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1. Backgrounds 


 


The rational behind this model is schematically illustrated below: 


 


Fractal geometry (irregular soft tissues) → Fractional Fourier transform (frequency-


dependent attenuation: , y∈ [0,2] is real valued) → Fractional derivative ( 


Fourier transform 
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∂ , s is real valued)  → Fractional power of 


the positive discretization matrix of Laplacian (the modified mode superposition model, 


see Model I)  → Macro damping effect ( negative real part of frequency domain 


solution: absorption)  
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One definition of the fractional derivative in time is   
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where Γ is the gamma function. There exist the other mathematical definitions.  


 


Fractal geometry: very complicated structures can be described by fractal self-similarity 


geometry. 


 


Self similarity: “An object is said to be self-similar if it looks "roughly" the same on any 


scale. Fractals are a particularly interesting class of self-similar objects. Self-similar 


objects with parameters N and s are described by a power law such as 


  
nsN = ,      


where  


s
Nn


ln
ln=       


 
is the "dimension" of the scaling law, known as the Hausdorff dimension” (for details 
see, http://mathworld.wolfram.com/Self-Similarity.html). For power law attenuation, it 
should be called frequency dimension.  
 


Thus, y in the power law may be a viscous indicator of the cancer tissue, compared with 


the stiffness (density), since these media parameters have underlying relationships.  


 


It is stressed that the present mathematical modelling is to represent damping but does 


not necessarily describe the whole physical and chemical mechanisms of damping.  
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2. Motivation 


 


1). By far, the fractional derivative model is mainly related to the modelling of 


complicated solid viscoelastic material. As far as I know, No reference has used this 


kind of model for medical ultrasound. Biomaterials are typically complicated with the 


fractal features of local similarity.   


 


2). Literature concentrates on the temporal fractional derivative model. In fact, since 


the micro geometry of soft tissues which establish the complicated viscous behavior 


mostly has the fractal dimension structure in space. So, we should instead consider the 


spatial fractional derivative model.  


 


 


3. Linear and nonlinear models  


  


To respect the principle of causality, the damping term should be positive. This leads to 


the absolute value of fractional operator (or complex fractional operator) and the 


otherwise convolution operation (relaxation). The computing effort of the relaxation 


model is not trivial. It is noted that for even order operator of damping (independent or 


squarely dependent of frequency), there is no such absolute value or complex operator 


issue.  


 


All models given below are fully consistent with the frequency dependent attenuation of 


any excitations. In particular, we focus on combining our models with empirical 


frequency-dependent power law formula (α0 and y from experiments, E=E0e-α (ω)x):  


 


( ) yωαωα 0= , y∈ [0,2], 


 


where y=1 is most frequently taking place.  
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3.1. Linear models 


 


New temporal fractional derivative model (derived from damped wave eq. y=0): 
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New spatial fractional partial derivative model (derived from augmented wave eq. 


y=2): 
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3.2. Nonlinear models 


 


Unlike the preceding hyperbolic PDE models, Burgers equation is a parabolic PDE 


models,  


 


02 =∇−∇•+ ppppt ε  
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where the attenuation is due to diffusion modeled by the second order spatial derivative. 


The model has the attenuation of quadric frequency dependence. In the case of 


anomalous diffusion (0<y<2), the fractional derivative comes into play.  


 


New modified Burgers equation (the standard Burgers eq. y=2) 


 


( ) 02 2
0 =•∇+∇•+ − ppppp yy


t α  


or 


02 2
0


3 =•∇+∇•+ −− ppippp yyy
t α . 


 


So, in the case independent of frequency (y=0), the modified Burgers equation is 


 


02 2
0 =+∇•+ ppppt α . 


 


 


4. Open computational and analysis issues 


  


1) α0 and y may have some connections with density, viscous parameter, wave speed and 


other physical parameters of soft tissue, which can be derived from degeneration 


relationship between the above PDE models and the classic models.  


 


2) Fractal dimensionality may have something to do with parameter α0 and y, which 


coincides the different morphologies of the cancer and normal tissues.  The fractal 


geometry has been used for cancer detection. 


 


3) FEM discretizing the absolute value of spatial operator or complex PDEs? Note the 


absolute value is to ensure the positive definition of damping fractional derivative. So, if 


we could find and prove the positive definition with respect to some y, and then, the 


absolute value operation can be removed. In the later Appendix, we give a FEM scheme 


via the fractional power of a matrix to calculate the absolute PDEs.  
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4) I have no idea of FEM discretization of fractional derivative in space. There are plenty 


of reports on the finite difference approximation of fractional time derivative.  


 


5) The related stability analysis is unclear.  


 


6) Fractal geometry, fractional derivative, what is the missing fractional algebra? Does 


it have something to do with the fractional power of a matrix as proposed in the previous 


modified superposition model? A systematic research of all these issues is still lacking.   


 


7) Complex modal analysis (frequency domain) has become very important in modal 


analysis and parameter identification. I wonder if it is indispensable to use complex and 


fractional derivative describing the behaviors of complicated soft tissues.  


 


 


Appendix 


 


1.  FEM formulation for the absolute value of partial differential operation: 


 


( ) uAuu yyy 222 =∇=∇ , 


 


where A is the FEM discretization matrix (symmetric positive definition) of the 


Laplacian. It is worth noting that the spatial fractional derivative model in real 


domain could be understood as the PDE correspondence of the previous modified mode 


superposition model.  


 


In the case y=1, , is B a skew symmetric matrix? If so, Buu =∇ 21AB ≠  since the latter is 


still symmetric, but uAu 21=∇ . 
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2. In time, the situations seem more certain. 02


2
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4. Attenuation and dispersion is closely interdependent. We should have a frequency 


analysis of the above fractional derivative model in time and space.  


 


5. The classical structural damping model  
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is independent of frequency, where the damping coefficient η is determined via complex 


frequency analysis. The mechanism is that this damping is proportional to the 


displacement rather than the velocity. A combination of the structural and viscous 


damping may occur in some soft tissues.  


 


6. Complex PDEs also appear in the Schroedinger’s equation for modeling quantum 


mechanics problem. So, it is not a fuss to have a complex derivative in our model.  


 


7. After a rough look at the fractional derivative, Szabo’s convolution model may be 


equivalent to the present fractional derivative. It is noted that the Szabo’s model is not 


easy to get a numerical solution. In contrast, the fractional derivative in time has the 


standard discretization formulation and related numerical analysis.  


 


8. The FEM discretization of partial fractional derivative seems an underdeveloped issue 


by now. As far as I know, there are much fewer fractional derivative models in space than 


in time.  
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