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Abstract


We used scaled factorial moments to search for inter-
mittency in the log expressi on ratios (LERs) for thou-
sands of genes spotted on cDNA microarrays (gene chips).
Results indicate varying levels of intermittency in gene
expressi on. The observation of intermittency in the data
analyzed provides a complimentary handle on moderately
expressed genes, generally not tackled by conventional
techniques.


PACS: 87.10.+e


Scaled factorial moments have found widespre ad use in
high-energy physics for detecting intermittency in parti-
cle production [1-10]. The presence of jet-like structur es
and perhaps quark-gluon plasma phase in particle pro-
duction can result in clustering of data in bins leading
to holes and spikes in the rapidity distribution. This in-
vestigation is based on the type of intermittency defined
as nonstatistical fluctuations invariant over the scale of
resolution of particle rapidity [11-18]. We do not con-
sider, for example, the type of intermittency found in
turbulence which produces non-Gaus sian tails in temper-
ature distribu tions [19]. In high energy physics, Bialas
and Peschanksi [10] reported that the true bin probabil-
ities can only be observed with infinite statistics. In the
case of finite particles, the observed distribution of parti-
cles Q(p1, ...,pM ) smears out the Bernoulli component, as
shown in (5.2) of [10]. To overcome this, scaled factorial
moments of the observed data are used to measure the
scaled moments of the true distribution. If only statis-
tical fluctuations are present in the rapidity distribution
of particles, then there will be no intermittency. The
added value of scaled factorial moments is that they also
remove the Poissonian noise to reveal dynamical fluctua-
tions which may be present. This paper describes the use
of scaled factorial moments to search for intermittency in
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gene expressi on on complimentary DNA (cDNA) microar-
rays (gene chips) which contain simultaneous expressi on
levels for thousands of genes. Intermittency in this con-
text implies that we are in search of abundances of gene
expressi on values within the Gaussian-like distribution of
expressi on. If there is no intermittency, then we would
expect smooth Gaussian-like distributions of expressi on
with only statistical variation.


During nucleic acid transcription, each “coding” gene
synthesizes a messenger ribonucleic acid (mRNA) using a
deoxyribonucleic acid (DNA) template. mRNA transits
from the cell nucleus to the ribosome which resides in the
cellular cytoplasm. In the ribosome, mRNAs are trans-
lated into proteins consisting of amino acids. For each
gene, there are usually multiple copies of mRNA found
in the cytoplasm. In the laboratory, mRNA is extracted
from treated (diseased) and control (normal) cells. Re-
verse transcription (RT) is then used to generate a com-
plimentary copy of DNA (cDNA) from each RNA. During
RT, cDNAs from experimental cellsare labelled with Cy5
dye which fluoresces in the red wavelength, and cDNAs
from normal cells are labelled with Cy3 dye which flu-
ouresces in the green wavelength. The labelled cDNAs are
then aliquoted onto a cDNA microarray which has been
spotted with DNA targets that are complimentary to the
cDNA. During hybridization, the red and green-labelled
cDNAs competitively bind with the spotted DNAs. Fol-
lowing drying, excimer laser scanning and computer im-
age processing of a microarray, the pixel-averaged inten-
sity of red and green signals for each spot (DNA) reveals
the level of expressi on of a particul ar gene in the treated
and normal cells. The logarithm of the ratio of inten-
sities is known as the log expressi on ratio (LER), which
compares gene expressi on in treatment tissue with normal
tissue. (Spot intensities are normalized for total treated
and normal mRNA used for the hybridization). Positive
values of LER indicate greater gene expression (upregul a-
tion) in treated (or diseased) cells, whereas negative val-
ues of LER indicate lower expression (downregulation) in
treated cells when compared with normal cells. In sum-
mary, cDNA microarrays use competitive hybridization
to compare concentration levels of thousands of genes si-
multaneously expressed in treated and normal cells.


Let N represent the total number of genes spotted on
a cDNA microarray. Let the range of LERs (y) on a
microarray be ∆y = ymax − ymin. Consider M non-
overlapping equally-spaced bins with width δy = ∆y/M .
The qth (q = 2, ...,5) scaled factorial moment [10] is de-
fined as


Fq = Mq−1
M∑
m=1


nm(nm − 1) · · · (nm − q + 1)
N (N − 1) · · · (N − q + 1)


, (1)


where M is the total number of bins, nm is the number
of genes whose LER value falls within bin m, and N =


1







∑
m nm is the total number of genes on the array.
We considered two sets of data for our analy-


sis. The first was based on expressi on of 2,466
genes in the yeast S. Cerevisiae at different
times following various experimental treatments
(79 arrays) available at web site http://genome-
www4.stanford.edu/MicroArray/SMD/publications [20].
These data reflect gene expression of S. Cerevisiae
during experimental treatment with alpha factor arrest
(“alpha”), centrifugal elutriation (“elu”), temperature
sensitive mutation (“cdc15”), sporulation (“spo”), high
temperature (“heat”), reducing agent dithiothrietol
(“dtt”), low temperature (“cold”), and diauaxic shift
(“diau”). The second data set consisted of expressi on
for 9,706 genes in 60 cancer cell lines available at web
site http://discover.nci.nih.gov/nature2000 [21]. Cancers
represented are melanoma (“ME”), lung (“LC”), central
nervous system (“CNS”), colorectal (“CO”), leukemia
(“LE”), ovarian (“OV”) , renal (“RE”), prostate (“PR”),
and breast (“BR”).


Calculations began by first determining “base” bin
counts for the maximum number of bins possible for each
array, Mmax = ∆y/0.01, where 0.01 was the precision of
the data. We observed that F2 increases rapidly when
the bin size is smaller than 0.01, mostly likely due to
round-off error in the creation of the LER values from
the raw data. Round-off error can create artificial holes
and spikes in the data. We, therefore, only consider bin
sizes larger than 0.01. Fq was calculated for observed
and simulated LERs at total bin numbers M = Mmax/L
(L = 2, 3, ...,Mmax/2). A lower bound of 30 was used for
M in all calculations. Bin counts nm for observed LERs
were tabulated using M equally spaced bins of width
δy = 0.01×L. Bin counts for simulated data were based
on kernel density estimation [22] in the form


f(m) =
1
Nh


N∑
i=1


K


(
LERi − ym


h


)
, (2)


where f(m) is the simulated bin count for the mth bin,
N is the total number of LERs, h = 1.06σN−0.2 is the
bandwidth, and σ is the standard deviation of LERs on
the array. K is the Epanechnikov kernel function [23]
defined as


K (u) =


{
3
4 (1 − u2) |u| ≤ 1
0 otherwise,


(3)


where u = (LERi − ym)/h, LERi is the value of each
LER, and ym is the lower bound of the mth bin. The
simulation is essentially a smoothed function of the data
with attendant statistical fluctuation. A second round
of Fq calculations were made after subtracting 0.1 from
ymin and ymax, redetermining bin cutoffs, and recalculat-
ing nm and f(m) in order to shift the scale of the phase


space. This allowed us to look more closely at statistical
fluctuations and also provided twice as many values of Fq
for observed and simulated LERs. Plots of lnFq vs. lnM
were constructed for each array and each value of q. The
difference between slopes for observed and simulated data
was based on fitting the linear model


lnFq = β0 + β1(lnM), (4)


separately for observed and simulated data, where β0 is
the y-intercept and β1 is the slope. Slope difference was
calculated as


∆β1 = β1,observed − β1,simulated. (5)


Positive values of ∆β1 implies intermittency among the
observed LERs.


Figure 1 shows the frequency histogram for N = 2, 402
LERs binned in M = 106 bins of width δy = 0.02 for
the spo0 microarray in the sporulation experiments on S.
Cerevisiae [20]. Several large spikes and holes are visible
in the LER distribution, suggesting clusteri ng of LERs at
the scale of the bin size δy = 0.02. The greatest contri-
bution to Fq is from the spikes near the central peak of
the distribu tion. Holes near the tails contribute little to
Fq . Figure 2 illustrates plots of lnFq vs. lnM for the
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Figure 1: Binned LERs from the spo0 microarray in the
sporulation experiments on S. Cerevisiae [20].


same spo0 array whose binned LERs are shown in Figure
1. Replicate values of lnFq are also plotted at various
values of lnM as a result of calculating Fq after a 0.1
shift in the scale of y. The spread in the data shows the
level of bias in the choice of the binning. The slope of
simulated data is usually very small, indicative of lack
of intermittency in the simulated data. Slightly negative
slopes for simulated data were also observed for smooth
gaussian-like distributions, where Fq ∼ Constant which
changes with M .
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Figure 2: Log scaled factorial moments, lnFq , vs. natural
log of total bin number, lnM , for observed (obs) and
simulated (sim) LERs for the spo0 array [20]. Replicate
values of lnFq can be observed at various values of lnM
as a result of calculating Fq after a 0.1 shift in the scale
of y.


Figure 3 shows values of ∆β1 for the 79 arrays in the
S. Cerevisiae data set [20]. Overall, the ∆β1 values are
positive, with an average value of 0.03-0.04, indicative
of intermittency in the data. The greatest signals were
observed in the experiments for sporulation (spo0 array)
and diauxic shift (diaua array). For the alpha factor
arrest (alpha) experiment, a slightly elevated signal was
seen early on, dropped, and then picked up again toward
the latter time points. Interestingly, the signal fluctu-
ated over time periods in the centrifugal elutriation ex-
periment to the extent that periodicity can be noticed.
For the experiment involving the temperature-sensitive
mutant cdc15, the signal was similar to that observed
in the centrifugal elutriation experiment. During sporu-
lation, the signal was largest at the beginning, dropped
thereafter, and continued to be jumpy until the cold and
diauxic shift experiment. There is no discernible trend
within a given treatment, and there is no abrupt transi-
tion from one array to the next. The different treatments
are not ordered in any particular way in Figure 3. The
higher factorial moments follow the same trend as that
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Figure 3: ∆β1 and uncertainty for observed and simu-
lated data for the 79 arrays in the S. Cerevisiae data
[20]. Ranges shown are for q = 2, ...,5, with the smallest
range at q = 2.


of F2, only with higher values. This is not surprisi ng be-
cause ∆β1 for the qth moment is about q/2 times that of
F2 if the only source of intermittency is bin-by-bin fluc-
tuations. The plotted error bars for each data point in
Figure 3 are based on the error in the fitting of the slope,
as well as the error of the simulated data. As one can
see, the significance of the signal is usually more than 3
standard deviations.


Figure 4 shows the ∆β1 for the 60 cancer cell lines.
Among them, the greatest intermittency signal was de-
tected for the colon cancer cell line CO-HT29 and central
nervous system cancer cell line CNS-U251, since they both
had the greatest values of ∆β1 for all values of q. Wide
variation in ∆β1 can be observed across all of the data,
with no consistent signal occurring for each type of can-
cer. The most jumpy transition in ∆β1 was seen for cen-
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Figure 4: ∆β1 and uncertainty for observed and simulated
data for the 60 cancer cell line arrays [21]. Ranges shown
are for q = 2, ...,5, with the smallest range at q = 2.


tral nervous system cancer cell lines. It is noteworthy
that the average level of intermittency, as measured by
∆β1 for F2, is about 0.01, about 3-4 times lower than
that of the yeast data. The main difference is that there
are about 10,000genes in each cancer array, about 4 times
more genes than the yeast array. The significance of the
signal (signal/error), however, is comparable to that of
the yeast data.


The observed intermittency in the data considered may
suggest correlations in the abundances of expressi on levels
within the Gaussian-like distributions of LERs. In the S.
Cerevisiae sporulation experiments, a majority of genes
whose LERs fell within the spikes in Figure 1 had dramat-
ically altered expression values later on in the sporulation
experiments. Chu et al. [24] reported temporal changes in
expressi on among a large number of genes throughout the
sporulation process. In the cancer cell lines whose LER
distributions were investigated, changes in intermittency
over the arrays are likely due to cancer-specific alterations


in cell-cycle control, DNA repair, oncogenesis, tumor su-
pression, apoptosis, and angiogenenesis, all of which affect
tumor growth, severity and evasion from attack by the im-
mune system [25]. Cancers vary in their cause and sever-
ity and there may be a wide range of unknown gene-gene
and gene-environment interactions which impact gene ex-
pression.


Errors in reproducibility among the LERs considered
were not provided by the groups that generated the data.
However, several recent reports [26-30] give errors from
various sources (probe preparation, spot size variability,
scanning errors, software sophistication, etc.). Wildsmith
et al. [26] reported a 28% standard error of the common
logarithm of expressi on based on 64 replicate arrays con-
taining 1248 duplicate spots. Lee et al. [28] reported a
maximum misclassification of 9% based on three replicate
arrays containing 288 genes. In this study, the spikes, for
example, in Figure 1 are not likely due to misclassifica-
tion. Error, on the other hand, affects the bin size and
we have seen the effect throughout the bulk of bin-size
range.


This study was a first step to search for intermittency
without establishing biological relevance. There is a grow-
ing literature on the identification of microarray-based
regulatory gene networks [31-34]. We have already be-
gun looking at individual genes and their contribution
to F2 on a single array. Our current effort to develop
microarray-based promoter models for co-expressed genes
based on the Werner approach [33] will facilitate our un-
derstanding of regulatory control of genes with high con-
tribution to F2. Progress in this effort is limited by the
rate at which we can manually select genes with high con-
tribution to F2, exon map the genes, fetch their upstream
DNA promoter sequences, and then search for common
transcri ption binding sites among the multiple promoter
sequences in order to infer coregulation.


The observation of intermittency in the data ana-
lyzed provides a complimentary handle on moderately
expressed genes, generally not tackled by conventional
techniques. Biologists often focus on strongly downreg-
ulated or upregulated genes which are characterized by
large negative and positive LERs. Our method of looking
at intermittency in gene expression focused on the clus-
tering of LERs independent of their absolute expressi on
value. Thus, we were able to detect large density fluctu-
ations among small LERs. As an example, spikes near
the center of the binned distribution in Figure 1 whose
LER-values were low greatly increased the factorial mo-
ments. Therefore, fold-change analysis, which focuses on
large negative and positive LERs, or other multivariate
statistical methods such as hierarchical cluster and prin-
cipal component analyses, can miss unique density fluctu-
ations at low LER values which are detected by factorial
moments.
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