|x|/t), where ρ(|x|/t) is the solution
of λ◦ρ(ρ) = |x|/t, when x


t
∈ ∇λ◦(Gj).


Assume now v̂ ∈ C∞
0 (Gj). Then v(t, x) can be written in the form


v(t, x) =
t−3/2eiφ(t,x)−i


3π
4


+i π
2
s


(det∇2
pλ◦(p(x/t)))


1/2


(
v̂(p(x/t)) + t−1v1(x/t) + · · ·


)
, (4.7)


where s = 0, if det∇2
pλ◦(p) > 0 for p ∈ Gj, and s = 1, if det∇2


pλ◦(p) < 0 for
p ∈ Gj. The phase function is defined by


φ(t, x) = x · p(x/t)− tλ◦(p(x/t)), (4.8)


v1, v2, . . . are determined by standard formulae (see [11, Section 7.7]), and
for x


t
6∈ ∇λ◦(Gj), |v(t, x)| ≤ CN |t|−N 〈x〉−N for any N and t large.


Lemma 4.1. Let Gj, s and φ(t, x) be defined as above and let f̂1,0 ∈ C∞
0 (Gj)


for some j. Then the functions e−itλ◦(Dx)f1,0(x) and e−itλ◦(Dx)f1,1(x, k) have
the following asymptotic expansions as t→∞ for x ∈ t∇λ◦(Gj):


e−itλ◦(Dx)f1,0(x) =
t−3/2eiφ(t,x)−i


3π
4


+i π
2
s


(det∇2
pλ◦(p(x/t)))


1/2


(
f̂1,0(p(x/t))


+ t−1g1(x/t) + · · ·
)
, (4.9)


e−itλ◦(Dx)f1,1(x, k) =
t−3/2eiφ(t,x)−i


3π
4


+i π
2
s


(det∇2
pλ◦(p(x/t)))


1/2


(
f̂1,1(p(x/t), k)


+ t−1M1(x/t, k) + · · ·
)
, (4.10)


where g1(x/t),g2(x/t), . . ., M1(x/t, k), M2(x/t, k), . . ., are defined by standard
formulae involving the derivatives of f1,0 and f1,1. In particular, supports of


gj(·) and Mj(·, k) are contained in those of f̂1,0(p(·)) and f̂1,1(p(·), k) respec-
tively. For x 6∈ t∇λ◦(Gj), we have for any N ,


|e−itλ◦(Dx)f1,0(x)| ≤ CN |t|−N 〈x〉−N , (4.11)
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|e−itλ◦(Dx)f1,1(x, k)| ≤ CN |t|−N 〈x〉−N〈k〉−N . (4.12)


The results (4.10) and (4.12) hold for |k| > ε, ε > 0 arbitrary.


Proof. The formula for e−itλ◦(Dx)f1,0(x) is an immediate corollary of (4.7).


The result (4.10) can be proved similarly, since k → f̂1,1(·, k) ∈ C∞
0 (B(ρc))


is smooth and rapidly decaying, when |k| > ε > 0.


Thus we may consider e−ikxe−itλ◦(Dx)f1,1(x, k) as the part of the wave
function, which represents the motion of the electron under the dispersion
relation λ◦(p), which is dragging the cloud of photons (however only one
photon).


5 Proof of Theorem 1.6


In this section we prove Theorem 1.6 on the spectral properties of the Hamil-
tonian H. In what follows we mostly use the configuration space represen-
tations for the photons. The variable dual to k is denoted by y. We then
have


(|g〉u0)(x, y) = ǧ0(y − x)u0(x), (〈g|u1)(x) =


∫
ǧ0(x− y)u1(x, y)dy,


where ǧ0 is the inverse Fourier transform of the function given by (1.2). Recall
that g0 is O(3)-invariant, such that ǧ0(x) is also O(3) invariant, ǧ0 is Ck for
a k depending on N in Assumption 1.1, and it has an asymptotic expansion
at infinity:


ǧ0(y) = C0|y|−5/2 + C1|y|−7/2 + · · · . (5.1)


The photon energy is given by the differential operator |Dy|. We write K0 for
the operator H, where the electron-photon interaction is switched–off, viz.


K0 =


(
h 0
0 h+ |Dy|


)
≡ h⊕ (h+ |Dy|).


The following two sets of partitions of unity, the one of the electron con-
figuration space R3


x, and the other of the electron-photon configuration space
R6


(x,y), will play an important role in what follows:


χ00(x)
2 + χ01(x)


2 = 1, x ∈ R3,


χ10(x, y)
2 + χ11(x, y)


2 + χ12(x, y)
2 = 1, (x, y) ∈ R6,


where χij satisfy the following properties:
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(1) χ00 ∈ C∞
0 ({|x| < 1}), χ01 ∈ C∞(R3) and χ10 ∈ C∞


0 ({|x|2 + |y|2 < 1}).
χ00(x) = 1 for |x| ≤ 1/4 and χ10(x, y) = 1 for |x|2 + |y|2 ≤ (1/4)2.


(2) For |x|2 + |y|2 ≥ 1, χ11, χ12 ∈ C∞(R6) are homogeneous of degree 0,
χ11(x, y) and χ12(x, y) vanish in small open cones containing x = 0 and
x = y such that, outside a ball of radius 1, they are equal to 1 in open
cones containing x = y and x = 0, respectively.


Such a partition of unity exists, since the linear subspaces {(x, y) : x = 0}
and {(x, y) : x = y} do not intersect on the unit sphere of R6. We define


χ0 =


(
χ00 0
0 χ10


)
, χ1 =


(
χ01 0
0 χ11


)
, χ2 =


(
0 0
0 χ12


)
, (5.2)


so that as operators in H


χ2
0 + χ2


1 + χ2
3 = I. (5.3)


We denote the commutator AB −BA of operators A and B by [A,B].


Lemma 5.1. Let j ∈ C∞
0 (R3) and let j%(y) = j(y/%) for % > 0. Then:


(1) The operator [|Dy| , j%(y)], defined on S(R3), extends to a bounded oper-
ator on L2(R3). We have ‖ [|Dy| , j%(y)] ‖B(L2) ≤ C%−1, % ≥ 1.
(2) For any δ > 0, [|Dy| , j%(y)] (1 + |Dy|)−δ is compact in L2(R3).
(3) Let K be the multiplication by a function K(x, y) such that


lim
R→∞


sup
|x|≥R


‖K(x, ·)‖L2(R3) = 0.


Then K(−∆x + 1)−1 : L2(R3) → L2(R6) is compact.


Proof. (1) In the momentum representation j% is convolution with %3ĵ(%ξ).
Thus [|Dy| , j%(y)] is an integral operator with the kernel


%3(|ξ| − |η|)ĵ(%(ξ − η)),


which is dominated in modulus by the convolution kernel %3 |ξ − η| |ĵ(%(ξ −
η))|. Statement (1) follows from Young’s inequality.
(2) When ε > 0, it is well-known that


[
(ε2 −∆y)


1/2, j%(y)
]
(1 + |Dy|)−δ is


compact. We have |(ε2 + |ξ|2)1/2 − |ξ|| ≤ ε and


‖
[
(ε2 −∆y)


1/2, j%(y)
]
− [|Dy|, j%(y)] ‖B(L2) ≤ 2ε‖j‖L∞ .


The compactness of [|Dy|, j%(y)] (1 + |Dy|)−δ follows.


23







(3) Let KR(x, y) = χ00(x/R)K(x, y) and KR be the multiplication operator
with KR(x, y). Then, KR → K in the operator norm from L2(R3) to L2(R6)
as R → ∞ and KR(−∆x + 1)−1 is an operator of Hilbert-Schmidt class
because it is an integral operator with the square integrable integral kernel


KR(x, y)e−|x−x′|


4π|x− x′|
.


Hence, K(−∆x + 1)−1 is compact.


Lemma 5.2. (1) The following operators are compact in H for z 6∈ R:


[(H − z)−1, χj], j = 1, 2, ((H − z)−1 − (H0 − z)−1)χ1


((H − z)−1 − (K0 − z)−1)χ2, [(K0 − z)−1, χj], j = 1, 2.


(2) Let f ∈ C∞
0 (R). Then the following operators are compact in H:


[f(H), χj], (f(H)− f(H0))χ1, (f(H)− f(K0))χ2, [f(K0), χj], j = 1, 2.


Proof. By virtue of the Helffer-Sjöstrand formula (see (3.12) and [4, Theorem
8.1]), it suffices to show the compactness of the operators in (1).
(i) We first prove that [(H − z)−1, χj], j = 1, 2 are compact. Since the proof
for the case j = 2 is similar and simpler, we prove it only for j = 1. We have


[(H − z)−1, χ1] = (H − z)−1[H,χ1](H − z)−1


and


[H,χ1] =


(
−1


2
∆χ01 + 1


2
χ01∆ 〈g|χ11 − χ01〈g|


|g〉χ01 − χ11|g〉 (−1
2
∆ + |Dy|)χ11 − χ11(−1


2
∆ + |Dy|)


)
.


We show that all entries of the matrix on the right are compact operators
between appropriate spaces.
(a) By the Rellich theorem −1


2
∆χ01 + 1


2
χ01∆: H2(R3) → L2(R3) is compact.


(b) In the configuration space, |g〉 : u0(x) 7→ ǧ0(y − x)u0(x). We write


|g〉χ01 − χ11|g〉 = |g〉(χ01 − 1)− (χ11 − 1)|g〉.


Then, both |g〉(χ01 − 1)(−∆ + 1)−1 and (χ11 − 1)|g〉(−∆ + 1)−1 are com-
pact from L2(R3) to L2(R6), because |g〉(χ01 − 1) and (χ11 − 1)|g〉 are mul-
tiplications by ǧ0(y − x)(χ01(x) − 1) and ǧ0(y − x)(χ11(x, y) − 1), respec-
tively, and they satisfy the condition of Lemma 5.1(3). Indeed, we have
‖ǧ0(y − x)(χ01(x)− 1)‖L2(R3


y) = 0 for |x| ≥ 1, because ǧ0 ∈ L2(R3) by virtue
of (5.1) and (χ01(x)− 1) = 0 for |x| ≥ 1, and


|ǧ0(y − x)(χ11(x, y)− 1)| ≤ C(1 + |x|+ |y|)−5/2,
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because (1−χ11(x, y)) vanishes in an open cone containing x = y outside the
unit ball of R6. Thus, |g〉χ01 − χ11|g〉 is compact from H2(R3) to L2(R6).
(c) (−1


2
∆ + 1)−1(〈g|χ11 − χ01〈g|) is the adjoint of the operator discussed in


step (b) and is compact from L2(R6) to L2(R3).
(d) χ11 is homogeneous of degree 0 outside the unit ball and [−1


2
∆x, χ11] is


a first order differential operator whose coefficients are derivatives of χ11. It
follows that [−1


2
∆x, χ11](−1


2
∆x + |Dy| + 1)−1 is compact in L2(R6) by the


Rellich compactness theorem. We approximate |Dy| by (ε2 + |Dy|2)1/2 as
in the proof of Lemma 5.1. The operator [(ε2 + |Dy|2)1/2, χ11] is a pseudo-
differential operator of order zero in R6 whose symbol decays at infinity with
respect to (x, y). Hence,


[(ε2 + |Dy|2)1/2, χ11](−1
2
∆x + |Dy|+ 1)−1


is compact in L2(R6), and so is [|Dy|, χ11](−1
2
∆x+|Dy|+1)−1 by the argument


of the proof of Lemma 5.1. Thus, [−1
2
∆ + |Dy|, χ01](−1


2
∆x + |Dy| + 1)−1 is


compact in L2(R6). Combination of the results (a) ∼ (d) implies that the
operator [(H − z)−1, χ1] is compact in H.


(ii) Next we show ((H − z)−1 − (H0 − z)−1)χ1 is compact. We write
Ṽ = V ⊕ V . Then


((H − z)−1 − (H0 − z)−1)χ1 = −(H − z)−1Ṽ (H0 − z)−1χ1


= −(H − z)−1Ṽ χ1(H0 − z)−1 − (H − z)−1Ṽ [(H0 − z)−1, χ1]


By assumption (H − z)−1Ṽ is bounded and [(H0 − z)−1, χ1] is compact in
H, as was shown in (i) above. It follows that the second summand on the
right is compact. To see that the same holds for the first summand, we write
Ṽ χ1 = (V χ01⊕ 0) + (0⊕V χ11). Then, V χ01⊕ 0 is H0-compact because V is
−∆-compact. Since χ11 vanishes in an open cone about x = 0, V (x)χ11(x, y)
decays as |x| + |y| → ∞. Hence, V (x)χ11(x, y) is −∆x + |Dy|-compact, viz.
0⊕V χ11 is H0-compact. It follows that Ṽ χ1(H0−z)−1 is compact and hence
so is ((H − z)−1 − (H0 − z)−1)χ1.


(iii) To show ((H − z)−1 − (K0 − z)−1)χ2 is compact, we write it in the
form


−(H − z)−1


(
0 〈g|(−1


2
∆ + |Dy| − z)−1χ12


0 0


)
.


It suffices to show that (−∆+1)−1〈g|(−1
2
∆+ |Dy|−z)−1χ12 is compact from


L2(R6) to L2(R3). We write


〈g|(−1
2
∆ + |Dy| − z)−1χ12 = 〈g|χ12(−1


2
∆ + |Dy| − z)−1


− 〈g|(−1
2
∆ + |Dy| − z)−1[−1


2
∆ + |Dy|, χ12](−1


2
∆ + |Dy| − z)−1
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The argument of (i) (d) above implies [−1
2
∆ + |Dy|, χ12](−1


2
∆ + |Dy| − z)−1


is compact in L2(R6). Since χ12(x, y) = 0 in an open cone containing x =
y, (5.1) implies |ǧ(x − y)χ12(x, y)| ≤ C(1 + |x| + |y|)−5/2. It follows that
(−∆+1)−1〈g|χ12 is compact from L2(R6) to L2(R3) because it is the adjoint
of χ12|g〉(−∆+1)−1 which is compact fromL2(R3) to L2(R6) by the argument
of (i) (b).


(iv) The compactness of [(K0 − z)−1, χj] is well known, and we omit the
details.


5.1 Essential spectrum


In this subsection we show that σess(H) = [min{Σ, E0},∞) by proving the
following two lemmas. We write Σess = min{Σ, E0}. We recall the definitions,
namely Σ = inf σ(H0) and E0 = inf σ(h). We impose Assumption 1.4 on V .


Lemma 5.3. We have [Σess,∞) ⊆ σess(H).


Proof. We prove the lemma by the standard Weyl sequence method. Let
us first assume λ > Σ. We can choose an orthonormalized sequence un =
un0 ⊕ un1 ∈ D(H0), such that ‖(H0 − λ)un‖ → 0, because λ ∈ σ(H0), and
σ(H0) is absolutely continuous. Then, for any choice of Rn ∈ R3,


ũn =


(
un0(x−Rn)


e−ikRnun1(x−Rn, k)


)
, n = 1, 2, . . .


is still orthonormalized and ‖(H0 − λ)ũn‖ → 0 as n → ∞, since H0 is
translation invariant. Due to Assumption 1.4 we can choose Rn such that


‖V un0(x−Rn)‖L2(R3
x) → 0 and ‖V un1(x−Rn, k)‖L2(R6


(x,k)
) → 0


as n → ∞. Then we have ‖(H − λ)ũn‖ → 0, and we conclude λ ∈ σess(H),
and then [Σ,∞) ⊂ σess(H). Next suppose that h has an eigenvalue E < Σ
with a normalized eigenfunction φ(x), and let λ > E. We show that λ ∈
σess(H) and hence [E0,∞) ⊂ σess(H). Take k0 ∈ R3 such that |k0| = λ− E,
and take a function ψ ∈ C∞


0 (R3
k), such that ‖ψ‖ = 1. Set


un =


(
0


un1(x, k)


)
, un1(x, k) = n3/2φ(x)ψ(n(k − k0)).


Then ‖un‖ = 1, and un → 0 weakly as n→∞. Moreover, we have


‖〈g|un1‖H0 ≤ n−3/2


∫
g0(k0 + n−1k)|ψ(k)|dk → 0,
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‖(h+ |k| − λ)un1‖
= n3/2‖(|k| − |k0|)ψ(n(k − k0))‖ = ‖(|k0 + n−1k| − |k0|)ψ(k)‖ → 0


as n→∞. Hence ‖(H − λ)un‖ → 0, and λ ∈ σess(H).


Lemma 5.4. We have σess(H) ⊆ [Σess,∞).


Proof. We prove that f(H) is a compact operator for any f ∈ C0(−∞,Σess)
by adapting the geometric proof of HVZ-theorem ([2]), the corresponding
result for the N -body Schrödinger operators. We have f(H0) = f(K0) = 0
by the definition of Σess. We decompose


f(H) = f(H)


(
χ2


00 0
0 χ2


10


)
+ (f(H)− f(H0))


(
χ2


01 0
0 χ2


11


)
+ (f(H)− f(K0))


(
0 0
0 χ2


12


)
The first summuand on the right is compact in H by the Rellich theorem,
and so are the others by virtue of Lemma 5.2. Thus f(H) is compact and
the lemma follows.


5.2 The Mourre estimate


In this subsection we complete the proof of statement (1) of Theorem 1.6
via the Mourre theory. For this purpose, we first prove the following Mourre
estimate for the operator H with the conjugate operator


A =


(
Ax 0
0 Ax + Ay


)
,


where Ax = 1
2
(x ·Dx +Dx ·x) and Ay = 1


2
(y ·Dy +Dy · y). In the momentum


representation Ay can be represented by −Ak = −1
2
(k · Dk + Dk · k). We


write Iδ(λ) = (λ − δ, λ + δ). PH(I) is the spectral projection of H for the
interval I.


Lemma 5.5. Let λ0 6∈ Θ(H), the threshold set. Then there exist ε > 0,
δ > 0 and a compact operator C such that


iPH(Iδ(λ0))[H,A]PH(Iδ(λ0)) ≥ εPH(Iδ(λ0)) + C.


Proof. In this proof we take µ = 1 without loss of generality. We compute
as a quadratic form on S(R3)⊕ S(R6)


i[H,A] =


(
i[h,Ax] i(〈g|(Ax + Ay)− Ax〈g|)


i(|g〉Ax − (Ax + Ay)|g〉) i[h+ |Dy|, Ax + Ay]


)
.
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A simple computation using eikx(Ax − Ak)e
−ikx = Ax − Ak yields


i[−1
2
∆ + V,Ax] = −∆− x · ∇xV, (5.4)


i[|Dy|, Ay] = i[|k|,−Ak] = [k∇k, |k|] = |k|, (5.5)


i(|g〉Ax − (Ax + Ay)|g〉) = |e−ikx(iAkg0)(k)〉, (5.6)


i(〈g|(Ax + Ay)− Ax〈g|) = 〈e−ikx(iAkg0)(k)|. (5.7)


Thus, writing g1(k, x) = e−ikx(iAkg0)(k) and W (x) = −x · ∇xV , we obtain


i[H,A] =


(
−∆x +W 〈g1|


|g1〉 −∆x + |k|+W


)
. (5.8)


We define g10(k) = (iAkg0)(k) so that g1(x, k) = e−ixkg10(k). Note that


iAk
1√
|k|


=


(
k∇k +


3


2


)
1√
|k|


=
1√
|k|
,


such that g10(k) has the same property as that of g0(k), viz. it is a smooth
function of |k| 6= 0 which decays rapidly at infinity and it has a |k|−1/2


singularity at k = 0. In the rest of the proof we fix a function ψ ∈ C∞
0 (R),


such that ψ(λ) = 1 for |λ| ≤ 1/2 and ψ(λ) = 0 for |λ| ≥ 1 and define


fλ0,δ(λ) = ψ((λ− λ0)/δ)


for λ0 ∈ R and δ > 0. It follows that i[H,A] can be extended to a selfad-
joint operator in H with the domain D(H) and f(H)i[H,A] has a bounded
extension for any f ∈ C∞


0 (R).
We decompose f(H)i[H,A]f(H) as


f(H)i[H,A]f(H) =
2∑


j=0


f(H)i[H,A]f(H)χ2
j (5.9)


by using the partitions of unity introduced in (5.2) and (5.3). Here f ∈
C∞


0 (R).
(i) By the Rellich theorem f(H)χ0 is compact. Hence f(H)[H,A]f(H)χ2


0 is
a compact operator in H.
(ii) Replacing f(H) by f(H0), we write


f(H)[H,A]f(H)χ2
1 =


f(H)[H,A]f(H0)χ
2
1 + f(H)[H,A](f(H)− f(H0))χ


2
1.
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Here f(H)i[H,A](f(H)− f(H0))χ
2
1 is compact by virtue of Lemma 5.2. We


then rewrite the first term on the right as follows:


f(H)[H,A]f(H0)χ
2
1 =


f(H)[H,A][f(H0), χ1]χ1 + f(H)[[H,A], χ1]f(H0)χ1


+ (f(H)− f(H0))χ1[H,A]f(H0)χ1 + f(H0)χ1(W ⊕W )f(H0)χ1


+ [f(H0), χ1][H0, A]f(H0)χ1 + χ1f(H0)[H0, A]f(H0)χ1. (5.10)


Here on the right all terms but the last one are compact in H. Indeed,
χ1(W ⊕W )f(H0) is compact by the assumption on V , since χ11 = 0 in an
open cone about x = 0 in R6; [f(H0), χ1] and (f(H)−f(H0))χ1 are compact
by virtue of Lemma 5.2; since W and g1(k, x) satisfy properties similar to
those of V and g(x, k), the proof of Lemma 5.2 implies [i[H,A], χ1]f(H0) is
compact. Thus,


f(H)i[H,A]f(H)χ2
1 = χ1f(H0)i[H0, A]f(H0)χ1 + C0, (5.11)


where C0 is a compact operator in H. We show that, for any λ0 6∈ Θ(H),
there exist ε > 0 and δ0 > 0 such that, for f = fλ0,δ with 0 < δ < δ0,


χ1f(H0)i[H0, A]f(H0)χ1 ≥ εχ1f(H0)
2χ1. (5.12)


In the direct integral decomposition introduced in (1.4), we have (recall the
definition (1.3) of U)


Uf(H0)i[H0, A]f(H0)U
∗


=


∫ ⊕


R3


f(H0(p))


(
p2 〈g10|
|g10〉 (p− k)2 + |k|


)
f(H0(p))dp. (5.13)


We divide the proof of (5.12) into three cases.
(a) Assume Σ < λ0 < 0, λ0 6∈ Θ(H), first. Then choose δ0 > 0 such that
λ0 + 2δ0 < 0 and Σ < λ0 − 2δ0, and let f = fλ0,δ, δ < δ0. Then Theorem 1.2
implies that f(H0(p)) is supported in a compact subset of {p : 0 < |p| < ρc},
and f(H0(p)) = f(λ◦(p))ep ⊗ ep. We compute the inner product(


ep,


(
p2 〈g10|
|g10〉 (p− k)2 + |k|


)
ep


)
K


(5.14)


by using the expression (1.6) for ep. The result is (−Fλ(p, λ◦(p)))
−1 times


p2 − 2


∫
g0(k)g10(k)dk


1
2
(p− k)2 + |k| − λ◦(p)


+


∫
g0(k)


2((p− k)2 + |k|)dk
(1


2
(p− k)2 + |k| − λ◦(p))2


.
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We recall that g10(k) = iAkg0(k) = d
dθ
e3θ/2g0(e


θk)
∣∣∣
θ=0


and compute


∫
g0(k)g10(k)dk


1
2
(p− k)2 + |k| − λ◦(p)


=
d


dθ


∫
g0(k)e


3θ/2g0(e
θk)dk


1
2
(p− k)2 + |k| − λ◦(p)


∣∣∣
θ=0


=
d


dθ


∫
e−3θ/2g0(e


−θk)g0(k)dk
1
2
(p− e−θk)2 + |e−θk| − λ◦(p)


∣∣∣
θ=0


= −
∫


g10(k)g0(k)dk
1
2
(p− k)2 + |k| − λ◦(p)


−
∫


g0(k)
2{(p− k)k − |k|}dk


(1
2
(p− k)2 + |k| − λ◦(p))2


.


It follows that


2


∫
g0(k)g10(k)dk


1
2
(p− k)2 + |k| − λ◦(p)


= −
∫


g0(k)
2{(p− k)k − |k|}dk


(1
2
(p− k)2 + |k| − λ◦(p))2


,


and (5.14) is equal to


1


−Fλ(p, λ◦(p))


(
p2 +


∫
g0(k)


2(p− k)pdk


(1
2
(p− k)2 + |k| − λ◦(p))2


)
.


It is easy to check that the quantity inside the parentheses is equal to
p · (∇pF )(p, λ◦(p)), and (5.14) is exactly equal to λ◦ρ(ρ), which is strictly
positive in a compact subset of {p : 0 < |p| < ρc} by virtue of Lemma 2.4.
Thus we conclude that for some positive ε > 0∫ ⊕


R3


f(H0(p))


(
p2 〈g10|
|g10〉 (p− k)2 + |k|


)
f(H0(p))dp,≥ εUf(H0)


2U∗


and (5.12) holds in this case.
(b) Next we let λ0 > Ec ≡ λ◦(ρc) > 0. Take δ1 > 0 such that λ0 − 3δ1 > Ec


and let f = fλ0,δ for 0 < δ < δ1. Then there exists a compact set Ξ of R3


such that f(H0(p)) = 0 for all p 6∈ Ξ and 0 < δ < δ1. By virtue of (5.13), we
have


f(H0)i[H0, A]f(H0) ≥ (λ0 − δ)f(H0)
2


+ U∗
∫ ⊕


Ξ


f(H0(p))


(
0 〈(g10 − g0)|


|(g10 − g0)〉 0


)
f(H0(p))dpU. (5.15)


Denote by Z the operator represented by the direct integral on the right of
(5.15). Since H0(p) is an analytic family of type A, fλ0,δ(H0(p)) is norm
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continuous with respect to p. We have fλ0,δ(H0(p)) → 0 strongly as δ → 0,
and also fλ0,δ(λ)fλ0,δ/4(λ) = fλ0,δ/4(λ). Using the compactness of Ξ, we
conclude that the operator norm of Z converges to zero as δ → 0. Thus we
conclude that there exists δ0 > 0 such that for 0 < δ < δ0


fλ0,δ(H0)i[H0, A]fλ0,δ(H0) ≥ (λ0 − 2δ)fλ0,δ(H0)
2


and (5.12) holds also in this case.
(c) When 0 < λ0 < Ec, we take δ0 > 0 such that 0 < λ0−2δ0 < λ0+2δ0 < Ec,
and let f = fλ0,δ for 0 < δ < δ0. If δ0 is taken sufficiently small, then, by
virtue of Theorem 1.2, {p ∈ R3 : f(H0(p)) 6= 0} consists of two disjoint
components Ω1 = {ρ0 < |p| < ρ1} and Ω2 = {ρ2 < |p| < ρ3}, 0 < ρ0 <
ρ1 < ρ2 < ρ3 < ρc such that H0(p) is purely absolutely continuous on Iλ,2δ,
when p ∈ Ω1, and f(H0(p)) = f(λ◦(p))ep ⊗ ep for p ∈ Ω2. Then, splitting
the direct integral (5.8) into two parts, the one over Ω1 and the other over
Ω2 and applying the arguments of (b) and (a), respectively, we obtain


fλ0,δ(H0)i[H0, A]fλ0,δ(H0) ≥ εfλ0,δ(H0)
2,


where ε = min{minp∈Ω2{λ◦ρ(|p|)}, λ0 − 2δ}. This completes the proof of
(5.12).
(iii) We now study f(H)i[H,A]f(H)χ2


2. As above we write


f(H)i[H,A]f(H)χ2
2 = f(H)i[H,A](f(H)− f(K0))χ


2
2+


f(H)i[H,A][f(K0), χ2]χ2 + f(H)[i[H,A], χ2]f(K0)χ2


+ (f(H)− f(K0))χ2i[H,A]f(K0)χ2 + [f(K0), χ2]i[H,A]f(K0)χ2


+ χ2f(K0)i[H,A]f(K0)χ2.


We have shown in Lemma 5.2 that (f(H) − f(K0))χ2 and [f(K0), χ2] are
compact operators in H. Since i[H,A] has the same form as H, the argu-
ment for proving the compactness of f(H)[H,χ2]f(H) in (i) of the proof of
Lemma 5.2 shows that f(H)[i[H,A], χ2]f(K0) is also compact. We further
use that


χ2f(K0)


(
0 〈g1|
|g1〉 0


)
f(K0)χ2 =


(
0 0
0 0


)
,


and conclude that


f(H)i[H,A]f(H)χ2
2 = χ2f(K0)


(
i[h,Ax] 0


0 i[h,Ax] + |Dy|


)
f(K0)χ2 + C2


= 0⊕ χ12f(h+ |Dy|)(i[h,Ax] + |Dy|)f(h+ |Dy|)χ12 + C2, (5.16)
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where C2 is compact in H. We study f(h+ |Dy|)(i[h,Ax] + |Dy|)f(h+ |Dy|).
The Fourier transform with respect to the variables k, and the direct integral
representation, imply that this operator is unitarily equivalent to the operator


f(h+ |k|)(i[h,Ax] + |k|)f(h+ |k|)


=


∫ ⊕


R3


f(h+ |k|)(i[h,Ax] + |k|)f(h+ |k|)dk.


We use the following lemma due to [7].


Lemma 5.6. Let c = inf σ(h)− 1 and s(λ) be defined by


s(λ) =


{
sup(Λ ∩ (−∞, λ]), λ ≥ inf σ(h),


c, λ < inf σ(h),


where Λ = {E0, E1, . . .} ∪ {0}. Then, for any λ0 ∈ R and ε > 0, there exists
δ0 > 0 such that


f(h+ |Dy|)(i[h,Ax] + |Dy|)f(h+ |Dy|)
≥ (λ0 − s(λ0 + ε)− 2ε)f(h+ |Dy|)2


for any f = fλ0,δ with 0 < δ < δ0.


Supppose now λ0 6∈ Θ and λ0 > inf σ(h)−1/2. Then, for sufficiently small
ε > 0, we have s(λ0 + ε) = s(λ0) < λ0 and, hence, λ0 − s(λ0 + ε) − 2ε ≥ ε.
It follows from Lemma 5.6 that there exists δ0 > 0 such that


f(h+ |Dy|)(i[h,Ax] + |Dy|)f(h+ |Dy|) ≥ εf(h+ |Dy|)2 (5.17)


for all 0 < δ < δ0, f = fλ0,δ. Note that (5.17) holds for λ0 ≤ inf σ(h) − 1/2
whenever δ < 1/4, since f(h + |Dy|) = 0 then. From (5.16) and (5.17) we
have


f(H)i[H,A]f(H)χ2
2 ≥ εχ2f(K0)


2χ2 + C2. (5.18)


Combining the results in (i), (ii), and (iii), we see that for any λ0 6∈ Θ,
there exist ε > 0 and δ > 0 and a compact operator C3 such that for f = fλ0,δ


f(H)i[H,A]f(H) ≥ ε(χ1f(H0)
2χ1 + χ2f(K0)


2χ2) + C3. (5.19)


Then, using the compactness of (f(H) − f(H0))χ1, [χ1, f(H0)], [f(K0), χ2]
and (f(H)− f(K0))χ2 again, we derive from (5.19)


f(H)i[H,A]f(H) ≥ εf(H) + C4. (5.20)


with another compact operator C4. Lemma 5.5 follows from (5.20) immedi-
ately.


Once the Mourre estimate is estabilished, it is easy to check the conditions
of Mourre theory as stated in Lemma 3.1 to conclude the proof of statement
(1) of Theorem 1.6. We omit the details here.
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5.3 Existence of the ground state


We prove here statement (2) of Theorem 1.6, the existence of the ground
state. Since (−∞,Σess) ∩ σ(H) is discrete, Σess = min{Σ, E0}, Σ < 0 and
E0 < 0 by assumption, it suffices to show


E ≡ inf σ(H) ≤ Σ + E0, (5.21)


since Σ + E0 < Σess. We prove this by borrowing ideas in [10]. To simplify
the notation we assume that µ = 1 below. We denote by 〈f ,g〉 the inner
product in H. For f = (f0, f1) ∈ D(H), we have


〈f , Hf〉 =


∫ (
1
2
|∇xf0(x)|2 + V (x)|f0(x)|2


)
dx


+ 2 Re


∫∫
f0(x)ǧ(y − x)f1(x, y)dxdy


+


∫∫ (
1
2
|∇xf1(x, y)|2 + V (x)|f1(x, y)|2 + ||Dy|1/2f1(x, y)|2


)
dxdy.


For any ε > 0 there exists f ∈ C∞
0 (R3)⊕ C∞


0 (R6) such that


〈f , H0f〉 < Σ + ε, ‖f‖ = 1.


We let φ(x) be the real-valued normalized ground state of −1
2
∆+V (it exists


due to our assumption E0 < 0), viz. (−1
2
∆ + V )φ = E0φ, and compute


〈φf , Hφf〉, using the fact that


(φf0, (−1
2
∆)(φf0))x = (φf0, (−1


2
∆φ)f0)x + (φ, 1


2
|∇f0|2 φ)x,


where (·, ·)x denotes the inner product in the x ∈ R3 variable. We find that
〈φf , Hφf〉 is equal to∫ [


1
2
|∇f0(x)|2 + 2 Re(|g〉f0, f1)y + 1


2
‖∇xf1(x, ·)‖2


y


+E0‖f(x, ·)‖2
y + ‖|Dy|1/2f1(x, ·)‖2


y


]
|φ(x)|2dx


=


∫ [
(H0f , f)y + E0‖f(x, ·)‖2


y


]
|φ(x)|2dx,


where (·, ·)y and ‖ · ‖y denote the inner product and the norm with respect
to the y-variable. We now replace f(x, y) by fz(x, y) = f(x − z, y − z) and
change the variables (x, y) → (x+ z, y + z), in order to get


〈φfz, Hφfz〉 =


∫ [
(H0f , f)y + E0‖f(x, ·)‖2


y


]
|φ(x+ z)|2dx.
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Here we used the translation invariance of H0. Now integrate both sides of
this equation with respect to z. We then find∫


〈φfz, (H − E0 − Σ− ε)φfz〉 dz = 〈f , (H0 − Σ− ε)f〉 < 0.


It follows that there exists z ∈ R3 such that 〈φfz, (H − E0 − Σ− ε)φfz〉 < 0.
Since ε is arbitrary, we obtain (5.21).


6 Proof of Theorem 1.7


In this section we prove the existence of the wave operators. In what follows
we take µ = 1 to simplify the notation. We begin with


Proof of Existence of the Limits (1.9). Since eitH and L2(R3
k) 3 f 7→


e−itE−it|k|φ⊗f ∈ H are isometric operators, it suffices to show that the limits
exist for every f ∈ C∞


0 (R3 \ {0}). For such f the map


t 7→ Ft = eitH


(
0


e−itE−it|k|φ(x)f(k)


)
is strongly differentiable, and we can easily compute to obtain


d


dt
Ft =


(
ft


0


)
, ft = ie−itEφ(x)


∫
R3


eixk−it|k|g0(k)f(k)dk.


It suffices to show that ‖ft‖ is integrable with respect to t. We estimate the
integral with respect to k. Since |∇k(xk − t|k|)| = |x − tk̂| ≥ ||x| − |t||, it
follows by integration by parts that for any positive N∣∣∣∣∫


R3


eixk−it|k|g0(k)f(k)dk


∣∣∣∣ ≤ CN(1 + ||x| − |t||)−N .


It follows, by choosing ε such that 0 < ε < β − 2, that∫
|ft(x)|2dx ≤ CN |t|−Nε


∫
{x : ||x|−|t||>|t|ε}


|φ(x)|2dx


+ CN


∫
{x : ||x|−|t||≤|t|ε}


|φ(x)|2dx


≤ CN(|t|−Nε + 〈t〉2+ε−2β) ≤ CN(|t|−2−2ε + 〈t〉−β),


for N sufficiently large. Thus ‖ft‖ is integrable.
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Proof of Existence of the Limits (1.8) By virtue of Theorem 1.2, it
suffices to prove that the following two limits exist in the strong topology of
H:


lim
t→±∞


eitH


(
0


eit 1
2
∆−it|k|f(x, k)


)
, f ∈ L2(R3


x ×R3
k). (6.1)


lim
t→±∞


eitH


(
e−itλ◦(Dx)f1,0


e−ikxe−itλ◦(Dx)f1,1


)
, f1 ∈ Hone. (6.2)


Proof of Existence of the Limit (6.1). Functions of the form


N∑
j=1


uj(x)vj(k),


with ûj ∈ C∞
0 (R3


ξ \ {0}) and vj ∈ C∞
0 (R3


k), are dense in L2(R3
x ×R3


k). Thus
it suffices to consider f(x, k) = u(x)v(k) with u and v as above. We write
again


Ft = eitH


(
0


eit 1
2
∆−it|k|f(x, k)


)
.


We compute the strong derivative with respect to t.


d


dt
Ft = i


(
〈g|eit 1


2
∆−it|k|f


V eit 1
2
∆−it|k|f


)
=


(
g0t(x)
g1t(x, k)


)
.


We estimate g1t(x, k) first. We have


g1t(x, k) = iV (x)(eit 1
2
∆u)(x)e−it|k|v(k),


such that ‖g1t‖H1 = ‖V eit 1
2
∆u‖2‖v‖2. It follows by the well known estimate


for the existence of the wave operator for the two body short potentials (see
for example [16]) that ‖g1t‖H1 is integrable with respect to t. The function
g0t(x) can be written in the form


g0t(x) = i


∫
g0(k)e


ikx−it|k|v(k)dk · eit 1
2
∆u(x).


By Assumption 1.1 and v ∈ C∞
0 , it follows that wt(k) = g0(k)v(k)e


−it|k|


belongs to L2 with ‖wt‖2 = c0 independent of t. Thus we can estimate g0t as
follows, using the fact that the integral term is the inverse Fourier transform
of wt (up to a constant),


‖g0t‖2 ≤ (2π)3/2‖w̌t‖2‖eit 1
2
∆u‖∞ ≤ Cc0|t|−3/2‖u‖1.


Here we have used the estimate ‖eit 1
2
∆‖L1(R3)→L∞(R3) ≤ c|t|−3/2. This esti-


mate shows that ‖g0t‖2 is integrable with respect to t, such that the limits
exist.


35







Proof of Existence of the Limit (6.2). Since ∪jC
∞
0 (Gj) is dense in


L2(B(ρc)) (see (4.6)),


{φ(p)ep(k) : φ ∈ ∪jC
∞
0 (Gj)}


is dense in {h(p)ep(k) : h ∈ L2(B(ρc))}. Fλ(p, λ◦(p)) is smooth and strictly
negative in B(r) for any r < ρc, it follows that it suffices to prove the existence
of the limits, when f̂1,0 ∈ C∞


0 (Gj) for some j. Using the fact that λ◦(p) is
the eigenvalue of H00(p), it is easy to see that


d


dt
eitH


(
e−itλ◦(Dx)f1,0


e−ikxe−itλ◦(Dx)f1,1


)
= ieitH


(
V e−itλ◦(Dx)f1,0


V e−ikxe−itλ◦(Dx)f1,1


)
.


Thus, it suffices to show that both ‖V e−itλ◦(Dx)f1,0‖ and ‖V e−itλ◦(Dx)f1,1‖ are
integrable functions of |t| ≥ 1. But we have seen in Lemma 4.1 that,


|e−iλ◦(Dx)f1,0(x)| ≤ C1 |t|−3/2 and |e−iλ◦(Dx)f1,1(x, k)| ≤ C2(k) |t|−3/2 .


and, moreover, if |x|/t 6∈ [α, β],


|e−iλ◦(Dx)f1,0(x)| ≤ C1 |t|−N 〈x〉−N , |e−iλ◦(Dx)f1,1(x, k)| ≤ C2(k) |t|−N 〈x〉−N ,


where C2(k) is square integrable over R3. Thus, we have(
‖V e−iλ◦(Dx)f1,0‖2


)1/2


≤
(∫


α<|x|<β


|V (tx)|2dx
)1/2


+ Ct−N


(∫
R3


|V (x)|2〈x〉−2Ndx


)1/2


and the right hand side is integrable by the short range assumption on V .
The integrability of ‖V e−iλ◦(Dx)f1,1‖ may be proved similarly. This completes
the proof of the Theorem.
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