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Abstract


Considering closed and thermally isolated finite quantum systems, we derive that the
total change of entropy, defined for macroscopic trajectories, can be given in terms
of a density matrix and its time-reversal. The microscopic dynamics is time-reversal
invariant, even when the unitary evolution is interrupted by measurements. When
started in a nonequilibrium state, the resulting path space measure is not time-
reversal invariant and the weight of time-reversal breaking equals the exponential
of the entropy production. The mean entropy production can then be expressed via
a relative entropy.
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1 Quantum entropy


In bridging the gap between classical mechanics and thermal phenomena, the
founding fathers of statistical mechanics realized that a statistical characteri-
zation of macrostates in terms of microstates is essential for understanding the
typical time evolution of thermodynamic systems. But statistical reasoning re-
quires proper counting, starting from a set of a priori equivalent microstates.
That is different in quantum statistics from what is done in classical statistics.
Nevertheless the same concepts can be put in place. In this paper, we show
for the quantum case what has been proven useful in the classical case: that
entropy production measures the breaking of time-reversal invariance.
The first three sections are introductions about entropy, path space measures
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and time-reversal. The main message is contained in Section 4. The paper is
based on elementary mathematical manipulations and the emphasis is on the
conceptual framework.


1.1 Classical set-up


Suppose a classical closed and isolated system of N particles. A complete de-
scription consists in specifying its microstate, that is a point x in its phase
space, x = (q1, . . . , qN , p1, . . . , pN) of positions and momenta. The dynamic-
s is Hamiltonian and energy is conserved. Each microstate x determines a
macrostate M(x) corresponding to a much coarser division of phase space.
This reduced description is in terms of macroscopic variables, such as position
or velocity profiles and we denote by |M | the corresponding phase space vol-
ume.
The Boltzmann entropy (also called Boltzmann-Planck-Einstein or micro-
canonical or configurational entropy) is, up to multiplicative and additive
constants, defined by


SB(x) ≡ log |M(x)| (1.1)


When the microstate belongs to the region of phase space of unconstrained
equilibrium, then, at least in the thermodynamic limit, SB(x) equals the ther-
modynamic entropy defined operationally by Clausius. But also out of equi-
librium, say when a constraint is lifted and the system is free to evolve, the
Boltzmann entropy remains relevant as it will typically increase towards e-
quilibrium. It gives in fact the microscopic foundation of the second law of
thermodynamics.
There is another entropy, appropriately called the Gibbs entropy, that gener-
alizes (1.1). Suppose we only specify a distribution of macrovalues. This means
that we do not know the exact macrostate, perhaps not even initially. To be
specific, we consider the surface Γ of constant energy and we suppose that the
macrostates induce a finite partition Γ̂ of Γ. The different macroscopic val-
ues thus specify a (finite) number of regions in phase space. The statistics of
macroscopic values is then given by a probability distribution ν̂(M),M ∈ Γ̂;
e.g. our best guess about the position and velocity profile. We then define the
Gibbs entropy by


SG(ν̂) ≡ ∑


M


ν̂(M) log |M | −∑


M


ν̂(M) log ν̂(M) (1.2)


Equivalently, and as motivation for (1.2), by Gibbs’ variational principle,


SG(ν̂) = sup
p(µ)=ν̂


−
∫


Γ
dxµ(x) ln µ(x) (1.3)
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where the supremum is taken over all phase space densities µ with the same
macro-statistics as ν̂, i.e., the projection p(µ) of µ on Γ̂ coincides with ν̂:


µ(M) =
∫


Γ
dxµ(x) δ(M(x)−M) = ν̂(M)


Obviously, if ν̂ concentrates on just one macrostate M , ν̂(M ′) = δM,M ′ , then
SG(ν̂) = log |M | which is the Boltzmann entropy for that macrostate. More
generally, the first term in (1.2) is the expected or estimated entropy, being
unsure as we are about the exact macrostate. The second term in (1.2) is non-
negative and is most often negligible, certainly upon dividing by the number
of particles. Together, (1.2) has the property that it is non-decreasing in time.
This says the following: we start the system from a microstate that is randomly
drawn (according to the Liouville measure) from M with probability ν̂(M) and
we record the statistics ν̂t on the macrostates after time t. Then, always,


SG(ν̂t) ≥ SG(ν̂) (1.4)


This is not the second law (see [4] for a discussion). To bring it closer to the
second law, one needs to explain under what conditions SG(ν̂t) approximates
the Boltzmann entropy SB(xt) with xt the time-evolved phase point. Looking
back at the first term in (1.2), that implies understanding how and when the
empirical distribution for the macrovariables becomes peaked, as the number
of particles increases, at a fixed macroscopic trajectory as described e.g. by
hydrodynamic equations of irreversible thermodynamics.
In [4] we have discussed at length how these entropies relate to time-reversal.
The main result there was that both for closed systems and for open sys-
tems, be it in the transient regime or in the steady state regime, the entropy
production equals the source term of time-reversal breaking in the action func-
tional for the distribution of the histories (on some thermodynamic scale) of
the system. This representation gives the entropy production as a function
of the trajectories and it allows simple manipulations for taking the average
(to prove that it is positive) and for studying its fluctuations (to understand
symmetries under time-reversal). In the present paper we begin explaining a
similar reasoning for closed and isolated finite quantum systems.


1.2 Quantum set-up


We take the simplest mathematical set-up for describing a quantum system
within conventional quantum mechanics. We denote by H the Hilbert space
of the system, assumed finite dimensional. The system is described in terms of
a wavefunction ψ, or perhaps better, a normalized vector in H. The variables
defining the macrostate are not different from that in the classical situation.
For example, they specify (again to some appropriate accuracy) the particle
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number and the momentum profile by associating numbers to a family of
macroscopically small but microscopically large regions of the volume occupied
by the system. Therefore, the macrostate is given in terms of the values of a set
of macroscopic observables represented by commuting operators. The partition
Γ̂ in the classical case above is replaced by the orthogonal decomposition


H =
⊕Hα (1.5)


into linear subspaces. The macrovariables are represented by the projections
Pα on the respective Hα, PαPβ = δα,βPα,


∑
α Pα = id. We write dα for the


dimension of Hα; it is the analogue of the phase space volume |M | in the
classical case. We can think of the macrostates as labeled by the running
index α. For a given macrostate α represented by the projection Pα above, we
stretch the notation of (1.1) and write its Boltzmann entropy as


ŜB(α) ≡ log dα ≡ log d(Pα) (1.6)


So far, the above does not depart essentially from the classical set-up except
for the important difference that (1.1) is defined on microstates and (1.6) is
defined on macrostates. At this moment the treatment starts to differ. Fol-
lowing von Neumann, page 411 in his well-known book [5], as discussed e.g.
in [2], the formula (1.1) is changed to


SN(ψ) =
∑
α


(ψ, Pαψ) log dα −
∑
α


(ψ, Pαψ) log(ψ, Pαψ) (1.7)


where (ψ, Pαψ) is the probability of finding the system described via the wave-
function ψ in the macrostate α (values corresponding to Hα). Observe that
(1.7) very much resembles (1.2), eventhough (1.7) is the quantum analogue
of (1.1), both defined as they are for the microstate. The reason is of course
quantum mechanics itself: the wavefunction can still correspond to different
(mutually exclusive) macrostates. If not initially, still later in time, superpo-
sitions in terms of wavefunctions of different macrostates are possible. This in
contrast with the classical set-up where a unique macrostate is associated to
each microstate. Just as the second term in the classical (1.2) arises from addi-
tional uncertainty as to the exact macrostate, here, even when the microstate
is given (in terms of ψ), we still have a distribution on the macrostates 2 .


Instead of taking a pure state in (1.7), we may want to consider the system in
a mixed state and described by a density matrix. In fact, as we are interested
in the thermodynamic time-evolution, we construct a special class of density
matrices by specifying the macroscopic statistics just as we did for (1.2). We


2 One of us, C.M., likes to emphasize that all this does not exclude that the actual
system is all the time in exactly one of the macrostates — but the wavefunction
does not provide a complete description of the system.
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thus start from a probability distribution µ̂ on the possible macrovalues and we
randomize within. More precisely, we consider density matrices ρ(µ̂) defined
by


ρ(µ̂) ≡ ∑
α


µ̂(α)


dα


Pα (1.8)


for given µ̂(α) ≥ 0,
∑


α µ̂(α) = 1. Then,


µ̂(α) = Tr[Pα ρ(µ̂)] (1.9)


is the probability to find the system in macrostate α. The choice µ̂(α) = dα/d
where, for normalization, d ≡ ∑


α dα is the dimension of H, is the quantum
analogue of the projection of the microcanonical distribution on macrostates;
for that choice ρ(µ̂) = id/d.
In the other direction, given a general density matrix ρ, we can take its pro-
jection p(ρ) on the macroscopic states:


p(ρ)(α) ≡ Tr[Pα ρ] (1.10)


and of course, p(ρ(µ̂)) = µ̂.


We now apply the same principle as in (1.3) to obtain the (Gibbs) quantum
entropy


S(µ̂) ≡ sup
p(ρ)=µ̂


− Tr[ρ log ρ] (1.11)


with solution (reached at ρ = ρ(µ̂))


S(µ̂) =
∑
α


µ̂(α) log dα −
∑
α


µ̂(α) log µ̂(α) (1.12)


which looks exactly like (1.2). Again, S(µ̂) equals ŜB(α) when µ̂ concentrates
on the macrostate α and, up to some irrelevant constants, S(µ̂) equals the
relative entropy of ρ(µ̂) with respect to the equilibrium density matrix id/d.
Just as in the classical case (1.4), for the same reason and with the same
meaning, it is non-decreasing both forward and backwards in time under a
quantum Hamiltonian evolution.
More generally,


S(ρ) ≡ S(p(ρ)) =
∑
α


Tr[Pα ρ] log dα −
∑
α


Tr[Pα ρ] log Tr[Pα ρ] (1.13)


is the quantum entropy of the (mixed) state ρ, reducing to (1.7) for a pure
state.
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2 Path-space measure


The quantum dynamics is generated by a Hamiltonian H but in contrast with
the classical evolution, this free evolution can be interrupted by measurements
that reduce the state. We follow here the theory of von Neumann (or, conven-
tial quantum mechanics) that adds a dynamic interpretation to the projections
(1.10). Suppose that we start the system described by a density matrix ρ at
time 0 and that we measure the macroscopic value α at time τ > 0. Then, the
new density matrix is


PαU ρ U?Pα


Tr[PαU ρ U?]


where U ≡ exp[−iτH], and the ? stands for Hermitian conjugation (Planck’s
constant is set equal to one and i ≡ √−1). This reduction takes place with
probability


p(UρU?)(α) = Tr[PαU ρ U?]


We can generalize this to a sequence of measurements.


We consider a sequence of times 0, τ, 2τ, . . . , nτ = t (evenly spaced for con-
venience). A macroscopic trajectory ω assigns to each of these times a value
for the macroscopic observables. In short, ω = (ω0, . . . , ωn) with each ωi being
equal to some projection Pα on the linear subspace Hα of (1.5). We consider
the operator


Gω ≡ ωnUωn−1 . . . ω1Uω0 (2.1)


and, for a given density matrix ρ on H, the matrix


Dρ(ω, ω′) ≡ Tr[Gω ρG?
ω′ ] (2.2)


It is easy to verify that Dρ is non-negative and has trace one. We call it the
path-space density matrix.
Dρ depends on the initial density matrix ρ and it also gives the probability
to find the system after time t = nτ of (measurement-)free evolution in the
macrostate α: ∑


ω,ω′:ωn=ω′n=Pα


Dρ(ω, ω′) = Tr[Pα ρt] (2.3)


where ρt ≡ UnρU−n.
More importantly, the probability to measure the trajectory ω, i.e., to see the
system at the initial time in the macrostate represented by ω0, at time τ in
macrostate ω1, and so on till time nτ = t, is given by the diagonal element


Probρ[ω] = Dρ(ω, ω) (2.4)


Its marginal at time t = nτ ,


µ̂t(α) ≡ ∑


ω:ωn=Pα


Probρ[ω] (2.5)
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is the probability of macrostate α when the unitary evolution was interrupted
by n measurements.


If we take ρ = id/d in (2.2) , then


D(ω, ω′) =
δω0,ω′0 δωn,ω′n


d
Tr[ωnUωn−1 . . . ω1Uω0U


?ω′1 . . . ω′n−1U
?] (2.6)


and is zero unless both the beginning and the end of the trajectories ω and ω′


coincide: ω0 = ω′0 and ωn = ω′n.
More generally, upon substituting (1.8) in (2.2) we find


Dµ̂(ω, ω′) =
µ̂(ω0) d


d(ω0)
D(ω, ω′) (2.7)


where we use µ̂(ω0), d(ω0) to denote the probability µ̂(α) and the dimension
dα in (1.8) that correspond to the initial macrostate ω0 = ω′0. (As in (2.6), the
two trajectories ω, ω′ must be equal at time zero and at time t for (2.7) not
be zero.)


3 Time-reversal


We consider an anti-linear involution π (the kinematical time-reversal) which is
just complex conjugation for wavefunctions. We assume that the Hamiltonian
is time-reversal invariant, Hπ = πH so that


πUπ = U? = U−1


We also assume that the macrostates are mapped into each other via the
involution π, i.e.,


πPαπ = Pα′ ≡ Pπα (3.1)


for some α′, for each α and we write πα = α′. On trajectories, the time-reversal
transformation Θ is


(Θω)m ≡ πωn−mπ, m = 0, 1, . . . , n


Since the microscopic dynamics is time-reversal invariant, we immediately
deduce that


GΘω = πG?
ωπ


and hence, for (2.6), that


D(Θω′, Θω) = D(ω, ω′) (3.2)


and in particular, for (2.4) with ρ = id/d, Prob[ω] = Prob[Θω]. This iden-
tity has two related interpretations. First, it is the expression of (quantum)
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detailed balance or microscopic reversibility for the trajectories sampled from
the time-invariant density matrix id/d corresponding to equilibrium. Second-
ly, it generalizes the observation of [1] that measurements do not introduce a
time-asymmetric element (or, the reduction of the wave packet does not lead
to irreversibility). Yet, in general, the system could start in a nonequilibrium
state and evolve towards equilibrium. This involves a change of entropy; that
is, for closed and thermally isolated systems, its total entropy production.
The time-reversal of the density matrix Dρ, written DρΘ, is defined as


DρΘ(ω, ω′) ≡ Dρ(Θω′, Θω) (3.3)


so that by (3.2), DΘ = D. This last equality is broken for a general Dρ and it
seems natural to estimate this breaking via the relative entropy


S(Dρ1|Dρ2Θ) ≡ Tr[Dρ1(logDρ1 − logDρ2Θ)] (3.4)


In view of the classical results of [3,4], it is to be expected that this relative
entropy is related to the entropy production for the appropriate choices of ρ1


(as initial state) and of ρ2 (as time-reversal of the final state).


4 Entropy production


Let Probν̂ [ω] denote the probability (2.4) of ω started from the density matrix


ρ(ν̂) =
∑
α


ν̂(α)


dα


Pα


where ν̂ is some probability law on the macrostates. We take some µ̂ as initial
probability distribution and the final probability distribution µ̂t is defined in
(2.5). The time-reversal of µ̂t is µ̂tπ with µ̂tπ(α) ≡ µ̂t(πα), see (3.1).
The main result of the paper is now readily obtained from (2.7). The logarith-
mic ratio of probabilities (2.4) of a macroscopic trajectory, one started from
µ̂ and the other started from µ̂tπ, is abbreviated as


Rµ̂(ω) ≡ log
Probµ̂[ω]


Probµ̂tπ[Θω]
(4.1)


This object will not always be well-defined for all ω. We can suppose however
that the µ̂(α) 6= 0 6= µ̂t(α) so that, calculating (4.1) from (2.7) yields


Rµ̂(ω) = log d(ωn)− log d(ω0)− log µ̂t(ωn) + log µ̂(ω0) (4.2)


In the notation of (1.6), the first difference in the right-hand side of (4.2) equals
the change of Boltzmann entropy ŜB(αt)− ŜB(α0) for a trajectory that starts
in macrostate α0 and ends in macrostate αt. If the system is initially prepared
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in essentially one macrostate, µ̂(α0) ' 1, and if the evolution on the level of
macrostates is quasi-autonomous till time t in the sense that µ̂t(αt) ' 1, then
only that change in Boltzmann entropies survives.
Calculating the expectation of (4.1) via (2.4), (2.5) and (4.2), we get


∑
ω


Probµ̂[ω] Rµ̂(ω) = S(µ̂t)− S(µ̂) ≥ 0 (4.3)


equal to the change of (Gibbs) quantum entropy (1.11)–(1.12). The non-
negativity follows from Jensen’s inequality applied to the left-hand side of
(4.3).
One can easily check that this expectation (the left-hand side of (4.3)) and
hence, the change of quantum entropy (the right-hand side of (4.3)), also coin-
cides with the relative entropy on the level of density matrices for trajectories


S(Dµ̂|Dµ̂tπΘ) = Tr [Dµ̂ (logDµ̂ − logDµ̂tπΘ)]


as announced in (3.4).


One may wonder whether it is also possible to obtain in a similar way as above
the change in quantum entropy S(ρt)−S(ρ), see (1.13), under the unitary evo-
lution starting from ρ = ρ(µ̂). Now, as in (2.3), ρt = exp[−itH]ρ exp[itH] is
uninterrupted by measurements. The answer is (partially) yes.
To formulate that, we consider the time-reversal πρtπ of the time-evolved den-
sity matrix ρt. Its projection on the macrostates gives a probability measure
p(πρtπ)(α) = p(ρt)(πα):


ρ = ρ(µ̂), µ̂(α) = p(ρ)(α) = Tr [ρP ] (4.4)


ρt = UnρU−n, p(ρt)(α) = Tr [ρtPα]


p(πρtπ)(α) = Tr [πρtπPα] = Tr [ρtπPαπ] = Tr [ρtPπα]


Instead of (4.1) we now consider


Rµ̂(ω) ≡ log
Probµ̂[ω]


Probp(πρtπ)[Θω]
(4.5)


This time, again from (2.7), we get


Rµ̂(ω) = log d(ωn)− log d(ω0)− log p(ρt)(ωn) + log µ̂(ω0) (4.6)


which differs from (4.2) in the third term. Most importantly, the first two
terms again yield the change of Boltzmann entropies. We get the quantum
entropy production (change of quantum entropy (for the unitary evolution)
(1.13)) by taking the ‘expectation’ of (4.5) as


∑


ω,ω′
Dµ̂(ω, ω′)Rµ̂(ω′) = S(ρt)− S(ρ) (4.7)
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We have used (2.3) and (4.6). Obviously, for n = 1, τ = t and µ̂t = p(ρt).


5 Additional remarks


1. For closed systems the entropy production is a state function. It does not
depend on the actual path but can be written as a difference of the same
quantity evaluated at the initial and the final time, see (4.2) or even (4.6).
This can be different for open systems. A similar treatment for open systems
in the classical regime can be found in [4]. One of the main consequences
of the identities that correspond there to (4.2) is that certain symmetries in
the fluctuations of the entropy production rate are easily established. The
quantum case is in preparation.


2. Nothing of the mathematical identities in Sections 1–4 depends on the
assumption that the system is large, of macroscopic size, containing a huge
number of particles. Of course, to meaningfully discuss macroscopic variables
or macrostates and their trajectories one has in mind a clear separation be-
tween micro and macro scales but the results (4.2) – (4.7) are true without.
Yet again, their interpretation as thermodynamic entropy production and the
relation with the second law can only be made when dealing with macroscopic
systems. See also Appendix A in [4] for these considerations in the classical
case.
In order to get a feeling about this question of scale separation, we have con-
sidered a system of only six spin-1/2 particles that we started from all spins
up. For quantum Hamiltonian we took


H =
∑


i6=j


σ+
i σ−j +


∑


i


(σ+
i + σ−i )


where the σ±i , i = 1, . . . , 6, are the creation and annihilation operators. There
are seven macrostates, counting the number of spins up. The initial macrostate
(all spins up) has entropy zero. In “equilibrium,” for µ̂(α) = dα/d, the entropy
equals S(µ̂) = 4.16. The value of τ was set to one and we have numerically
computed the entropy S(µ̂t) for times t = 1, 2, 3, 4 to find, respectively, S(µ̂t) =
2.32, 3.07, 3.37 and 3.50. The convergence to the equilibrium value is slow but
visible. On the other hand, for S(ρt) we find, respectively, 2.32, 2.14, 2.38 and
2.06 without any convergence.


3. The use of the projections Pα in the construction of the path-space density
matrix of Section 2 refers to the so called von Neumann measurements. One
can imagine more fuzzy measurements (and more rounded-off macrostates)
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and a corresponding decomposition of unity as


∑
α


X?
αXα = id


The treatment above was restricted to the case Xα = PαU . This extension
is very much related to the dynamics of open systems. In a way, the involve-
ment of measurements interrupting the unitary evolution already points to
the interaction with the outside world. The question of isolation, even as an
idealization, of a quantum system is much more subtle than for a classical
system.
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