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Summary 


 


Report II is concerned with the extended results of distance function wavelets (DFW).  


The fractional DFW transforms are first addressed relating to the fractal geometry and the 


fractional derivative, and then, the discrete Helmholtz-Fourier transform is briefly 


presented. The Green second identity may be an alternative devise in developing the 


theoretical framework of the DFW transform and series. The kernel solutions of the 


Winkler plate equation and the Burger’s equation are used to create the DFW transforms 


and series. Most interestingly, it is found that the translation invariant monomial solutions 


of the high-order Laplace equations can be used to make very simple polynomial DFW 


series. In most cases of this study, solid mathematical analysis is missing and results are 


obtained intuitively in their conjecture status.  
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1. Introduction 


   


This report is the second in series [1,2] about my latest advances on the distance function 


wavelets (DFW). Unlike the common distance functions, e.g., MQ and TPS, which have 


no provision for scaling and carry out a multiresolution hierarchy by simply dropping or 


adding some points [3], the DFW is comprised of both the scale and translation 


arguments. To better understand what will be presented here, the readers are advised to 


have a look at Report I [1] beforehand. The report is featured with lots of grand 


conjectures, where firm mathematical underpinnings are conspicuously lacking in most 


cases. But nevertheless the author assumes that many results have certain physical 


grounds and are in agreement with the faith that God rules the world with simplicity and 


beauty.  


 


The rest of report is organized into six thematic sections. In section 2, the fractional 


Helmholtz-Fourier transform (HFT) and series and Helmholtz-Laplace transform (HLT) 


are presented in relation to fractal geometries and fractional derivatives. In section 3, we 


briefly present the discrete Helmholtz-Fourier transform without mathematical 


justifications. Section 4 tries to derive the distance function wavelets by the Green second 


identity and the Laplace transform. In section 5, the solutions of the Winkler plate 


equation and the Burger’s equation are utilized to create some novel DFW transforms and 


series. In section 6, the translation invariant monomial solutions of the high-order 


Laplace equations are applied to develop the polynomial DFW series. Finally, section 7 


provides a few supplementary results on the DFW and points out some potential uses.  


 


 


2. Fractional Helmholtz transforms and series 


 


In recent years, much attention has been attracted to the so-called fractional derivative 


[4], fractional Fourier [5] and Laplace transforms and fractal geometry. The underlying 


relationships between them are also unraveled [5-7]. Note that “fractional” is just 


conventional misnomer since it also actually indicates real number relating to the so-
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called fractional derivative and integral transforms. The HFT and HLT [1] were 


recognized as the distance function counterparts of the Fourier and Laplace transforms, 


respectively. By analogy with the latter two, this section addresses the fractional DFW 


Helmholtz transforms and series.  


 


The HFT is given by   
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while the HLT [1] is stated by  
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where Jn/2 and Yn/2 are respectively the Bessel functions of the first and second order of 


the n/2-1 order, and Kn/2 is the modified Bessel function of the second kind. There is a 


number of ways to connect the HFT and HLT with the fractional derivative. One simple 


way is through frequency domain. Obviously, the HFT hold 
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and generally, this process may be iterated for the m-th order divergence derivative to 
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where m is a integer number in the most stereotyped mathematics. Observing (5), there is 


no reason hindering the extension of m to the set of real numbers, and then, comes out the 


fractional derivative. If m<0 in (5), then we have fractional integration. Let us advance a 


little further. m could be even a complex number corresponding to a complex order 


partial differentiation [8], while keeping (5). We could develop a complete theory of 


fractional HFT and HLT by analogy with the fractional Fourier and Laplace transforms. 


 


On the other hand, Blu and Unser [3] have pointed out that the self-similarity of fractal 


geometry is one fundamental concept to create the distance function wavelet. This 


inspired the author to assume that dimensionality n can be a real number. Consequently, 


(1) and (2) turn out to be a new type of the fractional HFT and HLT again 
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The same is for fractional Helmholtz series given in [1]. A fractional n implies fractal 


geometry. It is noted that the DFW HFT has a clear edge over the classic Fourier 


transform in that the dimensionality explicitly appears in the HFT and thus may be 


suitable to serve as an alternative powerful mathematical tool to quantitatively describe 


the fractal geometry. In some areas (e.g. control engineering), the complex dimension is a 


useful concept. Thus, n even could be a complex number. One thing that deserves more 


attention is how to define the Euclidean distance in complex dimension geometry, and 


then how about a negative n. The problem is what physical backdrops are behind these 


exotic mathematical devices. The author conceives that there is an underlying link 


between the complex dimensionality and complex order derivative through the HFT or 


the HLT, when n is a complex number in (1), (2) and (3). It is certain that there are lots of 


issues unanswered out there. 


 


The above research displays that the dimensionality (fractal), scale (frequency) and 


differentiation can be connected through the DFWs. [2] will give a detailed discussion on 


these inherent relationships through the research of the frequency dependent attenuation 


of acoustics and elastic waves.  


 


 


3. Discrete Helmholtz-Fourier transform 


 


In terms of continuous Helmholtz-Fourier transform (1), it is easy to attain the 1D 


discrete Helmholtz-Fourier transform (DHT) as in the discrete Fourier transform. In 


multidimensional cases, the basis functions of the continuous complex HFT, however, 
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encounter the singularity at the origin. It is noted that the basis functions of the 


continuous HF J transform  
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has arbitrary degree of continuity, where kk xx −=r . The HF J transforms are stated as  
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We do not give any mathematical justification in this section. 
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4. Distance function wavelets generated by Green’s function 


 


[9] derives various coordinate variable transforms from the Green’s function. This section 


tries to follow the same strategy to develop the distance function transforms. Consider the 


partial differential equation 
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where ℜ  is the spatial partial differential operator, and x is a multidimensional variable. 


In terms of the Laplace transform with respect to time t, we have 
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The Green function solution of (13) is  
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where g(x-ξ,-is) is the Green function of the operator ℜ -is satisfying the boundary 


condition (12). Applying the inverse Laplace transform to (14) and let t=0, we attain 
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Let s=iλ, where λ are the eigenvalues of the operator ℜ +λ, we have 
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If ℜ   is a self-adjoint operator, all eigenvalues λ are real. (16) is restated as 
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It is known that the Green functions of many PDEs can be expressed by the 


corresponding eigenfunctions, i.e. 
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where ψm is the eigenfunctions, and the index m is related with different eigenvalues λ. 


To proceed further, we need to postulate that due to the translation or rotational invariant, 


(18) may be restated as 
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where the upper bar denotes the complex conjugate. (20) is a DFW expression of f(x). 


Now substituting (19) into (17) produces the DFW transform 
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On the other hand, it is observed that (17) can also be seen as an anomalous wavelet 


representation. Namely,  
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For instance, in terms of the free Green function of the Helmholtz equation in 1D infinite 


domain, the Fourier transform can be restated 
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The wavelets transforms (21) and (22) have exotic expressions compared with the 


standard wavelet formalism. But nevertheless they have most properties of the wavelets.  


 


 


5. Some distance function wavelets 


 


Except the distance function wavelets developed [1], there are plenty of the solutions of 


various PDEs eligible to create the DFW. This section is dedicated to developing a few 


new types of the DFW.  


 


5.1. DFWs involving Kelvin functions 


 


The deflection of thin elastic plates resting on a Winkler elastic foundation with stiffness 


κ is governed by  
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where ∆i represents the Dirac delta function at a source point i corresponding to the 


fundamental solution (vs. zero for general solution); domain Ω  can be unbounded or 


bounded with or without boundary conditions. The plate is a two dimensions problem. 


However, in this study, we extend equation (23) up to five dimensions since we found 


their fundamental solution [10] 
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where ker and kei are respectively the Kelvin and modified Kelvin functions of the 


second kind, and ber and bei respectively represent the Kelvin and modified Kelvin 


functions of the first kind. Note that ber and bei have arbitrarily degree of differential 


continuity, kei has the second differential continuity, but ker encounters a singularity at 


the origin.  


 


Steady Schrodinger’s equation in a radial domain   
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also has the solutions (24) and (25).  By using the fundamental solution (24), we can 


construct the distance function transform for a suitable function f(x) 
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The solution (25) is also capable to construct the DFW. By analogy with the Helmholtz-


Fourier series [1], we have expansion series 
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where αjk and βjk are the expansion coefficients. Since f0(x) is related to zero value of κ, 


equation (23) degenerates into a biharmonic equation 
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with the boundary data. As we did for the Helmholtz-Fourier series [1], f0(x) can be 


evaluated by the boundary element method or the boundary knot method. 


 


5.2. DFW transform and series with solutions of Burger’s equation 


 


 The Berger’s equation [11] for large deflections of plate is  
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where the Berger parameter α is constant over the domain but nonlinearly depends on the 


lateral load. The nonlinear relation between the external load and the deformation is 


represented by the second right-hand term [11]. We have the fundamental solution [12]  
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and general solution [11] 
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where Kn/2-1 and In/2-1 are respectively the modified Bessel functions of the first and 


second kinds, and Sn(1) is the surface size of unit n-dimensional sphere. By analogy with 


the Helmholtz-Laplace transform, we have 
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The general solution (32) can also be used to construct the DFW series for representing 


the functions bounded within finite domains. 
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6. DFW series with monomial Laplacian solutions 


 


There are numerous solutions of the high-order Laplace equations satisfying rotational or 


translation invariant. This section will develop the distance function wavelets series by 


using the translation invariant monomial solutions. In [2], the rotational invariant 


solutions are employed to create the DFW.  


 


A translation in the plane is a transform  
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For p-order Laplacian, invariance holds for m-order translation when m<2p, i.e. under 


 


( ) ( ) ( ) ( mm
i


mmm
i


m
i


mm
i byybyaxyxaxx +=++=+= ,, ,  (36) 


 


we have 


 


( ) ( mmmmpm
i


m
i


m
i


m
i


p yyxxyyxx ++∇=++∇ 22  .   (37) 


 


Any real function satisfying the Laplacian is called a harmonic function. In this study, we 


call the function, which satisfies the high-order Laplacian, the high-order harmonic 


function. The harmonic function is also called the potential function which includes the 


scalar and vector potential functions in engineering. Thus, the high-order harmonic 


function is also often called the high-order scalar or vector potential functions. A linear 


combination of translates of the monomial high-order harmonic functions can 


approximate many smooth functions under the harmonic basis function space. As an 
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illustrative example, let us consider the two-dimension translation-invariant monomial 


solutions of high order Laplace equations 
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we can construct the DFW series to approximate continuously differential function Q(x,y) 
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where cjk are the expansion coefficients. Note that since the high order Laplacian is scale 


invariant operator, the power exponents of monomials are considered the “scale 


parameter” here. For higher dimension problems, the similar DFW expansion series can 


be constructed. (39) is absolutely not a Taylor expansion although it may look like the 


latter. (39) can be restated as 
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Note (40) in fact have only one expansion coefficient for the constant term, i.e. 


. In terms of the finite difference, least square, collocation or Galerkin 


schemes, the polynomial DFW expansion (40) can be simply used to the function 


approximation and the numerical integration and the solution of partial differential 


equation under arbitrary domain geometry in an explicit multiscale and meshfree fashion 


[14]. As in the wavelets, we can truncate the scales and translates locally and get a sparse 


DFW interpolation matrix in approximating Q(x,y). The completeness, accuracy and 


numerical tests of the presented polynomial DFW are under study and will be reported in 


a subsequent paper.  
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The Laplace equation is typically an elliptical equation. The present polynomial DFW 


series is thus expected to perform well for a variety of elliptical equations. When applied 


to parabolic and hyperbolic equations, it would be more efficient and reliable to modify 


this DFW series (40) via simple function transform to reflect the features of those 


equations. For example, we can transfer the convection-diffusion equation 
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 into the elliptic modified Helmholtz equation  
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by an exponential variable transformation [15,16]  
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v is the distance vector between the source and field points, and 
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The nonsingular general solution of the convection-diffusion equation (41) is given by  
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where n is the dimensionality and rk is the Euclidean distance as defined with (7b). 


Accordingly, we construct the following modified polynomial DFW expansions  
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The approximation series (46) embeds the velocity direction.  


 


We also can simplify (40) in some way. For example, the normal multiquadratic radial 


basis function approximation 


 


( ) ( ) ( )∑
=


+−+−≅
M


k
kkkk syyxxhyxQ


1


222,    (47) 


 


can be understood a simplified version of (40) with a single scale parameter (shape 


parameter sk). Determining sk, however, is often tricky and problem dependent.  


 


In addition, the Laplacian DFW series can be constructed under the polar coordinates, i.e. 
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where θ-θk is the angle between vectors (x,y) and (xk,yk). j indicates the scale. (48) is not 


easy to use in general because of the difficulty in the evaluation of the angle.  


 


It is feasible to create similar translation invariant DFW series via the translation 


invariant sine and cosine solutions of the multidimensional Helmholtz equations in 


handling periodic problems. In 2D case, we have 
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For the diffusion and convection-diffusion problems, the similar DFW expansion can be 


made via exp(-τ(x-xk)) and exp(-τ(y-yk)) and their combination with the velocity term as 


shown in (43). In some particular application, we can construct a special translation 


invariant distance functions which reflects the systematic characteristics (PDE and outer 


forcing terms).  


 


It is very desirable to have the orthogonal DFW expansion of the form: 
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where  and  are orthogonal eigenfunctions. It is very interesting to note that unlike 


the fundamental solution and general solution DFWs in [1] and the preceding sections, 


the polynomial and trigonometric DFW series developed in this section could have their 


basis functions from the PDE solution (the separation of the variables) under the 


rectangular or hypercube domains instead of the circle or hypersphere domains. As such, 


(50) can nevertheless be simply used to handle arbitrary domain problems due to its 


translation invariant property. For plenty of PDEs, orthogonal eigenfunctions under 


rectangular and cube domains can be found in literature. Thus, it is not a difficult task to 


construct such translate DFW series to solve a broad variety of problems. However, we 


do not know if these eigenfunctions are still orthogonal under arbitrary domains. 


x
iφ y
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The essential distinction of the present DFW expansions from the other coordinate 


variable expansion approaches lies in that we use the translation invariant distance 


variable solutions of the high order PDE to get the meshfree and multiscale interpolation 


schemes. It is stressed that as the spherically symmetric solutions are closely related to 


the fundamental and general solutions, most of the coordinate variable kernel solutions of 
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PDEs under regular domains are translate invariant solutions for arbitrary domain 


problems.  


 


The above polynomial DFW series in space can be extended to the time-space DFW. It is 


known that the wave and heat problems have the time-harmonic solutions, which are in 


some sense similar to the spatial harmonic functions of the Laplacian. In particular, the 


wave equation has the time-reversal invariance solution. We may have the time-space 


polynomial DFW series 
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where t-tk≥0 for the diffusion problem and  for wave problems are 


required to ensure the principle of casualty.  


( ) 0222 ≥−− kk rttc


 


To illustrate the difference between the translation and rotational polynomial DFW series 


of harmonic functions, we briefly list the rotational invariant Laplacian DFW series [2]  
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where is the fundamental solution of the m-th order Laplacian ∇*
m
nL


u 2(m+1)u. When the 


order m≥1, the high-order Laplacian fundamental solutions of 2D and 3D cases [17] are 


no longer singular at the origin. Q0(x) is evaluated via the Green second identity  
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where Sn-1  are the surface of finite domains. (53) can be easily evaluated by the boundary 


element method (BEM) with boundary data, and then Q0(x) at any inner locations can be 


calculated via (52). The boundary knot method [10] is also an alternative to the BEM for 


this task. For more details on the rotational invariant DFW series see the section 5 of [2]. 


(52) has simpler form and fewer expansion coefficients for high dimension problems than 


the preceding monomial Laplacian DFW series, and u  of different orders m are 


orthogonal. The drawback is that the calculation of the Laplacian fundamental solution is 


more costly than that of monomials. 


*
m
nL


 


 


7. Supplementary results 


 


The DFW is easily extended to hand the problems with anisotropic parameters via the 


modified definition of the distance variable [18]. For instance, consider the Helmholtz 


equation 


 


( )


 ∆−


=+∇∇
,0


,2 iuu λη  in Ω,    (54) 


 


where η={ηj} are the anisotropic parameters in different coordinate directions. If all ηj 


are constants, we have the common fundamental and general solutions via the modified 


Euclidean distance variable 
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Then, we can replace the standard Euclidean variable in the HFT and HLT with the above 


definition of distance variable. These modified HFT and HLT will be more efficient to 


handle anisotropic problems.  
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For nonlinear problems, the distance variable may be defined by 
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Another useful technique handling nonlinear problems is to use the Kirchhoff transform 


as in the boundary element method. For detailed discussions of different definitions of the 


Euclidean distance variable see [18]. For data processing, we need to keep in mind the 


physical mechanism (PDE model) behind the data and consider the PDE-specific DFW 


technique.   


 


The distance function wavelets have some potential important applications. For example, 


the Helmholtz-Fourier transform may be a competitive alternative to the Fourier 


transform in various data processing techniques such as filtering, modulation and 


correlation.  


 


The DFW transform and series are established on the kernel distance variable solutions of 


various linear time-space invariant PDE systems. In more general sense, the strategy can 


be extended to the gauge invariant PDE model (gauge group) such as Yang-Mills 


equation. Further, the inverse-scattering transform reveals that invariance (the 


superposition principle) also holds in some important nonlinear PDE models. We are now 


under way to research the DFW transform and series based on such nonlinear invariance 


mechanism. [13] puts it “the invariance has powerful consequences which lie at the heart 


of the physical idea”. We add that “distance” (various relative differences) is an 


underlying fundamental devise depicting the invariant relativity. Such philosophy implies 


the distance function wavelets, which underlie invariance and relativity, may be a 


powerful tool to display, analyze and exploit universe symmetry, simplicity and beauty 


out of mundane irregularity, clutter and difficulty. 


 


It is worth pointing out again that most results in this report are intuitively attained 


without any rigorous mathematical analysis. The readers need to note their conjecture 
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status. Further research is now under way and the author would like to get any comments 


and opinions 
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