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1. Introduction


Our aim in these notes is to study spectral properties of quantum mechanical hamiltonians withC∗-algebra techniques. The
algebras which will concern us are generated by the hamiltonian operators corresponding to certain types of kinetic and
potential energies; for this reason we call themalgebras of hamiltoniansor algebras of energy observables. The best way
to explain what we have in mind is to begin with an example.


Let us denote byUx andVk the unitary operators inL2(Rn) corresponding to translation byx andk in position and
momentum space respectively; so(Uxf)(y) = f(x + y) and(Vkf)(y) = ei〈k,y〉f(y). We callFréchet filteron a locally
compact spaceX the family of subsetsF such thatX \ F is relatively compact.


Theorem 1.1 LetH be a self-adjoint operator inL2(Rn) such that:


lim
x→0
‖(Ux − 1)(H + i)−1‖ = 0 and lim


k→0
‖[Vk, (H + i)−1]‖ = 0. (1.1)


Then, for each ultrafilterκ onRn finer than the Fŕechet filter, the family of self-adjoint operatorsHx = UxHU
∗
x , x ∈ Rn,


has a strong limitHκ whenx→∞ alongκ, and


σess(H) =
⋃
κ
σ(Hκ). (1.2)


We shall give later on examples which show that this theorem has interesting consequences even in elementary cases.
The convergence involved above has to be understood as follows: there is a self-adjoint (not necessarily densely de-
fined) operatorHκ on L2(Rn) such that for eachϕ ∈ C0(R), ε > 0, and f ∈ L2(Rn) there isF ∈ κ such that
‖ϕ(Hx)f − ϕ(Hκ)f‖ < ε for all x ∈ F . Note that one can get (quite often, in fact)Hκ = ∞, where∞ is the unique
operator with domain{0}. We say that the operatorsHκ arelocalizations at infinityof the hamiltonianH, so the theorem
says thatthe essential spectrum ofH is the union of the spectra of its localizations at infinity. We should emphasize that we
talk about the “infinity” associated to the position observableQ (i.e. we localize atQ =∞). Indeed, the region where some
other observable (e.g. the momentumP ) is infinite could play a role too, and this actually happens in physically interesting
situations, e.g. if there is an external magnetic fieldB(x) which does not vanish as|x| → ∞.
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C∗-algebras do not seem to play a role in Theorem1.1. However we discovered it by studying a certainC∗-algebra, its
proof involvesC∗-algebra techniques, and we do not know a proof independent of such techniques. We do not exclude the
possibility of proving it by decomposingH with the help of certain partitions of unity, but such a proof would certainly be
much more intricate. On the other hand, Theorem1.1 is only a particular case of a theorem in whichRn is replaced by an
arbitrary locally compact abelian group, where techniques based on partitions of unity would not work.


Now we explain the connection withC∗-algebras. LetCu
b(Rn)o Rn be the crossed product of theC∗-algebraCu


b(Rn)
(bounded uniformly continuous functions) by the natural action ofR


n (translations). This is aC∗-algebra whose exact
definition does not matter here (it will be recalled in§2.4). Let ϕ(Q) be the operator inL2(Rn) of multiplication by the
functionϕ andψ(P ) = F−1ψ(Q)F , whereF is the Fourier transformation.


Theorem 1.2 There is a faithful representation ofCu
b(Rn) o Rn onL2(Rn) whose range is the norm closed linear space


generated by the operators of the formϕ(Q)ψ(P ) withϕ ∈ Cu
b(Rn) andψ ∈ C0(Rn).


This is a particular case of Theorem2.17, where the representation is described explicitly. For the moment, the relation
with crossed product is irrelevant and one can simply think thatCu


b(Rn) o Rn is theC∗-algebra of operators onL2(Rn)
generated byϕ(Q)ψ(P ) with ϕ andψ as above. Then we have the following two other equivalent descriptions of it.


Theorem 1.3 Let h be a real elliptic polynomial of orderm on Rn. ThenCu
b(Rn) o Rn is equal to theC∗-algebra of


operators onL2(Rn) generated by the self-adjoint operators of the formh(P ) +V , whereV runs over the set of symmetric
differential operators of order< m with coefficients inC∞b (Rn).


We mention that we define theC∗-algebra generated by a familyF of (possibly unbounded) self-adjoint operators on a
Hilbert spaceH , as the smallestC∗-algebraC of operators onH such thatϕ(H) ∈ C for all H ∈ F andϕ ∈ C0(R).


We denotedC∞b (Rn) the space ofC∞ functions which are bounded together with all their derivatives. The (easy)
proof of Theorem1.3 can be found in [DG1]. This result justifies our interpretation ofCu


b(Rn) o Rn as an “algebra of
hamiltonians”.
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Theorem 1.4 A bounded operatorS onL2(Rn) belongs toCu
b(Rn) o Rn if and only if limx→0 ‖(Ux − 1)S(∗)‖ = 0 and


limk→0 ‖V ∗k SVk − S‖ = 0.


If a symbol likeS(∗) appears in a relation, this means that the relation holds forS and its adjointS∗. The preced-
ing theorem has been proved in [DG2] and is a nontrivial description ofCu


b(Rn) o Rn similar to the Riesz-Kolmogorov
characterization of theC∗-algebraK (Rn) of compact operators onL2(Rn). We mention thatK (Rn) = C0(Rn) o Rn.
Theorem1.4allowed us to formulate Theorem1.1in aC∗-algebra independent manner and to get general and easy to check
assumptions onH.


The assumptions (1.1) of Theorem1.1 can now be written(H + i)−1 ∈ Cu
b(Rn) o Rn. Then the theorem will be a


consequence of the following assertion:if S ∈ Cu
b(Rn)o Rn then for each ultrafilterκ onRn finer than the Fŕechet filter,


the family of operatorsSx = UxSU
∗
x , x ∈ Rn, has a strong limitSκ whenx→∞ alongκ, andσess(S) =


⋃
κ
σ(Sκ).


We now sketch the proof the last assertion. The essential spectrum ofS is equal to the spectrum of the imageŜ of S in
the quotientC∗-algebraCu


b(Rn)oRn by the idealK (Rn) of compact operators onL2(Rn). ButK (Rn) = C0(Rn)oRn


and one has a canonical isomorphism


Cu
b(Rn)o Rn


/
C0(Rn)o Rn


∼=
[
Cu


b(Rn)
/
C0(Rn)


]
o R


n.


Now Cu
b(Rn)/C0(Rn) ↪→ C(γRn) whereγRn is the boundary ofRn in the Stone-̌Cech compactificationβRn. One can


use this in order to get a natural embedding


Cu
b(Rn)o Rn


/
C0(Rn)o Rn ↪→


∏
κ∈γRn


Cu
b(Rn)o Rn.


To finish the proof it suffices to computêS as element of the right hand side.
The technical details make the complete proof rather involved, but the role of theC∗-algebras and the general strategy


of the proof should be clear by now. The main novelty of our approach is the idea of replacingthehamiltonian of a physical
system by analgebraof hamiltonians. Roughly speaking, we proceed as follows. Assume that we are given a quantum
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physical system (with a Hilbert spaceH as state space) subject to a certain type of interactions. The first step is to point
out a class of “elementary” admissible hamiltonians. This depends on the class of kinetic and potential energies which are
natural in this context; for example, in Theorem1.3we fixed the kinetic energyh and considered potentials of the formV
described there. But the “real” hamiltonians that we would like to study are much more complicated objects, e.g. they do
not admit such a simple decomposition into kinetic and potential parts. To define them, letC be theC∗-algebra of operators
on H generated by the resolvents of the elementary hamiltonians. It is rather surprising that in many casesC is a natural
mathematical object, for example it is the crossed productCu


b(Rn)oRn for the class of elementary hamiltonians considered
in Theorem1.3. In several of our examples we have been able to give an “intrinsic” characterization ofC , like that of
Theorem1.4. Such a result is important because it allows us to show that the class of hamiltonians affiliated to the algebra
is much larger than one would expect and to formulate the final results without explicit reference toC∗-algebras. However,
the crucial point is to give a convenient and rather explicit description of the quotient algebraĈ = C /[C ∩K(H )], where
K(H ) is the ideal of compact operators onH . Results like those of Theorem1.1 and other more subtle properties (the
proof of the Mourre estimate) depend on this. ThusC should be considered as the main object of the spectral theory of the
given system and the determination of the structure ofĈ the main problem one has to solve.


To put things in more mathematical terms, assume that you want to compute the essential spectrum of a bounded
operatorS ∈ B(H ). The quotientC∗-algebraC(H ) = B(H )/K(H ) is the Calkin algebra associated toH and
σess(S) = σ(Ŝ ), whereŜ is the image ofS in C(H ). It is out of question to computêS as an element ofC(H ), because
this algebra is too complicated. But if one can find aC∗-algebraC ⊂ B(H ) such that̂C can be described relatively
explicitly, and if Ŝ as element of̂C can be computed, then one could use this method to computeσess(S) (note that̂C is a
subalgebra ofC(H )). The main problem now is how to chooseC in nontrivial situations, e.g. ifS is (the resolvent of) an
N -body hamiltonian, a more general anisotropic hamiltonian on an abelian locally compact group, or in a situation with an
infinite number of degrees of freedom like in quantum field theory. All these cases will be treated later on in this lecture.


The idea of considering the quotient algebrâC in connection with the computation of the essential spectrum of an
operator appeared quite early in the mathematical literature. What is new here is a kind of experimental observation: we
noticed that in several physically interesting and nontrivial situations there is a simple algorithm for constructingC . In
particular, we found that crossed products ofC∗-algebras by actions of groups play a remarkable, although not exhaustive,
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role in this context. Moreover, one of our main observations was that taking the quotient of a hamiltonianH with respect to
an ideal (an operation which does not make sense if we fix a Hilbert space) gives physically interesting objects, which play
an important role in the spectral and scattering theory ofH. We explain this below.


The main advantage of theC∗-algebra framework is that one can define an operation on observables which does not
make sense in a purely hilbertian setting: that of taking the image through a morphism. For example, ifI is an ideal in a
C∗-algebraC of operators on a Hilbert spaceH and ifH is a self-adjoint operator onH affiliated toC , then the image
H/I of H through the canonical morphismC → C /I is a perfectly well defined observable affiliated to theC∗-algebra
C /I (see§2.7), but in nontrivial cases it cannot be realized as a self-adjoint operator onH . Thus we are forced to work
with “abstract”C∗-algebras: although the starting point is a concreteC∗-algebra on the physical Hilbert space, the quotient
operation will give an algebra which a priori is not represented. A new Hilbert space is obtained when looking for faithful
nondegenerate representations of the quotient algebra, on whichH/I can be realized as a self-adjoint operator with a clear
physical interpretation (cf. theN -body and quantum field models).


WhenI = C ∩K(H ), we usually denotêH = H/I and call itlocalization at infinity ofH. We shall compute it
in the second part of this lecture in many models. However, localizing at some region of infinity gives often an object of
physical interest, and these “partial” localizations are obtained by taking quotients with respect to larger ideals. The fact
that quotients of hamiltonians with respect to ideals other than the compacts are useful and appear naturally in physically
interesting situations has first been observed in [BG1] and [BG2]. Indeed, ifH is the hamiltonian of a nonrelativistic
N -body system and ifa is a partition of the system of particles, then two other hamiltonians are defined in the physical
literature:Ha, the hamiltonian with interactions between clusters set to zero, andHa, which isHa for zero intercluster
momentum (see§3.4). In [BG1] it was shown thatHa is the quotient ofH with respect to a certain ideal in the “N -body
algebra”. Then in [BG2] it was proved that the essential spectrum of the internal hamiltonianHa is the essential spectrum
of H with respect to some other ideal (see the last part of§3 in [BG2], or §8.1.5 and§8.2.4 in [ABG]). Similar localizations
at “Q = ±∞” and “P = ±∞” with the help of ideals appeared in the paper [GI6] concerning one dimensional anisotropic
systems (summarized here in§3.5). We met more subtle type of localizations at infinity in our study of the interactions
first considered by M. Klaus in [Kla] (§3.2 is devoted to this question; Proposition2.20is an abstract example of the kind
of quotients which appear in such situations). We mention that in the recent paper [AMP] one can find an interesting
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observation concerning the relevance of the observablesH/I in relation with the propagation properties of the system.
The idea of using operator algebras in the study of the spectral properties ofoneoperator goes back to the origin of the


theory ofC∗-algebra and many people worked on this topic. We are not really entitled to give references on this question, see
however [Dav, Dou, Mur] and references therein. The work of H. O. Cordes onC∗-algebras of pseudodifferential operators
has to be especially acknowledged (see [Cor]). However, it seems to us that the goals and methods, as well as the examples
studied in these works, are quite far from ours.


Most noteworthy is the work of J. Bellissard on almost periodic and random operators in connection with solid state
physics, see [Be1, Be2]. In particular, he considers theC∗-algebra generated by the translates of the hamiltonian of a
physical system and shows that under certain conditions it is a crossed product. Although an “algebra of hamiltonians”
in our terminology, the resulting algebra is very different from those we consider here, being rather tightly related toone
hamiltonianH. In the models considered by Bellissard this is an advantage and allows him to get much more precise
spectral properties ofH and to point out a remarkable connection betweenK-theory and the quantum Hall effect. The
algebras which appear in our work are much larger and, in a certain sense, simpler. So we can treat a larger class of models
but we are not able to study finer spectral properties of the hamiltonians.


The first paper in which the algebraic point of view appears in connection with theN -body problem is [BG1]. This
paper is devoted to the study of a class ofC∗-algebras graded by semilattices (see§3.6) which allow one to formalize
in a convenient way the notion ofa-connected component of an operator (this approach was motivated by the papers
[KPR, Pol, PSS]). It is also shown there that (dispersive)N -body hamiltonians are affiliated to such algebras and that the
decomposition of the resolvent according to the homogeneous components of the grading gives exactly the well known
Weinberg-Van Winter equation. As a consequence, a purely algebraic proof of the HVZ theorem is obtained (see Theorem
3.25). The algebraic formalism was then extended in [BG2] such as to cover the proof of the Mourre estimate forN -body
hamiltonians (not necessarily non-relativistic, the proof being given for a class of hamiltonians abstractly defined). The
Mourre estimate for such systems is a highly technical and nontrivial inequality (see the first papers [PSS] and [FrH]
devoted to this question) and it seems to us quite remarkable that a purely algebraic statement involving quotients ofC∗-
algebras is relevant in this context. In fact, it was shown that one can realize a complete decoupling of channels by taking
such a quotient (thus eliminating the Simon partition of unity, which gave only an approximative channel decoupling). This



http://www.u-cergy.fr





Home Page


Title Page


Contents


JJ II


J I


Page 9 of 65


Go Back


Full Screen


Close


Quit


paper also contains new examples of gradedC∗-algebras associated to symplectic spaces, which allow one to treatN -body
systems in constant magnetic fields. These methods were shown to be efficient in the treatment of very singularN -body
systems (with hard-core interactions) in [BGS], where the Mourre estimate was proved for such systems, and in [If1], where
the scattering theory was treated. A complete and unified presentation of these algebraic techniques can be found in Chapters
8 and 9 of [ABG].


However, the physical meaning of the “N -body algebra” which was in the background of the theory remained obscure,
cf. the introduction of the Chapter 8 of [ABG]. The main point of our work on one dimensional anisotropic systems [GI6]
was the clarification of this point (although [GI6] was ready in the summer of 1998, we decided not to publish it, because
meantime we discovered that the main idea works very easily in much more general situations). We understood that the
grading of the algebra was only an accident and we developed a general strategy for the construction of “algebras of energy
observables”. Here a remark of G. Skandalis played a fundamental role: he noticed that the homogeneous components of
the (graded)N -body algebra are crossed products (this was not at all obvious in the presentation of [BG1]). This opened
the way to a unified theory of anisotropic hamiltonians along the lines described in§3.1 below, point out view presented
in detail in our preprints [GI2, GI3]. These ideas have been applied to (a generalized version of) theN -body problem in
[DG1, DG2]. Note that [DG2] also contains the first non-trivial affiliation criterion, which shows that the class ofN -body
hamiltonians affiliated to theN -body algebra is much larger than what one would think at first sight (Theorem2.22).


This lecture is mostly based on [GI4] and [GI3] (see also [GI2], which is the preprint version of [GI4]) and consists of
two parts. The second one is devoted to examples ofC∗-algebras of hamiltonians and to the spectral theory of the operators
affiliated to them. Since the audience we have in mind consists of people working in the spectral theory of quantum
hamiltonians and having only an elementary knowledge ofC∗-algebras, we thought it useful to present in the first part of
these notes the necessary background from the theory ofC∗-algebras. Thus, although a rough knowledge of the first two
chapters of the book [Dix] is necessary (and largely sufficient) to understand what follows, we start in§2.1by emphasizing
some simple but important points. Next we present some elements of the theory of crossed products, which is a less standard
subject. Indeed, in these notes we stress the role of crossed products and of algebras of hamiltonians associated to algebras
of functions on locally compact abelian groups. This is a nice setting because it gives a unified view of many models of
anisotropic interactions in quantum mechanics (and the possibility of their systematic study). Proofs are given only for
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assertions which are not easy to isolate in the literature. The last part of§2 is devoted to notions and results that are more
specific to our subject: observables affiliated toC∗-algebra.


The theory ofC∗-algebras developed in strong connection with statistical mechanics and quantum field theory (algebras
of local observables and crossed products). We use crossed products, but with quite different purposes. On the other hand,
we also apply our ideas in quantum field theory, but our point of view seems to be new, as is theC∗-algebra of hamiltonians
of a boson field described in§3.7and its use in the spectral theory of such hamiltonians.C∗-algebras play a role in scattering
theory as algebras of asymptotic observables (see [BW]): this has nothing to do with the algebras of hamiltonians considered
here.


Finally, we would like to make some comments concerning the role ofC∗-algebras in highly technical regions of
mathematical physics, like theN -body problem or the study of quantum field models. Most people working in such domains
would probably agree about the “soft” role ofC∗-algebras, in the sense that these provide a general and nice framework for
the theory. But not many would accept that algebras can be useful for proving estimates. We note, first, that one should not
underestimate the impact of the formalism on the technical aspects even in the simplest situations(1). But much more is true:
algebraic techniques allow one to get rid of many involved technical arguments and estimates. For example, compare the
proof of the Mourre estimate due to Perry, Sigal, and Simon [PSS] (including the improvements due to Froese and Herbst
[FrH]) with the algebraic proof from [BG2] (which appears as Theorems 8.4.3 and 9.4.4 in [ABG]), which extends without
any effort to a large class of dispersive systems [DG2] and to quantum field models with strictly positive mass (see Theorem
3.32 and [Geo]). Or see the treatment of the relativistic HVZ theorem in [LSV] and compare it with that in [Dam] (cf.
Theorem3.25here). Theorem1.1 is another example of the same nature: see the results and treatment from [HeM] (when
magnetic fields are absent).


Acknowledgements:These notes are an extended version of the talks we gave at the conference “Operator Algebras and
Mathematical Physics” Constanta 2001. We would like to thank the organizers of the conference for inviting us and for
financial support. We are particularly grateful to Florin Boca and Radu Purice for their kindness and hospitality. Finally, we
thank the referee for his very careful and competent review.


(1) Try to divide MMMDCCCXCV II by DCCLIX without writing the operation as 3897/759, i.e. checkMMMDCCCXCV II =
V ∗DCCLIX + CII !!!
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2. C∗-algebras and observables affiliated to them


2.1.C∗-algebras. We begin with some elementary facts and definitions from the theory ofC∗-algebras. A∗-algebra
is a complex algebraA equipped with an involutionS 7→ S∗. A mapA → B between two∗-algebras is amorphism
if it preserves all the operations (i.e. is linear, multiplicative and intertwines the involutions). AC∗-seminormon A is a
seminorm| · | satisfying|AB| ≤ |A| · |B| and|A∗A| = |A|2 for all A,B ∈ A . A C∗-seminorm which is also a norm is
calledC∗-norm.


A ∗-algebraA is calledC∗-algebraif there is a completeC∗-norm‖ ·‖ on it. It is remarkable that if such a norm exists,
then it is unique. All topological assertions concerningA refer to this canonical norm. It is also remarkable that ifA , B
areC∗-algebras andφ : A → B is a morphism, thenφ is a contraction for the (canonical) norms ofA andB and the
range ofφ is aC∗-algebra. Moreover,φ is injective if and only if it is isometric (1.3.7 and 1.8.1 in [Dix]).


We definedC∗-algebras in a way which emphasizes their purely algebraic character :ifA is a ∗-algebra you do not
have to give some extra structure to make it aC∗-algebra (as in the case of Banach algebras). In more technical terms, the
category ofC∗-algebras is a full subcategory of the category of∗-algebras. Thus, given a∗-algebra, it makes sense to ask
whether it is aC∗-algebra or not.


If two C∗-algebrasA andB are canonically isomorphic we writeA ∼= B; in such a situation the canonical morphism
is either obvious from the context or we give it explicitly. An algebra with unit element is also called unital; a morphism
between two unitalC∗-algebras which sends the unit of the first in the unit of the second is calledunital.


A ∗-subalgebra of aC∗-algebra is aC∗-algebra if and only if it is closed; then we call itC∗-subalgebraof A . A closed
two-sided (hence self-adjoint) ideal in aC∗-algebra will be simply calledideal. If I is an ideal in a
C∗-algebraA , then the quotient∗-algebraA /I is aC∗-algebra, the canonical norm being the quotient norm (1.8.2 in
[Dix]).


Let H be a Hilbert space. Then the spaceB(H ) of bounded linear operators onH is aC∗-algebra andK(H ), the
subspace of compact operators, is an ideal in it.C(H ) = B(H )/K(H ) is theCalkin algebraof H .


A morphism from a∗-algebraA into B(H ) is calledrepresentation ofA on H . If the morphism is injective the
representation is calledfaithful, and then we say thatA is realized onH . The following is nontrivial:a ∗-algebra is a
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C∗-algebra if and only if it can be realized as aC∗-subalgebra ofB(H ) for someH (2.6.1 in [Dix]).
A representationπ of A onH is nondegenerateif the only vectorf ∈H such thatπ(A)f = 0 for allA ∈ A is f = 0.


If A is aC∗-algebra of operators onH and the identity representation is nondegenerate, we say thatA is nondegenerate
on H . Equivalently, this means that linear subspace generated by the elements of the formAf , with A ∈ C andf ∈ H ,
is dense inH.


Now some notations. LetT be a topological locally compact space. ThenCb(T ) is theC∗-algebra of complex con-
tinuous bounded functions onT , C∞(T ) theC∗-subalgebra of functions which have a limit at infinity, andC0(T ) the
C∗-subalgebra of functions convergent to zero at infinity. If the topology ofT is associated to a given uniform structure
(e.g. ifT is a locally compact abelian group) thenCu


b(T ) denotes theC∗-algebra of bounded uniformly continuous functions.
More generally, ifA is aC∗-algebra thenCb(T ; A ), C∞(T ; A ), C0(T ; A ) and (if T is a uniform space)Cu


b(T ; A ) are
similarly definedC∗-algebras. There is one more useful algebra:Crc(T ; A ), theC∗-algebra of continuous mapsT → A
with relatively compact range.


Later on we shall define other interesting algebras in terms of filters onT . If α is a filter on a setT , Y is a topological
space, andφ : T → Y has a limity alongα (i.e. one hasφ−1(V ) ∈ α for each neighborhoodV of y), then we write
limα φ = y or limt,α φ(t) = y. If T is a noncompact locally compact topological space, then theFréchet filteronT is the
family of subsetsV such thatT \V is relatively compact; the limit along it is denotedlimt→∞ φ(t).


2.2. EnvelopingC∗-algebras.Let (A , ‖ · ‖) be a Banach∗-algebra, i.e. a complete norm‖ · ‖ is given on the∗-algebraA
such that‖AB‖ ≤ ‖A‖ · ‖B‖ and‖A∗‖ = ‖A‖. Theneach morphism fromA into aC∗-algebra is a contraction(1.3.7 in
[Dix]). Hence we have| · | ≤ ‖ · ‖ for eachC∗-seminorm onA . Since the upper bound of any family ofC∗-seminorms is
aC∗-seminorm, there is a largestC∗-seminorm onA : we call it theC∗-seminorm ofA (orC∗-norm ofA , if it is a norm)
and we denote it by‖ · ‖∗ (note that‖ · ‖∗ ≤ ‖ · ‖). TheC∗-algebra obtained by separation and completion of(A , ‖ · ‖∗)
is denotedA∗ (and its norm‖ · ‖∗) and is calledthe envelopingC∗-algebra ofA .


Let θA : A → A∗ be the canonical morphism. ThenθA is continuous (contractive) with dense range and it is injective
if and only if ‖ · ‖∗ is a norm onA , so if and only if there is aC∗-norm onA . In this case we say thatA is anA∗-algebra
and we identifyA ⊂ A∗ ; thusA becomes a dense∗-subalgebra ofA∗ and‖A‖∗ ≤ ‖A‖ if A ∈ A .


The algebraA∗ obviously has the followinguniversal property: if C is aC∗-algebra andφ : A → C is a morphism
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then there is a unique morphismφ∗ : A∗ → C such thatφ = φ∗ ◦ θA . As a consequence, we get a (covariant) functor
from the category of Banach∗-algebras to that ofC∗-algebras. Indeed, ifφ : A → B is a morphism between two Banach
∗-algebras, then clearly there is a morphismφ∗ : A∗ → B∗ such thatφ∗ ◦ θA = θB ◦ φ∗ .


It is easy to see thatif φ has dense range thenφ∗ is surjective. But we stress thatφ∗ could be non-injective even ifφ is
injective.


For example, if there are several distinctC∗-norms onA (which is the case ifA is the convolution algebraL1(G) of a
non-amenable locally compact groupG), then there is aC∗-norm | · | onA distinct from‖ · ‖∗ . So| · | ≤ ‖ · ‖∗ and ifA•
is the algebra obtained by completing(A , | · |) then there is a canonical morphismA• → A∗ which is surjective but not
injective.


For similar reasons it may happen that the inclusionA ↪→ B of a closed∗-subalgebraA of the Banach∗-algebraB
induces a morphismA∗ → B∗ which is not injective. So ifB is anA∗-algebra thenA∗ cannot (in general) be identified
with the closureA of A in B∗ ; but there is a canonical surjectionA∗ → A , soA is a quotient ofA∗ .


Such unpleasant features do not occur, however, in the case of ideals (byideal in a Banach∗-algebra we mean “two-sided
closed∗-ideal”), as a consequence of the following result.


Theorem 2.1 Let


0 −−−−→ J
φ−−−−→ A


ψ−−−−→ B −−−−→ 0


be an exact sequence of Banach∗-algebras. Then


0 −−−−→ J∗
φ∗−−−−→ A∗


ψ∗−−−−→ B∗ −−−−→ 0


is an exact sequence ofC∗-algebras.


Proof: a) We need only one non-trivial result, namely the Theorem VI.19.11 from [FeD], which says that ifI is an ideal
in a Banach∗-algebraA andπ is a nondegenerate representation ofI on a Hilbert spaceH , then there is a unique
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representatioñπ of A onH which extendsπ. This implies that theC∗-seminorm‖ · ‖I∗ of I is equal to the restriction of
theC∗-seminorm‖ · ‖A∗ of A to I . Indeed, note that theC∗-norm ofA is also given by:


‖S‖A∗ = sup{‖π(S)‖ | π is a representation ofA }
= sup{‖π(S)‖ | π is a nondegenerate representation ofA }.


b) We apply these remarks with the choiceI = φ(J ) = kerψ. Sinceφ is a bijective morphism ofJ ontoI , we have


‖φ(S)‖I∗ = ‖S‖J∗ , hence also‖S‖J∗ = ‖φ(S)‖A∗ . Soφ is an isometry of(J , ‖ · ‖J∗ ) into (A , ‖ · ‖A∗ ) with range equal
to I . This implies thatφ∗ is an isometry ofJ∗ into A∗ with range equal toI , the closure inA∗ of θA (I ).
c) Now we compute forS ∈ A the norm ofθB ◦ ψ(S) by noticing thatπ 7→ π ◦ ψ realizes a bijective correspondence
between the representations ofB and the representations ofA which are zero onI (denote by Rep(A ,I ) the set of
unitary equivalence classes of such representations):


‖ψ(S)‖B∗ = sup{‖π ◦ ψ(S)‖ | π is a representation ofB}
= sup{‖ρ(S)‖ | ρ ∈ Rep(A ,I )}


The mapρ 7→ ρ∗ is a bijective correspondence between the representations ofA and the representations ofA∗ (with


inverseλ 7→ λ ◦ θA ) which sends Rep(A ,I ) onto the space of representations ofA∗ which are zero onI . Hence


‖ψ(S)‖B∗ = sup{‖λ ◦ θA (S)‖ | λ ∈ Rep(A∗ ,I )}.


The right hand side here is equal to the norm of the image ofθA (S) into the quotientC∗-algebraA∗/I . So we see that
ψ∗ : A∗ → B∗ factorize to a surjective isometryA∗/I → B∗ . Hencekerψ∗ = I = φ∗(J∗).


We shall restate a particular case of the preceding theorem in a form which is particularly useful for us. LetA be anA∗-
algebra and J an ideal in A such that the quotient Banach∗-algebra B = A /J is an
A∗-algebra (which is not always the case). Then one has a dense embeddingA ⊂ A∗ andJ∗ is canonically identi-
fied with the closureJ of J in A∗ (theC∗-norm of J being equal to the restriction toJ of theC∗-norm of A ).
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Moreover, the canonical mapA → A /J induces a surjective morphismA∗ → (A /J )∗ whose kernel is equal to
J∗ ≡ J , so we have a canonical identification(A /J )∗ = A∗/J∗ . In other terms, the natural mapA∗ → A∗/J∗
induces an isomorphism of(A /J )∗ ontoA∗/J∗ .
2.3. Tensor products. We shall briefly review some facts concerning the tensor product of twoC∗-algebrasA andB


(see [DeF] for tensor products of Banach spaces and [Mur], [Tks], and Appendix T in [Weo] for the case ofC∗-algebras).
The algebraic tensor productA �B has an obvious structure of∗-algebra. In general there are manyC∗-norms on this
∗-algebra, but it can be shown that there is a smallest one‖ · ‖min and a largest one‖ · ‖max. Hence aC∗-norm satisfies
‖ · ‖min ≤ ‖ · ‖ ≤ ‖ · ‖max. The completion ofA �B under aC∗-norm isaC∗-tensor productof A andB. The particular
cases of‖ · ‖min and‖ · ‖max give theminimal (or spatial) andmaximaltensor product, respectively. AC∗-algebraA is
callednuclearif for any B one has‖ · ‖min = ‖ · ‖max. Abelian algebras are nuclear.


The maximal tensor product is, in a natural sense, the envelopingC∗-algebra ofA �B. Indeed, it is easy to see that
there is a largest norm onA �B satisfying‖A ⊗ B‖ ≤ ‖A‖ · ‖B‖ and that this is a∗-algebra norm. The completion of
A �B for this norm is a Banach∗-algebra and its envelopingC∗-algebra is just the maximal tensor productA ⊗max B.
Obviously, all the other tensor products are quotients of this one.


For reasons of simplicity we shall consider from now on only the minimal tensor product and we shall denote itA ⊗B.
If A is realized on a Hilbert spaceH andB on a Hilbert spaceK , then we have an obvious embeddingA � B ⊂
B(H ⊗K ) andA ⊗B can be defined as the norm closure ofA �B. In particular, ifC is aC∗-subalgebra ofA , then
C ⊗B can (and will) be identified with the closure ofC �B in A ⊗B.


We stress that taking tensor products of continuous linear maps betweenC∗-algebra does not always make sense. More
precisely, letA1,A2,B1,B2 beC∗-algebras andφ : A1 → A2, ψ : B1 → B2 be linear continuous maps. Then the
algebraic tensor productφ � ψ is a well defined linear mapφ � ψ : A1 � A2 → B1 � B2, but in general this map is
not continuous for the topologies induced byA1 ⊗ A2 andB1 ⊗B2. The next two results are not so easy to prove, see
Theorems 6.5.1 and 6.5.2 in [Mur].


Theorem 2.2 If φ, ψ are morphisms, thenφ�ψ extends to a morphismφ⊗ψ : A1⊗A2 → B1⊗B2. If φ, ψ are injective,
so isφ⊗ ψ.
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Theorem 2.3 LetI , A , B, C beC∗-algebras and let


0 −−−−→ I
φ−−−−→ A


ψ−−−−→ B −−−−→ 0
be an exact sequence of morphisms. Assume thatB ⊗ C has a uniqueC∗-norm. Then, if id is the identity morphism ofC ,


0 −−−−→ I ⊗ C
φ⊗ id−−−−−→ A ⊗ C


ψ ⊗ id−−−−−→ B ⊗ C −−−−→ 0
is an exact sequence.


Corollary 2.4 LetA ,B beC∗-algebras and letI be an ideal inA . ThenI ⊗B is an ideal inA ⊗B and ifA /I or
B is nuclear, then


[A ⊗B] / [I ⊗B] = [A /I ]⊗B. (2.1)


Let C1,C2 beC∗-algebras and letJ1 ⊂ C1,J2 ⊂ C2 be ideals. For eachi = 1, 2 let Pi : Ci → Ci/Ji ≡ Ĉi be the
canonical surjection and letP ′1 = P1⊗ id andP ′2 = id⊗P2, morphisms ofC1⊗C2 into Ĉ1 ⊗C2 andC1⊗ Ĉ2 respectively.
The following result from [GI4], quite useful for the study of coupled systems, is another consequence of Theorem2.3.


Theorem 2.5 If C1,C2 are nuclear, then the kernel of the morphism


P ′1 ⊕ P ′2 : C1 ⊗ C2 →
[
Ĉ1 ⊗ C2


]
⊕
[
C1 ⊗ Ĉ2


]
is equal toJ1 ⊗J2.


Let A be aC∗-algebra andT a set. If we think ofT as a locally compact topological space equipped with the discrete
topology, theC∗-algebrasCb(T ; A ), Crc(T ; A ), andC0(T ; A ) are well defined (see§2.1). The first one plays no role in
what follows and we adopt special notations for the other two:A [T ] = Crc(T ; A ) andA (T ) = C0(T ; A ). ThusA [T ]


is the set of families(At)t∈T such that{At | t ∈ T} is a relatively compact subset ofA with the natural operations and
thesup norm. AndA (T ) is the ideal consisting of families(At)t∈T such that‖At‖ → 0 whent → ∞. Below we use the
standard (T being discrete) notationsc0(T ), l∞(T ) for the spacesC0(T ), Cb(T ).
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Lemma 2.6 A (T ) ∼= c0(T )⊗A and A [T ] ∼= l∞(T )⊗A .


Proof: The first relation is obvious. To prove the second one, assume thatA ⊂ B(H ) and realizel∞(T ) as aC∗-algebra
on l2(T ) in the standard way. Thenl∞(T )�A is realized onl2(T )⊗H = l2(T ; H ) as the setl∞fin (T ; A ) of operators of
multiplication by functionsF : T → A such that the range ofF is included in a finite dimensional subspace ofA . Now it
suffices to note thatl∞fin (T ; A ) is dense inA [T ].


One more object will appear naturally in our later investigations: theT -asymptotic algebraof A . This is the quotient
algebra:


A 〈T 〉 = A [T ]/
A (T ) (2.2)


From Lemma2.6 and (2.1) we getA 〈T 〉 = [l∞(T )/c0(T )] ⊗ A . Let δT be the set of ultrafiltersκ on T finer than the
Fréchet filter (sinceT is a discrete space, this is the family of sets having finite complements).δT should be thought as the
“boundary” ofT and it is equipped with a natural topology of compact space (see ch. 2 in [HiS]) such that[l∞(T )/c0(T )] =
C(δT ). Thus


A 〈T 〉 = C(δT ; A ). (2.3)


A detailed presentation of this topic, as well as applications, can be found in [GI2]. Note that one can consider an arbitrary
locally compact spaceT and the algebrasC0(T ; A ) andCrc(T ; A ).


2.4. Crossed products. We now recall the definition of the crossed product of aC∗-algebra by the action of a locally
compact abelian groupX (with the operation denoted additively). Most of what follows is valid in the non-abelian case too,
see [Ped]. We fix a Haar measure dx onX but note that the crossed productsA oX defined below will not depend on this
choice.


We shall say that aC∗-algebraA is anX-algebra if a homomorphismα : x 7→ αx of X into the group of automor-
phisms ofA is given, such that for eachA ∈ A the mapx 7→ αx(A) is continuous. A subalgebra ofA is calledstableif it
is left invariant by all the automorphismsαx. If (A , α) and(B, β) are twoX-algebras, a morphismφ : A → B is called
X-morphism(or covariantmorphism) ifφ[αx(A)] = βx[φ(A)] for all x ∈ X andA ∈ A .
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Let A be anX-algebra and letL1(X; A ) be the Banach∗-algebra constructed as follows. As a Banach space it is
just the space of (Bochner) integrable (equivalence classes of) functionsS : X → A . The product and the involution are
defined by:


(S · T )(x) =
∫
X
S(y)αy[T (x− y)] dy, (2.4)


S∗(x) = αx[S(−x)∗]. (2.5)


Note thatCc(X; A ), the space of continuous functionsX → A with compact support, is a dense∗-subalgebra of
L1(X; A ). Moreover, the algebraic tensor productA �Cc(X) is a dense subspace (identified with the set of elements from
Cc(X; A ) whose ranges are contained in finite dimensional subspaces ofA ).


Assume, furthermore, thatA is realized on a Hilbert spaceH and letHX = L2(X; H ). Then one has a faithful
representation ofL1(X; A ) onHX , the so-calledleft regular representation: one defines the action ofS ∈ L1(X; A ) onto
ξ ∈HX by


(S • ξ)(x) =
∫
X
α−x[S(x− y)] ξ(y) dy. (2.6)


In particular,L1(X; A ) is anA∗-algebra(see§2.2).


Definition 2.7 If A is aX-algebra, then thecrossed productof A by the actionα ofX is the envelopingC∗-algebra of
theA∗-algebraL1(X; A ). ThisC∗-algebra is denoted byA oX.


ThusA oX is the completion ofL1(X; A ) under the largestC∗-norm on it, and each representation ofL1(X; A ) extends
to a representation ofA o X (see§2.2). Due to the fact thatX is abelian (hence amenable) the crossed product defined
above coincides with the so-called “reduced crossed product” (cf. Theorems 7.7.5 and 7.7.7 in [Ped]):


Theorem 2.8 The left regular representation ofL1(X; A ) extends to a faithful representation ofA o X. In particular,
A oX is canonically isomorphic to the closure inB(HX) of the set of operators of the form (2.6).
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Heuristically, one should think ofA oX as a kind of twisted tensor product of the algebrasA andC0(X∗), whereX∗


is the group dual toX. In fact, if the action ofX on A is trivial, thenA o X = A ⊗ C0(X∗) (if X is not abelian, the
crossed product is the maximal tensor product ofA with the groupC∗-algebra ofX, while the reduced crossed product is
the minimal tensor product ofA with the reduced groupC∗-algebra ofX).


We now point out a certain universal property of the algebraA o X. We treat this question only as far as we need it
(see [Ped] and [Rae] for a more complete discussion). The following notations will be used. IfA , B are subalgebras of a
C∗-algebraC thenA ·B is the set of finite sums of the formA1B1 + · · ·+AnBn with Ai ∈ A , Bi ∈ B. This is a linear
subspace ofC and we denote by[[A ·B]] its norm closure. The notatioñu (P ) from the next theorem looks strange here,
but is suited to our later purposes.


Theorem 2.9 Assume thatA is aC∗-algebra of operators on a Hilbert spaceH and that there is a strongly continuous
unitary representation{Ux}x∈X of X on H such thatαx(A) = UxAU


∗
x for all x ∈ X,A ∈ A . If u ∈ L1(X) we set


ũ (P ) =
∫
X Uxu(x) dx. ThenB = {ũ (P ) | u ∈ L1(X)} is a ∗-algebra of bounded operators onH and [[A ·B]] is


a C∗-subalgebra ofB(H ). There is a unique morphismΦ : A o X → [[A ·B]] such thatΦ[A ⊗ u] = Aũ (P ) for all
A ∈ A andu ∈ L1(X). This morphism is surjective.


Note thatA⊗ u ∈ A �L1(X) which is a dense subspace ofL1(X; A ), hence ofA oX. The theorem says that[[A ·B]]
is a quotient ofA oX. The morphismΦ is not injective in general (e.g. ifX acts trivially onA ).


Proof: The mapu → ũ (P ) is a morphismL1(X) → B(H ) if we equipL1(X) with the usual convolution∗-algebra
structure. SoB is a∗-subalgebra ofB(H ). From standard properties of the algebraic tensor product it follows that there
is a unique linear mapΦ0 : A � L1(X) → [[A ·B]] such thatΦ0[A ⊗ u] = Aũ (P ) for all A ∈ A andu ∈ L1(X). It is
clear that the range ofΦ0 is dense in[[A ·B]]. Observe that forS ∈ A � L1(X) we have


Φ0[S] =
∫
X
S(x)Ux dx. (2.7)


The relation is obvious forS(x) = Au(x); the general case is an immediate consequence. From (2.7) we see thatΦ0


extends to a contractionΦ1 fromL1(X; A ) onto a dense subspace of[[A ·B]]. But Φ1 is a morphism (use (2.4) and (2.5)).
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SinceA oX is the enveloping algebra ofL1(X; A ), Φ1 extends to a morphismΦ : A oX → B(H ). The range ofΦ1


is closed, hence equal to[[A ·B]], which therefore is aC∗-subalgebra ofB(H ).


2.5. Functorial properties. The correspondenceA 7→ A o X extends to a covariant functor from the category ofX-
algebras (withX-morphisms as morphisms) into the category ofC∗-algebras. Indeed, ifφ : A → B is an
X-morphism, then it clearly induces a morphismφ0 : L1(X; A ) → L1(X; B) by the formula(φ0S)(x) := φ[S(x)].
Hence we may define the morphismφ∗ : A oX → B oX as the canonical extension ofφ0 to the enveloping algebras,
i.e.φ∗ = (φ0)∗ .


Theorem 2.10 LetJ , A , B beX-algebras and let


0 −−−−→ J
φ−−−−→ A


ψ−−−−→ B −−−−→ 0


be an exact sequence ofX-morphisms. Then


0 −−−−→ J oX
φ∗−−−−→ A oX


ψ∗−−−−→ B oX −−−−→ 0


is an exact sequence.


Proof: It suffices to prove that


0 −−−−→ L1(X; J )
φ0−−−−→ L1(X; A )


ψ0−−−−→ L1(X; B) −−−−→ 0


is an exact sequence of Banach∗-algebras; then we use Theorem2.1. The injectivity ofφ0 and the relationψ0 ◦ φ0 = 0 are
obvious. IfS ∈ L1(X; A ) andψ0(S) = 0 thenψ[S(x)] = 0 for a.e.x ∈ X, i.e.S(x) ∈ φ(J ) for a.e.x. But φ is an
isometry, so there isT ∈ L1(X; J ) such thatS(x) = φ[T (x)] for a.e.x. This proves thatkerψ0 = φ0(L1(X; J )).
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The surjectivity ofψ0 is a consequence of the following general property (see§3.5 in [DeF]). Let E be a Banach space
andF ∈ L1(X; E). Then for each numberε > 0 there are sequencesfn ∈ L1(X) anden ∈ E such thatF =


∑∞
n=1 en⊗fn


and
∞∑
n=1


‖en‖
∫
|fn(x)|dx ≤ (1 + ε)


∫
‖F (x)‖dx.


Note also that since the mapA / kerψ → B induced byψ is an isometric bijection, for eachb ∈ B there isa ∈ A such
thatψ(a) = b and‖a‖ = (1 + ε)‖b‖.


Let J be a stable ideal of anX-algebraA . According to Theorem2.10, if j : J → A is the inclusion map, then
j∗ : J o X → A o X is an isometric morphism ofJ o X onto an ideal ofA o X. From now onwe shall identify
J oX with its image underj∗. More explicitly,J oX is just the closure inA oX of the idealL1(X; J ) of L1(X; A ).


Now the quotientC∗-algebraB = A /J has a natural structure ofX-algebra such that the canonical morphism
A → A /J is anX-morphism. The Theorem2.10says also that the morphismA oX → [A /J ]oX associated to it
hasJ oX as kernel. We thus get the following reformulation of Theorem2.10:


Theorem 2.11 If J is a stable ideal of anX-algebraA then


A oX
/
J oX


∼= [A /J ]oX. (2.8)


The simplest case of the preceding situation is that when the exact sequence splits, so thatA /J can be realized as a
stableC∗-subalgebra ofA . Then we have:


Corollary 2.12 LetA be anX-algebra,J a stable ideal, andB a stableC∗-subalgebra such thatA = B + J direct
linear sum. ThenJ oX is an ideal inA oX, B oX is aC∗-subalgebra ofA oX, andA oX = B oX + J oX
direct linear sum.


In particular, ifA , B areX-algebras andA ⊕B is equipped with the naturalX-algebra structure, then(A ⊕B)oX ∼=
(A oX)⊕ (B oX). We mention one more fact:
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Proposition 2.13 If φ : A → B is an injective or surjectiveX-morphism thenφ∗ : A o X → B o X is injective or
surjective respectively. In particular, ifA is a stableC∗-subalgebra of theX-algebraB, thenA o X can be identified
with aC∗-subalgebra ofB oX.


The assertion is obvious in the surjective case. For the injective case, see Proposition 7.7.9 in [Ped]. So what we proved
above for ideals is valid for subalgebras too.


Proposition 2.14 Let (A , α) be anX-algebra and(B, β) a Y -algebra. EquipA ⊗B with theX × Y -algebra structure
defined byγ(x,y)(a⊗ b) = αx(a)⊗ βy(b). Then


(A ⊗B)o (X × Y ) ∼= (A oX)⊗ (B o Y ). (2.9)


We send to Takai (Proposition 2.4 in [Tak]) for a similar result. Since there is no proof there, we shall sketch here a simple
one.


Proof: Assume thatA andB are realized on the Hilbert spacesH andG respectively. ThenA ⊗B can be identified
with the norm closure inB(H ⊗ G ) of the algebraic tensor productA � B (realized onH ⊗ G ). TheC∗-norm on
L1(X × Y ; A ⊗B) is obtained by using the left regular representation onE ≡ L2(X × Y ; H ⊗ G ) = L2(X; H ) ⊗
L2(Y ; G ) ≡ HX ⊗ GY . If L ∈ L1(X × Y ; A ⊗B) is of the formL(x, y) = S(x) ⊗ T (y), with S ∈ L1(X; A ) and
T ∈ L1(Y ; B), we have


[L • (ξ ⊗ η)](x, y) =
∫∫


X×Y
γ−(x,y)[S(x− s)⊗ T (y − t)] · (ξ ⊗ η)(s, t) dsdt


=
∫
X
α−x[S(x− s)] · ξ(s) ds⊗


∫
Y
β−y[T (y − t)] · η(t) dt


= [(S • ξ)⊗ (T • η)](x, y).


If we denote byπA⊗B, πA andπB the left regular representations ofL1(X × Y ; A ⊗ B), L1(X; A ) andL1(Y ; B)
respectively, we see thatπA⊗B = πA ⊗ πB in E = HX ⊗ GY , which proves the proposition.
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The next consequence is sufficient for our purposes.


Corollary 2.15 LetA be anX-algebra and letB be a nuclear (e.g. abelian)C∗-algebra. EquipA ⊗B with theX-algebra
structure defined byαx(a⊗ b) = αx(a)⊗ b. Then


(A ⊗B)oX ∼= (A oX)⊗B. (2.10)


We close this paragraph with a consequence of (2.2) and of Lemma2.6.


Corollary 2.16 If A is anX-algebra andT a set, then


A (T )
oX ∼= (A oX)(T ) and A [T ]


oX ∼= (A oX)[T ]. (2.11)


Moreover, theT -asymptotic algebraA 〈T 〉 has a canonicalX-algebra structure and one has


(A oX)[T ]/
(A oX)(T ) = (A oX)〈T 〉 ∼= C(δT ; A oX). (2.12)


This follows from Lemma2.6and the definition (2.2).


2.6. Pseudodifferential operators.We introduce several new notations and recall facts concerning the harmonic analysis
onX (see [Fol], [Loo], and [Wei] for details). Note that the Hilbert spaceL2(X) = L2(X, dx) depends on the choice
of the Haar measure dx, but theC∗-algebrasB(X) = B(L2(X)), K (X) = K(L2(X)) do not. We shall embed the
C∗-algebrasC0(X), Cu


b(X), Cb(X) in B(X) by associating toϕ ∈ Cb(X) the operator of multiplication by the function
ϕ. In order to avoid ambiguities we often denote this operator byϕ(Q) (as in quantum mechanics, whereQ is theX-valued
position observable).


LetX∗ be the abelian locally compact group dual toX. The Fourier transform ofu ∈ L1(X) is the functionFu ≡ û ∈
C0(X∗) given byû (k) =


∫
X k(x)u(x) dx. Let us equipX∗ with the unique Haar measure dk such thatF induces a unitary


mapF : L2(X) → L2(X∗). For eachψ ∈ Cb(X∗) we define the operatorψ(P ) ∈ B(X) by ψ(P ) = F−1MψF , where
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Mψ is the operator of multiplication byψ in L2(X∗) (in the quantum mechanical settingP is interpreted as theX∗-valued
momentum observable). The injective morphismψ 7→ ψ(P ) gives us an embeddingCb(X∗) ⊂ B(X).


Let Ux be the unitary operator inL2(X) defined by(Uxf)(y) = f(x + y). We get a strongly continuous unitary
representation ofX on L2(X). We also set̃u (k) =


∫
X k(x)u(x) dx for u ∈ L1(X). Then it is easy to check that


ũ (P ) =
∫
X Uxu(x) dx, which explains the notation used in Theorem2.9. SinceFL1(X) is dense inC0(X∗), we see that


the closure of the algebra denotedB in Theorem2.9 is justC0(X∗) (when thisC∗-algebra is embedded inB(X) as a
subalgebra ofCb(X∗)).


If x ∈ X we denote byτx the operator acting on functionsf onX according to(τxf)(y) = f(y−x). We equipCu
b(X)


with theX-algebra structure defined by the actionαx = τ−x. If A is aC∗-subalgebra ofCu
b(X) stable under translations


thenA becomes anX-algebra too. We haveαx[ϕ(Q)] = Uxϕ(Q)U∗x , so that we are under the conditions of Theorem2.9.
The next result is important in our applications: it says that the representation of the crossed productA oX on the Hilbert
spaceL2(X) described in Theorem2.9 is faithful (this is Theorem 3.12 in [GI2]).


Theorem 2.17 Let A be aC∗-subalgebra ofCu
b(X) stable under translations. Then[[A · C0(X∗)]] is a C∗-algebra of


operators onL2(X) and
[[A · C0(X∗)]] ∼= A oX. (2.13)


More precisely, there is a unique morphismΦ : A oX → [[A · C0(X∗)]] such thatΦ[ϕ⊗ u] = ϕ(Q)ũ (P ) for all ϕ ∈ A
andu ∈ L1(X) andΦ is an isomorphism.


Corollary 2.18 K (X) = [[C0(X) · C0(X∗)]] ∼= C0(X)oX.


2.7. Observables affiliated toC∗-algebras. If C is aC∗-algebra then anobservableH affiliated toC is a morphism
H : C0(R)→ C . In order to keep close to standard notations we shall denote byϕ(H) (notH(ϕ)) the image ofϕ ∈ C0(R)
through this morphism. We say thatH is C -nondegenerate, or thatH is strictly affiliated toC , if the linear subspace
generated by{ϕ(H)A | ϕ ∈ C0(R), A ∈ C } is dense inC . The following nontrivial fact follows from the Cohen-Hewitt
theorem (see V.9.2 in [FeD]):
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Theorem 2.19 If H is an observable strictly affiliated toC , then for eachA ∈ C there areϕ,ψ ∈ C0(R) andB ∈ C such
thatA = ϕ(H)Bψ(H).


In particular, aC -nondegenerateH extends to a morphism fromCb(R) to the multiplier algebra ofC , but we shall not use
this fact.


Thespectrumof the observableH is defined by:


σ(H) = {λ ∈ R | ϕ ∈ C0(R) andϕ(λ) 6= 0 =⇒ ϕ(H) 6= 0}. (2.14)


We define the image of an observable through a morphism as follows. IfC1, C2 areC∗-algebras,H1 is an observable
affiliated toC1 andP : C1 → C2 is a morphism, thenϕ 7→ P [ϕ(H1)] is a morphismC0(R) → C2. Thus we get an
observable affiliated toC2 that we shall denote byH2 = P [H1]. Obviouslyσ(H2) ⊂ σ(H1).


In particular, ifJ is an ideal inC, Ĉ = C /J is the quotient algebra andH is an observable affiliated toC , we may
define the quotient̂H (denotedH/J in case of ambiguity) as the observable affiliated toĈ given byĤ = π(H), where
π is the canonical morphismC → Ĉ . In this context, it is useful to remark the similarity between:


σ(Ĥ ) = {λ ∈ R | ϕ ∈ C0(R) andϕ(λ) 6= 0 =⇒ ϕ(H) /∈J }, (2.15)


and one of the characterizations of the usual notion of essential spectrum in a Hilbert space setting (see the end of§2.8). It
is thus natural to call this set the essential spectrum ofH with respect to the idealJ, and denote itJ -σess(H).


We mention a result, important for one of our applications, which also involves the essential spectrum with respect to
general ideals. Let{Ct}t∈T be an arbitrary family ofC∗-algebras. If for eacht ∈ T an observableHt affiliated toCt is
given, we may associate to it an observableH =


∏
t∈T Ht affiliated toC =


∏
t∈T Ct by settingϕ(H) = (ϕ(Ht))t∈T for


eachϕ ∈ C0(R). It is easily shown thatH is affiliated to the subalgebra
⊕


t∈T Ct if and only ifHt →∞ ast→∞ in T in
the following sense: for each compact real setK there is a finite subsetF ⊂ T such thatσ(Ht) ∩K = ∅ if t ∈ T \ F . One
has


σ(H) =
⋃
t∈T σ(Ht)
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and ifH is affiliated to
⊕


t∈T Ct then the union is already closed. The following generalization of this relation is important
for us (see [GI2]).


Proposition 2.20 For eacht ∈ T let Jt be an ideal inCt and letJ =
⊕


t∈T Jt, so thatJ is an ideal inC =
∏
t∈T Ct.


Denote byĤt the quotient ofHt in Ct/Jt and letĤ be the quotient ofH in C /J . Then


σ(Ĥ ) =
⋂
F⊂T
F finite


{(⋃
t∈F σ(Ĥt )


)
∪
(⋃


s∈T\F σ(Hs)
)}


. (2.16)


Remark that, with the notations introduced above, (2.16) may be written:


J -σess(H) =
⋂
F⊂T
F finite


{(⋃
t∈F Jt-σess(Ht)


)
∪
(⋃


s∈T\F σ(Hs)
)}


.


2.8. Affiliation of self-adjoint operators. We consider now the case where theC∗-algebraC is realized on a Hilbert space
H , i.e. C is aC∗-subalgebra ofB(H ). A self-adjoint operatorH on H is calledaffiliated toC if (H − z)−1 ∈ C for
somez ∈ C \ σ(H). This impliesϕ(H) ∈ C for all ϕ ∈ C0(R), so each self-adjoint operator onH affiliated toC defines
an observable affiliated toC . The other observables affiliated toC can be realized asnon-denselydefined operators onH .


If H is a self-adjoint operator onH affiliated toC and if the corresponding observable isC -nondegenerate we say that
H is strictly affiliated toC . In this case Theorem2.19implies that for eachA ∈ C there areϕ1, ϕ2 ∈ C0(R) andB ∈ C
such thatA = ϕ1(H)Bϕ2(H). As a consequence, the operatorsϕ(H)A andAϕ(H) belong toC for all ϕ ∈ Cb(R).


It can be shown thatif C is nondegenerate onH, then the correspondence between self-adjoint operators onH strictly
affiliated toC and observables strictly affiliated toC defined above is bijective(see [DG2]). The following is Proposition
2.3 in [DG2]. Note that if there is a self-adjoint operator on a Hilbert spaceH affiliated to aC∗-algebra of operators on
H , then this algebra is nondegenerate onH .
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Theorem 2.21 LetC1, C2 be nondegenerateC∗-algebras of bounded operators on the Hilbert spacesH1,H2 respectively
and letP : C1 → C2 be a morphism such thatP(C1) acts nondegenerately onC2 (e.g. assumeP surjective). Then for
each self-adjoint operatorH1 onH1 strictly affiliated toC1 there is a unique self-adjoint operatorH2 onH2 such that
P[ϕ(H1)] = ϕ(H2) for eachϕ ∈ C0(R). H2 is strictly affiliated toC2.


We give an example which clarifies the distinction between affiliation and strict affiliation. Consider theC∗-algebra
C0(R) realized as usual onL2(R) and leth be the real function given byh(x) = x + x−1 for x 6= 0 andh(0) = 0. Then
the operatorH of multiplication byh is affiliated toC0(R), because(h+ i)−1 is equal outside zero (so almost everywhere)
to a function fromC0(R). But if ϕ ∈ C0(R) thenϕ(H) is the operator of multiplication by a function fromC0(R) which
vanishes at zero, soH cannot be strictly affiliated toC0(R). Moreover, ifϕ is a continuous function equal to zero near−∞
and to 1 near+∞, thenϕ(H) is multiplication by a function discontinuous at zero, soϕ(H)A does not belong toC0(R) if
A ∈ C0(R) does not vanishes at zero.


We stress that ifJ is an ideal inC andH is a self-adjoint operator affiliated toC , then the quotient̂H is a well defined
observable affiliated tôC = C /J , but in most caseŝH has no meaning as operator onH becausêC has no natural
realization onH . If H is strictly affiliated toC , then one can realizêH as a self-adjoint operator in each nondegenerate
representation ofC .


Let us take aboveJ = K(H ) ∩ C . We recall that a real numberλ does not belong to the essential spectrum of a
self-adjoint operatorH if and only if ϕ(H) ∈ K(H ) for someϕ ∈ C0(R) such thatϕ(λ) 6= 0. Hence ifH is affiliated to
C we getσess(H) = σ(Ĥ ).


2.9. Affiliation criteria. The algebras that we consider have to be rather small, such that the quotient with respect to the
ideal of compact operators be computable. On the other hand we would like that the class of self-adjoint operators affiliated
to them be large. So we are interested in having efficient affiliation criteria. We present two such criteria below.


We remain in the setting of§2.8 and consider a self-adjoint operatorH0 on H . We say thatV is a standard form
perturbationof H0 if V a continuous symmetric sesquilinear form onG = D(|H0|


1
2 ) and if there are numbersµ ∈ [0, 1)


andδ ∈ R such that either±V ≤ µ|H0|+ δ as forms onG , orH0 is bounded from below andV ≥ −µH0 − δ as forms on
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G . Then the form sumH = H0 + V is a self-adjoint operator onH with the same form domain asH0. We give a criterion
which ensures the affiliation ofH to C if H0 is affiliated toC . We introduce


M(C ) = {A ∈ B(H ) | B ∈ C =⇒ AB, BA ∈ C }. (2.17)


ClearlyM(C ) is aC∗-algebra. It can be identified with the usual multiplier algebra (as defined e.g. in [Lan]) if and only if
C is nondegenerate onH . The next result is a particular case of Theorem 2.8 from [DG2].


Theorem 2.22 (i) Let H0 be bounded from below and affiliated toC and assume moreover that the operator
U ≡ (|H0|+ 1)−1/2V (|H0|+ 1)−1/2 belongs toM(C ). ThenH is affiliated toC .
(ii) If H0 is strictly affiliated toC thenU ∈ M(C ) if and only if one hasϕ(H0)V (|H0|+ 1)−1/2 ∈ C for all ϕ ∈ Cc(R).
In this caseH is strictly affiliated toC .


The preceding theorem is interesting because it does not require that the positive part ofV be small with respect to
H0 (as in the criteria from [ABG]). However, the fact that the form domain ofV must contain that ofH0 is sometimes
annoying: it requires±V ≤ C(|H0|+ 1) for some numberC. We mention a second method for checking the affiliation to
C of a formal sumH = H0 + V which is useful whenV is in no sense dominated byH0.


Theorem 2.23 LetH0 andV be self-adjoint operators bounded from below. Assume thatK = D(H0)∩D(V ) is dense in
H andH = H0 + V with domainK is a self-adjoint operator. Ife−tH0e−2tV e−tH0 ∈ C for all t > 0, thenH is affiliated
to C .


Proof: This is a slight improvement of a result on page 369 in [ABG]. According to a theorem of D. L. Rogova concerning
the Trotter formula (see also [ITZ]) we havelimn→∞


[
e−tH0/ne−2tV/ne−tH0/n


]n
= e−2tH in norm sense. Thus e−tH ∈ C ,


soH is affiliated toC (see page 369 in [ABG]).


This criterion, coupled with the fact that the set of observables affiliated to aC∗-algebra is closed under the natural norm
convergence (cf. page 367 in [ABG]), is efficient in applications to quantum field theory.
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3. C∗-algebras of hamiltonians: examples


3.1. Crossed product techniques.In this subsection we introduce a general class ofC∗-algebras which can be interpreted
asC∗-algebras of energy observables (or hamiltonians). We study quantum systems having as configuration space an
arbitrary abelian locally compact groupX. This seems to be a natural setting for the quantum theory of systems with a finite
number of degrees of freedom: both position and momentum observables(2) are naturally defined. Of course, this also shows
the power of the algebraic methods. The basic examples one should have in mind areX = R


n orZn. However, the case of
finite dimensional vector spaces over local fields (e.g.p-adic numbers) is very interesting and also of some importance (see
[Tai, S-C] for a pseudo-differential calculus on such spaces). Self-adjoint operators with “pathological” spectral properties
become then quite natural objects. Many other nontrivial situations can be considered, like the “p-adic torus” (the dual of
the compact, totally disconnected, non-discrete group ofp-adic integers); see [Fol, Gur, Wei]. However, we stress that even
in the simplest situations (X = R orZ) the algebraic techniques give, rather easily, results which do not seem to be covered
by other means.


Definition 3.1 Analgebra of (internal) interactionsonX is anyC∗-algebraA of functions onX such that


C∞(X) ⊂ A ⊂ Cu
b(X) andA is stable under translations. (3.1)


Thealgebra of hamiltoniansassociated toA is A oX.


We callelementary hamiltonian of classA any self-adjoint operator onL2(X) of the formh(P ) + v(Q), whereh is a real
continuous function onX∗ such thatlimk→∞ |h(k)| = ∞ andv ∈ A (the notations are as in§2.6). Then ahamiltonian
of classA is an observable affiliated toA o X. The next result explains the terminology. See [GI2] for a more precise
assertion and the proof.


(2) Here the term observable has a more general meaning than in§2.7: aT -valued observable is a morphism fromC0(T ) into aC∗-algebra, where
T is a locally compact space, cf.§8.1.2 in [ABG]. Even more general interpretations of this notion are in fact required in order to treat “non-abelian”
observables like the momentum when a magnetic field is present, or the kinetic momentum. In our context, we should callT -valued observable any
morphism from the group algebra of a locally compact groupT into aC∗-algebra.
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Proposition 3.2 A oX is theC∗-algebra generated by the elementary hamiltonians of classA .


As we explained in the Introduction, our main purpose is to give an “explicit” description of the quotient algebra
A oX/K (X). From (3.1) we see thatK (X) = C0(X)oX is an ideal inA oX. The main point here is that the crossed
product structure leads to a drastic simplification of the problem. Indeed, Theorem2.11gives


A oX
/
K (X)


∼= [A /C0(X)]oX. (3.2)


This relation reduces the problem of the computation of the quotient of the two noncommutative algebras from the left hand
side to an easier abelian problem: that of giving a convenient description ofA /C0(X).


The preceding formalism also covers systems interacting with a vanishing at infinity external magnetic, i.e. hamiltonians
of such systems are affiliated to algebras of the formA oX. This is not so if the magnetic field does not vanish at infinity.
We describe now a class of algebras which are suited to such situations (a more detailed account can be found in [GI3]), but
we shall not give concrete applications of this formalism. In fact, the framework of§3.6covers the case of constant nonzero
magnetic fields, but there we do not use crossed product methods.


The formalism we propose here forces us to use crossed products of (abelian)C∗-algebras by actions of non-abelian
groups, case not treated in this lecture. We only mention that the definition of crossed products in general is essentially
identical to that from the abelian case.


We recall that anextension ofX by an abelian groupN is a locally compact groupG ⊃ N equipped with a continuous
surjective group morphismπ : G→ X such thatkerπ = N (the assumption of local compacity is not convenient in general,
but we keep it here to have the standard definition of crossed products). We denote multiplicatively the operation inG, so
the trivial case “G = X” corresponds toN = {1}, G = N ×X andπ(1, x) = x.


We get a transitive action ofG onX by settingg.x = x − π(g) and then(αgϕ)(x) = ϕ(g−1.x) = ϕ(x + π(g)) gives
a continuous action ofG on theC∗-algebraCu


b(X), which thus becomes aG-algebra. The action ofG onX looks like
that ofX on itself by translations, hence aG-stableC∗-subalgebraA of Cu


b(X) is the same thing as a translation invariant
C∗-subalgebra. However, the crossed productA o G of A by the action ofG is quite different from the crossed product
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A o X of A by the action ofX. The fact that this has something to do with magnetic fields will be shown below. We
mention that, sincekerπ = N is a closed abelian normal subgroup andG/ kerπ = X is abelian, the groupG is amenable
(see 7.3.5 in [Ped]). ThusA oG coincides with the reduced crossed product.


Definition 3.3 The crossed productA oG is thealgebra of hamiltoniansof the system havingX as configuration space,
subject to internal interactions of typeA , and interacting with an external field of typeN . An observable affiliated to
A oG is ahamiltonian of class (A , G).


In order to justify the definition it is useful to think in terms of the universal property of crossed products, which
says that the representations ofA o G are in bijective correspondence with covariant representations of(A , G, α) (see
Theorem2.9and [Ped, Rae]). By covariant representationwe mean a couple consisting of a non-degenerate representation
ϕ 7→ ϕ(Q) of A and a strongly continuous unitary representationg 7→ Ug of G on the same Hilbert spaceH , such that
Ugϕ(Q)U∗g = ϕ(Q+ π(g)). SetU(θ) =


∫
G Ugθ(g) dg for θ ∈ Cc(G) and dg a Haar measure onG. Then the range of the


representation ofA oG associated to this covariant representation is the closed linear subspace ofB(H ) generated by the
operatorsϕ(Q)U(θ). But, if we denoteA [ andC∗(G)[ the representations ofA and of the groupC∗-algebraC∗(G) on
H , then[[A [ · C∗(G)[]] is a representation of the abstract crossed productA o G on H . In the trivial caseG = X one
hasC∗(X) = C0(X∗), hence we get[[A ·C0(X∗)]] asC∗-algebras of energy observables, which is the correct prescription
(see Theorem2.17).


The extensions ofX can be classified in terms ofN , actions ofX onN by automorphisms, and elements of a second
order cohomology group ofX with coefficients inN (see [GI3] for details). We now construct certain extensions associated
to magnetic fields onX.


Let U(1) = {λ ∈ C | |λ| = 1} and letC(X;U(1)) be the group of continuous functionsX → U(1), equipped with
the group structure given by usual multiplication of functions and with the topology of uniform convergence on compact
subsets ofX; we get a topological group (not locally compact). Translations induce a natural action ofX onC(X;U(1))
by group automorphisms:(x.u)(y) = u(y + x). We choose a closed locally compact subgroupN ⊂ C(X;U(1)) stable
under translations. For example, the choiceN = U(1) (constant functions) suffices to treat constant magnetic fields. A
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more interesting choice in the case whenX is a finite dimensional real vector space is


N = {eia | a is a polynomial of order ≤ m}


wherem is a fixed positive integer. This suffices for the treatment of magnetic fields of classCm+1 with derivatives of order
m+1 tending to zero at infinity. A (normalized)2-cocycle onX with coefficients inN is a continuous mapb : X×X → N
such that


b(x, y)b(x+ y, z) = x.b(y, z)b(x, y + z) andb(x, 0) = b(0, y) = 1.


We denoteN ×b X the setN ×X provided with the product


(u, x) · (v, y) = (ux.v b(x, y), x+ y).


It is easy to see thatN ×b X has a locally compact group structure and that the natural mapN ×b X → X gives a group
extensionG of X. We shall explain now the relation between the 2-cocycleb and the magnetic field.


Assume thatX is a finite dimensional real vector space. Thena magnetic field is a 2-form onX, more precisely, it is
a continuous mapB : X → ∧2X∗. If x, y, z are points ofX, let T (x, y, z) be the oriented (possibly degenerate) triangle
determined by the pointsz, z + x, z + x+ y. Then we takeb(x, y) = bx,y with


bx,y(z) = exp
(
− i
∫
T (x,y,z)


B
)
. (3.3)


The integral from the exponent is theflux of the magnetic fieldB through the oriented triangleT (x, y, z). One can check
thatb is a 2-cocycle with coefficients inC(X;U(1)). We assume that the closed subgroupN generated by these coefficients
is locally compact and denoteXB ≡ N ×b X the extension ofX associated to it. Finally,A o XB is theC∗-algebra of
hamiltonians of a system havingX as configuration space, subject to internal interactions of typeA , and interacting with
an external field asymptotically equal toB (a more detailed justification of this interpretation can be found in [GI3]). We
emphasize that this algebra depends only on the magnetic field, not on the magnetic potential.
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3.2. Bumps algebras. From now on we assume thatX is not compactand in the next three subsections we give three
nontrivial examples of algebras of interactions. Other examples can be found in [GI2]. See [Ma1, Ma2] for constructions
based on compactifications ofX (see also [Sim]).


Fix a closed setL ⊂ X such thatLΛ ≡ L + Λ 6= X if Λ is compact. Then the family of open sets
{LcΛ | Λ ⊂ Xcompact}, whereLcΛ = X \ LΛ, is the base of a filterFL which is finer than the Fréchet filter and
translation invariant. We denote byL-limϕ the limit along the filterFL and we defineCL(X) as theC∗-algebra of func-
tionsϕ ∈ Cu


b(X) such thatL-limϕ exists. It is obvious thatCL(X) is an algebra of interactions. The corresponding algebra
of hamiltonians will be denotedCL(X). This is the first class of algebras that we consider.


Let CL,0(X) = {ϕ ∈ Cu
b(X) | L-limϕ = 0}, this is an ideal inCL(X) andCL(X) = C + CL,0(X). According to


Corollary2.12, we can writeCL(X) as a linear direct sum


CL(X) = C0(X∗) + CL,0(X). (3.4)


The algebraCL,0(X) = CL,0(X) o X is an ideal ofCL(X) andCL(X) → C0(X∗) is a surjective morphism which
gives the pure kinetic energy part of a hamiltonian of classA . On the other hand,C0(X) being a stable ideal ofCL,0(X),
the crossed product subalgebraC0(X)oX = K (X) is an ideal ofCL,0(X).


We cannot give a complete description of the quotientCL(X)/K (X) for an arbitraryL. From now on we shall assume
thatL is sparse, which means that it is locally finite and for each compactΛ of X there is a finite setF ⊂ L such that if
l ∈ M = L \ F andl′ ∈ L \ {l} then(l + Λ) ∩ (l′ + Λ) = ∅. The consideration of these sets was suggested to us by the
work of M. Klaus [Kla] on Schr̈odinger operators with “widely separated bumps”. For this reason we callCL(X) thebumps
algebrawhenL is sparse.


The bumps algebra fits very nicely in our framework, the quotient algebra having an especially interesting structure.
BesidesK (X), we need below thetwo-body algebraT (X) = C0(X∗) + K (X) (see§3.4for terminology).


Theorem 3.4 The quotient algebraCL,0(X)/K (X) is canonically isomorphic to theL-asymptotic algebraK (X)〈L〉.
One has a natural embedding:


CL(X)
/
K (X) ↪→ T (X)[L]/


K (X)(L) (3.5)
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The notations are those of§2.3. The computations are done at an abelian level using (3.2), but neither the abelian case is
trivial here. We send to [GI2] for the complete proof and we quote below a more explicit formulation of Theorem3.4which
is a byproduct of the proof (see also Lemma2.6).


Theorem 3.5 There is a unique morphismCL(X) → T (X)[L]/K (X)(L) such that the image of an element of the form
ψ(P ) +


∑
l∈M U∗l KUl, whereψ ∈ C0(X∗), M ⊂ L, andK ∈ K (X) is such thatK = χΛ(Q)K χΛ(Q) for some


compact setΛ ⊂ X, be the quotient of the elementχM ⊗ (ψ(P ) +K) ∈ T (X)[L] with respect to the idealK (X)(L). The
kernel of this morphism isK (X) and its restriction toCL,0(X) induces the canonical isomorphism ofCL,0(X)/K (X)
with theL-asymptotic algebra of compact operatorsK (X)〈L〉.


Now we give an application in spectral theory. LetH be an observable affiliated toCL(X) and letĤ be its image
in CL(X)/K (X). Then there is a family(Hl)l∈L of observables affiliated to the two-body algebraT (X) such that the
quotient of


∏
l∈LHl with respect to the idealK (X)(L) is equal tôH (we use the embedding (3.5)). We say that(Hl)l∈L is


a representativeof H. We have
∏
l∈L(Hl − z)−1 ∈ T (X)[L] and the component of(Hl − z)−1 in C0(X∗) is independent


of l ∈ L, soσess(Hl) is independent ofl. Thus the next result is a consequence of the Proposition2.20.


Theorem 3.6 If H is an observable affiliated toCL(X) and{Hl}l∈L is a representative ofH, then


σess(H) =
⋂
F⊂L
F finite


⋃
l∈L\F


σ(Hl).


The simplest case is already interesting. Assume thatHl itself is an operatorH◦ independent ofl; thenσess(H) = σ(H◦).


Example: Very general examples can be found in [GI2]), here we consider the easiest nontrivial one. LetX = R
n and let


h : Rn → R be a continuous function such that


C−1|x|2s ≤ |h(x)| ≤ C|x|2s if |x| > R,
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for some constantss > 0, C > 0 andR <∞. Let t ∈ [0, s) real, letL be a sparse subset ofRn, and letW : H t → H −t


be a symmetric operator such that〈Q〉aW ∈ B(H t,H −t) for some numbera > 2n (H s are usual Sobolev spaces and
〈Q〉 is the operator of multiplication by(1 + |x|2)1/2). Then the series


∑
l∈L U


∗
l WUl converges in the strong topology of


B(H t,H −t) and its sum is a symmetric operatorV : H t → H −t. LetH = h(P ) + V , Hl ≡ H◦ = h(P ) +W be the
self-adjoint operators inH defined as form sums. ThenH is strictly affiliated toCL(X),Hl is strictly affiliated toT (X),
and the family{Hl}l∈L is a representative ofH. In particular


σess[h(P ) + V ] = σ[h(P ) +W ].


We mentioned in the introduction the problem of obtaining “intrinsic” characterizations of aC∗-algebra of hamiltonians.
In most of the cases this is a difficult question. The answer in the present case is as follows (see [GI2] for the proof). For
k ∈ X∗ we denote byVk the operator of translation byk in momentum space:(Vkf)(x) = k(x)f(x). The relations
involving T (∗) must hold separately forT and its adjoint.L is a sparse set.


Theorem 3.7 An operatorT ∈ B(X) belongs toCL,0(X) if and only if
(i) limx→0 ‖(Ux − 1)T (∗)‖ = 0,
(ii) limk→0 ‖VkTV ∗k − T‖ = 0,
(iii) ∀ε > 0 ∃Λ ⊂ X compact such that‖χLcΛ(Q)T (∗)‖ < ε.


This is of the same nature as Theorem1.4but holds for an arbitrary groupX. We stress that the following characteriza-
tion of compact operators, the Riesz-Kolmogorov theorem, is behind all our results of this type.


Theorem 3.8 If T ∈ B(X) thenT ∈ K (X) = C0(X)oX if and only if


lim
x→0
‖(Ux − 1)T‖ = 0 and lim


k→0
‖(Vk − 1)T‖ = 0.


In [GI1] there are other applications of this remarkable result.
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3.3. Localizations at infinity. The second example of algebra of interactions will beA = Cu
b(X), which is the largest


possible choice. The main results in the caseX = R
n have been stated in the Introduction as Theorem1.2 and Theorem


1.4, which gives an intrinsic description of the algebra. We now discuss in more detail the proof of an analogue of Theorem
1.2for arbitraryX and give some applications. This results have been announced in [If2]. The proofs are sketched in [GI2]
and will be developed in [GI5].


Lemma 3.9 Letκ be an ultrafilter onX finer than the Fŕechet filter. IfS ∈ Cu
b(X) o X ⊂ B(X) then the strong limit


s -limx,κ UxSU
∗
x = Pκ[S] exists and belongs toCu


b(X)oX. The mapPκ : Cu
b(X)oX → Cu


b(X)oX is a morphism.


Proof: This is based on the remark:a functionϕ ∈ Cb(X) belongs toCu
b(X) if and only if for some (and hence for all)


θ ∈ C0(X), θ 6= 0, the set of functions of the formθ τxϕ, x ∈ X, is relatively compact inC0(X). In more technical terms
(cf. [Lan]), the set{τxϕ | x ∈ X} is relatively compact in the strict topology ofCb(X). But any ultrafilter on a compact
space is convergent, hence ifϕ ∈ Cu


b(X) the limit ϕκ = limx,κ τ−xϕ exists locally uniformly onX andϕκ ∈ Cu
b(X).


Now the lemma is an immediate consequence of the fact thatCu
b(X)oX is the norm closure of the linear space generated


by the operators of the formϕ(Q)ψ(P ).
We call Pκ[S] ≡ Sκ localization ofS at κ and the family{Sκ}κ∈δX is the set oflocalizations at infinity ofS.


We denoted byδX the set of all ultrafilters onX finer than the Fŕechet filter. These notions extend immediately to any
observableH affiliated toCu


b(X)oX by settingHκ = Pκ[H], which is again an observable affiliated toCu
b(X)oX. We


have


Theorem 3.10 If S ∈ Cu
b(X)oX then{Pκ[S] | κ ∈ δX} is a compact subset ofCu


b(X)oX. One hasPκ[S] = 0 for all
κ ∈ δX if and only ifS ∈ K (X).


In particular, we get an embedding
Cu


b(X)oX/K (X) ⊂ [Cu
b(X)oX][δX] (3.6)
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Corollary 3.11 If H is an observable affiliated toCu
b(X)oX then


σess(H) =
⋃
κ∈δX σ(Hκ). (3.7)


The fact that the union is closed is not trivial. We also stress that a formula like (3.7) is remarkable because it involves
only localizations ofH in the regionQ = ∞. For other hamiltonians of physical interest one must include localizations at
P =∞, as it will be shown later on.


The definition of localizations at infinity is practically convenient but not sufficient for the proof of the main results.
We need a basic fact concerning the Stone-Čech compactification ofX: if F is a continuous map fromX to a Hausdorff
topological spaceY and if the range ofF is a relatively compact set, thenF has a unique continuous extension toβX (this
is the universal property ofβX). This is related to the fact that the limit ofF along any ultrafilter exists.


Recall also thatX is an open dense subset ofβX (becauseX is locally compact) and denoteγX = βX\X the boundary
of X in βX. Thus eachϕ ∈ Cb(X) extends to an element ofC(βX) and this gives an identification of the algebrasCb(X)
andC(βX). The restriction mapϕ 7→ ϕ|γX induces an isomorphism betweenCb(X)/C0(X) andC(γX). Similarly, for
eachS ∈ Cu


b(X)oX the strongly continuous mapx 7→ UxSU
∗
x extends to a strongly continuous mapβX → Cu


b(X)oX
whose restriction toγX is related to the localizations at infinity ofS (see [GiJ]). In [GI2] there are some further comments
on this question, but a complete proof is given only in [GI5], where we also treat the case of non-vanishing at infinity
magnetic fields.


We give now examples which show that Theorem1.2 can be used for concrete computations. We considerX = R
n


and hamiltoniansH = h(P ) + V (Q), whereh, V are real functions onRn. Assumeh of classC1, polynomially bounded,
h(p) → ∞ if p → ∞, and|∇h(p)| ≤ C(1 + |h(p)|). Let V be locally integrable and assume that its negative part is form
bounded with respect toh(P ) with relative bound< 1. ThenH is a well defined self-adjoint operator onL2(Rn) affiliated
to Cu


b(Rn) o Rn, so we can use (3.7). We haveUxHU∗x = h(P ) + V (x + Q), so the localizations at infinity ofH are
determined by the (suitably defined) localizations at infinity of the functionV . Thus, for the computation ofσess(H), we
are once again reduced to an abelian situation.


In order to use these facts one has to define and study the localizations at infinity of unbounded functions and even
of distributions. We stress that most of these localizations are equal to+∞ almost everywhere, so the corresponding
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localizations of the hamiltonian are also infinite, hence do not contribute to the union in (3.7) (becauseσ(∞) = ∅). Thus
we shall have


σess(h(P ) + V ) =
⋃
v σ(h(P ) + v)


where the union is performed over all the finite localizations at infinityv of the potentialV . Results of this type have
been obtained by Helffer and Mohamed in [HeM] but only for h(p) = p2 and under quite restrictive conditions onV
(however, they also treat the case of nontrivial magnetic fields). We shall quote one of our results, where the localizations
are understood in the sense of local uniform convergence.


Proposition 3.12 LetV : Rn → R be continuous and bounded from below and letm ≥ 0 an integer. The localizations of
V at infinity are either equal to+∞ almost everywhere or are polynomials of order≤ m if and only if


lim
y→∞


sup
|x|≤1


∣∣[(τx − 1)m+1V
]
(y)
∣∣ = 0. (3.8)


Example: if V is a function of classCm+1 and if all its derivatives of orderm+ 1 tend to zero at infinity, then (3.8) holds.
Finally, we shall give an explicit example in the casen = 1 (which is not covered by the preceding proposition). Note


that ifκ ∈ δR then either[0,∞) ∈ κ or (−∞, 0] ∈ κ. Thus there are two contributionsσ±ess(H) to the union from (3.7) and
σess(H) = σ+


ess(H) ∪ σ−ess(H). We takeH = h(P ) + V (Q) onL2(R), whereh is as before andV : R→ R is continuous
and bounded from below. ThenH is affiliated toCu


b(R)o R andσ±ess(H) is determined by the behavior ofV at±∞.


Proposition 3.13 Assume that for large positivex we haveV (x) = xaω(xθ) with a ≥ 0, 0 < θ < 1 andω a positive
continuous periodic function with period 1. Moreover, assume thatω vanishes only at the points ofZ and that there are real
numbersλ, µ > 0 such thatω(t) ∼ λ|t|µ whent→ 0. Then there are three possibilities:
(1) If a < µ(1− θ) the localizations at+∞ of V are all the non-negative constant functions, thusσ+


ess(H) = [inf h,+∞).
(2) If a = µ(1 − θ) the localizations at+∞ of V are the functionsv(x) = λ|θx + c|µ with c ∈ R. Thusσ+


ess(H) =
σ(h(P ) + λ|θQ|µ), hence it is a discrete not empty set.
(3) If a > µ(1− θ) the only localization at+∞ of V is +∞, soσ+


ess(H) = ∅.
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The case whenω has different asymptotics from left and right at zero can also be treated.


3.4. TheN -body problem. The third example of algebra of interactions covers theN -body hamiltonians. This should be
considered as the first example of aC∗-algebra of hamiltonians: it appears in a disguised form in [BG1]. The treatment in
terms of crossed products and the extension to infinite semilattices of subspaces was given in [DG1].


In this subsectionX will always be a finite dimensional real vector space (some possible extensions are mentioned in an
appendix of [GI3]). For each linear subspaceY we denoteπY the canonical surjection ofX onto the quotient vector space
X/Y . We shall embedC0(X/Y ) ⊂ Cu


b(X) with the help of the mapϕ 7→ ϕ ◦ πY . ForY = {0} ≡ O andY = X we get
C0(X/O) = C0(X) andC0(X/X) = C respectively.


Let G(X), the grassmannian ofX, be the set of all linear subspaces ofX equipped with the natural order relation.
This is clearly a complete lattice. It is not difficult to show that the family ofC∗-subalgebras{C0(X/Y )}Y ∈G(X) has the
following properties:
(i) if L ⊂ G(X) is finite, then


∑
Y ∈LC0(X/Y ) is a closed subspace ofCu


b(X) and the sum is direct in the vector space
sense;
(ii) for all Y, Z ∈ G(X) one hasC0(X/Y ) · C0(X/Z) ⊂ C0(X/(Y ∩ Z)).


Thealgebra of interactions of anN -body systemis of the formC(L) ≡
∑


Y ∈LC0(X/Y ), whereL ⊂ G(X) is finite,
stable under intersections, and such thatO,X ∈ L. According to (i) and (ii),C(L) is indeed aC∗-algebra of interactions
onX. To understand the meaning ofN , note thatL, equipped with the order relation induced byG(X), is a finite lattice;
thenN + 1 is the rank of this lattice. For example, thealgebra of two-body interactionsmust correspond toL = {O,X},
hence it isC + C0(X). The corresponding algebra of hamiltonians[C + C0(X)] o X = C0(X∗) + K (X) ≡ T (X) is
particularly important and has already been used before.


C0(X/Y ) is a translation invariantC∗-subalgebra ofCu
b(X) and so we may construct the crossed productCX(Y ) =


C0(X/Y )oX. If C(L) is as above, the corresponding algebra of hamiltoniansCX(L) = C(L)oX is theN -body algebra
associated toL. It is easy to see that the structure ofC(L) is inherited byCX(L), more precisely


CX(L) =
∑
Y ∈L


CX(Y ) (3.9)
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and properties similar to (i) and (ii) hold. Note thatminL = O andCX(O) = K (X). In §3.6 we shall explain how
to compute the quotientCX(L)/K (X) in a more general abstract setting. In the present particular case, the result is as
follows.


Proposition 3.14 For eachY ∈ L let CX
Y (L) be theC∗-subalgebra ofCX(L) defined by


∑
Z∈L,Z⊃Y CX(Z). LetM be


the set of atoms ofL. Then there is a canonical embedding


CX(L)/K (X) ↪→
⊕


Y ∈M CX
Y (L). (3.10)


This implies classical results on the essential spectrum ofN -body hamiltonians, like the HVZ theorem. Moreover, this has
as a corollary the Mourre estimate forN -body systems, as has first been shown in [BG2] (see§8.4 and§9.4 in [ABG] for a
more systematic presentation).


The linear direct sum decomposition (3.9) has other interesting consequences. For example, it was shown in [BG1]
that the decomposition of the resolvent of a hamiltonianH affiliated toCX(L) according to (3.9) is just the Weinberg-
Van Winter equation introduced in theN -body problem in the sixties. Moreover, the decomposition of a functionϕ(H)
determined by (3.9) gives the connected components and the truncated parts ofϕ(H), objects defined by rather involved
combinatoric arguments in the standard approach to theN -body problem, cf. [PSS] and [Pol].


An elementY ∈ L determines the idealI X
Y (L) =


∑
CX(Z), where the sum runs overZ ∈ L such thatY 6⊂ Z,


such thatCX(L) = CX
Y (L) + J X


Y (L) linear direct sum. ThusCX(L)/I X
Y (L) = CX


Y (L). The quotient ofH with
respect to this ideal, or the projection ofH onto theC∗-subalgebraCX


Y (L) determined by the preceding linear direct sum
decomposition, is the sub-hamiltonianHY (denotedHa in the physical literature) which plays an important role in the
spectral and scattering theory ofH. The algebraCX


Y (L) has a special structure which allows one to define the “internal
hamiltonian”HY , see [DG2] for this question.


An extension of this formalism to arbitrary (not finite)L, in particular a study of the hamiltonians affiliated to the most
natural algebraCX obtained as closure of


∑
Y ∈G(X) CX(Y ), can be found in [DG2]. Besides the non-relativisticN -body


hamiltonians, this framework covers the dispersive case and the class of pluristratified media first considered by Dermenjian
and Iftimie in [DeI]. We mention one result from [DG2] in order to make the connection with the localizations at infinity
discussed before.
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Theorem 3.15 If S ∈ CX andω ∈ X thens -limλ→∞UλωSU
∗
λω = Pω[S] exists. The mapPω so defined is a morphism


CX → CX . LetH be an observable affiliated toCX and let us setHω = Pω[H]. Then


σess(H) =
⋃
ω∈X\{0} σ(Hω). (3.11)


One hasHω = HY whereY is a vector subspace generated byω.


The following “intrinsic” characterization of the algebraCX(Y ) is obtained in [DG2]. We denote byY ⊥ the polar set
of Y in X∗ and the limits are in norm sense.


Theorem 3.16 CX(Y ) is the set of operatorsT ∈ B(X) satisfying the following conditions:[T,Uy] = 0 ∀y ∈ Y ;
[T, Vk]→ 0 if k → 0 in X∗; (Ux − 1)T (∗) → 0 if x→ 0 in X; (Vk − 1)T (∗) → 0 if k → 0 in Y ⊥.


3.5.(Q,P )-anisotropy. The rest of these notes is devoted to the description ofC∗-algebras of hamiltonians which are
not necessarily of the crossed product type. The algebra we study in this subsection is much simpler than all those we treat
in this lecture. However, we find that its study is quite instructive: the algebra has a simple “intrinsic” definition and the
computation of the quotient with respect to the compacts can be done by direct elementary means. In fact this example lies
at the origin of our approach: we found it (in [GI6]) when trying to go beyond the gradedC∗-algebra framework suited to
theN -body problem. After its study we understood the relevance of crossed products and the fact that the interpretation in
terms of algebras of energy observables is the relevant one for further investigations. On the other hand, in spite of their
simplicity, the algebras studied in this subsection cover several physically interesting models, for example the hamiltonians
studied in [Ben, DDI] are affiliated to algebras of this type, hence can be systematically studied in our framework. This
section is a ŕesuḿe of the first part of [GI6].


We shall work in the Hilbert spaceH = L2(R; E) ≡ L2(R) ⊗ E whereE is a complex Hilbert space (corresponding
to internal or confined motion). The operatorsQ andP are now given by(Qf)(x) = xf(x) andPf = −if ′. If a ∈ R the
operator eiaP is well defined and eiaP = Ua.


We shall use the notationϕ(Q) even in the more general case whenϕ : R → B(E) is a weakly Borel function; in this
caseϕ(Q) is the operator of multiplication inH by the operator-valued functionϕ. We also setψ(P ) = F∗ψ(Q)F , so the
operatorψ(P ) is well defined even ifψ is aB(E)-valued weakly Borel function.



http://www.u-cergy.fr





Home Page


Title Page


Contents


JJ II


J I


Page 42 of 65


Go Back


Full Screen


Close


Quit


If A is a self-adjoint operator onH then{A}′ is thecommutant algebraof A, i.e. the set of all bounded operators
commuting withA. For example, it is well known that{Q}′ is the set ofϕ(Q) with bounded weakly Borelϕ : R→ B(E),
and similarly forP instead ofQ. Observe that


{Q}′ ∩ {P}′ = 1⊗B(E) ≡ B(E). (3.12)


We denote byχ(A > r) the spectral projection ofA associated to the interval]r,∞[. So, if χ1 is the characteristic
function of]1,∞[, thenχ(A > r) = χ1(A/r). The symbolsχ(A < r) or χ(|A| < r) have a similar meaning.


We denoteCE
0 (R) = C0(R) ⊗ K(E) = C0(R;K(E)). Other interesting algebras are obtained by taking various


compactifications ofR, but only one of them will be considered here. LetR = [−∞,∞] be the two-point compactification
of R andCE(R) = C(R)⊗K(E), or


CE(R) = {ϕ : R→ K(E) | ϕ is norm-continuous and the norm limits


limx→+∞ ϕ(x) and limx→−∞ ϕ(x) exist}.


We defineCE
0 (R∗) = F∗CE


0 (R)F and similarlyCE(R∗). For example,CE
0 (R∗) is the set of operatorsψ(P ) with ψ : R→


K(E) norm continuous and norm convergent to zero at infinity.


It is useful to give a meaning to the notion of limit asQ → ±∞ or P → ±∞ for some operatorsT ∈ B(H ). These
objects will be denotedlimQ→±∞ T andlimP→±∞ T respectively. SinceQ andP play a similar role, we present in detail
only the case of theQ-limits. Note that the limitslimQ→±∞ should be “independent ofQ” and it is natural to identify
the constants with respect toQ with translation invariant operators, i.e. the elements of the commutant algebra{P}′. If
T+ = s -lima→∞ eiaPTe−iaP exists thenT+ ∈ {P}′ and one should think ofT+ as the limit ofT asQ → +∞. But this
condition is not strong enough in aC∗-algebra setting: some kind of norm convergence is needed.


Definition 3.17 We say thatT ∈ B(H ) has a limit at Q = +∞ if there is T+ ∈ {P}′ such that
lima→∞ ‖χ(Q > a) (T − T+)(∗) ‖ = 0. Then we setlimQ→+∞ T ≡ T+.
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Observe that one will necessarily haveT+ = s -lima→∞ eiaPTe−iaP . Similarly is definedlimQ→−∞ T = T−. As we
previously said, the roles ofQ andP can be interchanged in Definition3.17. Hence one may definelimP→±∞ T ∈ {Q}′
for some class of operatorsT ∈ B(H ). However, since the commutation relation[Q,P ] = i gives[P,−Q] = i, we have
to change in the preceding formulasQ in P andP in −Q. For example,


lim
P→+∞


T ≡ T+ = s -lim
a→∞


e−iaQTeiaQ.


The Riesz-Kolmogorov criterion (Theorem3.8) can now be stated as:T ∈ K (R) if and only if limQ→±∞ T =
limP→±∞ T = 0.


The simplest examples of operators that have limits atQ = ±∞ and atP = ±∞ are those of the formT =∑n
j=1 ϕj(Q)ψj(P ) whereϕj , ψj : R → B(E) are continuous functions which have limits at+∞ and−∞. We set


ϕ(±∞) = limx→±∞ ϕ(x). Then


lim
Q→±∞


T =
n∑
j=1


ϕj(±∞)ψj(P ) and lim
P→±∞


T =
n∑
j=1


ϕj(Q)ψj(±∞).


The algebras of main interest for us are defined below. Other descriptions of these objects will be given later.


Definition 3.18 B is the set of operatorsT ∈ B(H ) such thatlimQ→±∞ T exist and belong toCE(R∗) and limP→±∞ T
exist and belong toCE(R). C is the subset ofB consisting of operatorsT such thatlimP→±∞ T = 0.


The elements ofB have an anisotropic behavior at infinity in both variablesQ andP (phase-space anisotropy). The
operators of the subalgebraC are characterized by anisotropy in theQ-variable only: thus one may callC the position-
anisotropic algebra (it is easy to prove that ifT ∈ C then limQ→±∞ T ∈ CE


0 (R∗)). Analogously one can introduce a
purely momentum-anisotropic algebra (which is in factF∗CF). On the other hand, taking e.g.H = L2(R2)⊗E one may
consider anisotropy in several position (or momentum) one dimensional variables, but the structure of the corresponding
algebras does not differ essentially of that ofB and may be treated analogously.
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It is easy to show thatB andC areC∗-algebras. The algebraB is unital if and only ifE is finite dimensional.C is never
unital. We haveCE(R) ⊂ B andCE(R∗) ⊂ B. Also,K(H ) ⊂ C ⊂ B.


The next theorem contains the alternative characterization of theC∗-algebrasB andC standing at the origin of our
approach.


Theorem 3.19
B = [[CE(R) · CE(R∗)]] = [[CE(R∗) · CE(R)]], (3.13)


C = [[CE(R) · CE
0 (R∗)]] = [[CE


0 (R∗) · CE(R)]]. (3.14)


Proof: Functions of classC∞ with derivatives of compact support are dense inC(R). Hence, ifS ∈ CE(R) andT ∈
CE(R∗) then[S, T ] is a compact operator. This implies the second equalities in (3.13) and (3.14). The fact thatB contains
[[CE(R) · CE(R∗)]] follows fromCE(R) ⊂ B, CE(R∗) ⊂ B and the fact thatB is a norm closed algebra. We now prove
the inverse inclusion. LetT ∈ B and denoteT± = limQ→±∞ T andT± = limP→±∞ T . Let θ+ ∈ C∞(R) such that
θ+(x) = 0 if x < 1 andθ+(x) = 1 if x > 2 and let us setθ−(x) = θ+(−x) andθ0 = 1− θ− − θ+. Denoteθε0 = θ0(εQ)
andθε± = θ±(εQ). Then


T = θε0T + θε+T+ + θε−T− + θε+(T − T+) + θε−(T − T−)


The last two terms tend to zero in norm whenε↘ 0, so it suffices to prove thatθεkTk belongs to r.h.s. of (3.13) if k = 0,±.
SinceT± ∈ CE(R∗), this is clear fork = ±. Fork = 0 we use a decomposition in theP -variable. Settingηνk = θk(νP ) for
k = 0,±, we have


θε0T = θε0η
ν
0T + θε0η


ν
+T


+ + θε0η
ν
−T
− + θε0η


ν
+(T − T+) + θε0η


ν
−(T − T−)


As before, the last two terms tend in norm to zero asν ↘ 0. Also, θε0η
ν
0T is compact, so it belongs to the second member


of (3.13). Finally, θε0η
ν
±T
± belong to the third member of (3.13). The proof of (3.14) is quite similar, but simpler (only a


Q-variable decomposition suffices).


We remark that one also has


B = [[C(R) · C(R∗)]]⊗K(E) and C = [[C(R) · C0(R∗)]]⊗K(E).
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In the next theorem we shall give an explicit description of the quotient algebraB/K(H ). For this purpose we shall
introduce four mapsP±,P± of B into itself by the formulas


P±[T ] = lim
Q→±∞


T and P±[T ] = lim
P→±∞


T.


It is clear thatP± are morphismsB → B and also that they are projections (in the vector space sense, i.e.P2
± = P±) of B


onto its subalgebraCE(R∗) (in particular they areexpectations). Similarly,P± are morphisms and projections ofB onto
its subalgebraCE(R).


Now we define
P : B → D ≡ CE(R∗)⊕ CE(R∗)⊕ CE(R)⊕ CE(R)


by P = (P−,P+,P−,P+). The spaceD is considered as direct sum ofC∗-algebras, so it is aC∗-algebra andP is a
morphism.


Theorem 3.20 The kernel of the morphismP isK(H ) and its range is the set of operatorsT = (T−, T+, T
−, T+) ∈ D


such that the following compatibility conditions are satisfied:


lim
P→±∞


T− = lim
Q→−∞


T± and lim
P→±∞


T+ = lim
Q→+∞


T±. (3.15)


Proof: ThatK(H ) is the kernel ofP follows from the Riesz-Kolmogorov theorem as formulated after Definition3.17.
Note that the relations (3.15) may be written asP±[T−] = P−[T±] andP±[T+] = P+[T±]. We check that they are satisfied
on the range ofP. By Theorem3.19, it suffices to showP±P−[T ] = P−P±[T ] for T of the formT = ϕ(Q)ψ(P ); but this
is obvious. Reciprocally, letT be as in the statement of the theorem. We have to constructT ∈ B such thatP[T ] = T .
Letϕ±, ϕ± ∈ CE(R) such thatT± = ϕ±(P ) andT± = ϕ±(Q). Then the compatibility relations (3.15) can be written as


ϕ−(±∞) = ϕ±(−∞) and ϕ+(±∞) = ϕ±(+∞).
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Using the cutoffsθ± introduced in the proof of Theorem3.19we define


ψ±(P ) = ϕ±(P )− 1
2
θ−(P )ϕ±(−∞)− 1


2
θ+(P )ϕ±(+∞)


ψ±(Q) = ϕ±(Q)− 1
2
θ−(Q)ϕ±(−∞)− 1


2
θ+(Q)ϕ±(+∞).


Then we construct the desiredT as:


T = θ−(Q)ψ−(P ) + θ+(Q)ψ+(P ) + θ−(P )ψ−(Q) + θ+(P )ψ+(Q).


The relation (3.13) shows thatT ∈ B and for example one has:


limQ→+∞ T =
= θ−(+∞)ψ−(P ) + θ+(+∞)ψ+(P ) + θ−(P )ψ−(+∞) + θ+(P )ψ+(+∞)
= ψ+(P ) + θ−(P )


{
ϕ−(+∞)− 1


2θ−(+∞)ϕ−(−∞)− 1
2θ+(+∞)ϕ−(+∞)


}
+ θ+(P )


{
ϕ+(+∞)− 1


2θ−(+∞)ϕ+(−∞)− 1
2θ+(+∞)ϕ+(+∞)


}
= ψ+(P ) + 1


2θ−(P )ϕ−(+∞) + 1
2θ+(P )ϕ+(+∞) = ϕ+(P ) ≡ T+.


In the last equality the second compatibility relation has been used. Similarly, one shows thatlimQ→−∞ T = T− and
limP→±∞ T = T±.


Remark: The morphismP induces an isomorphism between the quotientC∗-algebraB/K(H ) and theC∗-subalgebra
of D defined by the compatibility relations (3.15). From now on we shall embed


B/K(H ) ⊂ D ≡ CE(R∗)⊕ CE(R∗)⊕ CE(R)⊕ CE(R) (3.16)


with the help of this isomorphism.


TheC∗-algebraC deserves a separate study because many hamiltonians of interest in physics are affiliated to it.
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Theorem 3.21 The mapT 7→ (P−[T ],P+[T ]) is a surjective morphism ofC onto theC∗-algebraic direct sum
CE


0 (R∗)⊕ CE
0 (R∗) withK(H ) as kernel.


Remark: We identify the quotientC∗-algebraC /K(H ) and theC∗-algebraCE
0 (R∗) ⊕ CE


0 (R∗) with the help of the
isomorphism induced by the map(P−,P+). This is the precise meaning of the equality


C /K(H ) = CE
0 (R∗)⊕ CE


0 (R∗). (3.17)


Observe that the quotientC /K(H ) has a simpler description thanB/K(H ). Indeed, in (3.17) we have equality whereas
in (3.16) one has only inclusion.


Proof of the theorem: Remember that by Definition3.18 the algebraC is the set ofT ∈ B such thatP±[T ] = 0 and
P±[T ] ∈ CE


0 (R∗). Also, K(H ) is the set ofT ∈ C such thatP±[T ] = 0. On the other hand, with the notations of
Theorem3.20, T ∈P[C ] if and only if T = (T−, T+, 0, 0) andlimP→±∞ T+ = limP→±∞ T− = 0 (see (3.15)). But this
is equivalent toT± ∈ CE


0 (R∗).
We would like now to give a description of the action of the projectionsP± in C suggested by the definition of the


corresponding morphisms in gradedC∗-algebras (see [BG1] and§3.6). For this we observe that the kernels


C± := {T ∈ C | P∓[T ] = 0} = {T ∈ C | lim
Q→∓∞


T = 0} (3.18)


are closed self-adjoints ideals inC which, by the proof of Theorem3.19, can also be written as


C± = [[CE
±(R) · C0(R∗)]]. (3.19)


Here
CE
±(R) = {ϕ ∈ CE(R) | lim


x→∓∞
ϕ(x) = 0}


are closed ideals inCE(R).
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Since the restrictions ofP± to C are projections of norm one ofC onto its closed subspaceCE
0 (R∗), we see that


C = C± + CE
0 (R∗), topological direct sum. This allows us to change our point of view, to forget the preceding meaning of


the mapsP±, and to see them as the projections ofC ontoCE
0 (R∗) determined by the preceding direct sum decompositions.


We emphasize that it is possible to adopt this point of view from the beginning and to develop the theory without using the
notion of limit at infinity of an operator. We mention some easy to prove properties of the idealsC±:


C = C+ + C−, C+ ∩ C− = K(H ), C± · C∓ ⊂ K(H ). (3.20)


Observe that the spaceC∞ of T ∈ C such thatP+T = P−T is aC∗-subalgebra ofC , a two-body type algebra. Indeed,


C∞ = [[CE
∞(R) · C0(R∗)]] = CE


0 (R∗) +K(H ). (3.21)


We give a third description of theC∗-algebraC (the proof is straightforward and will not be given). An operator
T ∈ B(H ) is calledsemi-compactif for all θ ∈ C0(R) the operatorsθ(Q)T andTθ(Q) are compact.


Proposition 3.22 C coincides with the set of semicompact operators such thatlimQ→±∞ T exist and belong toCE
0 (R∗).


If H is an observable affiliated toC , thenH± := P±[H] are well defined observables affiliated toCE
0 (R∗). If H is the


hamiltonian of a physical system, thenH± will be calledasymptotic hamiltonians, or localizations ofH atQ = ±∞. One
has a purely anisotropic situation ifH− 6= H+.


Theorem 3.23 LetH be an observable affiliated toC . Then:


σess(H) = σ(H−) ∪ σ(H+).


Moreover, there are numbers−∞ ≤ a± ≤ b± ≤ ∞ such thatσ(H±) = R \ (a±, b±). Hence, ifa = max{a−, a+}, b =
min{b−, b+} thenσess(H) = R \ (a, b).
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Proof: We have to prove only the second assertion. We show that for an arbitrary observableA affiliated toCE
0 (R∗) one has


σ(A) = R\ (α, β) for some−∞ ≤ α ≤ β ≤ ∞. We can assume that0 /∈ σ(A) and so it suffices to prove that the spectrum
of S = A−1 is an interval containing zero. LetS be an arbitrary symmetric operator inC . After a Fourier transform,S
becomes the operator of multiplication by a norm continuous and norm convergent to zero at infinity symmetric operator
valued functionp 7→ S(p) ∈ B(E). Thenσ(S) is the closure of the union of the spectra of the operatorsS(p) and the lower
and upper bounds of the spectrum ofS(p) belong toσ(S(p)), depend continuously onp and tend to zero as|p| → ∞.


We finish with some comments on the self-adjoint operators affiliated toC . A self-adjoint operatorH onH is locally
compactif for eachφ ∈ C0(R) and eachθ ∈ C0(R) the operatorθ(Q)φ(H) is compact. Equivalently, if there isz /∈ σ(H)
such thatθ(Q)R(z) is compact. From Proposition3.22we get:H is affiliated toC if and only ifH is locally compact and
for somez ∈ C \ R the limitslimQ→±∞R(z) exist and belong toCE


0 (R∗).
Consider a maph fromR to the set of self-adjoint operators onE. We writelimp→∞ h(p) =∞ if ‖(h(p) + i)−1‖ → 0


as |p| → ∞. This is equivalent to: for eachr > 0 there isr0 > 0 such thatσ(h(p)) ∩ [−r, r] = ∅ if |p| > r0. Now
assume that: (i) the mapp 7→ (h(p) + i)−1 is norm-continuous, (ii) for eachp ∈ R, h(p) has purely discrete spectrum, (iii)
limp→∞ h(p) =∞. Then the self-adjoint operatorh(P ) is affiliated toCE


0 (R∗). This is obvious.
Finally, we give an explicit class of hamiltonians affiliated toC :


Proposition 3.24 LetH be a self-adjoint operator inH andH± a pair of self-adjoint operators affiliated toCE
0 (R∗) such


thatD(H±) = D(H). Assume that:


lim
r→±∞


‖χ(±Q ≥ ±r) (H −H±)‖D(H)→H = 0. (3.22)


ThenH is affiliated toC andP±[H] = H±.


It is clear that this covers one-dimensional quantum mechanical models like the Schrödinger or Dirac operator with different
spatial asymptotics at left and right. For instance, letH = Pa(Q)P + v(Q) such that: (i)a : R → R is continuous,
inf a(x) > 0 andlimx→±∞ a(x) = a± exist inR, (ii) v ∈ L1


loc(R) andlimx→±∞ v(x) = v± exist. ThenH± = h±(P ) =
a±P


2 + v±.
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An important aspect of the algebraC is that one can prove the Mourre estimate for a large abstract class of hamiltonians
affiliated to it (in fact, this can also be done forB). This class covers Schrödinger operators in domains with cylindrical
ends, with different asymptotic at each end, like those studied in [Ben, DDI]. This question is treated in [GI6] and will
eventually be published.


The preceding techniques can be used in other types of one-dimensional anisotropy. Here is an example from [Rod]
where potentials with different periodic asymptotics at±∞ are considered. We mention it because the definition ofC is
quite nice, namely


C = {ϕ ∈ Cu
b(R) | lim


n→±∞
ϕ(x+ na±) exist for allx ∈ R},


wherea± are given strictly positive real numbers. ThenC is aC∗-subalgebra ofCu
b(R) which containsC0(R) and is stable


by translations. Let us denoteT = R/Z. Then


C /C0(R) ∼= C(T)⊕ C(T).


This allows one to compute the quotient with respect to the compacts of the algebra of hamiltonians associated to this
problem:


C o R


/
K (R)


∼= C
/
C0(R)o R


∼= [C(T)o R]⊕ [C(T)o R]


∼= [C(T)⊗K (T)]⊕ [C(T)⊗K (T)].


3.6. GradedC∗-algebras. In this subsection we considerC∗-algebras graded by semilattices, a class of algebras useful
in the study ofN -body systems and their generalizations, which have been introduced and studied in [BG1, BG2] for the
case of finite semilattices (see also [ABG]) and then in [DG1, DG2] for arbitrary ones. Their usefulness in theN -body
problem has already been discussed in§3.4. The new example considered in this subsection concerns an algebra associated
to symplectic spaces studied mainly in [GI3]. N -body hamiltonians in constant magnetic fields (as in [GeL]) belong to this
framework.
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A family {Ci}i∈I of subalgebras of an algebraC is linearly independentif for each family{Si}i∈I such thatSi ∈
Ci ∀i, Si 6= 0 for at most a finite number ofi and


∑
i∈I Si = 0, one hasSi = 0 for all i ∈ I. The sums of algebras which


appear below are understood in the sense of linear spaces.
LetL be asemilattice, i.e. a partially ordered set in which each pair of elementsa, b has a lower bounda∧ b. Fora ∈ L


we setLa = {b ∈ L | b ≥ a}; this is also a semilattice.
We say that aC∗-algebraC isL-gradedif a linearly independent family{C (a)}a∈L of C∗-subalgebras ofC has been


given such that:


(i) C (a) · C (b) ⊂ C (a ∧ b) for all a, b ∈ L;


(ii) if E ⊂ L is finite then
∑


a∈E C (a) is a closed subspace ofC ;


(iii)
∑


a∈L C (a) is dense inC .


For eachE ⊂ L we defineC (E) as the closure ofC (E)◦ =
∑


a∈E C (a). If a ∈ L we setCa = C (La). It is clear thatCa is
aLa-gradedC∗-subalgebra ofC . There is a natural mapP◦a : C (L)◦ → C (La)◦ defined byP◦a


∑
b∈L T (b) =


∑
b∈La T (b)


if T (b) ∈ C (b) andT (b) 6= 0 only for a finite numbers ofb. This map is clearly a surjective morphism of∗-algebras. It can
be shown that this map is continuous, so it extends to a surjective morphismPa : C → Ca. Moreover,Pa is a projection (in
the sense of linear spaces) and its kernel isC (L′a), whereL′a = {b ∈ L | b � a}.


Assume thatL has a least elementminL, denoteM the set of atoms ofL (i.e. minimal elements ofL \ {minL}) and
assume thatL is atomic (i.e. eacha 6= minL is minorated by an atom). Observe thatC (minL) is a closed self-adjoint ideal
in C , so theC∗-algebraC /C (minL) is well defined. The important fact is that one can explicitly realize this algebra as
follows. There is a natural morphism


C 3 T 7−→ (Pa[T ])a∈M ∈
∏
a∈M Ca, (3.23)


where the direct product is in theC∗-algebra sense, and the kernel of this morphism is equal toC (minL). It is easy to see
that for eachT ∈ C the set{Pa[T ] | a ∈M} is relatively compact inC . Thus, we get a canonical embedding


C /C (minL) ↪→
∏rc
a∈M Ca (3.24)
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where the right hand side is theC∗-algebra of families{Sa}a∈L such that{Sa | a ∈ L} is relatively compact inC . As usual,
such a result allows one to compute the essential spectrum and to prove the Mourre estimate for the observables affiliated to
C . The example below is a general and abstract version of the HVZ (Hunziker, Van Winter, Zihslin) theorem.


Theorem 3.25 Assume thatC is realized as aC∗-algebra of operators on a Hilbert spaceH such thatC (minL) =
K(H ). LetH be an observable affiliated toC and for eacha ∈ L letHa = Pa[H], which is an observable affiliated toCa,
hence toC . Thenσess(H) is equal to the closure of


⋃
a∈M σ(Ha). Moreover, if for eachT ∈ C the set{Pa[T ] | a ∈ M}


is compact inC , then one has
σess(H) =


⋃
a∈M


σ(Ha).


We mention that the property required in the last part of the theorem holds for the algebraCX from §3.4(whereL = G(X)
henceM is the projective spaceP(X) of X), as well as for the symplectic algebra considered below.


We have already seen examples of graded algebras in§3.4. A new example follows (see [GI3] for details). We consider
a system(Ξ, σ; H ,W ) consisting of a symplectic space(Ξ, σ) and a representationW of it on a Hilbert spaceH . SoΞ is
a real finite dimensional vector space equipped with a real antisymmetric nondegenerate bilinear formσ andW is a strongly
continuous map fromΞ to the set of unitary operators onH satisfying, for allξ, η ∈ Ξ:


W (ξ + η) = e−
i
2
σ(ξ,η)W (ξ)W (η).


To each abelian group one can associate a structure of this type,Ξ being only an abelian group in general (see§3.6 in [GI2]).
If E is a vector subspace ofΞ we set


Eσ := {ξ ∈ Ξ | σ(ξ, η) = 0, for all η ∈ E}.


ThenEσσ = E and (E ∩ F )σ = Eσ + F σ. Note thatEσ can also be defined as the set of thoseξ ∈ Ξ such that
W (ξ)W (η) = W (η)W (ξ) for all η ∈ E. We shall takeL = G(Ξ) the set of all vector subspaces ofΞ. If E ∈ G(Ξ), then



http://www.u-cergy.fr





Home Page


Title Page


Contents


JJ II


J I


Page 53 of 65


Go Back


Full Screen


Close


Quit


we defineC (E) as the set of operatorsT ∈ B(H ) such that:


(i) ‖ [W (ξ), T ] ‖ → 0 if ξ → 0 in Ξ,


(ii) [W (ξ), T ] = 0 if ξ ∈ E,


(iii) ‖ (W (ξ)− 1)T (∗) ‖ → 0 if ξ ∈ Eσ andξ → 0.


Let C be the closure of
∑


E C (E). Then the family ofC∗-subalgebrasC (E) providesC with aG(Ξ)-gradedC∗-algebra
structure.


The hamiltonians ofN -body systems interacting with an external constant magnetic field (see [GeL]) are affiliated to
gradedC∗-subalgebras of algebras of the preceding form (this is proved in [GI3]).


We mention only one important theorem:If W is an irreducible representation, thenC (E) coincides with the closure
in B(H ) of the set of operatorsW (µ) with µ anEσ-a.c. integrable measure.Here, an integrable measureµ onΞ isF -a.c.
for some vector subspaceF of Ξ if there are a Haar measureλF onF and a functionρ ∈ L1(F ) = L1(F, λF ) such that
µ = ρλF . Then we defineW (µ) =


∫
ΞW (ξ)µ(dξ).


On can construct gradedC∗-algebras by taking tensor products of gradedC∗-algebras. The following results (Lemma
3.26and Propositions3.27, 3.28) are part of a joint work of M. M̌antoiu and one of us (V. G.). They are useful in the study
of quantum field models with a particle number cutoff, e.g. the results of C. Gérard concerning the Mourre estimate for the
spin-boson model [Ger] are easy to prove in this framework.


Let {C k}k∈N be a finite family ofC∗-algebras. Assume thatC k is Lk-graded, whereLk is a finite semilattice. Thus
linear direct sum decompositionsC k =


∑
a∈Lk C k(a) are given withC k(a) ⊂ C k C∗-subalgebras such thatC k(a) ·


C k(b) ⊂ C k(a ∧ b). Recall thatC k
a =


∑
b≥a C k(b) areC∗-subalgebras ofC k and that the projectionsPka : C k → C k


a


asociated with the given linear direct sum decomposition ofC k are morphisms.
The product setL =


∏
k∈N Lk will be equipped with the product order relation: ifa = (ak), b = (bk) are elements of


L, thena ≤ b if and only if ak ≤ bk for all k. It is clear thatL becomes a semilattice witha ∧ b = (ak ∧ bk). Consider now
the tensor products


C = ⊗kC k, C (a) = ⊗kC k(ak), Ca = ⊗kC k
ak .
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Lemma 3.26 The family ofC∗-subalgebras{C (a)}a∈L defines anL-grading of theC∗-algebra C . One hasCa =∑
b≥a C (b) and the canonical projectionPa : C → Ca is given byPa = ⊗kPak .


Proof: The projectionPk(ak) of C k ontoC k(ak) is a linear combination of morphismsPk
bk


(this is clear by induction or
follows from the M̈obius inversion formula, see chapter 8 in [ABG]), hence the tensor productP(a) ≡ ⊗kPk(ak) is a well
defined continuous mapC → C (use Theorem2.2). It is easy to check thatP(a) is a projection ofC ontoC (a) and that
P(a)P(b) = 0 if a 6= b,


∑
a P(a) = id. The lemma follows easily from these facts.


The simplest caseLk = {0, 1} with 0 < 1 is already interesting. To cover the spin-boson model as treated in [Ger]
(or, more generally, a boson field with a particle number cutoff coupled with a confined system) one has to take one of the
lattices equal to{0} and the corresponding algebra equal toK(E) for some Hilbert spaceE, but this is a mathematically
trivial extension of what follows, so will not be treated. Now we haveC k = Ck + Kk, with new notationsCk ≡ C k(1)
andKk ≡ C k(0). ThusCk ⊂ C k is aC∗-subalgebra,Kk ⊂ C k is an ideal, andCk ∩ Kk = {0}. Let πk : C k → Ck be
the natural projection, soπk is a morphism withKk as kernel. We have an obvious identification ofL with the lattice of all
subsets ofN with the order relation given by inclusion, soa ∈ L meansa ⊂ N .


In order to avoid confusions below we shall change notations and writeCN ≡ ⊗k∈NC k for the algebra denotedC
above. ThenCN (a) = ⊗Bk with Bk = Ck if k ∈ a andBk = Kk if not. Similarly, CNa = ⊗Bk with Bk = Ck if k ∈ a
andBk = C k if not. Clearly,Pa ≡ πa is a tensor product of morphismsπk at placesk ∈ a and identity operators in the
remaining places.


The algebraCN has a remarkable idealKN ≡ CN (∅) = ⊗kKk and the quotientCN /KN can be easily described with
the help of the general results (3.23), (3.24). We clearly have:


Proposition 3.27 The map⊕kπ{k} : CN →
⊕


k CN{k} is a morphism withKN as kernel, hence it gives an embedding


CN /KN ⊂
⊕


k CN{k}. (3.25)


We now take aboveC k ≡ C = C + K independent ofk and denoteπ the projection morphismC → C. LetN =
{1, . . . , n}. The algebraC is interpreted as the one particle energy observable algebra. Now we would like to consider



http://www.u-cergy.fr





Home Page


Title Page


Contents


JJ II


J I


Page 55 of 65


Go Back


Full Screen


Close


Quit


a system ofn identical particles, hence the corresponding algebra of energy observables has to be the symmetric part of
CN . This will destroy the grading, but the quotient is easy to compute. Ifσ is a permutation ofN then we denote by the
same symbol the automorphism ofCN defined by the conditionσ ⊗k Tk = ⊗kTσ−1(k). We define thealgebra of energy
observables of a system ofn identical particlesby


C ∨n = {T ∈ CN | σT = T, ∀σ}. (3.26)


We emphasize two things concerning the physical interpretation of what we are doing. It is meaningless to speak here
about bosons because this is an algebra of observables and we did not mention any statistics (or superselection sector). And
in fact, it is not easy to take statistics into account(3). Observe that working with (3.26) is not a loss of generality if one is
interested only in proving the absence of singularly continuous spectrum, but the point is that the set of thresholds predicted
by it is not the physical one. Of course, the essential spectrum too depends on the statistics. On the other hand, when one
applies this formalism in the context of [Ger], the particle we are talking about is adead or aliveboson. There are exactly
n such particles, but the number of alive bosons could be anything between 0 andn. As we said it before, it is trivial to add
a spin.


Proposition 3.28 There is a unique morphismP : C ∨n → C ⊗ C ∨(n−1) such thatP[T⊗n] = π(T ) ⊗ T⊗(n−1) for all
T ∈ C . One haskerP = K∨n, hence we get an embedding


C ∨n/K∨n ⊂ C ⊗ C ∨(n−1). (3.27)


Proof: Uniqueness is obvious and to show the existence it suffices to defineP = π{1}|C∨n . It is obvious thatσπa = πσ(a)σ
for all permutationsσ and all subsetsa ofN . Hence ifP[T ] = 0 thenπ{k}[T ] = 0 for all k, so by Proposition3.27we have
T ∈ KN ∩ C ∨n ≡ K∨n.


(3) This is related to a problem discussed in the Comment below. Reduction to a symmetry sector is a difficult question also in the context of the
N -body problem. M. Damak studied it during the preparation of his thesis, but the results have not been published.
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Comment by V.G.:I have used Proposition3.28in order to prove Theorems 1.1 and 1.2 from [Geo]. Unfortunately, I recently
found a gap in the argument leading to Theorem 1.2, which I am still unable to fill. So for the moment I do not know if that
theorem is true in the degree of generality stated in [Geo], more precisely I have to put more conditions on the algebra of one
particle kinetic energies (a condition onC similar to that imposed onC after Corollary3.30below suffices). In applications
to standard boson models, these conditions are easy to check. On the other hand, I found a new proof which extends with
no difficulty to models without particle number cutoff. Some results in this direction are described in the next subsection.


3.7. Quantum fields.In this section we consider a bosonic quantum field and define theC∗-algebra of hamiltonians in the
case when the boson mass is strictly positive. Our main purpose is to explain how one can derive a Mourre estimate from
a knowledge of this algebra. We assume known basic facts concerning the positive commutator method in the version of
[BG2]; see [Geo] for a summary adapted to the present situation, or§8.3 from [ABG] for a complete presentation. We refer
to [DeG] for a proof of the Mourre estimate for theP (φ)2 model and for the second quantization formalism that we use
without further explanation. We denote byH the one-particle Hilbert space,a(u) anda∗(u) the annihilation and creation
operators of a boson in the stateu ∈ H, and recall that the field operator isφ(u) = (a(u) + a∗(u))/


√
2.


The Hilbert space generated by the states of the field is the symmetric Fock spaceΓ(H). We will proceed as in§3.1and
defineC as a kind of crossed product of an algebra of interactionsA with an algebra of kinetic energiesB, more precisely
we takeC = [[A ·B]] (cf. Theorem2.17). To understand this choice and the next definitions ofA andB, one has to prove
a version of Proposition3.2with resolvents replaced by exponentials e−H (see the proof of Proposition3.2given in [GI2]
and the discussion after Theorem3.31). Note also that in the standard caseH = L2(Rs) our purpose is to study models for
which the “elementary” hamiltonians are of the formdΓ(ω) +W , whereω is affiliated toC0(Rs∗) with inf ω ≡ m > 0 and
W is a polynomial in the field operators with a particle number cut-off. We recall that an important point of our approach is
to start with a small class of elementary hamiltonians which, however, should generate aC∗-algebra to which the physically
realistic hamiltonians are affiliated (see§3.1).


We define thealgebra of interactionsA as theC∗-algebra generated by the operatorsφ(u)Γ(λ), whereu ∈ H and
λ ∈ C with |λ| < 1. Clearly,A is also the algebra generated byφ(u)ϕ(N) with u ∈ H andϕ ∈ Cc(R), whereN is the
particle number operator. We denoteK (H) = K(Γ(H)).
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Theorem 3.29 There is a unique morphismP0 : A → A satisfying one of the equivalent conditions:
(i) P0[φ(u)Γ(λ)] = λφ(u)Γ(λ) if λ ∈ C and|λ| < 1;
(ii) P0[φ(u)ϕ(N)] = φ(u)ϕ(N + 1) if u ∈ H andϕ ∈ Cc(R).
One hasK (H) ⊂ A andP0 is surjective and hasK (H) as kernel, hence


A /K (H) ∼= A . (3.28)


In particular, for eachT ∈ A we have‖Pk0 [T ]‖ → 0 if k →∞. Thus


Corollary 3.30 All the operators inA have a countable spectrum.


We assume thatthe algebra of one-particle kinetic energies is an abelianC∗-algebraC of operators onH such that
the Von Neumann algebra generated by it does not contain non-zero finite rank projections. Then we define thealgebra of
kinetic energies of the fieldas theC∗-algebraB generated by the operatorsΓ(S) with S ∈ C, ‖S‖ ≤ 1. Finally, as we said
before,C = [[A ·B]] will be thealgebra of hamiltonians of the field.


There is a shorter but rather cryptic definition ofC : this is theC∗-algebra generated by the operatorsφ(u)Γ(S), where
u ∈ H andS ∈ C̃ with ‖S‖ < 1, whereC̃ is the unital algebra generated byC. The main result is:


Theorem 3.31 There is a unique morphismP : C → C ⊗ C such thatP [φ(u)Γ(S)] = S ⊗ [φ(u)Γ(S)] if u ∈ H and


S ∈ C̃ with ‖S‖ < 1. One hasK (H) ⊂ C and the kernel ofP is K (H), which gives a canonical embedding


Ĉ ≡ C /K (H) ↪→ C⊗ C . (3.29)


In the present situation the most convenient affiliation criterion is the following: ifH is a self-adjoint bounded from
below operator onΓ(H), and if e−H ∈ C , thenH is affiliated toC . To check it, we use Theorem2.23. For example, ifω
is a self-adjoint operator onH affiliated toC with inf ω > 0 and the symmetric operatorW is a (generalized) polynomial
in the field operators, and ifWn = χn(N)Wχn(N) (wheren ∈ N andχ is the characteristic function of[0, n]), then it
is easy to see that e−WnΓ(e−ω) ∈ C andP


[
e−WnΓ(e−ω)


]
= e−ω ⊗


[
e−Wn−1Γ(e−ω)


]
. Then Theorem2.23shows that
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H(n) = dΓ(ω) + Wn is affiliated toC andP
[
e−H(n)


]
= e−ω ⊗ e−H(n−1). If there is a self-adjoint operatorH such that


e−H(n) → e−H in norm asn → ∞, we get thatH is affiliated toC andĤ = ω ⊗ 1 + 1 ⊗ H. Taking limits in norm
resolvent sense (which preserves affiliation) one gets a much larger class of hamiltonians affiliated toC . In this way one
can prove, for example, that the hamiltonian of theP (φ)2 model (s = 1) with a spatial cut-off is affiliated toC (we thank
Christian Ǵerard for help in this context).


We come now to the question of the Mourre estimate for a hamiltonianH affiliated toC . Now we assumeH = L2(Rs)
andC = C0(Rs∗). We consider only conjugate operators of the formA = dΓ(a), wherea = F (P )Q + QF (P ) andF is
a vector field of classC∞c ; such anA will be calledstandard. A self-adjoint operator onΓ(H) which is of classC1


u(A) or
C1,1(A) for each standardA will be called of classC1


u orC1,1, respectively.


Theorem 3.32 LetH be a bounded from below hamiltonian strictly affiliated toC and such that̂H = ω(P )⊗ 1 + 1⊗H,
whereω : Rs → R (the one-particle kinetic energy) is a function of classC1, inf ω ≡ m > 0, andω(p) → ∞ if p → ∞.
Thenσess(H) = [m+ inf H,∞). Assume thatH is of classC1


u. Denoteκ(ω) the set of critical values of the functionω, let
κn(ω) = κ(ω) + · · ·+ κ(ω) (n terms), and define the threshold set ofH by


τ (H) =
⋃∞
n=1


[
κn(ω) + σp(H)


]
= [
⋃∞
n=1 κn(ω) ] + σp(H) (3.30)


whereσp(H) is the set of eigenvalues ofH. Thenτ (H) is a closed set andH admits a standard local conjugate operator
at each point not inτ (H). In particular, the eigenvalues ofH which do not belong toτ (H) are of finite multiplicity and
their accumulation points belong toτ (H). If H is of classC1,1, then it has no singular continuous spectrum outsideτ (H).
If we also assume thatκ(ω) is countable, thenτ (H) is countable too, soH has no singular continuous spectrum.


The preceding result is a rather straightforward consequence of Theorem3.31, as explained in [Geo]. We note only
that the threshold and critical set defined by a standard conjugate operator suggest to consider the setτ (H) satisfying the
relation


τ (H) = κ(ω) +
[
τ (H) ∪ σp(H)


]
= [κ(ω) + τ (H)] ∪


[
κ(ω) + σp(H)


]
.


whereκ(H) = τ (H) ∪ σp(H). The unique solution is given by (3.30).
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Observe that the strict positivity conditionm > 0 plays an important role above. This is no more necessary if we consider
hamiltonians with a particle number cut-off, as in [Geo]. Indeed, ifH is given by a formal expressionH = dΓ(ω) +W , the
restrictionsHn = χn(N)Hχn(N) are often well defined self-adjoint operators and they satisfŷHn = ω ⊗ 1 + 1⊗Hn−1.
Then the threshold set ofHn is defined by the relation (withσp(H0) = {0}):


τ (Hn) =
⋃n
i=1


[
κi(ω) + σp(Hn−i)


]
.


This is the solution of the recursive relation (3.5) from [Geo].



http://www.u-cergy.fr





Home Page


Title Page


Contents


JJ II


J I


Page 60 of 65


Go Back


Full Screen


Close


Quit


References


[ABG] W. Amrein, A. Boutet de Monvel, V. Georgescu,C0-groups, commutator methods and spectral theory ofN -body
hamiltonians, Birkhauser Verlag, 1996.


[AMP] W. Amrein, M. Mantoiu, R. Purice,Propagation properties for Schrödinger affiliated to certainC∗-algebras,
preprint 01-449 atMathematical Physics Preprint Archive.


[BW] H. Baumg̈artel, M. Wollenberg,Mathematical scattering theory, Akademie-Verlag, Berlin, 1983.


[Be1] J. Bellissard,Gap Labelling Theorems for Schrödinger Operators, in From Number Theory to Physics(Les Houches
1989), pp. 538-630, J. M. Luck, P. Moussa, M. Waldschmidt Eds., Springer, 1993.


[Be2] J. Bellissard,Non Commutative Methods in Semiclassical Analysis, Lecture Notes in Mathematics,1589, Springer,
1994.


[Ben] M. Benbernou,Spectral analysis of the acoustic propagator in a multistratified domain, J. Math. Anal. Appl.225
(1998), no. 2, 440–460.


[BG1] A. Boutet de Monvel-Berthier, V. Georgescu,GradedC∗-algebras in theN -Body Problem, J. Math. Phys.32(1991),
no. 11, 3101-3110.


[BG2] A. Boutet de Monvel-Berthier, V. Georgescu,GradedC∗-algebras associated to symplectic spaces and spectral
analysis of many channel Hamiltonians, Dynamics of complex and irregular systems (Bielefeld, 1991), pp. 22–66,
Bielefeld Encount. Math. Phys., VIII, World Sci. Publishing, 1993.


[BGS] A. Boutet de Monvel-Berthier, V. Georgescu, A. Soffer,N -body Hamiltonians with hard-core interactions,
Rev. Math. Phys.6 (1994), no. 4, 515–596.



http://www.u-cergy.fr

http://www.ma.utexas.edu/mp_arc/

http://www.idealibrary.com/links/toc/jmaa/225/2/0

http://ojps.aip.org/dbt/dbt.jsp?KEY=JMAPAQ&Volume=32&Issue=11

http://www.worldscinet.com/rmp/06/0604/S0129055X94000195.html





Home Page


Title Page


Contents


JJ II


J I


Page 61 of 65


Go Back


Full Screen


Close


Quit


[Cor] H. O. Cordes,Spectral theory of linear differential operators and comparison algebras, Cambridge University Press,
1987.


[Dam] M. Damak,On the spectral theory of dispersiveN -body Hamiltonians, J. Math. Phys.40 (1999), no. 1, 35–48.


[DG1] M. Damak, V. Georgescu,C∗-Crossed Products and a Generalized Quantum MechanicalN -Body Problem, in the
Proceedings of the symposium “Mathematical Physics and Quantum Field Theory” (June 1999), Electronic J. of
Diff. Equations, Conference 04 (2000), pp. 51–69 (an improved version is available as preprint 99-481 atMathe-
matical Physics Preprint Archive).


[DG2] M. Damak, V. Georgescu,C*-algebras related to the N-body problem and the self-adjoint operators affiliated to
them, preprint 99-482 atMathematical Physics Preprint Archive.


[Dav] K. R. Davidson,C∗-algebras by example, American Mathematical Society, Fields institute monographs6, 1996.


[DeF] A. Defant, K. Floret,Tensor norms and operator ideals, North-Holland, 1993.
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[Ma1] M. Mǎntoiu,On a class of anisotropic Schrödinger operators, preprint 01-201 atMathematical Physics Preprint
Archive.
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Marie Curie, 1983.


[Sim] B. Simon,Some pictorial compactifications of the real line, Amer. Math. Monthly76 (1969), 536–538[MathSciNet
Review]


[Tai] M. H. Taibleson,Fourier analysis on local fields, Princeton University Press, 1975.


[Tak] H. Takai,On a duality for crossed products ofC∗-algebras, J. Functional Analysis19 (1975), 25–39.[MathSciNet
Review]


[Tks] M. Takesaki,Theory of Operator Algebras, I, Springer-Verlag, 1979.


[Weo] N. E. Wegge-Olsen,K-theory andC∗-algebras : a friendly approach, Oxford University Press, 1993.


[Wei] A. Weil, Basic number theory, Springer-Verlag, 1973.



http://www.u-cergy.fr

http://links.jstor.org/

http://www.ams.org/msnmain?fn=130&form=fullsearch&Submit=Start+Search&pg4=AUCN&s4=Simon&co4=AND&pg5=TI&s5=pictorial&co5=AND&pg6=AUCN&s6=&co6=AND&pg7=ALLF&s7=&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg3=ET&s3=All&l=20&redirect=Providence%2C+RI+USA

http://www.ams.org/msnmain?fn=130&form=fullsearch&Submit=Start+Search&pg4=AUCN&s4=Simon&co4=AND&pg5=TI&s5=pictorial&co5=AND&pg6=AUCN&s6=&co6=AND&pg7=ALLF&s7=&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg3=ET&s3=All&l=20&redirect=Providence%2C+RI+USA

http://www.ams.org/msnmain?co3=AND&co4=AND&dr=all&fmt=doc&fn=105&id=51_1413&l=100&pg3=AUCN&pg4=TI&r=6&s3=takai&s4=crossed

http://www.ams.org/msnmain?co3=AND&co4=AND&dr=all&fmt=doc&fn=105&id=51_1413&l=100&pg3=AUCN&pg4=TI&r=6&s3=takai&s4=crossed



		Introduction

		bold0mu mumu C*C*C*C*C*C*-algebras and observables affiliated to them

		2.1 bold0mu mumu C*C*C*C*C*C*-algebras 

		2.2 Enveloping bold0mu mumu C*C*C*C*C*C*-algebras 

		2.3 Tensor products 

		2.4 Crossed products 

		2.5 Functorial properties 

		2.6 Pseudodifferential operators 

		2.7 Observables affiliated to bold0mu mumu C*C*C*C*C*C*-algebras 

		2.8 Affiliation of self-adjoint operators 

		2.9 Affiliation criteria 



		bold0mu mumu C*C*C*C*C*C*-algebras of hamiltonians: examples

		3.1 Crossed product techniques 

		3.2 Bumps algebras 

		3.3 Localizations at infinity 

		3.4 The bold0mu mumu NNNNNN-body problem 

		3.5 bold0mu mumu (Q,P)(Q,P)(Q,P)(Q,P)(Q,P)(Q,P)-anisotropy 

		3.6 Graded bold0mu mumu C*C*C*C*C*C*-algebras 

		3.7 Quantum fields 



		References





