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1. Introduction 


 


The fractional Laplacian and the fractional derivative are two different mathematical 


concepts (Samko et al, 1987). Both are defined through a singular convolution 


integral, but the former is guaranteed to be the positive definition via the Riesz 


potential as the standard Laplace operator, while the latter via the Riemann-Liouville 


integral is not. It is noted that the fractional Laplacian can not be interpreted by the 


fractional derivative in the sense of either Riemann-Liouville or Caputo. Both the 


fractional Laplacian and the fractional derivative have found applications in many 


complicated engineering problems. In particular, the fractional Laplacian attracts new 


attentions in recent years owing to its unique capability describing anomalous 


diffusion problems (Hanyga, 2001).  


 


It is, however, noted that the standard definition of the fractional Laplacian leads to a 


hyper-singular convolution integral and is also obscure about how to implement the 


boundary conditions. This purpose of this note is to introduce a new definition of the 


fractional Laplacian to overcome these major drawbacks. This study is carried out 


with the ongoing project of “mathematical and numerical modelings of medical 


ultrasound wave propagation” sponsored by the Simula Research Laboratory in 


Norway.  


 







2. Riesz potential and fractional Laplacians 


 


The fractional Laplacian is commonly considered the inverse of the Riesz potential 


(Gorenflo and Mainardi, 1998). The Riesz potential I  of order s of n dimensions 


reads (ZÄHLE, 1997; Samko et al, 1987) 
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where Γ denotes the Euler’s gamma function, and Ω is n-dimension integral domain. 


The fractional Laplacian can be defined by (e.g., see Gorenflo and Mainardi, 1998).  
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Thus, the above fractional Laplacian is also often called the Riesz fractional 


derivative. The above definition (2) of the fractional Laplacian can be actually 


restated as 
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It is known that the radial Laplacian operator has the expression 
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which ξ−= xr . (3) can then be reduced to  
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It is noted that (5) encounters the detrimental issues such as the hyper-singularity. An 


alternative way is thus presented below to define the fractional Laplacian without the 


perplexing issues in the Riesz fractional derivative (3) 
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The Green second identity is useful to simplify (6) and can be stated as 
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where S represents the surface of the domain, and n is the unit outward normal. Let  


 
sdxv +−−= 21 ξ ,    (8) 


 


and boundary conditions 
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where ΓD and ΓN are the surface part corresponding to the Dirichlet boundary and the 


Neumann boundary, and using the Green second identity, the definition (6) is then 


reduced to 
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It is seen from (11) that the presented fractional Laplacian definition is thus 


considered the Riesz fractional derivative (the standard fractional Laplacian) 


augmented with the boundary integral, which is a parallel to the fractional derivatives 


in the Caputo sense relative to that in the Riemann-Lioville sense. Our definition also 


has inherent the regularization of the hyper-singularity.  


 


The above two definitions ( ) 2
*
s∆−  and ( ) 2s∆−  involve in only symmetric fractional 


Laplacian. To clearly illustrate the basic idea of this study without loss of generality, 


we only consider the isotropic media in this paper. For the traditional definition of the 


anisotropic fractional Laplacian see Feller (1971) and Hanyga (2001). By analogy 


with the new definition (6) and (11), it will be straightforward to have the 


corresponding new expression of the anisotropic fractional Laplacian. 


 


Albeit a long history, the research on the space fractional Laplacian still appears poor 


in the literature (Gorenflo and Mainardi, 1998). In recent years, some interests arise 


from anomalous diffusion problems. The readers are advised to find more detailed 


description of the fractional Laplacian from Samko et al (1987), Zaslavsky (1994), 


Gorenflo and Mainardi (1998), Hanyga (2001) and references therein. 


 


 







3. FEM discretization formulation 


  


Let the FEM discretization of a Laplacian operator be expressed as 


 


pKp v⇒∇− 2 ,     (13)  


 


where pv  represents the pressure value vector at the discrete nodes, and K is the 


positive definite FEM discretization matrix. The corresponding FEM formulation of 


the s/2 order fractional Laplacian is then obtained by 
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By using a superposition analysis (Bathe and Wilson, 1976), Chen (2002) derived a 


FEM formulation of the power law attenuation similar to (14) in form. This reminds 


us that the FEM modal analysis approach demands no extra effort to solve the present 


fractional Laplacian model (14) which only involves the common modal parameters 


such as eigenvalues and eigenvectors of matrix K.  
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