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Summary 


 


Part III of the reports consists of various unconventional distance function wavelets 


(DFW). The dimension and the order of partial differential equation (PDE) are first used 


as a substitute of the scale parameter in the DFW transform and series, especially with the 


space and time-space potential problems. It is noted that the recursive multiple 


reciprocity formulation is the DFW series. The Green second identity is used to avoid the 


singularity of the zero-order fundamental solution in creating the DFW series. The 


fundamental solutions of various composite PDEs are found very flexible and efficient to 


handle a broad range of problems. We also discuss the underlying connections between 


the crucial concepts of dimension, scale and the order of PDE through the analysis of 


dissipative acoustic wave propagation. The shape parameter of the potential problems is 


also employed as the “scale parameter” to create the non-orthogonal DFW. This paper 


also briefly discusses and conjectures the DFW correspondences of a variety of 


coordinate variable transforms and series. Practically important, the anisotropic and 


inhomogeneous DFW’s are developed by using the geodesic distance variable. The DFW 


and the related basis functions are also used in making the kernel distance sigmoidal 


functions, which are potentially useful in the artificial neural network and machine 


learning. As or even worse than the preceding two reports, this study scarifies 


mathematical rigor and in turn unfetter imagination. Most results are intuitively obtained 


without rigorous analysis. Follow-up research is still under way. The paper is intended to 


inspire more research into this promising area.  
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1. Introduction 


   


The report is the third in series [1,2] about my latest advances on the distance function 


wavelets (DFW). One of the main motivations behind this research is to extend the DFW 


to various scale-invariant potential problems where unlike the Helmholtz and convection-


diffusion problems, the standard scale parameter does not exist. In section 2, we instead 


use the dimension as a substitute of the scale parameter to develop the space and time-


space potential DFW’s, whose transforms involve continuous dimension variation (fractal 


and multifractal). The links between these DFW’s and the Kontorovich-Lebedev and 


Mellin transforms are pointed out. In section 3, it is noted that the boundary particle 


method (BPM) [3,4] and recursive multiple reciprocity BEM have the DFW series 


formulation, where the “scale parameter” is interpreted as the order of the high-order 


general solutions and fundamental solutions of partial differential equations (PDE). Its 


corresponding DFW transforms involve the fractional derivative and complex-order 


derivative. The singularity of the zero-order fundamental solution is a troublesome 


specter in creating the DFW series in terms of the order of PDE. Section 4 applies the 


Green second identity to circumvent this thorny problem. It is also noted that the 


recursive multiple reciprocity method can become very efficient via the scale 


orthogonality. The fundamental solutions of various composite PDEs are also presented 


to handle a wide range of problems. The technique is called the composite multiple 


reciprocity. However, in some cases like the convection-diffusion equation, the 


reciprocity principle does not hold. Thus, the differentiation smoothing is a better term 
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for this approach. The time-space DFW series is also proposed. It is discussed that the 


composite multiple reciprocity DFW could lead to a boundary-only DFW technique not 


only for numerical PDE but also for general data processing. In section 5, the underlying 


connections between the essential concepts of dimension, scale and the order of PDE are 


critically discussed through the analysis of the frequency-dependent attenuation of 


acoustic wave propagation. Furthermore, section 6 employs the shape parameter of 


various rotational and translate invariant MQ-type (the MQ is the abbreviation of the 


multiquadratic) distance functions as the “scale parameter” to construct the pre-wavelets. 


Section 7 mirrors the DFW on a variety of existing standard integral transforms and 


series. In section 8, we introduce practically important geodesic DFW, which uses the 


geodesic distance variable and will be potentially very useful in handling the anisotropic 


and inhomogeneous problems. Section 9 employs the DFW and the related basis 


functions to make the kernel distance sigmoidal functions for the artificial neural network 


and machine learning. Finally, section 10 gives a brief remark on the DFW promise. 


“Exotic” in the title means that the DFW’s introduced in this report use the 


unconventional dimension, the order of PDE, shape parameter as a substitute of the scale 


parameter. As or even worse than the preceding reports [1,2], this research lacks 


mathematical rigor and is contemplated to be future-orientated in the best hope leading to 


an enormous territory rich in open problems.  


 


 


2. Potential DFW transform using dimension parameter 


 


Unlike the Helmholtz and convection-diffusion problems, the kernel solutions of various 


potential PDEs, e.g. the Laplacian, are scale invariant and have not explicit scale 


provision within them. Notwithstanding, in terms of dimensional parameter as a 


substitute of the scale parameter, this section aims to create the potential DFW via the 


PDE kernel solutions of space and time-space potential problems, followed by section 3 


to present the multiple reciprocity DFW using the order of PDE as the scale argument, 


and then, section 4 derives the multiple reciprocity (MR) DFW series. Section 5 provides 


a unified mathematical and physical view on dimensionality, PDE order and scale 
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parameters and their effects. The DFW using the dimension argument may find some 


applications in high-dimensional problems such as the neural network.  


 


2.1. Space potential DFW transform 


 


Without a loss of generality, let us consider the fundamental solution of the Laplace 


equation [5] 
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Γ is the gamma function. We can verify (1) via the radial Laplacian 
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In terms of the fractal geometry and fractal Hausdorff dimension, n is not necessarily an 


integer. We note that 
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could satisfy equation (3) with arbitrary real-valued n. It is the author’s guess that two 


dimensions are special since the Laplacian happens to be the second order of partial 


differential equation model. A fraction n may suggest the fractal field and potential or the 


fractional Laplace operator [6,7].  


 


The Laplacian is scale invariance, which happens to agree with the definition of the self-


similarity and fractal dimension. In order to create the continuous DFW transform, it is 


necessary to use the concept of continuous dimension variation instead of conventional 


integer quantum jumps of dimensions. In terms of Laplacian fundamental solution (4), we 


have the continuous DFW: 
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where Cp can be determined by the continuous wavelets theory. It is known that negative 


dimension occurs in the exploration of some hidden physics secrets. It is therefore 


reasonable to extend dimension n to negative real number space. Furthermore, the 


complex space has been presented in literature. That means n could even be a complex 


number. It is also noted that the derivative of the Laplacian fundamental solutions of any 


dimensions with respect to the distance has the same form 
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(6) can be used to replace the Laplacian fundamental solution in (5) to construct the 


double layer potential DFW. 
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In the Helmholtz-Laplace transforms [1,2], we use the fundamental and general solutions 


of the modified Helmholtz equation 
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where I and K denote the modified Bessel function of the first and second kinds. Instead 


of using the parameter µ, we use the dimension parameter n as the “scale parameter” and 


have the DFW transform for a suitable function f(x) 
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Note that the dimensionality here is the complex number. In contrast, the classic forward 


and inverse Kontorovich-Lebedev transforms [8] are defined by  
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where the imaginary index α of Kα matches the dimensionality in the DFW transform (9). 


As µ→0, the modified Helmholtz equation degenerates into the Laplace equation and the 


Kontorovich-Lebedev transforms become the Mellin transforms, i.e. 
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It is now clear that the Mellin transform has the lurking background of the Laplace 


equation. In terms of the complex dimensionality, the inverse transform (5b) is 


alternatively replaced by  
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The Laplacian potential DFW transform (5a) and (12) may be considered the DFW 


counterpart of the Mellin transform which finds applications in scale-invariant image and 


speech recognization. By analogy with the Mellin-Fourier series [9], we can construct the 


expansion series of the Laplacian DFW. It is the author’s guess that the existence 


condition for the Laplacian DFW is similar to that of the Mellin transform, i.e. 


( ) ( ) ∞−∫ pdxxuxf
nn LIR
ξ* .    (13) 


We may consider the Kontorovich-Lebedev and Mellin transforms are the degenerate 


DFW transforms respectively using the solutions of the modified Helmholtz and Laplace 


equations as the Hankle transform is to the Helmholtz-Fourier transform. In the later 


section 3, we will show that the solutions of high-order Laplacian can also be used to 


create the DFW transforms of this kind. 
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2.2. Time-space potential DFW transform 


 


The time-space potential can be seen as an extension of the spatial potential under the 


general Euclidean-like space. The origin of the universe, as stated by the big bang theory, 


starts from a singularity (zero dimension) to time dimension to one spatial dimension to 


two and three spatial dimensions. If we speculate this cosmos dimension evolution is a 


continuous (or finite quantum jumps but integrable) process, the continuous time-space 


DFW could come into play. Unfortunately, as far as the author knows, the temporal 


fractal fundamental solution of potential PDE is not available albeit in principle existing 


and solvable. So, the time-space potential DFW transforms developed below are in fact 


the space potential DFW augmented with one time dimension. It is stressed that besides 


the finite four time-space dimensions, the dimensionality could reach much higher and 


even infinite in terms of other physical parameters. The dimensional DFW also has close 


ties with the multifractal concept.  


 


For time-dependent problems, we typically meet the so-called “heat potential” and “wave 


potential” [5]. Consider the diffusion equation 
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where κ is the conductivity parameter of media in terms of heat problems, the heat 


potential is defined by 
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where H is the Heaviside step function, which is added to ensure the causality. In terms 


of the heat potential (15), we can make the time-space DFW transforms  
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It is known that the Black-Scholes PDE model for financial option is also a diffusion-type 


equation usually involving multiple variables (up to thousands dimensions). The Monte 


Carlo method is now the dominant simulation technique in this field. The dimensional 


DFW may play a role for analyzing this high dimension problem. Through the 


dimensional DFW transforms, we may find which dimensions in very high-dimensional 


problems play the key role in particular objects so that a “dimension compression” may 


be achieved.  


 


If κ in (14) is purely imaginary such that 
m


i
2
h=κ , where m is the mass of the quantum 


particle and h  the Plank’s constant, equation (14) becomes the Schrodinger equation [10] 
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 to define a particle density. ( ) utxu ∆2,  denotes the probability of the particle being in 


the neighborhood u(x,t) [10]. The fundamental solution of the Schrodinger equation is [5] 
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We have the corresponding DFW transforms 


 


( ) ( ) ( )
∫ ∫
∞+


−


−
−−


=
0


1* ,
,,, xdtd


x
txu


txVnS
n


n


IR


S


ξ
τξ


τξ    (20a) 


and  


( ) ( ) ( )∫ ∫ ∫
∞


−−=
0 0


* ,,,1,
t


IR S
S


n n
dndndtxunS


C
txV τξτξτξ .  (20b) 


 


Dimension n in (20) also can be the complex number. Now we go to the hyperbolic wave 


equation 


 


( txfuc
t
u ,22
2


2


=∇−
∂
∂ ) ,    (21) 


 


where c is the media wave velocity. The wave potential with density f is defined by [5] 
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where * denotes the convolution operation and  is the time-harmonic fundamental 


solution of wave equation (21). In terms of (22), we can create the corresponding wave 


potential DFW transforms in terms of dimensionality in the same way as did with the 


heat potential.  
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We can also make the DFW series in terms of discrete dimension parameters. However, 


the basis functions should not be singular, e.g. nonsingular general solution of the 


Helmholtz equation. It is noted that the higher-dimension basis functions tend to be more 


compactly supported. Thus, the corresponding interpolation matrices tend to be sparser in 


the higher dimensions which offsets the so-called the curse of dimensionality. 


 


 10







3.  Multiple reciprocity DFW transforms 


 


This section is concerned with the DFW transforms using the order of PDE as a substitute 


of the scale parameter. Since this kind of the DFW is essentially related to the boundary 


particle method [3,4], a boundary-only numerical technique based on the multiple 


reciprocity principle [11] to solve a PDE problem, we call it the multiple reciprocity 


(MR) DFW. To clearly illustrate our idea, consider the following example without a loss 


of generality 
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where ℜ   is a linear differential operator, x means multi-dimensional independent 


variable, and n is the unit outward normal. The solution can be expressed as 
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where  and u  are the zero-order homogeneous and particular solutions, respectively. 


The multiple reciprocity method evaluates the particular solution in Eq. (26) by a sum of 


higher-order homogeneous solution, namely, 
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where superscript m is the order index of the homogeneous solution. Thus, the BPM 


solution of inhomogeneous equation (23) can be expressed as 
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We do not want to plunge the readers into details of the BPM and recursive multiple 


reciprocity solution procedure which can be found in [3,4]. The final solution is given by  
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where  is the general or fundamental solution of operator ℜ#
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where Am=Am-1/(2*m*γ2), A0=1, and n is the dimension of the problem; J represents the 


Bessel function of the first kind and H(1) is the first kind of the Hankle function. It is 


noted that the recursive multiple reciprocity method described in [3,4] can be directly 


used with the boundary integral formulation in the same way as in the collocation BPM 


and will greatly improve computing efficiency of the so-called multiple reciprocity BEM. 


 


It is obvious that (29) is a DFW series in terms of integer “scale parameter” m. To 


introduce the continuous DFW transforms, we need to use the concept of the fractional 


order of derivative [12], i.e., m could be a real number rather than an integer. Thus, we 


could create the multiple reciprocity DFW transforms with the high-order fundamental 


solutions of the operator ℜ {} 
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The multiple reciprocity DFW transforms (31) reveal the distribution of function f(x) with 


respect to the order of the Helmholtz operator. Observing the MR DFW series (29), the 


MR DFW can also alternatively be given by  
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where  denotes the fundamental solution of the zero-order Helmholtz . (32) 


may be better in some  practical uses than (31).  
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[11,13,14] give the high-order general and fundamental solutions of the Laplace, 


modified Helmholtz, convection-diffusion, Berger and Winkler equations. Consider the 


scale-invariant Laplacian, we have its 2D and 3D high-order fundamental solutions [11]: 
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where m is the Laplacian order. In section 2, we have constructed the potential Laplacian 


DFW in terms of dimensionality parameter. Here we instead have the Laplacian MR 


DFW transforms 
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where complex order m corresponds to the complex-order Laplacian. The alternatives of 


the MR DFW (35) are given by 
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Comparing the MR Laplacian DFW transforms (35) and (36) with the preceding potential 


Laplacian DFW transforms (5) and (12), one sees that both look very much similar. Zahle 


[6] pointed out that the spectral dimension of the Laplacian agrees with the Hausdorff 


dimension underlying fractal through the fractional derivative. In other words, the 


dimension and the order of the Laplace equation can be reciprocally connected under 


certain conditions through the Green function of the Reize potential on a fractal. For a 


detailed discussion see section 5. We also can develop the high-order potential Laplacian 


DFW transform in terms of dimension parameter, i.e. 
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In particular, the Mellin transform can be seen as the degenerate form of the one-


dimension high-order Laplacian DFW transforms (37).  


 


  


4. Composite multiple reciprocity DFW series 


 


The singularity of the fundamental solutions of multidimensional PDEs does not cause 


troubles in the creating of various continuous DFW transforms, but makes it seemingly 


impossible to construct a complete multiple reciprocity DFW series. We have good 


reason to allot a separate section to deal with this thorny issue. The basic strategy is to 


use the Green second identity to evaluate the zero-order singular fundamental solution 


term and leave the other nonsingular high-order fundamental solution terms to be handled 


in the normal fashion. The title “composite multiple reciprocity” suggests involving more 


than one PDE operators in some cases, e.g. composite Laplace and Helmholtz operators, 


and thus is different from the traditional multiple reciprocity [11] where the mere one 


type of PDEs of different orders is concerned.  


 


4.1. Laplacian MR DFW series 


 


To eliminate the edge effect of the Helmholtz-Fourier (HF) series, section 3.3 of [1] 


developed the HF series of the form: 
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where f0(x) and the sum term respectively represent the solutions corresponding to 


nonzero boundary condition and zero boundary condition, and n is the dimensionality and 
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λ the eigenvalues; φn denote the HF basis functions based on the nonsingular kernel 


general solution of the Helmholtz equation. f0(x) is evaluated by a Laplace equation 


(degenerate Helmholtz equation with a zero eigenvalue) 
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 In terms of the Green second identity, we have  
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where is the fundamental solution of the zero-order Laplacian ∇*
0
nL


u 2u, and Sn-1  is the 


surface of finite domains. (40) can be easily evaluated by the boundary element method 


(BEM) with boundary f(x) data, and then f0(x) at any inner locations can be calculated via 


(40) again. It is well known that the boundary is the dominant features in various data 


sets. The Green second identity should be the right tool to capture it. The boundary knot 


method (BKM) [3,13] is an alternative to the BEM for this task. 


 


[56] discusses the essential concept of the complete fundamental solution. For instance, 


the 2D Laplacian has the essential fundamental solution ( )rln
2


1
π
−  and the complete 


fundamental solution ( )( Cr +− ln
2


1
π


) , where C is a constant.  The standard BEM only uses 


the former. For the DFW series, this may lead to the missing of the constant term and 


incomplete basis functions. Thus, in the following DFW series, we may need to add a 


constant term whenever the completeness concern arises, or instead use the complete 


fundamental solution in (40). On the other hand, the complete fundamental solution also 


provides an alternative explanation of the multiquadratic (MQ) type radial basis 
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functions. For instance, the shifted TPS ln  has something to do with the 2D 


Laplacian complete fundamental solution 
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The above HF series provides an insight to construct the multiple reciprocity Laplacian 


DFW series  


 


kxxf +=
∞


=
0 , n≥2,   (41) )


 


where f0(x) is evaluated in the same way as (40), and is the fundamental solution of 


the m-th order Laplacian ∇ 2(m+1)u. Observing (33) and (34) of the 2D and 3D Laplacian 


high-order fundamental solutions, it is found that when the order m≥1, these kernel 


solutions are no longer singular at the origin. Thus, (41) kills the singularity culprit and is 


called the multiple reciprocity Laplacian DFW series. Note that except of evaluating f0(x) 


with the boundary elements or BKM, the nodes could be anywhere inside domain and on 


the boundary. (41) can be understood splitting f(x) into two parts of f0(x) and the 


remainder, where the latter is approximated by the high-order Laplacians.  


 


The MR Laplacian DFW series could be an efficient tool to deal with the aperiodic 


signals which do not exhibit the periodic behavior. It is also very interesting to note that 


the order m of the Laplacian plays an analogous role of the polynomial order in the 


standard polynomial interpolation. In fact, expansion series (41) is a multidimensional 


analog of the univariate polynomial approximation, where the order of monomials is 


interpreted as the order of the fundamental solution of the one-dimension high-order 


Laplacian. It is worth pointing out that  of different orders are orthogonal, which *
m
nL


u
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greatly reduces computing effort. The Gram-Schmidt orthogonality method may be 


helpful to enforce the orthogonalization of the Laplacian basis functions of the same 


order over translates. The translation invariant polynomial DFW series presented in [2] 


can also be efficiently calculated in the same recursive way as the MR DFW series for 


data processing and numerical PDEs.  


 


4.2. Composite multiple reciprocity DFW series with the solutions of composite PDE 


 


[1] noted that the nonsingular general solution of the convection-diffusion problem was 


not suitable to handle exterior unbounded domain problems, while its fundamental 


solution capable for this task could not be used to create the DFW series due to its 


singularity at the origin. A solution of this perplexity is to construct the composite MR 


DFW series with the high-order solutions of a composite PDE.  


 


To illustrate the basic strategy clearly, let us start with the equation 


 


( ikuuvuD ∆−=−∇•+∇∇ )v22 ,   (42) 


 


where vv  denotes velocity vector, D is the diffusivity coefficient, and k represents the 


reaction coefficient. (42) combines the convection-diffusion and Laplace equations. Its 


fundamental solutions are 
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where dot denotes the inner product of two vectors; 


 


 18







2
1


2


2 













+











=


D
k


D
vv


ρ .     (44) 


 


The fundamental solution (43) is singular at the origin. The high-order fundamental 


solutions of (42) are a sum of those of the convection-diffusion equation and the Laplace 


equation. It is found [14] that the high-order fundamental solutions of the convection-


diffusion equations except in 2D case are also singular in contrast to the nonsingular 


high-order fundamental solutions of the Laplacian. Due to this observation, we construct 


a composite multiple reciprocity series for a continuously differential function Q(x) 
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where Q0 satisfies (42) and is evaluated by the Green second identity as in (40). In data 


processing, the Dirichlet boundary data are often only accessible. We can use the Green 


second identity twice, namely, first with the Laplacian to get the Neumann data, and then 


with the fundamental solution (43) for all necessary high-order boundary data. The 


expansion (45) is in fact equal to the iterative differentiation of function Q(x) by 


 


( ) ( ) ( )xqxFQkvD MM =∇=−∇•+∇∇ 222 v ,   (46) 


 


where F(x) is the inhomogeneous term of the convection-diffusion equation. If the 


residues q(x) continuously tends to zero with increasing m, (45) will converge. It is noted 


that expansion (45) includes the direction vector vv  and thus is also well suitable to 


handle the track data. If Q(x) is due to a quasi-periodic source P(x) consisting of a finite 


number of periodic components [15], a composite operator of the convection-diffusion, 


Laplace, and Helmholtz equations of the form 
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will be preferred, where g(x) should be smooth and close to a constant or zero. The 


corresponding DFW series is  
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where is the general solution of the zero-order Helmholtz equation. The strategy can 


be extended to handle other problems via a varied combining of different PDEs. We may 


call it the differentiation smoothing. Following are some composite PDE examples of 


maybe highly interest:  


#
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(49a) under m=1 is the Burger equation governing large deflections of plate without 


planar displacements which combines the Laplacian and the modified Helmholtz 


equation. [13] gives some composite PDEs and their high-order fundamental and general 


solutions. (49c,d) are the temporal multiple reciprocity method which aims to eliminate 


the inhomogeneous terms due to time-dependent sources. We have a great deal of 


freedom to combine any PDEs such as the convection-diffusion, Helmholtz, modified 


Helmholtz, Laplace, elastostatics, time-dependent diffusion and wave and transport 


equations to tackle a very broad variety of type data processing and PDE problems. The 
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corresponding fundamental solutions will be simply a sum of all individual fundamental 


solutions. The composite multiple reciprocity approach is also very useful in the kernel 


distance function [3] to handle domain integral and particular solution of PDE subjected 


to different types of inhomogeneous function terms. 


 


4.3. Time-space MR DFW series 


 


The preceding DFW transform and series are only concerned with spatial variables and 


equilibrium data. It is feasible to develop the time-space MR DFW series and transforms 


due to the time-harmonic solution of the diffusion and wave equations, which behaves 


similarly as the spatial Laplacian harmonic functions. For brevity, we simply display an 


analogous time-space MR DFW series for wave problems below 
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where c is the wave velocity, H is the Heaviside step function augmented for the 


causality, and kk xxr −= . f0(x,t) can be evaluated by the time-space boundary element 


as in (40).  


 


4.4. Boundary-only MR DFW for data processing and numerical PDE 


 


Inverse problems are much often common in engineering computation than direct 


problems. The boundary element method is found advantageous over the domain-type 


numerical techniques such as the finite elements and finite differences in handling inverse 


problems since the boundary data in most cases are dominant in determining the 


systematic behavior and much more easily accessible than the inside-domain data. 


However, we unfortunately find that the BEM is seldom used in practice to handle 


inverse problem and data processing problems. This may be due to a few factors: 1) 


singular integration, 2) full and asymmetric interpolation matrix, 3) costly domain 


integral, 4) mathematical difficulty. The preceding composite MR DFW series seems a 
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promise to remedy all these defects of the BEM and could be very efficient if the proper 


composite PDE is found. As well, the boundary particle method may be more promising 


to handle data processing by only using the boundary data. [3,4,14] shows that the BPM 


could be symmetric and nonsingular and truly boundary-only for inhomogeneous PDE 


problems. The wavelet threshold shooting of the composite MR DFW series will lead to a 


sparse interpolation matrix. On the other hand, the advantages of the MR-BEM over the 


BPM are twofold: 1) the integral formulation of the MR-BEM is generally more stable 


than the collocation BPM; 2) the MR-BEM can use the singular fundamental solution 


without requiring the fictitious boundary outside physical domain. Thus, the BPM and 


BEM have their respective relative strengths and weaknesses. In conclusion, the BEM 


and BPM with the help of the recursive multiple reciprocity DFW series are two 


boundary-only techniques not only for PDE problems but also for data processing.  


  


The basic procedure in the multiple reciprocity solution of inhomogeneous PDE is a 


reversely recursive iteration [3,4]. Different from the solution of PDE problems, the data 


processing, however, is a directly recursive iteration, namely, we start to interpolate the 


accessible boundary data with the zero-order fundamental solution or general solution, 


and attain the derivative boundary data of one order higher, and then interpolate these 


obtained data with high-order fundamental or general solution and evaluate the higher-


order derivative boundary data, and repeat this processing upward until the residues norm 


is under acceptable magnitude. For details on the BPM and recursive multiple reciprocity 


method see [3,4,14]. In this way, we can effectively interpolate the whole domain data 


only by the boundary data. If the composite multiple reciprocity method presented in 


section 4.2 is used, we need to evaluate a finite number of interpolation matrices 


corresponding to each different element PDE. In addition, [57] presents a generalized 


boundary element method to transfer the domain integral caused by the inhomogeneous 


media to the boundary integral. The basic strategy behind this method can be applied 


with the DFW in handling the inhomogeneous media problems.  
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One may argue that the MR DFW series using the solutions of high-order PDE may not 


be suitable for discontinuous problems, e.g. functions F(x) in (46) and Q(x) in (47) 


exhibit discontinuous or low continuous property. The author thinks that this 


discontinuity issue could be solved by the subregion approach. In cases of concentrated 


loading, the distance function can be used in the same very simple fashion as in the BEM 


[16].  It is also stressed that the MR DFW as well as other DFW’s are not necessarily 


global approximation in correspondence to local and global boundary integral equations.  


 


 


5. Connections among dimension, scale and PDE order 


 


In many scientific disciplines, the dimension, scale (frequency) and PDE order are treated 


as independent parameters. Observing the dimension, PDE order and scale DFW’s 


developed in the present report series, one may wonder if these three basic parameters 


exhibit inherent connections just like what relationships between mass and energy, time 


and space are. Recent years witness intense research on applications of fractional 


derivatives [12], fractional Fourier transform [17] and fractal to many real world 


problems. Now it is known that there is a definite connection between fractional Fourier 


and fractional derivative, namely,  
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+ ) ,    (51)  


 


where FT+ indicates the Fourier transform, ω represents frequency, and s is the derivative 


order, not necessarily an integer, and P(ω) the Fourier transform of p(t). In the following 


we will establish the links between fractional derivative and fractal through the analysis 


of the acoustic frequency dependent attenuation. The power law of attenuation [18] is 


described by 


 
( ) xeEE Λ−= ωα


0 ,    (52) 
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( ) yωαωα 0= ,  y∈ [0,2],   (53) 


 


where E denotes signal energy, α0 and y are media-dependent parameters obtained 


through a fitting of measured data. Note that y is real. (53) can be restated as  
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(54) can be seen as a self-similar object, i.e. scale invariance [19]. Self-similar fractals 


with parameters N and n are normally described by a power law  
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where  


q
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ln
ln=      (56) 


 


is known as the Hausdorff dimension. Note that q here could be any physical parameters 


besides time and space. Comparing (54) with (56), it is clear that y represents fractal 


dimensionality in terms of frequency. In other words, the power law attenuation (54) on 


different frequencies underlies the invariant parameter y. The author is very curious why 


fractal is between 0 and 2. 


 


[20] presented the fractional temporal derivative PDE model to describe the power law 


(53) of frequency dependent attenuation:  
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where p denotes acoustic pressure and c is acoustic speed. When y=0, (57) is reduced to 


the standard damped wave equation. In 1D case, y=2 leads (57) to an acoustic equation 


very similar to equation (13) in [21]. Here we find fractal y is mirrored by the y-order 


temporal derivative. Namely, (57) suggests that y represents temporal fractal. However, it 


is observed from (54) that y is independent of frequency (time scale) ω. It is therefore 


much reasonable to think that y may in fact mean the spatial fractal. For example, y varies 


with different human body tissues, which have different spatial microstructures. [20] also 


proposed a spatial fractional partial derivative model: 
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When y=2, (58) is the known augmented wave equation. It is not difficult to derive the 


fundamental solution of the above fractional wave equation via the Fourier transform. 


The absolute value of the fractional derivative in (58) can be calculated via the positive 


definite Laplacian, i.e. 


 


( ) 22 yy pp ∇−=•∇ .    (59)  


 


Both attenuation temporal model (57) and spatial model (58) involving fractional order 


derivatives show that the damping behavior has much to do with the fractal structure of 


media, while the differential orders of inertia and diffusion terms are independent of 


fractional dimensional effect, no matter either integer or fractal dimensions. It is clearly 


recognized from the above analysis that the dimensional effect on some physical 


mechanism, e.g. frequency-dependent attenuation, can be exactly reflected by the 


corresponding derivative order in the PDE model. Now we can conclude that the 


dimension, scale (frequency) and derivative order are inherently related to describe the 


attenuation mechanism.  


 


To more clearly clarify the connection between the dimension and derivative order, let us 


consider the Riesz potential [6,7] 
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where s is the order of Riesz potential, and n is the dimension. By analogy with the 


Riemann-Liouville definitions of the fractional derivative [22], we define the fractional 


Laplacian  
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(61) clearly shows that the dimension and the order of the Laplacian are inherently 


connected. By using the multiple reciprocity expansion series, we can have the expansion 


definition of (62) just like Caputo’s expansion definition of the fraction derivative. Two 


intuitive definitions of the fractional distance variable are given by  
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where n is the topological dimensionality, and s could even be a complex number. It is 


noted that s=2 leads to the Newtonian potential and Euclidean distance. 


 


Varying y means the multifractal, i.e. continuous or quantum dimension variation, which 


is visible in some physics problems such as acoustic energy absorption variations over 


different human body tissues, while a broadband excitation will cause multiscale 


frequency components. Therefore, a complete description of these complex physical 


phenomena should involve multifractal, multiscale and multivariate (3M) systems. It is 
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also interesting to see from the attenuation power law (53) that the time scale (frequency) 


and space dimension are reflected on media acoustic attenuation as what the general 


relativity reads dependence of time and space on mass.    


  


[20] also noted that the algebra counterpart of the fractional derivative and fractal should 


be the fractional order of a matrix. For instance, the finite element (FE) numerical 


discretization (59) is given by  


 


( ) pAp yy v222 =∇− ,    (63)  


 


where A is the positive definite FE interpolation matrix of the Laplacian, and pv  is the 


discrete value vector of p. From this point of view, the fractional Haar transforms should 


be the fractional order of the original transform matrices, where the fraction may indicate 


the fractal dimension or the fractional order derivative. Similarly, we can get the 


fractional Welsh and Hadamard transforms corresponding to a fractal. Now we have a 


complete theory of fractional calculus, fractal geometry, and fractional algebra in place to 


model and analyze complex mathematical physics problems.  


 


Now we try to use the above insights to analyze the electrical current in a transmission 


line governed by the telegraph equation [10] 
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where C, G, R, and L are the capacitance, leakage resistance, resistance, and self-


inductance per unit length, respectively. These different resistances in the electric current 


play the same role as does the viscoelastic damping in acoustic wave propagation and 


mechanical vibration. By analogy with the previous acoustic attenuation PDE model (58), 


(64) may be reformulated as 
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where τ is a positive real number to describe the resistance behavior of media and γ the 


alternative collective parameter of C, G, R, and L. (65) is different from the fractional 


telegraph equation given in [23] in that the spatial fractional derivative is used instead of 


the temporal fractional derivative. It is interesting to imagine that the electric current 


resistance may obey a power law similar to (52) and (53), where a temperature-related 


parameter may act like the frequency in damped acoustics.  


 


Furthermore, [24] presented the new complex-order derivative model for frequency 


dependent storage and damping loss mechanisms more accurately. For example, the 


following force-displacement model was given for the viscoelastic vibration [24] 
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where parameters λ, r and υ0 are all complex-valued. The Fourier transform of the 


complex-order derivative is defined by [24]  


 


( ) ( ) ( )[ tqFTi
dt


tqdFT r
r


r


++ =








 ω ] .    (67) 


 


(67) is valid for Re(r)>0 and for n times differentiable function q(t) where n-Re(r)>0. 


According the preceding analysis, the complex-order r may mean the complex 


dimension. This naturally raises a question about the definition of the distance variable 


under complex dimension. In research of wave equation  
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[25] introduced the pseudo-Euclidean distance in terms of Minkowisk 4-dimension space  


as opposed to the Euclidean distance. Let 


 


icts = ,     (69) 


 


we have the Laplacian-alike wave potential  
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Its Euclidean distance variable is 
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The author wonders whether the fundamental solution of the complex-order PDE can be 


expressed in terms of the pseudo-Euclidean distance.  


 


 


6. Shape parameter DFW’s 


 


The MQ 22
kk cr +  and inverse MQ [26], Gaussian 


22
kk cr


2ln k
m r


e , the thin plate spline (TPS) 


 and  [27] as well as the shifted TPS r  [28], a MQ-type TPS, 


are among the most popular distance functions (radial basis function, RBF), where c


12 +m
kr k


m
k rr ln2 ( 22


kk c+ )
k is 


called the shape parameter, a pseudo-scale parameter. In general, replacing the Euclidean 


distance variable rk by the MQ in the rotational invariant fundamental solution and 


general solution of PDEs will yield a variety of the MQ-type kernel distance functions 


[3]. Enormous numerical experiments [29,30] show that the MQ-type distance functions 


can achieve spectral accuracy if the shape parameter ck are optimized. Despite intense 


research has been devoted to analyzing and determining of the shape parameter, 


unfortunately, ck is found to be problem dependent and there are not general approaches 


optimally determining it a priori. But nevertheless [31] proves that the MQ and TPS are 
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conditional positive definite function and [32] shows the MQ could be seen as the pre-


wavelets.  


 


On the other hand, Hon and Wu [33] applied the translate-invariant 2D Laplacian 


harmonic function e  as the basis function to construct very simple and 


efficient numerical scheme for solving the 2D Laplace problems. Just like the MQ, their 


Laplacian harmonic function also requires determining a problem-dependent parameter α 


to get the optimal accuracy and convergence speed. In this study, α is also interpreted as 


the shape parameter. Now we have rotational and translation invariants Laplacian 


distance functions, both of which include a shape parameter. The purpose of this section 


is to create these two-type shape parameter distance function wavelets.   


xyyx ααα 2cos
22+−


 


6.1. Rotational invariant shape parameter DFW 


 


Beside the known MQ, the Possion kernel [34] is also the MQ-type distance function: 
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where n is dimensionality, and x∈ Rn.  for all s>0, which mimics the scale 


function of the multiresolution analysis (MRA). It is, however, stressed that the DFW is 


not a MRA. Given a function f ∈ L


( ) 1=∫ dxxPn
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p(Rn) (p≥1), the solution of the Dirichlet problem with 


boundary value f is [35]  
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It is worth mentioning that since s and ck play the analogous role under the same potential 


theory backdrops, the Possion kernel gives an explicit physical explanation of the shape 


parameter of the MQ. It is also obvious  
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A basic result of Littlewood-Paley theory [34] is that  
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Based on the above observations, now we construct the Possion DFW transform 
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Parameter s is understood the scale parameter in the sense of the pre-wavelets. Unlike the 


MQ, the Possion kernel function (72) has a rapid decay at infinity and is unconditional 


positive definite function. As such, the MQ itself can also be employed to construct the 


DFW. Very interestingly, [36] uses the complex shape parameter to stabilize the ill-


conditioning MQ interpolation matrix. This reminds us that we could have the complex 


shape parameter DFW, i.e. s in (77) is the complex number.  


 


To get the compactly supported DFW, by analogy with the RBF wavelets given in [37] 


we introduce the following basis function 
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ψ2∇  could serve the compactly-supported DFW basis function. In addition, sPn
s ∂∂  


may be also a good DFW basis function. [38] researches the MQ behavior with an 


infinite shape parameter.  


 


The classic Gaussian RBF can be stated in the following fashion   
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where shape parameter β is related to the time translate in the heat potential (16). φ(rk,β) 


approaches the Dirac function δ(rk) as β→0  [5]. Thus, the shape parameter in (79) is in 


fact a special form of the preceding time-space heat potential DFW (17). As in the MQ 


case, β can be the complex number. 


 


The diffusion radial basis function presented in [3]  
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is related to the fundamental solution of the 1D diffusion equation. Due to its simplicity, 


it is very convenient to use (80) creating the shape parameter prewavelet. It is also 


straightforward to have the corresponding shape parameter DFW series. [39] gave the 


MQ DFW series. For the Possion kernel DFW, we have the corresponding series 
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6.2. Translation invariant shape parameter DFW 


 


Before carrying on, we list some lemmas [33,35] below:  
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Lemma 7.1 The shift of harmonic solution (Laplacian solution) is a harmonic function. 


Any linear combination of harmonic functions is also a harmonic function. 


 


Lemma 7.2 The derivatives of any harmonic function are also harmonic functions. 


 


Corollary 7.1. A sequence of harmonic functions on Ω which converges locally 


uniformly on Ω.. Then, the limit function is again harmonic. 


 


[33] uses the 2D translate invariant harmonic function  
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with a shape parameter α for numerical solution of the Laplace equation. In fact, there are 


numerous such translate invariant harmonic functions, e.g.  
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For higher-dimension Laplacian, we also have similar harmonic functions. These 


translate invariant harmonic functions can be used as the basis function to construct the 


DFW transform and series for the function bounded within a finite domain. The author 


has not a clear idea of physical background of (82) and (83) and wonders if there are the 


underlying connections between the shape parameters of the rotational and translation 


invariant Laplacian basis functions. 


 


[2] introduced the harmonic polynomial DFW series using the translate invariant 


monomial solutions of the high-order Laplacian. It is worth mentioning that such 


polynomial DFW is not compactly-supported if we do not enforce some additional 


condition as did (78) to the Possion kernel.  
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7. DFW transforms versus common integral transforms 


 


Besides the foremost outstanding Fourier and Laplace transforms and series, there are 


many other theoretically and practically important transforms such as the Hartley, 


Hilbert, Mellin, Abel, Radon, Riemann-Lioville, Weyl, inverse scattering transforms, and 


their corresponding expansion series, some of which use the eigenfunctions of PDEs. [1] 


has developed the Helmholtz-Fourier and Helmholtz-Laplace DFW’s as the counterparts 


of the Fourier and Laplace transforms. Section 2 introduced the DFW correspondences of 


the Mellin and Kontorovich-Lebedev transforms. This section will try to build the DFW 


correspondences of a few more normal transforms. Furthermore, the DFW methodology 


might be extendable to group transforms of irregular high-dimensional domains.  


 


It is noted that both the integral equation and integral transform have the similar 


expression in terms of the kernel function w(t,a), i.e. 


( ) ( ) ( )∫ −=
b


a
dttawtfag .    (84) 


Similarly, the distance function wavelet transforms and Green integral are expressed as 


( ) ( ) ( )∫ −=
n


dxxgxfw λξξλ ,,
IR


   (85) 


Thus, it is not difficult to make the DFW transforms in connecting to the traditional 


integral transforms if we know the kernel solution of partial differential equation behind 


the latter. As examples, we first intuitively conjecture a DFW transform mimicking Weyl 


transform [40] without any mathematical analysis:  
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nIR
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where H is the Heaviside step function. (86) looks like the wave potential DFW 


transforms discussed in section 2. In terms of the Hilbert transform, a DFW transform is 


proposed by 
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x
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nIR
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nIR
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By analogy with the cylinder Abel transform [41], the corresponding DFW transform is 


given by 
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A
nIR
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The basis functions of the DFW correspondence of the Hartley transform are  
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where Y is the Bessel function of the second kind. It is straightforward to construct the 


DFW transforms based on (89). 


 


In terms of the Stieltjes Transforms, we have the DFW transform 


 


( ) ( )( )∫
−+−Γ=


nIR


p dxtxptS ξξ , .   (90) 


 


We need to mention again that the present study is more intuitive conjecture than the 


rigorous mathematical inference.  
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In the radial function wavelets (RFW) [40,42,43], the generalized translation operator Tx 


(x≥0) for smooth function φ (x) on (0,+∞] is defined by 


 


( ) ( )
( )


( )( )∫
∞ −++


−Γ
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0


222 sincos2
212


2 θθθφ
π


φ dxyyx
n
nyT n


x ,  (91) 


 


where x and y represents two different nodes coordinates. If the above translation 


operator is redefined by  


 


( ) ( yxyTx −=φφ ) ,    (92) 


 


and then, all the related results of the RFW [40,42,43] can be used with the distance 


function wavelets.  


 


Further, in the sense of translation invariant (φ (x) on (-∞,+∞)) [44] 


 


( ) ( )yxyTx −=φφ ,    (93) 


 


we may get more general results. In addition, θ in the translation operator (91) may be 


expressed via both the inner product distance variable and the Euclidean distance 


variable, namely,  


 


( yxyxyx ⋅−= ,,,χθ ) ,    (94) 


 
2222 yxyxyx −−+=⋅ ,    (95) 


 


where dot denotes the inner product of two vectors for the ridge distance variable. The 


other radial transforms and series [45] may be feasible to be transferred into the DFW 


transforms and series. 
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8. Geodesic DFW 


 


The processing of geodesic data is one of the important applications of the radial basis 


function [46]. It is, however, noted that there is no particular kernel distance function 


available now in literature to deal with the geodesic problems. This section will give a 


few geodesic kernel distance functions based on the fundamental solutions of the related 


PDEs. 


 


For anisotropic and inhomogeneous objects, [5] lists the fundamental solutions of the n-


dimensional time-dependent diffusion equation 
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and of the n-dimensional Laplace equation 
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where the coefficient matrix κ=[κij] represents the parameters in different directions (j) 


and locations (i) of anisotropic and inhomogeneous media, and the geodesic distance R is 


defined by  


 


( )(∑
=


− −−=
n


ji
jjiiij xxR


1,


12 ξξκ ).   (98) 


 


By analogy with the normal Laplacian high-order solutions (33) and (34), it is straight 


forward to have the high-order fundamental solutions of the anisotropic and 
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inhomogeneous Laplacians. It is also not difficult to get the geodesic fundamental 


solutions of other PDEs such as the convection-diffusion, Berger plate, Winkler plate, 


and wave equations. For instance, we can easily derive the fundamental solution of the 


Helmholtz equation 
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( ) ( )RH


R
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π
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12
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In addition, [58] presents the general approach to obtain the Laplacian fundamental 


solutions in the isotropic heterogeneous media. It is straightforward to construct various 


geodesic (inhomogeneous) DFW transforms and series by the PDE kernel solutions of 


(96), (97), (99) and those given in [58].   


 


 


9. Kernel distance sigmoidal functions  


 


In artificial neural network and machine learning, each node has a transfer function which 


consists of an activation function (a summation of inputs) and an output function. The 


type of activation function depends strongly on its task [47]. Among various possibilities, 


a variety of distance variables construct the simplest and efficient activation function. 


Note that we here use the widest definition of the distance function [1], which includes 


the inner product in the ridgelet function, various distance functions listed in [47], and a 


combination of both. The readers have seen from these reports I, II and III that the 


translation invariant distance vector, inner product, Euclidean distance function and their 


combinations appeared in the foregoing elliptical, hyperbolic, and parabolic distance 


function basis functions. [47] argues that the symbolic (nominal) variables can not be in 


any liner order. A color variable example is discussed, where each different color is 


assigned an identity value and a linear distance thus makes little sense in this type of data. 


However, if we use a different digital definition of colors, situations will alter. For 


instance, we can assign 0, 0.5, 1 for blue, green, red. Then, any other colors can be 


something between 0 and 1. Under this definition of variables, the distance variable does 
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make sense. The basic requirement is that if the distance measure between two values is 


small, both should belong to similar classifications [48].   


 


As of the output function, the S-shaped sigmoidal functions may be the most popular 


[49,50]. The sigmoidal function yields a value between 0 and 1 in terms of the activation 


function value A and a slope (scale) parameter s. The logistic function [49]  


 


( ) Ase
s −+
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1
1σ .    (100) 


 


illustrates the typical form of the sigmoidal functions. 


 


This section will focus on developing of the kernel sigmoidal functions with the help of 


the kernel distance functions. It is stressed that although the kernel distance function has 


the origin of PDEs, any activation function can be used with them to create a transfer 


function. The singularity at the origin of some kernel distance function is not an issue for 


the sigmoidal functions.  


 


As an extension of the hyperbolic functions, we first define the multidimensional 


hyperbolic functions 
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where ϕn with superscripts # and * are respectively the general solution and the 


fundamental solution of the modified Helmholtz equation 
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where  kk xxr −= , n is dimensionality, and I denotes the modified Bessel function of 


the first kind which grows exponentially as rk→∞. In contrast, the modified Bessel 


function of the second kind K decays exponentially and has singularity at the origin. 


(101) degenerate into the hyperbolic function in 1D case.  


 


The modified Helmholtz sigmoidal function using the fundamental solution is given by 


 


( ) ( )sA
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where A is the activation function for a summation of inputs. The natural choice of the 


distance variable is the Euclidean one for the modified Helmholtz equation. This, 


however, is not necessary. σMF  can be simplified as 


 


( ) ( ) ( )[ ]AsAe
s nsAMF ln1
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The modified Helmholtz sigmoidal function using the general solution is given by 
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The modified Helmholtz equation is also called the diffusion equation and exhibits 


closely relationship with the stochastic dynamics. Thus, the above modified Helmholtz 


sigmoidal functions are also underpinned by the statistics.   


 


As seen before, the DFW basis functions using the general and fundamental solutions of 


the convection-diffusion equation naturally combine the inner product for direction 


vector and Euclidean distance variables, i.e. 
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It is straightforward to have the convection-diffusion kernel sigmoidal function of the 


form 
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where w is the direction vector. The kernel solution  (16) of the time-dependent heat 


equation can be used to create the time-space sigmoidal function  


*
nhu


 


 41







( ) (( ))ταξ
ασ


−−+
=


txsu
s


h
H ,1


1, * .    (111) 


 


In the same way, the fundamental solutions (96) of heterogeneous transient diffusion 


problem using the geodesic distance variable (98) can be employed in making the time-


space sigmoidal functions with anisotropic and inhomogeneous parameters. In addition, 


the kernel solution of the time-dependent convection-diffusion equation is   
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In terms of (112), it is straightforward to construct the convection-diffusion temporal 


sigmoidal function.  


 


The fundamental solutions of the potential Laplace equations are entitled in creating the 


cheap sigmoidal functions  
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which are much more computationally efficient since no costly Bessel functions and 


exponents are involved. In addition, the fundamental solutions of wave equations are also 


eligible to make the sigmoidal function. We also can use the fundamental solutions of the 


Helmholtz equations to construct the periodic sigmoidal functions 
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where Hn with superscript * and # respectively represent the fundamental and general 


solutions of the n-dimensional Helmholtz equation. We can also create variants of the 


above distance sigmoidal functions by analogy with the sigmoidal functions (46-51) in 


[49]. Among them, the geodesic kernel distance functions (96) and (97) are especially 


attractive. In addition, most of DFW’s and their basis functions in this report series such 


as the Possion kernel can be directly used as the transfer function in their own right.  


 


It is observed that the S-shaped sigmoidal function behaves very much like what the 


shock wave does. Therefore, various distance sigmoidal functions presented above can 


also be used in the numerical solution of shock wave and boundary layer problems. It is 


very interesting to compare the shock wave, boundary layer and neuron transfer 


behaviors. For instance, the Peclet number in the convection-diffusion equation, which is 


the ratio of the bulk heat transfer and conductive heat transfer, plays an analogous role as 


dose the slope parameter s in the sigmoidal function. The Peclet number is decided by the 


heat capacity Cp, thermal conductivity k, density µ,  characteristic length D and density ρ 


of media [51], i.e.  


 


k
CD


Pe p ρµ ⋅⋅⋅
= .    (116) 


 


The author guesses that the electric signals traveling within neuron may also exhibit 


similar mechanism and obey the similar mathematical equations such as the Navier-


Stokes equation or simpler Burgers equation. Thus, the slope parameter s could be 


decided via a few physical parameters parallel to those in (116) for the Peclet number. On 


the other hand, the Reynolds number is proportional to the ratio of inertial force and 


viscous force and is used in momentum, heat, and mass transfer to describe dynamic 


similarity [52]. It is conceivable that the solutions of the mathematical physics PDE 


models of brain neuron may depend crucially on some parameters like the Peclet or 


Reynolds numbers.  


  


 


 43







10. Concluding remarks 


 


A distributed parameter system is represented by a PDE, its counterpart is lumped 


parameter systems or simply data set. This suggests any discrete signal, no matter 


whether linear or nonlinear, memoryless and memory, random or deterministic, having or 


having not PDE model, must have their respective PDE solution structures. So, we should 


be aware of the lurking PDE backdrop in processing of specific data such as those in 


social sciences, linguistics, and literature. It is well known that all PDEs can be 


categorized into elliptical, parabolic, hyperbolic or their mixture types. As such, we must 


recognize which kind of PDE type the data we are handling belong to. Majority of data 


approximation techniques available now, e.g. spline, however, have their roots on 


elliptical Laplace and biharmonic equations and are not suitable and efficient in handling 


the hyperbolic and parabolic data.  


 


One of the major drawbacks in the standard wavelets is less incapable of including 


inherently the features of the particular type objects. In contrast, the DFW can be easily 


designed with the characteristics of certain type problems. For instance, the fundamental 


solution of Laplacian under an axisymmetric region has the form [53,54] 
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where E is the complete elliptic integral of the first kind, and 


( 222
kiki yyxxp −++= ) ,    (118a) 


ki xxq 2= ,     (118b) 
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where x and y are the Cartesian coordinates. With the Laplacian fundamental solution 


(117), we can easily make the axisymmetric Laplacian DFW transforms and series as in 


sections 2 and 3.  
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In dealing with the infinite domain problems, the distance function presented in [54,55]  


 


( ) ( )4
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−=      (119) 


 


satisfies the regularity conditions of diffusion problems at infinity, where C is a problem-


dependent constant. It is obvious that (119) and its variants will be nice DFW basis 


functions for diffusion type problems within infinite domains. 


 


This report as well as the other two [1,2] explored many DFW-related issues intuitively 


without enough rigorous mathematical justifications. These DFW’s share all of the major 


merits of the standard wavelets. Unlike the latter, the DFW in principle, however, is 


mathematically very simple and computationally efficient to perform meshfree high-


dimensional data processing and numerical PDEs. The essential differences between the 


DFW and the traditional integral transform and series lie in that the DFW includes the 


dimensional effect and keeps the translate and/or rotational invariance.  


 


As complements, there are another two reports [59,60] on the kernel distance function 


and its applications. The readers are advised to read them for a complete comprehension 


of the distance function. The DFW is expected to find numerous applications in data 


processing and numerical PDE. For instance, the composite multiple reciprocity and the 


differentiation smoothing are very effective and efficient techniques in evaluating the 


domain integral in terms of the BEM and particular solution in terms of the BKM and 


BPM, while the Helmholtz-Fourier series is a competitive alternative to the Fourier series 


method for the domain integral. Some important PDEs and their solutions were not 


mentioned in the three reports. For instance, the kernel solutions of the delay PDEs and 


the Black-Scholes equation can also be used to construct the important DFW’s.  


 


A generalized distance function wavelet transform with multiple arguments is stated as 
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( ) ( ) ( xdxmwxfmnwF
nIR n∫ −ℜ= ξλξλ ,,,,,,, )vv ,   (120) 


 


where arguments λ, wv , n, m and ξ represent scale, direction, dimension, order of high-


order PDE, and translate, respectively. The wavelet basis function ℜ n could be the kernel 


distance function solution of a partial differential equation, which best fits the system 


behavior of interest. The shape parameter discussed in section 7 is considered an expedite 


substitute of the scale, dimension, or order of PDE and thus is not considered an 


independent parameter to be included in (120). Multiple parameters DFW transform 


(120) may be useful to analyze very complex systems, where some or all of those 


parameters manifest locally.  


 


The ultimate goal of this research is to show some recent advances in building a complete 


framework of the distance function. Given their immature nature, it is inevitable to have 


more or less errors in these reports. Some cautions on the given results are necessary 


based on readers’ own discretion to avoid any potential misleading, and the readers may 


better regard the reports as a gathering of intuitive ideas rather than the established 


theory.   
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