% This TeX file was generated by texpsinclude % from the original TeX file powerlawrev.tex % and the PostScript files expcor01.eps expcor02.eps. % TeX writes out the included PostScript to files. % % Here is part of powerlawrev.tex: %powerlawrev.tex \documentclass[12pt]{amsart} % Here are the % TeX macros for dumping included Postscript to files. % Adapted from Knuth's \answer macro in the TeXbook. % Jamie Stephens, jamies@math.utexas.edu, 28 Nov 94 \def\endofps{EndOfTheIncludedPostscriptMagicCookie} \chardef\other=12 \newwrite\psdumphandle \outer\def\psdump#1{\par\medbreak \immediate\openout\psdumphandle=#1 \copytoblankline} \def\copytoblankline{\begingroup\setupcopy\copypsline} \def\setupcopy{\def\do##1{\catcode`##1=\other}\dospecials \catcode`\\=\other \obeylines} {\obeylines \gdef\copypsline#1 {\def\next{#1}% \ifx\next\endofps\let\next=\endgroup % \else\immediate\write\psdumphandle{\next} \let\next=\copypsline\fi\next}} \outer\def\closepsdump{ \immediate\closeout\psdumphandle} % Here is the PostScript for expcor01.eps: \message{Writing file expcor01.eps} \psdump{expcor01.eps}%!PS-Adobe-3.0 EPSF-3.0 %%Creator: Adobe Illustrator(TM) 5.5 %%For: (Kenneth Alexander) (USC) %%Title: (expcor01B.eps) %%CreationDate: (5/23/2000) (1:32 PM) %%BoundingBox: 63 346 543 715 %%HiResBoundingBox: 63 346.7689 543 714.1327 %%DocumentProcessColors: Black %%DocumentFonts: Symbol %%+ Times-Roman %%DocumentSuppliedResources: procset Adobe_level2_AI5 1.0 0 %%+ procset Adobe_typography_AI5 1.0 0 %%+ procset Adobe_IllustratorA_AI5 1.0 0 %AI5_FileFormat 1.2 %AI3_ColorUsage: Black&White %AI3_TemplateBox: 306 396 306 396 %AI3_TileBox: 30 31 582 761 %AI3_DocumentPreview: Header %AI5_ArtSize: 612 792 %AI5_RulerUnits: 2 %AI5_ArtFlags: 1 0 0 1 0 0 1 1 0 %AI5_TargetResolution: 800 %AI5_NumLayers: 1 %AI5_OpenToView: -54 828 -1 693 507 18 0 1 75 50 %AI5_OpenViewLayers: 7 %%EndComments %%BeginProlog %%BeginResource: procset Adobe_level2_AI5 1.0 0 %%Title: (Adobe Illustrator (R) Version 5.0 Level 2 Emulation) %%Version: 1.0 %%CreationDate: (04/10/93) () %%Copyright: ((C) 1987-1993 Adobe Systems Incorporated All Rights Reserved) userdict /Adobe_level2_AI5 21 dict dup begin put /packedarray where not { userdict begin /packedarray { array astore readonly } bind def /setpacking /pop load def /currentpacking false def end 0 } if pop userdict /defaultpacking currentpacking put true setpacking /initialize { Adobe_level2_AI5 begin } bind def /terminate { currentdict Adobe_level2_AI5 eq { end } if } bind def mark /setcustomcolor where not { /findcmykcustomcolor { 5 packedarray } bind def /setcustomcolor { exch aload pop pop 4 { 4 index mul 4 1 roll } repeat 5 -1 roll pop setcmykcolor } def } if /gt38? mark {version cvx exec} stopped {cleartomark true} {38 gt exch pop} ifelse def userdict /deviceDPI 72 0 matrix defaultmatrix dtransform dup mul exch dup mul add sqrt put userdict /level2? systemdict /languagelevel known dup { pop systemdict /languagelevel get 2 ge } if put level2? not { /setcmykcolor where not { /setcmykcolor { exch .11 mul add exch .59 mul add exch .3 mul add 1 exch sub setgray } def } if /currentcmykcolor where not { /currentcmykcolor { 0 0 0 1 currentgray sub } def } if /setoverprint where not { /setoverprint /pop load def } if /selectfont where not { /selectfont { exch findfont exch dup type /arraytype eq { makefont } { scalefont } ifelse setfont } bind def } if /cshow where not { /cshow { [ 0 0 5 -1 roll aload pop ] cvx bind forall } bind def } if } if cleartomark /anyColor? { add add add 0 ne } bind def /testColor { gsave setcmykcolor currentcmykcolor grestore } bind def /testCMYKColorThrough { testColor anyColor? } bind def userdict /composite? level2? { gsave 1 1 1 1 setcmykcolor currentcmykcolor grestore add add add 4 eq } { 1 0 0 0 testCMYKColorThrough 0 1 0 0 testCMYKColorThrough 0 0 1 0 testCMYKColorThrough 0 0 0 1 testCMYKColorThrough and and and } ifelse put composite? not { userdict begin gsave /cyan? 1 0 0 0 testCMYKColorThrough def /magenta? 0 1 0 0 testCMYKColorThrough def /yellow? 0 0 1 0 testCMYKColorThrough def /black? 0 0 0 1 testCMYKColorThrough def grestore /isCMYKSep? cyan? magenta? yellow? black? or or or def /customColor? isCMYKSep? not def end } if end defaultpacking setpacking %%EndResource %%BeginResource: procset Adobe_typography_AI5 1.0 1 %%Title: (Typography Operators) %%Version: 1.0 %%CreationDate:(03/26/93) () %%Copyright: ((C) 1987-1993 Adobe Systems Incorporated All Rights Reserved) currentpacking true setpacking userdict /Adobe_typography_AI5 54 dict dup begin put /initialize { begin begin Adobe_typography_AI5 begin Adobe_typography_AI5 { dup xcheck { bind } if pop pop } forall end end end Adobe_typography_AI5 begin } def /terminate { currentdict Adobe_typography_AI5 eq { end } if } def /modifyEncoding { /_tempEncode exch ddef /_pntr 0 ddef { counttomark -1 roll dup type dup /marktype eq { pop pop exit } { /nametype eq { _tempEncode /_pntr dup load dup 3 1 roll 1 add ddef 3 -1 roll put } { /_pntr exch ddef } ifelse } ifelse } loop _tempEncode } def /TE { StandardEncoding 256 array copy modifyEncoding /_nativeEncoding exch def } def % /TZ { dup type /arraytype eq { /_wv exch def } { /_wv 0 def } ifelse /_useNativeEncoding exch def pop pop findfont _wv type /arraytype eq { _wv makeblendedfont } if dup length 2 add dict begin mark exch { 1 index /FID ne { def } if cleartomark mark } forall pop /FontName exch def counttomark 0 eq { 1 _useNativeEncoding eq { /Encoding _nativeEncoding def } if cleartomark } { /Encoding load 256 array copy modifyEncoding /Encoding exch def } ifelse FontName currentdict end definefont pop } def /tr { _ax _ay 3 2 roll } def /trj { _cx _cy _sp _ax _ay 6 5 roll } def /a0 { /Tx { dup currentpoint 3 2 roll tr _psf newpath moveto tr _ctm _pss } ddef /Tj { dup currentpoint 3 2 roll trj _pjsf newpath moveto trj _ctm _pjss } ddef } def /a1 { /Tx { dup currentpoint 4 2 roll gsave dup currentpoint 3 2 roll tr _psf newpath moveto tr _ctm _pss grestore 3 1 roll moveto tr sp } ddef /Tj { dup currentpoint 4 2 roll gsave dup currentpoint 3 2 roll trj _pjsf newpath moveto trj _ctm _pjss grestore 3 1 roll moveto tr jsp } ddef } def /e0 { /Tx { tr _psf } ddef /Tj { trj _pjsf } ddef } def /e1 { /Tx { dup currentpoint 4 2 roll gsave tr _psf grestore 3 1 roll moveto tr sp } ddef /Tj { dup currentpoint 4 2 roll gsave trj _pjsf grestore 3 1 roll moveto tr jsp } ddef } def /i0 { /Tx { tr sp } ddef /Tj { trj jsp } ddef } def /i1 { W N } def /o0 { /Tx { tr sw rmoveto } ddef /Tj { trj swj rmoveto } ddef } def /r0 { /Tx { tr _ctm _pss } ddef /Tj { trj _ctm _pjss } ddef } def /r1 { /Tx { dup currentpoint 4 2 roll currentpoint gsave newpath moveto tr _ctm _pss grestore 3 1 roll moveto tr sp } ddef /Tj { dup currentpoint 4 2 roll currentpoint gsave newpath moveto trj _ctm _pjss grestore 3 1 roll moveto tr jsp } ddef } def /To { pop _ctm currentmatrix pop } def /TO { iTe _ctm setmatrix newpath } def /Tp { pop _tm astore pop _ctm setmatrix _tDict begin /W { } def /h { } def } def /TP { end iTm 0 0 moveto } def /Tr { _render 3 le { currentpoint newpath moveto } if dup 8 eq { pop 0 } { dup 9 eq { pop 1 } if } ifelse dup /_render exch ddef _renderStart exch get load exec } def /iTm { _ctm setmatrix _tm concat 0 _rise translate _hs 1 scale } def /Tm { _tm astore pop iTm 0 0 moveto } def /Td { _mtx translate _tm _tm concatmatrix pop iTm 0 0 moveto } def /iTe { _render -1 eq { } { _renderEnd _render get dup null ne { load exec } { pop } ifelse } ifelse /_render -1 ddef } def /Ta { pop } def /Tf { dup 1000 div /_fScl exch ddef % selectfont } def /Tl { pop 0 exch _leading astore pop } def /Tt { pop } def /TW { 3 npop } def /Tw { /_cx exch ddef } def /TC { 3 npop } def /Tc { /_ax exch ddef } def /Ts { /_rise exch ddef currentpoint iTm moveto } def /Ti { 3 npop } def /Tz { 100 div /_hs exch ddef iTm } def /TA { pop } def /Tq { pop } def /Th { pop pop pop pop pop } def /TX { pop } def /Tk { exch pop _fScl mul neg 0 rmoveto } def /TK { 2 npop } def /T* { _leading aload pop neg Td } def /T*- { _leading aload pop Td } def /T- { _hyphen Tx } def /T+ { } def /TR { _ctm currentmatrix pop _tm astore pop iTm 0 0 moveto } def /TS { currentfont 3 1 roll /_Symbol_ _fScl 1000 mul selectfont 0 eq { Tx } { Tj } ifelse setfont } def /Xb { pop pop } def /Tb /Xb load def /Xe { pop pop pop pop } def /Te /Xe load def /XB { } def /TB /XB load def currentdict readonly pop end setpacking %%EndResource %%BeginResource: procset Adobe_IllustratorA_AI5 1.1 0 %%Title: (Adobe Illustrator (R) Version 5.0 Abbreviated Prolog) %%Version: 1.1 %%CreationDate: (3/7/1994) () %%Copyright: ((C) 1987-1994 Adobe Systems Incorporated All Rights Reserved) currentpacking true setpacking userdict /Adobe_IllustratorA_AI5_vars 70 dict dup begin put /_lp /none def /_pf { } def /_ps { } def /_psf { } def /_pss { } def /_pjsf { } def /_pjss { } def /_pola 0 def /_doClip 0 def /cf currentflat def /_tm matrix def /_renderStart [ /e0 /r0 /a0 /o0 /e1 /r1 /a1 /i0 ] def /_renderEnd [ null null null null /i1 /i1 /i1 /i1 ] def /_render -1 def /_rise 0 def /_ax 0 def /_ay 0 def /_cx 0 def /_cy 0 def /_leading [ 0 0 ] def /_ctm matrix def /_mtx matrix def /_sp 16#020 def /_hyphen (-) def /_fScl 0 def /_cnt 0 def /_hs 1 def /_nativeEncoding 0 def /_useNativeEncoding 0 def /_tempEncode 0 def /_pntr 0 def /_tDict 2 dict def /_wv 0 def /Tx { } def /Tj { } def /CRender { } def /_AI3_savepage { } def /_gf null def /_cf 4 array def /_if null def /_of false def /_fc { } def /_gs null def /_cs 4 array def /_is null def /_os false def /_sc { } def /discardSave null def /buffer 256 string def /beginString null def /endString null def /endStringLength null def /layerCnt 1 def /layerCount 1 def /perCent (%) 0 get def /perCentSeen? false def /newBuff null def /newBuffButFirst null def /newBuffLast null def /clipForward? false def end userdict /Adobe_IllustratorA_AI5 74 dict dup begin put /initialize { Adobe_IllustratorA_AI5 dup begin Adobe_IllustratorA_AI5_vars begin discardDict { bind pop pop } forall dup /nc get begin { dup xcheck 1 index type /operatortype ne and { bind } if pop pop } forall end newpath } def /terminate { end end } def /_ null def /ddef { Adobe_IllustratorA_AI5_vars 3 1 roll put } def /xput { dup load dup length exch maxlength eq { dup dup load dup length 2 mul dict copy def } if load begin def end } def /npop { { pop } repeat } def /sw { dup length exch stringwidth exch 5 -1 roll 3 index mul add 4 1 roll 3 1 roll mul add } def /swj { dup 4 1 roll dup length exch stringwidth exch 5 -1 roll 3 index mul add 4 1 roll 3 1 roll mul add 6 2 roll /_cnt 0 ddef { 1 index eq { /_cnt _cnt 1 add ddef } if } forall pop exch _cnt mul exch _cnt mul 2 index add 4 1 roll 2 index add 4 1 roll pop pop } def /ss { 4 1 roll { 2 npop (0) exch 2 copy 0 exch put pop gsave false charpath currentpoint 4 index setmatrix stroke grestore moveto 2 copy rmoveto } exch cshow 3 npop } def /jss { 4 1 roll { 2 npop (0) exch 2 copy 0 exch put gsave _sp eq { exch 6 index 6 index 6 index 5 -1 roll widthshow currentpoint } { false charpath currentpoint 4 index setmatrix stroke } ifelse grestore moveto 2 copy rmoveto } exch cshow 6 npop } def /sp { { 2 npop (0) exch 2 copy 0 exch put pop false charpath 2 copy rmoveto } exch cshow 2 npop } def /jsp { { 2 npop (0) exch 2 copy 0 exch put _sp eq { exch 5 index 5 index 5 index 5 -1 roll widthshow } { false charpath } ifelse 2 copy rmoveto } exch cshow 5 npop } def /pl { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add exch itransform } def /setstrokeadjust where { pop true setstrokeadjust /c { curveto } def /C /c load def /v { currentpoint 6 2 roll curveto } def /V /v load def /y { 2 copy curveto } def /Y /y load def /l { lineto } def /L /l load def /m { moveto } def } { /c { pl curveto } def /C /c load def /v { currentpoint 6 2 roll pl curveto } def /V /v load def /y { pl 2 copy curveto } def /Y /y load def /l { pl lineto } def /L /l load def /m { pl moveto } def } ifelse /d { setdash } def /cf { } def /i { dup 0 eq { pop cf } if setflat } def /j { setlinejoin } def /J { setlinecap } def /M { setmiterlimit } def /w { setlinewidth } def /H { } def /h { closepath } def /N { _pola 0 eq { _doClip 1 eq { clip /_doClip 0 ddef } if newpath } { /CRender { N } ddef } ifelse } def /n { N } def /F { _pola 0 eq { _doClip 1 eq { gsave _pf grestore clip newpath /_lp /none ddef _fc /_doClip 0 ddef } { _pf } ifelse } { /CRender { F } ddef } ifelse } def /f { closepath F } def /S { _pola 0 eq { _doClip 1 eq { gsave _ps grestore clip newpath /_lp /none ddef _sc /_doClip 0 ddef } { _ps } ifelse } { /CRender { S } ddef } ifelse } def /s { closepath S } def /B { _pola 0 eq { _doClip 1 eq gsave F grestore { gsave S grestore clip newpath /_lp /none ddef _sc /_doClip 0 ddef } { S } ifelse } { /CRender { B } ddef } ifelse } def /b { closepath B } def /W { /_doClip 1 ddef } def /* { count 0 ne { dup type /stringtype eq { pop } if } if newpath } def /u { } def /U { } def /q { _pola 0 eq { gsave } if } def /Q { _pola 0 eq { grestore } if } def /*u { _pola 1 add /_pola exch ddef } def /*U { _pola 1 sub /_pola exch ddef _pola 0 eq { CRender } if } def /D { pop } def /*w { } def /*W { } def /` { /_i save ddef clipForward? { nulldevice } if 6 1 roll 4 npop concat pop userdict begin /showpage { } def 0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit [] 0 setdash /setstrokeadjust where {pop false setstrokeadjust} if newpath 0 setgray false setoverprint } def /~ { end _i restore } def /O { 0 ne /_of exch ddef /_lp /none ddef } def /R { 0 ne /_os exch ddef /_lp /none ddef } def /g { /_gf exch ddef /_fc { _lp /fill ne { _of setoverprint _gf setgray /_lp /fill ddef } if } ddef /_pf { _fc fill } ddef /_psf { _fc ashow } ddef /_pjsf { _fc awidthshow } ddef /_lp /none ddef } def /G { /_gs exch ddef /_sc { _lp /stroke ne { _os setoverprint _gs setgray /_lp /stroke ddef } if } ddef /_ps { _sc stroke } ddef /_pss { _sc ss } ddef /_pjss { _sc jss } ddef /_lp /none ddef } def /k { _cf astore pop /_fc { _lp /fill ne { _of setoverprint _cf aload pop setcmykcolor /_lp /fill ddef } if } ddef /_pf { _fc fill } ddef /_psf { _fc ashow } ddef /_pjsf { _fc awidthshow } ddef /_lp /none ddef } def /K { _cs astore pop /_sc { _lp /stroke ne { _os setoverprint _cs aload pop setcmykcolor /_lp /stroke ddef } if } ddef /_ps { _sc stroke } ddef /_pss { _sc ss } ddef /_pjss { _sc jss } ddef /_lp /none ddef } def /x { /_gf exch ddef findcmykcustomcolor /_if exch ddef /_fc { _lp /fill ne { _of setoverprint _if _gf 1 exch sub setcustomcolor /_lp /fill ddef } if } ddef /_pf { _fc fill } ddef /_psf { _fc ashow } ddef /_pjsf { _fc awidthshow } ddef /_lp /none ddef } def /X { /_gs exch ddef findcmykcustomcolor /_is exch ddef /_sc { _lp /stroke ne { _os setoverprint _is _gs 1 exch sub setcustomcolor /_lp /stroke ddef } if } ddef /_ps { _sc stroke } ddef /_pss { _sc ss } ddef /_pjss { _sc jss } ddef /_lp /none ddef } def /A { pop } def /annotatepage { userdict /annotatepage 2 copy known {get exec} {pop pop} ifelse } def /discard { save /discardSave exch store discardDict begin /endString exch store gt38? { 2 add } if load stopped pop end discardSave restore } bind def userdict /discardDict 7 dict dup begin put /pre38Initialize { /endStringLength endString length store /newBuff buffer 0 endStringLength getinterval store /newBuffButFirst newBuff 1 endStringLength 1 sub getinterval store /newBuffLast newBuff endStringLength 1 sub 1 getinterval store } def /shiftBuffer { newBuff 0 newBuffButFirst putinterval newBuffLast 0 currentfile read not { stop } if put } def 0 { pre38Initialize mark currentfile newBuff readstring exch pop { { newBuff endString eq { cleartomark stop } if shiftBuffer } loop } { stop } ifelse } def 1 { pre38Initialize /beginString exch store mark currentfile newBuff readstring exch pop { { newBuff beginString eq { /layerCount dup load 1 add store } { newBuff endString eq { /layerCount dup load 1 sub store layerCount 0 eq { cleartomark stop } if } if } ifelse shiftBuffer } loop } { stop } ifelse } def 2 { mark { currentfile buffer readline not { stop } if endString eq { cleartomark stop } if } loop } def 3 { /beginString exch store /layerCnt 1 store mark { currentfile buffer readline not { stop } if dup beginString eq { pop /layerCnt dup load 1 add store } { endString eq { layerCnt 1 eq { cleartomark stop } { /layerCnt dup load 1 sub store } ifelse } if } ifelse } loop } def end userdict /clipRenderOff 15 dict dup begin put { /n /N /s /S /f /F /b /B } { { _doClip 1 eq { /_doClip 0 ddef clip } if newpath } def } forall /Tr /pop load def /Bb {} def /BB /pop load def /Bg {12 npop} def /Bm {6 npop} def /Bc /Bm load def /Bh {4 npop} def end /Lb { 4 npop 6 1 roll pop 4 1 roll pop pop pop 0 eq { 0 eq { (%AI5_BeginLayer) 1 (%AI5_EndLayer--) discard } { /clipForward? true def /Tx /pop load def /Tj /pop load def currentdict end clipRenderOff begin begin } ifelse } { 0 eq { save /discardSave exch store } if } ifelse } bind def /LB { discardSave dup null ne { restore } { pop clipForward? { currentdict end end begin /clipForward? false ddef } if } ifelse } bind def /Pb { pop pop 0 (%AI5_EndPalette) discard } bind def /Np { 0 (%AI5_End_NonPrinting--) discard } bind def /Ln /pop load def /Ap /pop load def /Ar { 72 exch div 0 dtransform dup mul exch dup mul add sqrt dup 1 lt { pop 1 } if setflat } def /Mb { q } def /Md { } def /MB { Q } def /nc 3 dict def nc begin /setgray { pop } bind def /setcmykcolor { 4 npop } bind def /setcustomcolor { 2 npop } bind def currentdict readonly pop end currentdict readonly pop end setpacking %%EndResource %%EndProlog %%BeginSetup %%IncludeFont: Symbol %%IncludeFont: Times-Roman Adobe_level2_AI5 /initialize get exec Adobe_IllustratorA_AI5_vars Adobe_IllustratorA_AI5 Adobe_typography_AI5 /initialize get exec Adobe_IllustratorA_AI5 /initialize get exec [ 39/quotesingle 96/grave 128/Adieresis/Aring/Ccedilla/Eacute/Ntilde/Odieresis /Udieresis/aacute/agrave/acircumflex/adieresis/atilde/aring/ccedilla/eacute /egrave/ecircumflex/edieresis/iacute/igrave/icircumflex/idieresis/ntilde /oacute/ograve/ocircumflex/odieresis/otilde/uacute/ugrave/ucircumflex /udieresis/dagger/degree/cent/sterling/section/bullet/paragraph/germandbls /registered/copyright/trademark/acute/dieresis/.notdef/AE/Oslash /.notdef/plusminus/.notdef/.notdef/yen/mu/.notdef/.notdef /.notdef/.notdef/.notdef/ordfeminine/ordmasculine/.notdef/ae/oslash /questiondown/exclamdown/logicalnot/.notdef/florin/.notdef/.notdef /guillemotleft/guillemotright/ellipsis/.notdef/Agrave/Atilde/Otilde/OE/oe /endash/emdash/quotedblleft/quotedblright/quoteleft/quoteright/divide /.notdef/ydieresis/Ydieresis/fraction/currency/guilsinglleft/guilsinglright /fi/fl/daggerdbl/periodcentered/quotesinglbase/quotedblbase/perthousand /Acircumflex/Ecircumflex/Aacute/Edieresis/Egrave/Iacute/Icircumflex /Idieresis/Igrave/Oacute/Ocircumflex/.notdef/Ograve/Uacute/Ucircumflex /Ugrave/dotlessi/circumflex/tilde/macron/breve/dotaccent/ring/cedilla /hungarumlaut/ogonek/caron TE %AI3_BeginEncoding: _Symbol Symbol [/_Symbol/Symbol 0 0 0 TZ %AI3_EndEncoding TrueType %AI3_BeginEncoding: _Times-Roman Times-Roman [/_Times-Roman/Times-Roman 0 0 1 TZ %AI3_EndEncoding TrueType %AI5_Begin_NonPrinting Np %AI3_BeginPattern: (Bird's Feet) (Bird's Feet) 17 7.779 89 79.779 [ (0 O 0 R 1 g 1 G) @ _ & (0 O 0 R 0 g 0 G) @ ( 800 Ar 0 J 0 j 0.3 w 4 M []0 d %AI3_Note: 0 D 21.323 72.563 m 15.159 75.88 L S 14.211 74.119 m 20.376 70.802 L S 18.25 65.779 m 12.952 61.203 L S 14.26 59.689 m 19.557 64.265 L S 22.521 57.891 m 16.002 55.34 L S 16.731 53.478 m 23.25 56.029 L S 21.194 45.281 m 14.366 46.823 L S 13.925 44.872 m 20.754 43.33 L S 21.19 39.635 m 18.63 33.119 L S 20.492 32.388 m 23.052 38.903 L S 21.242 23.717 m 14.458 25.441 L S 13.965 23.503 m 20.75 21.779 L S 21.02 17.622 m 14.373 15.428 L S 15 13.529 m 21.647 15.723 L S 86.211 74.119 m 92.376 70.802 L S 93.323 72.563 m 87.159 75.88 L S 86.26 59.689 m 91.557 64.265 L S 90.25 65.779 m 84.952 61.203 L S 88.731 53.478 m 95.25 56.029 L S 94.521 57.891 m 88.002 55.34 L S 85.925 44.872 m 92.754 43.33 L S 93.194 45.281 m 86.366 46.823 L S 85.965 23.503 m 92.75 21.779 L S 93.242 23.717 m 86.458 25.441 L S 87 13.529 m 93.647 15.723 L S 93.02 17.622 m 86.373 15.428 L S 80.699 75.084 m 84.179 81.158 L S 82.443 82.152 m 78.963 76.078 L S 66 74.279 m 63.624 80.863 L S 61.742 80.184 m 64.118 73.6 L S 53.43 75.941 m 55.153 82.726 L S 53.215 83.218 m 51.491 76.434 L S 47.785 76.096 m 41.341 78.829 L S 40.56 76.988 m 47.004 74.255 L S 31.872 76.469 m 33.776 83.205 L S 31.852 83.749 m 29.947 77.013 L S 25.785 76.854 m 23.769 83.558 L S 21.853 82.982 m 23.87 76.278 L S 82.443 10.152 m 78.963 4.078 L S 80.699 3.084 m 84.179 9.158 L S 68.018 10.489 m 72.451 5.071 L S 73.998 6.338 m 69.565 11.755 L S 61.742 8.184 m 64.118 1.6 L S 66 2.279 m 63.624 8.863 L S 53.215 11.218 m 51.491 4.434 L S 53.43 3.941 m 55.153 10.726 L S 31.852 11.749 m 29.947 5.013 L S 31.872 4.469 m 33.776 11.205 L S 21.853 10.982 m 23.87 4.278 L S 25.785 4.854 m 23.769 11.558 L S 35.443 32.652 m 31.963 26.578 L S 33.699 25.584 m 37.179 31.658 L S 65.498 64.838 m 61.065 70.255 L S 59.518 68.989 m 63.951 63.571 L S 53.242 66.684 m 55.618 60.1 L S 57.5 60.779 m 55.124 67.363 L S 79.785 18.596 m 73.341 21.329 L S 72.56 19.488 m 79.004 16.755 L S 79.98 36.559 m 78.075 29.823 L S 80 29.279 m 81.904 36.014 L S 69.568 41.906 m 71.584 35.202 L S 73.5 35.779 m 71.483 42.482 L S 50.02 47.205 m 53.5 53.279 L S 51.764 54.273 m 48.284 48.199 L S 35.518 53.989 m 39.951 48.571 L S 41.498 49.838 m 37.065 55.255 L S 27.742 52.184 m 30.118 45.6 L S 32 46.279 m 29.624 52.863 L S 79.715 54.218 m 77.991 47.434 L S 79.93 46.941 m 81.653 53.726 L S 63.892 50.586 m 70.336 47.853 L S 71.117 49.694 m 64.673 52.428 L S 47.068 20.406 m 49.084 13.702 L S 51 14.279 m 48.983 20.982 L S 65.969 19.33 m 59.037 18.355 L S 59.316 16.375 m 66.248 17.349 L S 66.112 31.548 m 64.55 24.725 L S 66.5 24.279 m 68.062 31.102 L S 47.223 34.478 m 43.478 28.564 L S 45.168 27.494 m 48.913 33.407 L S 48.892 43.075 m 42.475 40.277 L S 43.275 38.443 m 49.691 41.241 L S 35.372 37.469 m 37.276 44.205 L S 35.352 44.749 m 33.447 38.013 L S 60.915 40.855 m 58.899 47.558 L S 56.983 46.982 m 59 40.279 L S 47.201 64.02 m 41.612 59.806 L S 42.816 58.209 m 48.405 62.423 L S 37.937 63.837 m 35.993 70.561 L S 34.072 70.006 m 36.015 63.281 L S 27.396 70.357 m 26.989 63.369 L S 28.986 63.252 m 29.393 70.241 L S 40.25 22.502 m 35.996 16.943 L S 37.584 15.727 m 41.839 21.286 L S 32.456 18.091 m 27.607 23.139 L S 26.165 21.754 m 31.014 16.705 L S 72.5 55.279 m 76.901 60.722 L S 75.346 61.979 m 70.944 56.536 L S 75.529 65.445 m 76.313 72.401 L S 74.326 72.625 m 73.542 65.669 L S 52.56 30.488 m 59.004 27.755 L S 59.785 29.596 m 53.341 32.329 L S 68.018 82.489 m 72.451 77.071 L S 73.998 78.338 m 69.565 83.755 L S 7.498 64.838 m 3.065 70.255 L S ) & ] E %AI3_EndPattern %AI3_BeginPattern: (Blue Dots-Transparent) (Blue Dots-Transparent) 3.88 3.88 32.68 32.68 [ %AI3_Tile (0 O 0 R 1 0.7 0 0 k 1 0.7 0 0 K) @ ( 800 Ar 0 J 0 j 0.5 w 4 M []0 d %AI3_Note: 0 D 32.68 1 m 34.27 1 35.56 2.29 35.56 3.88 c 35.56 5.471 34.27 6.76 32.68 6.76 c 31.089 6.76 29.8 5.471 29.8 3.88 c 29.8 2.29 31.089 1 32.68 1 c f 18.28 1 m 19.87 1 21.16 2.29 21.16 3.88 c 21.16 5.471 19.87 6.76 18.28 6.76 c 16.689 6.76 15.4 5.471 15.4 3.88 c 15.4 2.29 16.689 1 18.28 1 c f 3.88 1 m 5.47 1 6.76 2.29 6.76 3.88 c 6.76 5.471 5.47 6.76 3.88 6.76 c 2.29 6.76 1 5.471 1 3.88 c 1 2.29 2.29 1 3.88 1 c f 32.68 15.4 m 34.27 15.4 35.56 16.69 35.56 18.28 c 35.56 19.871 34.27 21.16 32.68 21.16 c 31.089 21.16 29.8 19.871 29.8 18.28 c 29.8 16.69 31.089 15.4 32.68 15.4 c f 18.28 15.4 m 19.87 15.4 21.16 16.69 21.16 18.28 c 21.16 19.871 19.87 21.16 18.28 21.16 c 16.689 21.16 15.4 19.871 15.4 18.28 c 15.4 16.69 16.689 15.4 18.28 15.4 c f 3.88 15.4 m 5.47 15.4 6.76 16.69 6.76 18.28 c 6.76 19.871 5.47 21.16 3.88 21.16 c 2.29 21.16 1 19.871 1 18.28 c 1 16.69 2.29 15.4 3.88 15.4 c f 32.68 29.8 m 34.27 29.8 35.56 31.09 35.56 32.68 c 35.56 34.271 34.27 35.56 32.68 35.56 c 31.089 35.56 29.8 34.271 29.8 32.68 c 29.8 31.09 31.089 29.8 32.68 29.8 c f 18.28 29.8 m 19.87 29.8 21.16 31.09 21.16 32.68 c 21.16 34.271 19.87 35.56 18.28 35.56 c 16.689 35.56 15.4 34.271 15.4 32.68 c 15.4 31.09 16.689 29.8 18.28 29.8 c f 3.88 29.8 m 5.47 29.8 6.76 31.09 6.76 32.68 c 6.76 34.271 5.47 35.56 3.88 35.56 c 2.29 35.56 1 34.271 1 32.68 c 1 31.09 2.29 29.8 3.88 29.8 c f 11.08 8.2 m 12.67 8.2 13.96 9.49 13.96 11.08 c 13.96 12.671 12.67 13.96 11.08 13.96 c 9.489 13.96 8.2 12.671 8.2 11.08 c 8.2 9.49 9.489 8.2 11.08 8.2 c f 25.48 8.2 m 27.07 8.2 28.36 9.49 28.36 11.08 c 28.36 12.671 27.07 13.96 25.48 13.96 c 23.889 13.96 22.6 12.671 22.6 11.08 c 22.6 9.49 23.889 8.2 25.48 8.2 c f 11.08 22.6 m 12.67 22.6 13.96 23.89 13.96 25.48 c 13.96 27.071 12.67 28.36 11.08 28.36 c 9.489 28.36 8.2 27.071 8.2 25.48 c 8.2 23.89 9.489 22.6 11.08 22.6 c f 25.48 22.6 m 27.07 22.6 28.36 23.89 28.36 25.48 c 28.36 27.071 27.07 28.36 25.48 28.36 c 23.889 28.36 22.6 27.071 22.6 25.48 c 22.6 23.89 23.889 22.6 25.48 22.6 c f ) & ] E %AI3_EndPattern %AI3_BeginPattern: (Bricks) (Bricks) 2.565 5.19 74.565 77.19 [ (0 O 0 R 0.3 0.85 0.85 0 k 0.3 0.85 0.85 0 K) @ _ & (0 O 0 R 1 g 1 G) @ ( 800 Ar 0 J 0 j 0.3 w 4 M []0 d %AI3_Note: 0 D 1.6 73.6 m 75.6 73.6 l S 1.6 66.399 m 75.6 66.399 L S 1.6 59.199 m 75.6 59.199 L S 1.6 51.998 m 75.6 51.998 L S 1.6 44.798 m 75.6 44.798 L S 1.6 37.597 m 75.6 37.597 L S 1.6 30.397 m 75.6 30.397 L S 1.6 23.196 m 75.6 23.196 L S 1.6 15.996 m 75.6 15.996 L S 1.6 8.796 m 75.6 8.796 L S 70.975 73.6 m 70.975 66.412 l S 56.575 73.6 m 56.575 66.412 L S 42.175 73.6 m 42.175 66.412 L S 27.775 73.6 m 27.775 66.412 L S 13.375 73.6 m 13.375 66.412 L S 70.975 59.162 m 70.975 51.975 l S 56.575 59.162 m 56.575 51.975 L S 42.175 59.162 m 42.175 51.975 L S 27.775 59.162 m 27.775 51.975 L S 13.375 59.162 m 13.375 51.975 L S 70.975 44.787 m 70.975 37.6 l S 56.575 44.787 m 56.575 37.6 L S 42.175 44.787 m 42.175 37.6 L S 27.775 44.787 m 27.775 37.6 L S 13.375 44.787 m 13.375 37.6 L S 70.975 30.412 m 70.975 23.225 l S 56.575 30.412 m 56.575 23.225 L S 42.175 30.412 m 42.175 23.225 L S 27.775 30.412 m 27.775 23.225 L S 13.375 30.412 m 13.375 23.225 L S 70.975 15.975 m 70.975 8.787 l S 56.575 15.975 m 56.575 8.787 L S 42.175 15.975 m 42.175 8.787 L S 27.775 15.975 m 27.775 8.787 L S 13.375 15.975 m 13.375 8.787 L S 63.762 8.787 m 63.762 1.6 L S 49.362 8.787 m 49.362 1.6 L S 34.962 8.787 m 34.962 1.6 L S 20.562 8.787 m 20.562 1.6 L S 6.162 8.787 m 6.162 1.6 l S 63.762 23.225 m 63.762 16.037 L S 49.362 23.225 m 49.362 16.037 L S 34.962 23.225 m 34.962 16.037 L S 20.562 23.225 m 20.562 16.037 L S 6.162 23.225 m 6.162 16.037 l S 63.762 37.6 m 63.762 30.412 L S 49.362 37.6 m 49.362 30.412 L S 20.562 37.6 m 20.562 30.412 L S 6.162 37.6 m 6.162 30.412 l S 63.762 51.975 m 63.762 44.787 L S 49.362 51.975 m 49.362 44.787 L S 34.962 51.975 m 34.962 44.787 L S 20.562 51.975 m 20.562 44.787 L S 6.162 51.975 m 6.162 44.787 l S 63.762 66.412 m 63.762 59.225 L S 49.362 66.412 m 49.362 59.225 L S 34.962 66.412 m 34.962 59.225 L S 20.562 66.412 m 20.562 59.225 L S 6.162 66.412 m 6.162 59.225 l S 63.762 80.849 m 63.762 73.662 L S 49.362 80.849 m 49.362 73.662 L S 34.962 80.849 m 34.962 73.662 L S 20.562 80.849 m 20.562 73.662 L S 6.162 80.849 m 6.162 73.662 l S 34.962 37.6 m 34.962 30.412 L S ) & ] E %AI3_EndPattern %AI3_BeginPattern: (Confetti) (Confetti) 4.85 3.617 76.85 75.617 [ (0 O 0 R 1 g 1 G) @ _ & (0 O 0 R 0 g 0 G) @ ( 800 Ar 0 J 0 j 0.3 w 4 M []0 d %AI3_Note: 0 D 10.6 64.867 m 7.85 62.867 l S 9.1 8.617 m 6.85 6.867 l S 78.1 68.617 m 74.85 67.867 l S 76.85 56.867 m 74.35 55.117 l S 79.6 51.617 m 76.6 51.617 l S 76.35 44.117 m 73.6 45.867 l S 78.6 35.867 m 76.6 34.367 l S 76.1 23.867 m 73.35 26.117 l S 78.1 12.867 m 73.85 13.617 l S 68.35 14.617 m 66.1 12.867 l S 76.6 30.617 m 73.6 30.617 l S 62.85 58.117 m 60.956 60.941 l S 32.85 59.617 m 31.196 62.181 l S 47.891 64.061 m 49.744 66.742 l S 72.814 2.769 m 73.928 5.729 l S 67.976 2.633 m 67.35 5.909 l S 61.85 27.617 m 59.956 30.441 l S 53.504 56.053 m 51.85 58.617 l S 52.762 1.779 m 52.876 4.776 l S 45.391 5.311 m 47.244 7.992 l S 37.062 3.375 m 35.639 5.43 l S 55.165 34.828 m 57.518 37.491 l S 20.795 3.242 m 22.12 5.193 l S 14.097 4.747 m 15.008 8.965 l S 9.736 1.91 m 8.073 4.225 l S 31.891 5.573 m 32.005 8.571 l S 12.1 70.367 m 15.6 68.867 l S 9.35 54.867 m 9.6 58.117 l S 12.85 31.867 m 14.35 28.117 l S 10.1 37.367 m 12.35 41.117 l S 34.1 71.117 m 31.85 68.617 l S 38.35 71.117 m 41.6 68.367 l S 55.1 71.117 m 58.35 69.117 l S 57.35 65.117 m 55.35 61.867 l S 64.35 66.367 m 69.35 68.617 l S 71.85 62.867 m 69.35 61.117 l S 23.6 70.867 m 23.6 67.867 l S 20.6 65.867 m 17.35 65.367 l S 24.85 61.367 m 25.35 58.117 l S 25.85 65.867 m 29.35 66.617 l S 14.1 54.117 m 16.85 56.117 l S 12.35 11.617 m 12.6 15.617 l S 12.1 19.867 m 14.35 22.367 l S 26.1 9.867 m 23.6 13.367 l S 34.6 47.117 m 32.1 45.367 l S 62.6 41.867 m 59.85 43.367 l S 31.6 35.617 m 27.85 36.367 l S 36.35 26.117 m 34.35 24.617 l S 33.85 14.117 m 31.1 16.367 l S 37.1 9.867 m 35.1 11.117 l S 34.35 20.867 m 31.35 20.867 l S 44.6 56.617 m 42.1 54.867 l S 47.35 51.367 m 44.35 51.367 l S 44.1 43.867 m 41.35 45.617 l S 43.35 33.117 m 42.6 30.617 l S 43.85 23.617 m 41.1 25.867 l S 44.35 15.617 m 42.35 16.867 l S 67.823 31.1 m 64.823 31.1 l S 27.1 32.617 m 29.6 30.867 l S 31.85 55.117 m 34.85 55.117 l S 19.6 40.867 m 22.1 39.117 l S 16.85 35.617 m 19.85 35.617 l S 20.1 28.117 m 22.85 29.867 l S 52.1 42.617 m 54.484 44.178 l S 52.437 50.146 m 54.821 48.325 l S 59.572 54.133 m 59.35 51.117 l S 50.185 10.055 m 53.234 9.928 l S 51.187 15.896 m 53.571 14.075 l S 58.322 19.883 m 59.445 16.823 l S 53.1 32.117 m 50.6 30.367 l S 52.85 24.617 m 49.6 25.617 l S 61.85 9.117 m 59.1 10.867 l S 69.35 34.617 m 66.6 36.367 l S 67.1 23.617 m 65.1 22.117 l S 24.435 46.055 m 27.484 45.928 l S 25.437 51.896 m 27.821 50.075 l S 62.6 47.117 m 65.321 46.575 l S 19.85 19.867 m 20.35 16.617 l S 21.85 21.867 m 25.35 22.617 l S 37.6 62.867 m 41.6 62.117 l S 38.323 42.1 m 38.823 38.6 l S 69.35 52.617 m 66.85 53.867 l S 14.85 62.117 m 18.1 59.367 l S 9.6 46.117 m 7.1 44.367 l S 20.6 51.617 m 18.6 50.117 l S 46.141 70.811 m 47.994 73.492 l S 69.391 40.561 m 71.244 43.242 l S 38.641 49.311 m 39.35 52.117 l S 25.141 16.811 m 25.85 19.617 l S 36.6 32.867 m 34.6 31.367 l S 6.1 68.617 m 2.85 67.867 l S 4.85 56.867 m 2.35 55.117 l S 7.6 51.617 m 4.6 51.617 l S 6.6 35.867 m 4.6 34.367 l S 6.1 12.867 m 1.85 13.617 l S 4.6 30.617 m 1.6 30.617 l S 72.814 74.769 m 73.928 77.729 l S 67.976 74.633 m 67.35 77.909 l S 52.762 73.779 m 52.876 76.776 l S 37.062 75.375 m 35.639 77.43 l S 20.795 75.242 m 22.12 77.193 l S 9.736 73.91 m 8.073 76.225 l S 10.1 23.617 m 6.35 24.367 l S 73.217 18.276 m 71.323 21.1 l S 28.823 39.6 m 29.505 42.389 l S 49.6 38.617 m 47.6 37.117 l S 60.323 73.6 m 62.323 76.6 l S 60.323 1.6 m 62.323 4.6 l S ) & ] E %AI3_EndPattern %AI3_BeginPattern: (Cross Texture) (Cross Texture) 1 1 58.6 58.6 [ (0 O 0 R 1 1 0.2 0 k 1 1 0.2 0 K) @ _ & (0 O 0 R 1 g 1 G) @ ( 800 Ar 0 J 0 j 0.3 w 4 M []0 d %AI3_Note: 0 D 53.5 55 m 56.5 55 l S 39.1 55 m 42.1 55 l S 24.7 55 m 27.7 55 l S 10.3 55 m 13.3 55 l S 46.3 47.8 m 49.3 47.8 l S 31.9 47.8 m 34.9 47.8 l S 17.5 47.8 m 20.5 47.8 l S 3.1 47.8 m 6.1 47.8 l S 53.5 40.6 m 56.5 40.6 l S 39.1 40.6 m 42.1 40.6 l S 24.7 40.6 m 27.7 40.6 l S 10.3 40.6 m 13.3 40.6 l S 46.3 33.4 m 49.3 33.4 l S 31.9 33.4 m 34.9 33.4 l S 17.5 33.4 m 20.5 33.4 l S 3.1 33.4 m 6.1 33.4 l S 53.5 26.2 m 56.5 26.2 l S 39.1 26.2 m 42.1 26.2 l S 24.7 26.2 m 27.7 26.2 l S 10.3 26.2 m 13.3 26.2 l S 46.3 19 m 49.3 19 l S 31.9 19 m 34.9 19 l S 17.5 19 m 20.5 19 l S 3.1 19 m 6.1 19 l S 53.5 11.8 m 56.5 11.8 l S 39.1 11.8 m 42.1 11.8 l S 24.7 11.8 m 27.7 11.8 l S 10.3 11.8 m 13.3 11.8 l S 46.3 4.6 m 49.3 4.6 l S 31.9 4.6 m 34.9 4.6 l S 17.5 4.6 m 20.5 4.6 l S 3.1 4.6 m 6.1 4.6 l S 55 56.5 m 55 53.5 l S 40.6 56.5 m 40.6 53.5 l S 26.2 56.5 m 26.2 53.5 l S 11.8 56.5 m 11.8 53.5 l S 47.8 49.3 m 47.8 46.3 l S 33.4 49.3 m 33.4 46.3 l S 19 49.3 m 19 46.3 l S 4.6 49.3 m 4.6 46.3 l S 55 42.1 m 55 39.1 l S 40.6 42.1 m 40.6 39.1 l S 26.2 42.1 m 26.2 39.1 l S 11.8 42.1 m 11.8 39.1 l S 47.8 34.9 m 47.8 31.9 l S 33.4 34.9 m 33.4 31.9 l S 19 34.9 m 19 31.9 l S 4.6 34.9 m 4.6 31.9 l S 55 27.7 m 55 24.7 l S 40.6 27.7 m 40.6 24.7 l S 26.2 27.7 m 26.2 24.7 l S 11.8 27.7 m 11.8 24.7 l S 47.8 20.5 m 47.8 17.5 l S 33.4 20.5 m 33.4 17.5 l S 19 20.5 m 19 17.5 l S 4.6 20.5 m 4.6 17.5 l S 55 13.3 m 55 10.3 l S 40.6 13.3 m 40.6 10.3 l S 26.2 13.3 m 26.2 10.3 l S 11.8 13.3 m 11.8 10.3 l S 47.8 6.1 m 47.8 3.1 l S 33.4 6.1 m 33.4 3.1 l S 19 6.1 m 19 3.1 l S 4.6 6.1 m 4.6 3.1 l S ) & ] E %AI3_EndPattern %AI3_BeginPattern: (Parquet Floor) (Parquet Floor) 3.85 3.85 75.85 75.85 [ (0 O 0 R 0.26 0.497 0.75 0 k 0.26 0.497 0.75 0 K) @ _ & (0 O 0 R 0 g 0 G) @ ( 800 Ar 0 J 0 j 0.3 w 4 M []0 d %AI3_Note: 0 D 37.6 6.1 m 37.6 10.598 L 19.6 10.598 L 19.6 6.1 L 37.6 6.1 L s 73.6 6.1 m 73.6 10.598 L 55.6 10.598 L 55.6 6.1 L 73.6 6.1 L s 19.6 24.1 m 19.6 28.598 L 1.6 28.598 L 1.6 24.1 L 19.6 24.1 L s 55.6 24.1 m 55.6 28.598 L 37.6 28.598 L 37.6 24.1 L 55.6 24.1 L s 82.6 24.1 m 82.6 28.598 L 73.6 28.598 L 73.6 24.1 L 82.6 24.1 L s 37.6 42.1 m 37.6 46.598 L 19.6 46.598 L 19.6 42.1 L 37.6 42.1 L s 73.6 42.1 m 73.6 46.598 L 55.6 46.598 L 55.6 42.1 L 73.6 42.1 L s 19.6 60.1 m 19.6 64.598 L 1.6 64.598 L 1.6 60.1 L 19.6 60.1 L s 55.6 60.1 m 55.6 64.598 L 37.6 64.598 L 37.6 60.1 L 55.6 60.1 L s 82.6 60.1 m 82.6 64.598 L 73.6 64.598 L 73.6 60.1 L 82.6 60.1 L s 37.6 15.098 m 37.6 19.598 L 19.6 19.598 L 19.6 15.098 L 37.6 15.098 L s 73.6 15.098 m 73.6 19.598 L 55.6 19.598 L 55.6 15.098 L 73.6 15.098 L s 19.6 33.098 m 19.6 37.598 L 1.6 37.598 L 1.6 33.098 L 19.6 33.098 L s 55.6 33.098 m 55.6 37.598 L 37.6 37.598 L 37.6 33.098 L 55.6 33.098 L s 82.6 33.098 m 82.6 37.598 L 73.6 37.598 L 73.6 33.098 L 82.6 33.098 L s 37.6 51.098 m 37.6 55.598 L 19.6 55.598 L 19.6 51.098 L 37.6 51.098 L s 73.6 51.098 m 73.6 55.598 L 55.6 55.598 L 55.6 51.098 L 73.6 51.098 L s 19.6 69.098 m 19.6 73.598 L 1.6 73.598 L 1.6 69.098 L 19.6 69.098 L s 55.6 69.098 m 55.6 73.598 L 37.6 73.598 L 37.6 69.098 L 55.6 69.098 L s 82.6 69.098 m 82.6 73.598 L 73.6 73.598 L 73.6 69.098 L 82.6 69.098 L s 15.1 19.598 m 10.6 19.598 L 10.6 1.6 L 15.1 1.6 L 15.1 19.598 L s 51.1 19.598 m 46.6 19.598 L 46.6 1.6 L 51.1 1.6 L 51.1 19.598 L s 33.1 37.598 m 28.6 37.598 L 28.6 19.6 L 33.1 19.6 L 33.1 37.598 L s 69.1 37.598 m 64.6 37.598 L 64.6 19.6 L 69.1 19.6 L 69.1 37.598 L s 15.1 55.598 m 10.6 55.598 L 10.6 37.6 L 15.1 37.6 L 15.1 55.598 L s 51.1 55.598 m 46.6 55.598 L 46.6 37.6 L 51.1 37.6 L 51.1 55.598 L s 33.1 73.598 m 28.6 73.598 L 28.6 55.6 L 33.1 55.6 L 33.1 73.598 L s 69.1 73.598 m 64.6 73.598 L 64.6 55.6 L 69.1 55.6 L 69.1 73.598 L s 15.1 82.598 m 10.6 82.598 L 10.6 73.6 L 15.1 73.6 L 15.1 82.598 L s 51.1 82.598 m 46.6 82.598 L 46.6 73.6 L 51.1 73.6 L 51.1 82.598 L s 19.6 19.598 m 15.1 19.598 L 15.1 1.6 L 19.6 1.6 L 19.6 19.598 L s 55.6 19.598 m 51.1 19.598 L 51.1 1.6 L 55.6 1.6 L 55.6 19.598 L s 37.6 37.598 m 33.1 37.598 L 33.1 19.6 L 37.6 19.6 L 37.6 37.598 L s 73.6 37.598 m 69.1 37.598 L 69.1 19.6 L 73.6 19.6 L 73.6 37.598 L s 19.6 55.598 m 15.1 55.598 L 15.1 37.6 L 19.6 37.6 L 19.6 55.598 L s 55.6 55.598 m 51.1 55.598 L 51.1 37.6 L 55.6 37.6 L 55.6 55.598 L s 37.6 73.598 m 33.1 73.598 L 33.1 55.6 L 37.6 55.6 L 37.6 73.598 L s 73.6 73.598 m 69.1 73.598 L 69.1 55.6 L 73.6 55.6 L 73.6 73.598 L s 19.6 82.598 m 15.1 82.598 L 15.1 73.6 L 19.6 73.6 L 19.6 82.598 L s 55.6 82.598 m 51.1 82.598 L 51.1 73.6 L 55.6 73.6 L 55.6 82.598 L s 6.1 19.598 m 1.6 19.598 L 1.6 1.6 L 6.1 1.6 L 6.1 19.598 L s 42.1 19.598 m 37.6 19.598 L 37.6 1.6 L 42.1 1.6 L 42.1 19.598 L s 78.1 19.598 m 73.6 19.598 L 73.6 1.6 L 78.1 1.6 L 78.1 19.598 L s 24.1 37.598 m 19.6 37.598 L 19.6 19.6 L 24.1 19.6 L 24.1 37.598 L s 60.1 37.598 m 55.6 37.598 L 55.6 19.6 L 60.1 19.6 L 60.1 37.598 L s 6.1 55.598 m 1.6 55.598 L 1.6 37.6 L 6.1 37.6 L 6.1 55.598 L s 42.1 55.598 m 37.6 55.598 L 37.6 37.6 L 42.1 37.6 L 42.1 55.598 L s 78.1 55.598 m 73.6 55.598 L 73.6 37.6 L 78.1 37.6 L 78.1 55.598 L s 24.1 73.598 m 19.6 73.598 L 19.6 55.6 L 24.1 55.6 L 24.1 73.598 L s 60.1 73.598 m 55.6 73.598 L 55.6 55.6 L 60.1 55.6 L 60.1 73.598 L s 6.1 82.598 m 1.6 82.598 L 1.6 73.6 L 6.1 73.6 L 6.1 82.598 L s 42.1 82.598 m 37.6 82.598 L 37.6 73.6 L 42.1 73.6 L 42.1 82.598 L s 78.1 82.598 m 73.6 82.598 L 73.6 73.6 L 78.1 73.6 L 78.1 82.598 L s 37.6 1.6 m 37.6 6.098 L 19.6 6.098 L 19.6 1.6 L 37.6 1.6 L s 73.6 1.6 m 73.6 6.098 L 55.6 6.098 L 55.6 1.6 L 73.6 1.6 L s 19.6 19.6 m 19.6 24.098 L 1.6 24.098 L 1.6 19.6 L 19.6 19.6 L s 55.6 19.6 m 55.6 24.098 L 37.6 24.098 L 37.6 19.6 L 55.6 19.6 L s 82.6 19.6 m 82.6 24.098 L 73.6 24.098 L 73.6 19.6 L 82.6 19.6 L s 37.6 37.6 m 37.6 42.098 L 19.6 42.098 L 19.6 37.6 L 37.6 37.6 L s 73.6 37.6 m 73.6 42.098 L 55.6 42.098 L 55.6 37.6 L 73.6 37.6 L s 19.6 55.6 m 19.6 60.098 L 1.6 60.098 L 1.6 55.6 L 19.6 55.6 L s 55.6 55.6 m 55.6 60.098 L 37.6 60.098 L 37.6 55.6 L 55.6 55.6 L s 82.6 55.6 m 82.6 60.098 L 73.6 60.098 L 73.6 55.6 L 82.6 55.6 L s 37.6 73.6 m 37.6 78.098 L 19.6 78.098 L 19.6 73.6 L 37.6 73.6 L s 73.6 73.6 m 73.6 78.098 L 55.6 78.098 L 55.6 73.6 L 73.6 73.6 L s ) & ] E %AI3_EndPattern %AI3_BeginPattern: (Scales) (Scales) 1.6 9.3475 48.088 55.8355 [ (0 O 0 R 1 g 1 G) @ _ & (0 O 0 R 0 g 0 G) @ ( 800 Ar 0 J 0 j 0.3 w 4 M []0 d %AI3_Note: 0 D 17.0956 9.3475 m 12.8162 9.3475 9.3475 5.8787 9.3475 1.6 C 9.3475 5.8787 5.8787 9.3475 1.6 9.3475 C 1.6 13.6262 5.0687 17.095 9.3475 17.095 c 13.6268 17.095 17.0956 13.6262 17.0956 9.3475 C s 32.5918 9.3475 m 28.3125 9.3475 24.8437 5.8787 24.8437 1.6 C 24.8437 5.8787 21.3743 9.3475 17.0956 9.3475 C 17.0956 13.6262 20.5644 17.095 24.8437 17.095 c 29.1224 17.095 32.5918 13.6262 32.5918 9.3475 C s 48.088 9.3475 m 43.8087 9.3475 40.3399 5.8787 40.3399 1.6 C 40.3399 5.8787 36.8705 9.3475 32.5918 9.3475 C 32.5918 13.6262 36.0606 17.095 40.3399 17.095 c 44.6186 17.095 48.088 13.6262 48.088 9.3475 C s 17.0956 40.3393 m 12.8162 40.3393 9.3475 36.8699 9.3475 32.5912 C 9.3475 36.8699 5.8787 40.3393 1.6 40.3393 C 1.6 44.6181 5.0687 48.0874 9.3475 48.0874 c 13.6268 48.0874 17.0956 44.6181 17.0956 40.3393 C s 17.0956 24.8431 m 12.8162 24.8431 9.3475 21.3743 9.3475 17.095 C 9.3475 21.3743 5.8787 24.8431 1.6 24.8431 C 1.6 29.1218 5.0687 32.5912 9.3475 32.5912 c 13.6268 32.5912 17.0956 29.1218 17.0956 24.8431 C s 32.5918 24.8431 m 28.3125 24.8431 24.8437 21.3743 24.8437 17.095 C 24.8437 21.3743 21.3743 24.8431 17.0956 24.8431 C 17.0956 29.1218 20.5644 32.5912 24.8437 32.5912 c 29.1224 32.5912 32.5918 29.1218 32.5918 24.8431 C s 48.088 24.8431 m 43.8087 24.8431 40.3399 21.3743 40.3399 17.095 C 40.3399 21.3743 36.8705 24.8431 32.5918 24.8431 C 32.5918 29.1218 36.0606 32.5912 40.3399 32.5912 c 44.6186 32.5912 48.088 29.1218 48.088 24.8431 C s 32.5918 40.3393 m 28.3125 40.3393 24.8437 36.8699 24.8437 32.5912 C 24.8437 36.8699 21.3743 40.3393 17.0956 40.3393 C 17.0956 44.6181 20.5644 48.0874 24.8437 48.0874 c 29.1224 48.0874 32.5918 44.6181 32.5918 40.3393 C s 48.088 40.3393 m 43.8087 40.3393 40.3399 36.8699 40.3399 32.5912 C 40.3399 36.8699 36.8705 40.3393 32.5918 40.3393 C 32.5918 44.6181 36.0606 48.0874 40.3399 48.0874 c 44.6186 48.0874 48.088 44.6181 48.088 40.3393 C s 17.0956 55.8355 m 12.8162 55.8355 9.3475 52.3662 9.3475 48.0874 C 9.3475 52.3662 5.8787 55.8355 1.6 55.8355 C 1.6 60.1143 5.0687 63.5836 9.3475 63.5836 c 13.6268 63.5836 17.0956 60.1143 17.0956 55.8355 C s 32.5918 55.8355 m 28.3125 55.8355 24.8437 52.3662 24.8437 48.0874 C 24.8437 52.3662 21.3743 55.8355 17.0956 55.8355 C 17.0956 60.1143 20.5644 63.5836 24.8437 63.5836 c 29.1224 63.5836 32.5918 60.1143 32.5918 55.8355 C s 48.088 55.8355 m 43.8087 55.8355 40.3399 52.3662 40.3399 48.0874 C 40.3399 52.3662 36.8705 55.8355 32.5918 55.8355 C 32.5918 60.1143 36.0606 63.5836 40.3399 63.5836 c 44.6186 63.5836 48.088 60.1143 48.088 55.8355 C s ) & ] E %AI3_EndPattern %AI3_BeginPattern: (Table Cloth) (Table Cloth) 5 5 77 77 [ (0 O 0 R 1 g 1 G) @ _ & (0 O 0 R 0 0.4 0.4 0 k 0 0.4 0.4 0 K) @ ( 800 Ar 0 J 0 j 0.5 w 4 M []0 d %AI3_Note: 0 D 80 37 m 80 45 L 2 45 L 2 37 L 80 37 L f 80 55 m 80 63 L 2 63 L 2 55 L 80 55 L f 80.6667 73 m 80.6667 81 L 2.6667 81 L 2.6667 73 L 80.6667 73 L f 80 19 m 80 27 L 2 27 L 2 19 L 80 19 L f 80 1 m 80 9 L 2 9 L 2 1 L 80 1 L f ) & (0 O 0 R 0 0.6 0.6 0 k 0 0.6 0.6 0 K) @ ( 800 Ar 0 J 0 j 0.5 w 4 M []0 d %AI3_Note: 0 D 37 2 m 45 2 L 45 80 L 37 80 L 37 2 L f 55 2 m 63 2 L 63 80 L 55 80 L 55 2 L f 73 2 m 81 2 L 81 80 L 73 80 L 73 2 L f 19 2 m 27 2 L 27 80 L 19 80 L 19 2 L f 1 2 m 9 2 L 9 80 L 1 80 L 1 2 L f ) & (0 O 0 R 0 1 1 0 k 0 1 1 0 K) @ ( 800 Ar 0 J 0 j 0.5 w 4 M []0 d %AI3_Note: 0 D 9 73 m 9 81 L 1 81 L 1 73 L 9 73 L f 27 73 m 27 81 L 19 81 L 19 73 L 27 73 L f 45 73 m 45 81 L 37 81 L 37 73 L 45 73 L f 63 73 m 63 81 L 55 81 L 55 73 L 63 73 L f 81 73 m 81 81 L 73 81 L 73 73 L 81 73 L f 9 55 m 9 63 L 1 63 L 1 55 L 9 55 L f 27 55 m 27 63 L 19 63 L 19 55 L 27 55 L f 45 55 m 45 63 L 37 63 L 37 55 L 45 55 L f 63 55 m 63 63 L 55 63 L 55 55 L 63 55 L f 81 55 m 81 63 L 73 63 L 73 55 L 81 55 L f 9 37 m 9 45 L 1 45 L 1 37 L 9 37 L f 27 37 m 27 45 L 19 45 L 19 37 L 27 37 L f 45 37 m 45 45 L 37 45 L 37 37 L 45 37 L f 63 37 m 63 45 L 55 45 L 55 37 L 63 37 L f 81 37 m 81 45 L 73 45 L 73 37 L 81 37 L f 9 19 m 9 27 L 1 27 L 1 19 L 9 19 L f 27 19 m 27 27 L 19 27 L 19 19 L 27 19 L f 45 19 m 45 27 L 37 27 L 37 19 L 45 19 L f 63 19 m 63 27 L 55 27 L 55 19 L 63 19 L f 81 19 m 81 27 L 73 27 L 73 19 L 81 19 L f 9 1 m 9 9 L 1 9 L 1 1 L 9 1 L f 27 1 m 27 9 L 19 9 L 19 1 L 27 1 L f 45 1 m 45 9 L 37 9 L 37 1 L 45 1 L f 63 1 m 63 9 L 55 9 L 55 1 L 63 1 L f 81 1 m 81 9 L 73 9 L 73 1 L 81 1 L f ) & ] E %AI3_EndPattern %AI3_BeginPattern: (Three Petals) (Three Petals) 2.912 1.792 98.912 73.792 [ (0 O 0 R 0 g 0 G) @ _ & (0 O 0 R 1 g 1 G) @ ( 800 Ar 0 J 0 j 0.5 w 4 M []0 d %AI3_Note: 0 D 2.912 25.792 m 4.825 28.68 3.325 29.705 2.912 29.705 c 2.5 29.705 1 28.68 2.912 25.792 C f 50.912 25.792 m 52.825 28.68 51.325 29.705 50.912 29.705 c 50.5 29.705 49 28.68 50.912 25.792 C f 50.912 1.792 m 52.825 4.68 51.325 5.705 50.912 5.705 c 50.5 5.705 49 4.68 50.912 1.792 C f 2.912 1.792 m 4.825 4.68 3.325 5.705 2.912 5.705 c 2.5 5.705 1 4.68 2.912 1.792 C f 26.912 13.792 m 28.825 16.68 27.325 17.705 26.912 17.705 c 26.5 17.705 25 16.68 26.912 13.792 C f 98.912 25.792 m 100.825 28.68 99.325 29.705 98.912 29.705 c 98.5 29.705 97 28.68 98.912 25.792 C f 98.912 1.792 m 100.825 4.68 99.325 5.705 98.912 5.705 c 98.5 5.705 97 4.68 98.912 1.792 C f 74.912 13.792 m 76.825 16.68 75.325 17.705 74.912 17.705 c 74.5 17.705 73 16.68 74.912 13.792 C f 2.912 49.792 m 4.825 52.68 3.325 53.705 2.912 53.705 c 2.5 53.705 1 52.68 2.912 49.792 C f 50.912 49.792 m 52.825 52.68 51.325 53.705 50.912 53.705 c 50.5 53.705 49 52.68 50.912 49.792 C f 26.912 37.792 m 28.825 40.68 27.325 41.705 26.912 41.705 c 26.5 41.705 25 40.68 26.912 37.792 C f 98.912 49.792 m 100.825 52.68 99.325 53.705 98.912 53.705 c 98.5 53.705 97 52.68 98.912 49.792 C f 74.912 37.792 m 76.825 40.68 75.325 41.705 74.912 41.705 c 74.5 41.705 73 40.68 74.912 37.792 C f 2.912 73.792 m 4.825 76.68 3.325 77.705 2.912 77.705 c 2.5 77.705 1 76.68 2.912 73.792 C f 50.912 73.792 m 52.825 76.68 51.325 77.705 50.912 77.705 c 50.5 77.705 49 76.68 50.912 73.792 C f 26.912 61.792 m 28.825 64.68 27.325 65.705 26.912 65.705 c 26.5 65.705 25 64.68 26.912 61.792 C f 98.912 73.792 m 100.825 76.68 99.325 77.705 98.912 77.705 c 98.5 77.705 97 76.68 98.912 73.792 C f 74.912 61.792 m 76.825 64.68 75.325 65.705 74.912 65.705 c 74.5 65.705 73 64.68 74.912 61.792 C f 3.949 25.197 m 7.407 25 7.536 26.812 7.329 27.169 c 7.121 27.525 5.479 28.304 3.949 25.197 C f 51.949 25.197 m 55.407 25 55.536 26.812 55.329 27.169 c 55.121 27.525 53.479 28.304 51.949 25.197 C f 51.949 1.197 m 55.407 1 55.536 2.812 55.329 3.169 c 55.121 3.525 53.479 4.304 51.949 1.197 C f 3.949 1.197 m 7.407 1 7.536 2.812 7.329 3.169 c 7.121 3.525 5.479 4.304 3.949 1.197 C f 27.949 13.197 m 31.407 13 31.536 14.812 31.329 15.169 c 31.121 15.525 29.479 16.304 27.949 13.197 C f 75.949 13.197 m 79.407 13 79.536 14.812 79.329 15.169 c 79.121 15.525 77.479 16.304 75.949 13.197 C f 3.949 49.197 m 7.407 49 7.536 50.812 7.329 51.169 c 7.121 51.525 5.479 52.304 3.949 49.197 C f 51.949 49.197 m 55.407 49 55.536 50.812 55.329 51.169 c 55.121 51.525 53.479 52.304 51.949 49.197 C f 27.949 37.197 m 31.407 37 31.536 38.812 31.329 39.169 c 31.121 39.525 29.479 40.304 27.949 37.197 C f 75.949 37.197 m 79.407 37 79.536 38.812 79.329 39.169 c 79.121 39.525 77.479 40.304 75.949 37.197 C f 3.949 73.197 m 7.407 73 7.536 74.812 7.329 75.169 c 7.121 75.525 5.479 76.304 3.949 73.197 C f 51.949 73.197 m 55.407 73 55.536 74.812 55.329 75.169 c 55.121 75.525 53.479 76.304 51.949 73.197 C f 27.949 61.197 m 31.407 61 31.536 62.812 31.329 63.169 c 31.121 63.525 29.479 64.304 27.949 61.197 C f 75.949 61.197 m 79.407 61 79.536 62.812 79.329 63.169 c 79.121 63.525 77.479 64.304 75.949 61.197 C f 49.876 25.197 m 48.345 28.304 46.704 27.525 46.496 27.169 c 46.288 26.812 46.418 25 49.876 25.197 C f 49.876 1.197 m 48.345 4.304 46.704 3.525 46.496 3.169 c 46.288 2.812 46.418 1 49.876 1.197 C f 25.876 13.197 m 24.345 16.304 22.704 15.525 22.496 15.169 c 22.288 14.812 22.418 13 25.876 13.197 C f 97.876 25.197 m 96.345 28.304 94.704 27.525 94.496 27.169 c 94.288 26.812 94.418 25 97.876 25.197 C f 97.876 1.197 m 96.345 4.304 94.704 3.525 94.496 3.169 c 94.288 2.812 94.418 1 97.876 1.197 C f 73.876 13.197 m 72.345 16.304 70.704 15.525 70.496 15.169 c 70.288 14.812 70.418 13 73.876 13.197 C f 49.876 49.197 m 48.345 52.304 46.704 51.525 46.496 51.169 c 46.288 50.812 46.418 49 49.876 49.197 C f 25.876 37.197 m 24.345 40.304 22.704 39.525 22.496 39.169 c 22.288 38.812 22.418 37 25.876 37.197 C f 97.876 49.197 m 96.345 52.304 94.704 51.525 94.496 51.169 c 94.288 50.812 94.418 49 97.876 49.197 C f 73.876 37.197 m 72.345 40.304 70.704 39.525 70.496 39.169 c 70.288 38.812 70.418 37 73.876 37.197 C f 49.876 73.197 m 48.345 76.304 46.704 75.525 46.496 75.169 c 46.288 74.812 46.418 73 49.876 73.197 C f 25.876 61.197 m 24.345 64.304 22.704 63.525 22.496 63.169 c 22.288 62.812 22.418 61 25.876 61.197 C f 97.876 73.197 m 96.345 76.304 94.704 75.525 94.496 75.169 c 94.288 74.812 94.418 73 97.876 73.197 C f 73.876 61.197 m 72.345 64.304 70.704 63.525 70.496 63.169 c 70.288 62.812 70.418 61 73.876 61.197 C f ) & ] E %AI3_EndPattern %AI3_BeginPattern: (Waves-Transparent) (Waves-Transparent) 4 5.89 113.125 31.693 [ %AI3_Tile (0 O 0 R 1 0 0.35 0 k 1 0 0.35 0 K) @ ( 800 Ar 2 J 0 j 1.5 w 4 M []0 d %AI3_Note: 0 D 113.125 12.602 m 106.95 12.602 102.306 13.907 99.484 14.73 c 96.664 15.553 92.018 16.858 85.844 16.858 c 79.67 16.858 75.024 15.553 72.203 14.73 c 69.382 13.906 64.737 12.602 58.562 12.602 c 52.388 12.602 47.743 13.907 44.922 14.73 c 42.101 15.553 37.455 16.858 31.281 16.858 c 25.107 16.858 20.461 15.553 17.641 14.73 c 14.819 13.907 10.174 12.602 4 12.602 c S 113.125 8.301 m 106.95 8.301 102.306 9.606 99.484 10.429 c 96.664 11.252 92.018 12.557 85.844 12.557 c 79.67 12.557 75.024 11.252 72.203 10.429 c 69.382 9.606 64.737 8.301 58.562 8.301 c 52.388 8.301 47.743 9.606 44.922 10.429 c 42.101 11.252 37.455 12.557 31.281 12.557 c 25.107 12.557 20.461 11.252 17.641 10.429 c 14.819 9.606 10.174 8.301 4 8.301 c S 113.125 4 m 106.95 4 102.306 5.305 99.484 6.128 c 96.664 6.951 92.018 8.256 85.844 8.256 c 79.67 8.256 75.024 6.951 72.203 6.128 c 69.382 5.305 64.737 4 58.562 4 c 52.388 4 47.743 5.305 44.922 6.128 c 42.101 6.951 37.455 8.256 31.281 8.256 c 25.107 8.256 20.461 6.951 17.641 6.128 c 14.819 5.305 10.174 4 4 4 c S 113.125 29.805 m 106.95 29.805 102.306 31.11 99.484 31.933 c 96.664 32.756 92.018 34.061 85.844 34.061 c 79.67 34.061 75.024 32.756 72.203 31.933 c 69.382 31.109 64.737 29.805 58.562 29.805 c 52.388 29.805 47.743 31.11 44.922 31.933 c 42.101 32.756 37.455 34.061 31.281 34.061 c 25.107 34.061 20.461 32.756 17.641 31.933 c 14.819 31.11 10.174 29.805 4 29.805 c S 113.125 25.504 m 106.95 25.504 102.306 26.809 99.484 27.632 c 96.664 28.455 92.018 29.76 85.844 29.76 c 79.67 29.76 75.024 28.455 72.203 27.632 c 69.382 26.809 64.737 25.504 58.562 25.504 c 52.388 25.504 47.743 26.809 44.922 27.632 c 42.101 28.455 37.455 29.76 31.281 29.76 c 25.107 29.76 20.461 28.455 17.641 27.632 c 14.819 26.809 10.174 25.504 4 25.504 c S 113.125 21.203 m 106.95 21.203 102.306 22.508 99.484 23.331 c 96.664 24.154 92.018 25.459 85.844 25.459 c 79.67 25.459 75.024 24.154 72.203 23.331 c 69.382 22.508 64.737 21.203 58.562 21.203 c 52.388 21.203 47.743 22.508 44.922 23.331 c 42.101 24.154 37.455 25.459 31.281 25.459 c 25.107 25.459 20.461 24.154 17.641 23.331 c 14.819 22.508 10.174 21.203 4 21.203 c S 113.125 16.902 m 106.95 16.902 102.306 18.207 99.484 19.03 c 96.664 19.853 92.018 21.158 85.844 21.158 c 79.67 21.158 75.024 19.853 72.203 19.03 c 69.382 18.207 64.737 16.902 58.562 16.902 c 52.388 16.902 47.743 18.207 44.922 19.03 c 42.101 19.853 37.455 21.158 31.281 21.158 c 25.107 21.158 20.461 19.853 17.641 19.03 c 14.819 18.207 10.174 16.902 4 16.902 c S ) & ] E %AI3_EndPattern %AI3_BeginPattern: (Yellow Stripe) (Yellow Stripe) 8.4499 4.6 80.4499 76.6 [ %AI3_Tile (0 O 0 R 0 0.4 1 0 k 0 0.4 1 0 K) @ ( 800 Ar 0 J 0 j 3.6 w 4 M []0 d %AI3_Note: 0 D 8.1999 8.1999 m 80.6999 8.1999 L S 8.1999 22.6 m 80.6999 22.6 L S 8.1999 37.0001 m 80.6999 37.0001 L S 8.1999 51.3999 m 80.6999 51.3999 L S 8.1999 65.8 m 80.6999 65.8 L S 8.1999 15.3999 m 80.6999 15.3999 L S 8.1999 29.8 m 80.6999 29.8 L S 8.1999 44.1999 m 80.6999 44.1999 L S 8.1999 58.6 m 80.6999 58.6 L S 8.1999 73.0001 m 80.6999 73.0001 L S ) & ] E %AI3_EndPattern %AI5_End_NonPrinting-- %AI5_Begin_NonPrinting Np 3 Bn %AI5_BeginGradient: (Black & White) (Black & White) 0 2 Bd [ < FFFEFDFCFBFAF9F8F7F6F5F4F3F2F1F0EFEEEDECEBEAE9E8E7E6E5E4E3E2E1E0DFDEDDDCDBDAD9D8 D7D6D5D4D3D2D1D0CFCECDCCCBCAC9C8C7C6C5C4C3C2C1C0BFBEBDBCBBBAB9B8B7B6B5B4B3B2B1B0 AFAEADACABAAA9A8A7A6A5A4A3A2A1A09F9E9D9C9B9A999897969594939291908F8E8D8C8B8A8988 87868584838281807F7E7D7C7B7A797877767574737271706F6E6D6C6B6A69686766656463626160 5F5E5D5C5B5A595857565554535251504F4E4D4C4B4A494847464544434241403F3E3D3C3B3A3938 37363534333231302F2E2D2C2B2A292827262524232221201F1E1D1C1B1A19181716151413121110 0F0E0D0C0B0A09080706050403020100 > 0 %_Br [ 0 0 50 100 %_Bs 1 0 50 0 %_Bs BD %AI5_EndGradient %AI5_BeginGradient: (Red & Yellow) (Red & Yellow) 0 2 Bd [ 0 < 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F2021222324252627 28292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E4F 505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F7071727374757677 78797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F909192939495969798999A9B9C9D9E9F A0A1A2A3A4A5A6A7A8A9AAABACADAEAFB0B1B2B3B4B5B6B7B8B9BABBBCBDBEBFC0C1C2C3C4C5C6C7 C8C9CACBCCCDCECFD0D1D2D3D4D5D6D7D8D9DADBDCDDDEDFE0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF > < FFFFFEFEFDFDFDFCFCFBFBFBFAFAF9F9F9F8F8F7F7F7F6F6F5F5F5F4F4F3F3F3F2F2F1F1F1F0F0EF EFEFEEEEEDEDEDECECEBEBEBEAEAE9E9E9E8E8E7E7E7E6E6E5E5E5E4E4E3E3E3E2E2E1E1E1E0E0DF DFDFDEDEDDDDDDDCDCDBDBDBDADAD9D9D9D8D8D7D7D7D6D6D5D5D5D4D4D3D3D3D2D2D1D1D1D0D0CF CFCFCECECDCDCDCCCCCBCBCBCACAC9C9C9C8C8C7C7C7C6C6C5C5C5C4C4C3C3C3C2C2C1C1C1C0C0BF BFBFBEBEBDBDBDBCBCBBBBBBBABAB9B9B9B8B8B7B7B7B6B6B5B5B5B4B4B3B3B3B2B2B1B1B1B0B0AF AFAFAEAEADADADACACABABABAAAAA9A9A9A8A8A7A7A7A6A6A5A5A5A4A4A3A3A3A2A2A1A1A1A0A09F 9F9F9E9E9D9D9D9C9C9B9B9B9A9A9999 > 0 1 %_Br [ 0 1 0.6 0 1 50 100 %_Bs 0 0 1 0 1 50 0 %_Bs BD %AI5_EndGradient %AI5_BeginGradient: (Yellow & Blue Radial) (Yellow & Blue Radial) 1 2 Bd [ < 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F2021222324252627 28292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E4F 505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F7071727374757677 78797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F909192939495969798999A9B9C9D9E9F A0A1A2A3A4A5A6A7A8A9AAABACADAEAFB0B1B2B3B4B5B6B7B8B9BABBBCBDBEBFC0C1C2C3C4C5C6C7 C8C9CACBCCCDCECFD0D1D2D3D4D5D6D7D8D9DADBDCDDDEDFE0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF > < 1415161718191A1B1C1D1E1F1F202122232425262728292A2A2B2C2D2E2F30313233343536363738 393A3B3C3D3E3F40414142434445464748494A4B4C4D4D4E4F50515253545556575858595A5B5C5D 5E5F60616263646465666768696A6B6C6D6E6F6F707172737475767778797A7B7B7C7D7E7F808182 83848586868788898A8B8C8D8E8F90919292939495969798999A9B9C9D9D9E9FA0A1A2A3A4A5A6A7 A8A9A9AAABACADAEAFB0B1B2B3B4B4B5B6B7B8B9BABBBCBDBEBFC0C0C1C2C3C4C5C6C7C8C9CACBCB CCCDCECFD0D1D2D3D4D5D6D7D7D8D9DADBDCDDDEDFE0E1E2E2E3E4E5E6E7E8E9EAEBECEDEEEEEFF0 F1F2F3F4F5F6F7F8F9F9FAFBFCFDFEFF > < ABAAAAA9A8A7A7A6A5A5A4A3A3A2A1A1A09F9F9E9D9D9C9B9B9A9999989797969595949393929191 908F8F8E8D8D8C8B8B8A8989888787868585848383828181807F7F7E7D7D7C7B7B7A797978777776 7575747373727171706F6F6E6D6D6C6B6B6A6969686767666565646362626160605F5E5E5D5C5C5B 5A5A5958585756565554545352525150504F4E4E4D4C4C4B4A4A4948484746464544444342424140 403F3E3E3D3C3C3B3A3A3938383736363534343332323130302F2E2E2D2C2C2B2A2A292828272626 25242423222121201F1F1E1D1D1C1B1B1A1919181717161515141313121111100F0F0E0D0D0C0B0B 0A090908070706050504030302010100 > 0 1 %_Br [ 0 0.08 0.67 0 1 50 14 %_Bs 1 1 0 0 1 50 100 %_Bs BD %AI5_EndGradient %AI5_End_NonPrinting-- %AI5_BeginPalette 0 1 Pb Pn Pc 1 g Pc 0 g Pc 0 0 0 0 k Pc 0.75 g Pc 0.5 g Pc 0.25 g Pc 0 g Pc Bb 2 (Black & White) -4014 4716 0 0 1 0 0 1 0 0 Bg 0 BB Pc 0.25 0 0 0 k Pc 0.5 0 0 0 k Pc 0.75 0 0 0 k Pc 1 0 0 0 k Pc 0.25 0.25 0 0 k Pc 0.5 0.5 0 0 k Pc 0.75 0.75 0 0 k Pc 1 1 0 0 k Pc Bb 2 (Red & Yellow) -4014 4716 0 0 1 0 0 1 0 0 Bg 0 BB Pc 0 0.25 0 0 k Pc 0 0.5 0 0 k Pc 0 0.75 0 0 k Pc 0 1 0 0 k Pc 0 0.25 0.25 0 k Pc 0 0.5 0.5 0 k Pc 0 0.75 0.75 0 k Pc 0 1 1 0 k Pc Bb 0 0 0 0 Bh 2 (Yellow & Blue Radial) -4014 4716 0 0 1 0 0 1 0 0 Bg 0 BB Pc 0 0 0.25 0 k Pc 0 0 0.5 0 k Pc 0 0 0.75 0 k Pc 0 0 1 0 k Pc 0.25 0 0.25 0 k Pc 0.5 0 0.5 0 k Pc 0.75 0 0.75 0 k Pc 1 0 1 0 k Pc (Yellow Stripe) 0 0 1 1 0 0 0 0 0 [1 0 0 1 0 0] p Pc 0.25 0.125 0 0 k Pc 0.5 0.25 0 0 k Pc 0.75 0.375 0 0 k Pc 1 0.5 0 0 k Pc 0.125 0.25 0 0 k Pc 0.25 0.5 0 0 k Pc 0.375 0.75 0 0 k Pc 0.5 1 0 0 k Pc 0 0 0 0 k Pc 0 0.25 0.125 0 k Pc 0 0.5 0.25 0 k Pc 0 0.75 0.375 0 k Pc 0 1 0.5 0 k Pc 0 0.125 0.25 0 k Pc 0 0.25 0.5 0 k Pc 0 0.375 0.75 0 k Pc 0 0.5 1 0 k Pc 0 0 0 0 k Pc 0.125 0 0.25 0 k Pc 0.25 0 0.5 0 k Pc 0.375 0 0.75 0 k Pc 0.5 0 1 0 k Pc 0.25 0 0.125 0 k Pc 0.5 0 0.25 0 k Pc 0.75 0 0.375 0 k Pc 1 0 0.5 0 k Pc 0 0 0 0 k Pc 0.25 0.125 0.125 0 k Pc 0.5 0.25 0.25 0 k Pc 0.75 0.375 0.375 0 k Pc 1 0.5 0.5 0 k Pc 0.25 0.25 0.125 0 k Pc 0.5 0.5 0.25 0 k Pc 0.75 0.75 0.375 0 k Pc 1 1 0.5 0 k Pc 0 0 0 0 k Pc 0.125 0.25 0.125 0 k Pc 0.25 0.5 0.25 0 k Pc 0.375 0.75 0.375 0 k Pc 0.5 1 0.5 0 k Pc 0.125 0.25 0.25 0 k Pc 0.25 0.5 0.5 0 k Pc 0.375 0.75 0.75 0 k Pc 0.5 1 1 0 k Pc 0 0 0 0 k Pc 0.125 0.125 0.25 0 k Pc 0.25 0.25 0.5 0 k Pc 0.375 0.375 0.75 0 k Pc 0.5 0.5 1 0 k Pc 0.25 0.125 0.25 0 k Pc 0.5 0.25 0.5 0 k Pc 0.75 0.375 0.75 0 k Pc 1 0.5 1 0 k Pc PB %AI5_EndPalette %%EndSetup %AI5_BeginLayer 1 1 1 1 0 0 0 79 128 255 Lb (Layer 1) Ln 0 A 1 Ap 0 R 0 G 800 Ar 0 J 0 j 2 w 4 M []0 d %AI3_Note: 0 D 322.5 348 m 337.5 348 L 542 348 L 542 713 L 64 713 L 64 348 L 322.5 348 L s 0 Ap 0 O 0.74 g 64.375 348 m 64.375 479 l 92.1875 480 93 477 114 469.5 c 133.6191 462.493 124.4727 467.1447 152 454.3333 c 178.5 442 171.3333 441 189 427.6667 c 214.4156 408.485 213 411 222 394.5 c 224.0602 390.7229 240.1513 371.6532 241.5 370.5 c 253 360.6667 237.6667 373.6667 256.5 358.5 c 267.0217 350.0269 277.4996 348 256 348 c 182.5 348 64.375 348 y b 5 w 138.25 348 m 149 367 l 154.5417 405.9375 163.5417 411.9375 v 172.5417 417.9375 169.5417 410.4375 183.0417 426.9375 c 196.5417 443.4375 181.5417 441.9375 198.0417 456.9375 c 214.5417 471.9375 207.0417 485.4375 231.0417 482.4375 c 255.0417 479.4375 246.0417 477.9375 264.0417 473.4375 c 282.0417 468.9375 276.5 471.5 296 471 c 312.7707 470.57 297.3333 466.6667 332 476 c 367.0026 485.424 372.0417 485.4375 381.0417 501.9375 c 390.0417 518.4375 389.3333 509.3333 390.0417 531.9375 c 390.8292 557.0698 379.5417 563.4375 363.0417 557.4375 c 346.5417 551.4375 340.5417 546.9375 333.0417 546.9375 c 325.5417 546.9375 322.5417 548.4375 303.0417 558.9375 c 283.5417 569.4375 265.5417 572.4375 258.0417 587.4375 c 250.5417 602.4375 247.9817 598.0635 246.0417 612.9375 c 244.5417 624.4375 235 644 256 647 c 277 650 279.0417 641.4375 294.0417 638.4375 c 309.0417 635.4375 304.5417 635.4375 334.5417 630.9375 c 364.5417 626.4375 371.5 624 403 624 c 434.5 624 445 626 450.0417 626.4375 c 456.3818 626.9877 507.5 645.5 506 656 c 504.5 666.5 468 667 450 664 c 435.9633 661.6606 436.1513 661.2638 425 658 c 411.3333 654 422 656 402.0417 651.9375 c 379.7987 647.41 376.5417 653.4375 375.0417 662.4375 c 373.5417 671.4375 373 683 376 689 c 390.5 712.8333 l S 2 w 253.875 476.125 m 253.875 476.125 l 258.375 488.125 255.4365 488.3535 269.25 498.4375 c 275.5 503 288.7814 510.3645 286 510 c 310.1667 513.1667 297.3333 512.3333 310.875 509.125 c 330.5697 504.4588 319.2255 507.9142 336 495.3333 c 348 486.3333 352.875 480.625 y S 314 508 m 327.5 508 323.9303 504.7563 339.5 511.8333 c 361.5 521.8333 360.8333 525.8333 y S 385 554 m 391 573.5 396.5522 573.344 391 590 c 390.3333 592 395.3323 604.3288 394 598.3333 c 396 607.3333 389.3333 607.6667 y S 389.5 567.625 m 410.5 579.625 403 584.125 425.5 582.625 c 448 581.125 445 576.625 458.5 584.125 c 472 591.625 476.5 591.625 481 597.625 c S 292.25 565.25 m 278.75 584.75 280.0713 581.7347 278.75 598.25 c 277.75 610.75 275.699 609.0216 286.25 623.75 c 309.2109 655.8017 298.9281 640.3925 316.5 656.5 c S 307 444 m 323 446 322 444 337 448 c 353.197 452.3192 358 455.5 372 460.5 c 386 465.5 391.5 471 397 478.5 c 403.2863 487.0722 409.6602 495.8095 412 504.5 c 415.5 517.5 413 514.6667 413 531 c 413 538 411 546 414 552 c 416.2361 556.4721 422 559 428 558 c 434 557 433 558 441 558 c 449 558 448.2199 557.5 455.5 557.5 c 462 557.5 455.5 557.5 472 562 c 485.8133 565.7672 484 569 492 575 c 500 581 503 589 505 593 c 507 597 508 600 506 604 c 503.4701 609.0596 500.2197 611.4286 495 615 c 488.6667 619.3333 489.3333 622 478 621 c 467.6001 620.0823 466.3264 619.3959 459 615 c 451.5 610.5 454.5 611.5 446 609 c 437.3126 606.4448 430 607 425 607 c 420 607 419 608 415 611 c 411 614 412 618 406 622 c 400 626 402 631 393 633 c 384 635 383 638 376 634 c 369 630 366 631 364 623 c 362 615 362 620 362 608 c 362 596 362.4552 592.8208 361 587 c 359.5 581 356.5596 581.0518 352 579 c 345.3333 576 346.6667 576.6667 y 347 577 341 575 v 335 573 328 577 323 579 c 318 581 319 582 313 588 c 307 594 306.4926 596.9263 307 602 c 307.5 607 306.5 605 309 612 c 311.4254 618.791 313 617.5 321 625 c 328.8911 632.398 332 635 335 642 c 338 649 343.5 652.5 339 663 c 334.5433 673.3989 330 675 323 677 c 316 679 309.1562 679.2625 306 678 c 301 676 297.6667 677.3333 293 673 c 288.3078 668.643 285 663 y 281.5625 655.4375 279.6875 654.125 v 277.8125 652.8125 268.6409 644.4467 268 644 c 259.75 638.25 264 640 256 638 c 245.2844 635.3211 249.5 639 242 642 c 234.5144 644.9943 226.5277 641.5277 222 637 c 218 633 220.6048 637.8106 217 630 c 214 623.5 214 622.6667 216 615 c 218.1567 606.7327 217 607 223 596 c 229 585 227 586 234 577 c 241 568 251 562 261 555 c 271 548 275 544 276 541 c 277 538 276 536 273 531 c 270 526 269.9225 527.6638 263 522 c 257.5 517.5 251.5 513 246 511 c 240 510 233.5 510.5 v 226.4498 511.0423 222.1058 514.8424 210 510 c 200 506 192 501 187 495 c 182 489 179 487 175 480 c 171 473 164 466.5 161 459.5 c 158 452.5 159 453 157 449 c 156.2692 447.5384 151.5641 441.4615 153 435 c 155 426 155 427.5 156 424 c 157.1656 419.9206 162.3583 416.7304 167 414 c 172.6667 410.6667 178 409 184 408 c 190 407 197.328 408.0289 203 411 c 210 414.6667 208 415.3333 213 421 c 217.771 426.4072 218 433 220 436 c 222 439 229 448 232 449 c 235 450 241 451 246 450 c 251 449 252 450 264 448 c 276 446 268 446 278 445 c 287.9504 444.0049 278.3985 444 292 444 c 303 444 307 444 y s 424 378 m S 1 Ap 0 O 0 g 193 448 m 195.2091 448 197 449.7909 197 452 c 197 454.2091 195.2091 456 193 456 c 190.7909 456 189 454.2091 189 452 c 189 449.7909 190.7909 448 193 448 c b 0 Ap 460 647 m S 350 713 m 541 605 l S 1 Ap 0 O 0 g 244.125 621.5 m 246.3341 621.5 248.125 623.2909 248.125 625.5 c 248.125 627.7091 246.3341 629.5 244.125 629.5 c 241.9159 629.5 240.125 627.7091 240.125 625.5 c 240.125 623.2909 241.9159 621.5 244.125 621.5 c b 247 605.5 m 249.2091 605.5 251 607.2909 251 609.5 c 251 611.7091 249.2091 613.5 247 613.5 c 244.7909 613.5 243 611.7091 243 609.5 c 243 607.2909 244.7909 605.5 247 605.5 c b 392.1617 600.8383 m 394.3708 600.8383 396.1617 602.6292 396.1617 604.8383 c 396.1617 607.0474 394.3708 608.8383 392.1617 608.8383 c 389.9526 608.8383 388.1617 607.0474 388.1617 604.8383 c 388.1617 602.6292 389.9526 600.8383 392.1617 600.8383 c b 0 To 1 0 0 1 400.3333 597.3333 0 Tp TP 0 Tr 1 w /_Times-Roman 18 Tf 0 Ts 100 Tz 0 Tt 0 TA %_ 0 XL 36 0 Xb XB 0 0 5 TC 100 100 200 TW 0 0 0 Ti 0 Ta 0 0 2 2 3 Th 0 Tq 0 0 Tl 0 Tc 0 Tw (w) Tx /_Times-Roman 14 Tf -5 Ts (i) Tx (\r) TX TO 0 To 1 0 0 1 223 616 0 Tp TP 0 Tr /_Times-Roman 18 Tf 0 Ts (v) Tx /_Times-Roman 14 Tf -5 Ts (i) Tx (\r) TX TO 0 To 1 0 0 1 230.5 595 0 Tp TP 0 Tr /_Times-Roman 18 Tf 0 Ts (v) Tx /_Times-Roman 14 Tf -5 Ts (i) Tx (\r) TX TO 0 To 1 0 0 1 241.3333 587.3333 0 Tp TP 0 Tr /_Times-Roman 18 Tf 0 Ts (\r) TX TO 0 To 1 0 0 1 178.6667 466 0 Tp TP 0 Tr (u) Tx /_Times-Roman 14 Tf -5 Ts (i) Tx (\r) TX TO 0 To 1 0 0 1 119.6667 415.3333 0 Tp TP 0 Tr /_Times-Roman 18 Tf 0 Ts (D) Tx /_Times-Roman 14 Tf -5 Ts (i) Tx (\r) TX TO 0 To 1 0 0 1 427 451 0 Tp TP 0 Tr /_Symbol 18 Tf 0 Ts (\266) Tx /_Times-Roman 18 Tf (R) Tx /_Times-Roman 14 Tf -5 Ts (i) Tx (\r) TX TO 0 To 1 0 0 1 418.6667 636.3333 0 Tp TP 0 Tr /_Times-Roman 18 Tf 0 Ts (u) Tx /_Times-Roman 14 Tf -5 Ts (i+1) Tx (\r) TX TO 0 To 1 0 0 1 475.3333 676.6667 0 Tp TP 0 Tr /_Symbol 18 Tf 0 Ts (g) Tx (\r) TX TO 0 R 0 G 5 w 417.6667 621.3333 m 419.3235 621.3333 420.6667 622.6765 420.6667 624.3333 c 420.6667 625.9902 419.3235 627.3333 417.6667 627.3333 c 416.0098 627.3333 414.6667 625.9902 414.6667 624.3333 c 414.6667 622.6765 416.0098 621.3333 417.6667 621.3333 c s 0 To 1 0 0 1 472 538 0 Tp TP 0 Tr 0 O 0 g 1 w /_Times-Roman 18 Tf (u) Tx /_Times-Roman 14 Tf -5 Ts (i) Tx /_Times-Roman 18 Tf 0 Ts (+) Tx /_Symbol 18 Tf (\266) Tx /_Times-Roman 18 Tf (G) Tx /_Times-Roman 14 Tf -5 Ts (x) Tx (\r) TX TO u 0 Ap 0 R 0 G 2 w 400.875 473.3125 m 424.875 457.3125 l B 395.8534 476.6602 m 398.8005 475.9618 402.7298 475.5034 405.6024 475.8758 c 401.5337 472.8733 l 400.3274 467.9633 l 399.5662 470.758 397.6318 474.2087 395.8534 476.6602 c b U u u 499.9583 554.0208 m 524.7083 604.5833 l B 527.6741 610.3165 m 527.3721 607.3028 527.438 603.3475 528.1876 600.5494 c 524.6728 604.1847 l 519.6462 604.7303 l 522.3155 605.8548 525.4797 608.2291 527.6741 610.3165 c b U U 0 To 1 0 0 1 133 425 0 Tp TP 0 Tr 1 w 0 Ts (c) Tx (\r) TX TO 0 To 1 0 0 1 232.5 616.5 0 Tp TP 0 Tr /_Times-Roman 18 Tf (') Tx (\r) TX TO LB %AI5_EndLayer-- %%PageTrailer gsave annotatepage grestore showpage %%Trailer Adobe_IllustratorA_AI5 /terminate get exec Adobe_typography_AI5 /terminate get exec Adobe_level2_AI5 /terminate get exec %%EOF EndOfTheIncludedPostscriptMagicCookie \closepsdump % Here is the PostScript for expcor02.eps: \message{Writing file expcor02.eps} \psdump{expcor02.eps}%!PS-Adobe-3.0 EPSF-3.0 %%Creator: Adobe Illustrator(TM) 5.5 %%For: (Kenneth Alexander) (USC) %%Title: (expcor02B.eps) %%CreationDate: (5/23/2000) (1:42 PM) %%BoundingBox: 85 260 542 688 %%HiResBoundingBox: 85.7083 260.0977 541.5931 687.9792 %%DocumentProcessColors: Black %%DocumentFonts: Symbol %%+ Times-Roman %%DocumentSuppliedResources: procset Adobe_level2_AI5 1.0 0 %%+ procset Adobe_typography_AI5 1.0 0 %%+ procset Adobe_IllustratorA_AI5 1.0 0 %AI5_FileFormat 1.2 %AI3_ColorUsage: Black&White %AI3_TemplateBox: 306 396 306 396 %AI3_TileBox: 30 31 582 761 %AI3_DocumentPreview: Header %AI5_ArtSize: 612 792 %AI5_RulerUnits: 2 %AI5_ArtFlags: 1 0 0 1 0 0 1 1 0 %AI5_TargetResolution: 800 %AI5_NumLayers: 1 %AI5_OpenToView: -54 780 1 686 435 18 0 1 31 70 %AI5_OpenViewLayers: 7 %%EndComments %%BeginProlog %%BeginResource: procset Adobe_level2_AI5 1.0 0 %%Title: (Adobe Illustrator (R) Version 5.0 Level 2 Emulation) %%Version: 1.0 %%CreationDate: (04/10/93) () %%Copyright: ((C) 1987-1993 Adobe Systems Incorporated All Rights Reserved) userdict /Adobe_level2_AI5 21 dict dup begin put /packedarray where not { userdict begin /packedarray { array astore readonly } bind def /setpacking /pop load def /currentpacking false def end 0 } if pop userdict /defaultpacking currentpacking put true setpacking /initialize { Adobe_level2_AI5 begin } bind def /terminate { currentdict Adobe_level2_AI5 eq { end } if } bind def mark /setcustomcolor where not { /findcmykcustomcolor { 5 packedarray } bind def /setcustomcolor { exch aload pop pop 4 { 4 index mul 4 1 roll } repeat 5 -1 roll pop setcmykcolor } def } if /gt38? mark {version cvx exec} stopped {cleartomark true} {38 gt exch pop} ifelse def userdict /deviceDPI 72 0 matrix defaultmatrix dtransform dup mul exch dup mul add sqrt put userdict /level2? systemdict /languagelevel known dup { pop systemdict /languagelevel get 2 ge } if put level2? not { /setcmykcolor where not { /setcmykcolor { exch .11 mul add exch .59 mul add exch .3 mul add 1 exch sub setgray } def } if /currentcmykcolor where not { /currentcmykcolor { 0 0 0 1 currentgray sub } def } if /setoverprint where not { /setoverprint /pop load def } if /selectfont where not { /selectfont { exch findfont exch dup type /arraytype eq { makefont } { scalefont } ifelse setfont } bind def } if /cshow where not { /cshow { [ 0 0 5 -1 roll aload pop ] cvx bind forall } bind def } if } if cleartomark /anyColor? { add add add 0 ne } bind def /testColor { gsave setcmykcolor currentcmykcolor grestore } bind def /testCMYKColorThrough { testColor anyColor? } bind def userdict /composite? level2? { gsave 1 1 1 1 setcmykcolor currentcmykcolor grestore add add add 4 eq } { 1 0 0 0 testCMYKColorThrough 0 1 0 0 testCMYKColorThrough 0 0 1 0 testCMYKColorThrough 0 0 0 1 testCMYKColorThrough and and and } ifelse put composite? not { userdict begin gsave /cyan? 1 0 0 0 testCMYKColorThrough def /magenta? 0 1 0 0 testCMYKColorThrough def /yellow? 0 0 1 0 testCMYKColorThrough def /black? 0 0 0 1 testCMYKColorThrough def grestore /isCMYKSep? cyan? magenta? yellow? black? or or or def /customColor? isCMYKSep? not def end } if end defaultpacking setpacking %%EndResource %%BeginResource: procset Adobe_typography_AI5 1.0 1 %%Title: (Typography Operators) %%Version: 1.0 %%CreationDate:(03/26/93) () %%Copyright: ((C) 1987-1993 Adobe Systems Incorporated All Rights Reserved) currentpacking true setpacking userdict /Adobe_typography_AI5 54 dict dup begin put /initialize { begin begin Adobe_typography_AI5 begin Adobe_typography_AI5 { dup xcheck { bind } if pop pop } forall end end end Adobe_typography_AI5 begin } def /terminate { currentdict Adobe_typography_AI5 eq { end } if } def /modifyEncoding { /_tempEncode exch ddef /_pntr 0 ddef { counttomark -1 roll dup type dup /marktype eq { pop pop exit } { /nametype eq { _tempEncode /_pntr dup load dup 3 1 roll 1 add ddef 3 -1 roll put } { /_pntr exch ddef } ifelse } ifelse } loop _tempEncode } def /TE { StandardEncoding 256 array copy modifyEncoding /_nativeEncoding exch def } def % /TZ { dup type /arraytype eq { /_wv exch def } { /_wv 0 def } ifelse /_useNativeEncoding exch def pop pop findfont _wv type /arraytype eq { _wv makeblendedfont } if dup length 2 add dict begin mark exch { 1 index /FID ne { def } if cleartomark mark } forall pop /FontName exch def counttomark 0 eq { 1 _useNativeEncoding eq { /Encoding _nativeEncoding def } if cleartomark } { /Encoding load 256 array copy modifyEncoding /Encoding exch def } ifelse FontName currentdict end definefont pop } def /tr { _ax _ay 3 2 roll } def /trj { _cx _cy _sp _ax _ay 6 5 roll } def /a0 { /Tx { dup currentpoint 3 2 roll tr _psf newpath moveto tr _ctm _pss } ddef /Tj { dup currentpoint 3 2 roll trj _pjsf newpath moveto trj _ctm _pjss } ddef } def /a1 { /Tx { dup currentpoint 4 2 roll gsave dup currentpoint 3 2 roll tr _psf newpath moveto tr _ctm _pss grestore 3 1 roll moveto tr sp } ddef /Tj { dup currentpoint 4 2 roll gsave dup currentpoint 3 2 roll trj _pjsf newpath moveto trj _ctm _pjss grestore 3 1 roll moveto tr jsp } ddef } def /e0 { /Tx { tr _psf } ddef /Tj { trj _pjsf } ddef } def /e1 { /Tx { dup currentpoint 4 2 roll gsave tr _psf grestore 3 1 roll moveto tr sp } ddef /Tj { dup currentpoint 4 2 roll gsave trj _pjsf grestore 3 1 roll moveto tr jsp } ddef } def /i0 { /Tx { tr sp } ddef /Tj { trj jsp } ddef } def /i1 { W N } def /o0 { /Tx { tr sw rmoveto } ddef /Tj { trj swj rmoveto } ddef } def /r0 { /Tx { tr _ctm _pss } ddef /Tj { trj _ctm _pjss } ddef } def /r1 { /Tx { dup currentpoint 4 2 roll currentpoint gsave newpath moveto tr _ctm _pss grestore 3 1 roll moveto tr sp } ddef /Tj { dup currentpoint 4 2 roll currentpoint gsave newpath moveto trj _ctm _pjss grestore 3 1 roll moveto tr jsp } ddef } def /To { pop _ctm currentmatrix pop } def /TO { iTe _ctm setmatrix newpath } def /Tp { pop _tm astore pop _ctm setmatrix _tDict begin /W { } def /h { } def } def /TP { end iTm 0 0 moveto } def /Tr { _render 3 le { currentpoint newpath moveto } if dup 8 eq { pop 0 } { dup 9 eq { pop 1 } if } ifelse dup /_render exch ddef _renderStart exch get load exec } def /iTm { _ctm setmatrix _tm concat 0 _rise translate _hs 1 scale } def /Tm { _tm astore pop iTm 0 0 moveto } def /Td { _mtx translate _tm _tm concatmatrix pop iTm 0 0 moveto } def /iTe { _render -1 eq { } { _renderEnd _render get dup null ne { load exec } { pop } ifelse } ifelse /_render -1 ddef } def /Ta { pop } def /Tf { dup 1000 div /_fScl exch ddef % selectfont } def /Tl { pop 0 exch _leading astore pop } def /Tt { pop } def /TW { 3 npop } def /Tw { /_cx exch ddef } def /TC { 3 npop } def /Tc { /_ax exch ddef } def /Ts { /_rise exch ddef currentpoint iTm moveto } def /Ti { 3 npop } def /Tz { 100 div /_hs exch ddef iTm } def /TA { pop } def /Tq { pop } def /Th { pop pop pop pop pop } def /TX { pop } def /Tk { exch pop _fScl mul neg 0 rmoveto } def /TK { 2 npop } def /T* { _leading aload pop neg Td } def /T*- { _leading aload pop Td } def /T- { _hyphen Tx } def /T+ { } def /TR { _ctm currentmatrix pop _tm astore pop iTm 0 0 moveto } def /TS { currentfont 3 1 roll /_Symbol_ _fScl 1000 mul selectfont 0 eq { Tx } { Tj } ifelse setfont } def /Xb { pop pop } def /Tb /Xb load def /Xe { pop pop pop pop } def /Te /Xe load def /XB { } def /TB /XB load def currentdict readonly pop end setpacking %%EndResource %%BeginResource: procset Adobe_IllustratorA_AI5 1.1 0 %%Title: (Adobe Illustrator (R) Version 5.0 Abbreviated Prolog) %%Version: 1.1 %%CreationDate: (3/7/1994) () %%Copyright: ((C) 1987-1994 Adobe Systems Incorporated All Rights Reserved) currentpacking true setpacking userdict /Adobe_IllustratorA_AI5_vars 70 dict dup begin put /_lp /none def /_pf { } def /_ps { } def /_psf { } def /_pss { } def /_pjsf { } def /_pjss { } def /_pola 0 def /_doClip 0 def /cf currentflat def /_tm matrix def /_renderStart [ /e0 /r0 /a0 /o0 /e1 /r1 /a1 /i0 ] def /_renderEnd [ null null null null /i1 /i1 /i1 /i1 ] def /_render -1 def /_rise 0 def /_ax 0 def /_ay 0 def /_cx 0 def /_cy 0 def /_leading [ 0 0 ] def /_ctm matrix def /_mtx matrix def /_sp 16#020 def /_hyphen (-) def /_fScl 0 def /_cnt 0 def /_hs 1 def /_nativeEncoding 0 def /_useNativeEncoding 0 def /_tempEncode 0 def /_pntr 0 def /_tDict 2 dict def /_wv 0 def /Tx { } def /Tj { } def /CRender { } def /_AI3_savepage { } def /_gf null def /_cf 4 array def /_if null def /_of false def /_fc { } def /_gs null def /_cs 4 array def /_is null def /_os false def /_sc { } def /discardSave null def /buffer 256 string def /beginString null def /endString null def /endStringLength null def /layerCnt 1 def /layerCount 1 def /perCent (%) 0 get def /perCentSeen? false def /newBuff null def /newBuffButFirst null def /newBuffLast null def /clipForward? false def end userdict /Adobe_IllustratorA_AI5 74 dict dup begin put /initialize { Adobe_IllustratorA_AI5 dup begin Adobe_IllustratorA_AI5_vars begin discardDict { bind pop pop } forall dup /nc get begin { dup xcheck 1 index type /operatortype ne and { bind } if pop pop } forall end newpath } def /terminate { end end } def /_ null def /ddef { Adobe_IllustratorA_AI5_vars 3 1 roll put } def /xput { dup load dup length exch maxlength eq { dup dup load dup length 2 mul dict copy def } if load begin def end } def /npop { { pop } repeat } def /sw { dup length exch stringwidth exch 5 -1 roll 3 index mul add 4 1 roll 3 1 roll mul add } def /swj { dup 4 1 roll dup length exch stringwidth exch 5 -1 roll 3 index mul add 4 1 roll 3 1 roll mul add 6 2 roll /_cnt 0 ddef { 1 index eq { /_cnt _cnt 1 add ddef } if } forall pop exch _cnt mul exch _cnt mul 2 index add 4 1 roll 2 index add 4 1 roll pop pop } def /ss { 4 1 roll { 2 npop (0) exch 2 copy 0 exch put pop gsave false charpath currentpoint 4 index setmatrix stroke grestore moveto 2 copy rmoveto } exch cshow 3 npop } def /jss { 4 1 roll { 2 npop (0) exch 2 copy 0 exch put gsave _sp eq { exch 6 index 6 index 6 index 5 -1 roll widthshow currentpoint } { false charpath currentpoint 4 index setmatrix stroke } ifelse grestore moveto 2 copy rmoveto } exch cshow 6 npop } def /sp { { 2 npop (0) exch 2 copy 0 exch put pop false charpath 2 copy rmoveto } exch cshow 2 npop } def /jsp { { 2 npop (0) exch 2 copy 0 exch put _sp eq { exch 5 index 5 index 5 index 5 -1 roll widthshow } { false charpath } ifelse 2 copy rmoveto } exch cshow 5 npop } def /pl { transform 0.25 sub round 0.25 add exch 0.25 sub round 0.25 add exch itransform } def /setstrokeadjust where { pop true setstrokeadjust /c { curveto } def /C /c load def /v { currentpoint 6 2 roll curveto } def /V /v load def /y { 2 copy curveto } def /Y /y load def /l { lineto } def /L /l load def /m { moveto } def } { /c { pl curveto } def /C /c load def /v { currentpoint 6 2 roll pl curveto } def /V /v load def /y { pl 2 copy curveto } def /Y /y load def /l { pl lineto } def /L /l load def /m { pl moveto } def } ifelse /d { setdash } def /cf { } def /i { dup 0 eq { pop cf } if setflat } def /j { setlinejoin } def /J { setlinecap } def /M { setmiterlimit } def /w { setlinewidth } def /H { } def /h { closepath } def /N { _pola 0 eq { _doClip 1 eq { clip /_doClip 0 ddef } if newpath } { /CRender { N } ddef } ifelse } def /n { N } def /F { _pola 0 eq { _doClip 1 eq { gsave _pf grestore clip newpath /_lp /none ddef _fc /_doClip 0 ddef } { _pf } ifelse } { /CRender { F } ddef } ifelse } def /f { closepath F } def /S { _pola 0 eq { _doClip 1 eq { gsave _ps grestore clip newpath /_lp /none ddef _sc /_doClip 0 ddef } { _ps } ifelse } { /CRender { S } ddef } ifelse } def /s { closepath S } def /B { _pola 0 eq { _doClip 1 eq gsave F grestore { gsave S grestore clip newpath /_lp /none ddef _sc /_doClip 0 ddef } { S } ifelse } { /CRender { B } ddef } ifelse } def /b { closepath B } def /W { /_doClip 1 ddef } def /* { count 0 ne { dup type /stringtype eq { pop } if } if newpath } def /u { } def /U { } def /q { _pola 0 eq { gsave } if } def /Q { _pola 0 eq { grestore } if } def /*u { _pola 1 add /_pola exch ddef } def /*U { _pola 1 sub /_pola exch ddef _pola 0 eq { CRender } if } def /D { pop } def /*w { } def /*W { } def /` { /_i save ddef clipForward? { nulldevice } if 6 1 roll 4 npop concat pop userdict begin /showpage { } def 0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit [] 0 setdash /setstrokeadjust where {pop false setstrokeadjust} if newpath 0 setgray false setoverprint } def /~ { end _i restore } def /O { 0 ne /_of exch ddef /_lp /none ddef } def /R { 0 ne /_os exch ddef /_lp /none ddef } def /g { /_gf exch ddef /_fc { _lp /fill ne { _of setoverprint _gf setgray /_lp /fill ddef } if } ddef /_pf { _fc fill } ddef /_psf { _fc ashow } ddef /_pjsf { _fc awidthshow } ddef /_lp /none ddef } def /G { /_gs exch ddef /_sc { _lp /stroke ne { _os setoverprint _gs setgray /_lp /stroke ddef } if } ddef /_ps { _sc stroke } ddef /_pss { _sc ss } ddef /_pjss { _sc jss } ddef /_lp /none ddef } def /k { _cf astore pop /_fc { _lp /fill ne { _of setoverprint _cf aload pop setcmykcolor /_lp /fill ddef } if } ddef /_pf { _fc fill } ddef /_psf { _fc ashow } ddef /_pjsf { _fc awidthshow } ddef /_lp /none ddef } def /K { _cs astore pop /_sc { _lp /stroke ne { _os setoverprint _cs aload pop setcmykcolor /_lp /stroke ddef } if } ddef /_ps { _sc stroke } ddef /_pss { _sc ss } ddef /_pjss { _sc jss } ddef /_lp /none ddef } def /x { /_gf exch ddef findcmykcustomcolor /_if exch ddef /_fc { _lp /fill ne { _of setoverprint _if _gf 1 exch sub setcustomcolor /_lp /fill ddef } if } ddef /_pf { _fc fill } ddef /_psf { _fc ashow } ddef /_pjsf { _fc awidthshow } ddef /_lp /none ddef } def /X { /_gs exch ddef findcmykcustomcolor /_is exch ddef /_sc { _lp /stroke ne { _os setoverprint _is _gs 1 exch sub setcustomcolor /_lp /stroke ddef } if } ddef /_ps { _sc stroke } ddef /_pss { _sc ss } ddef /_pjss { _sc jss } ddef /_lp /none ddef } def /A { pop } def /annotatepage { userdict /annotatepage 2 copy known {get exec} {pop pop} ifelse } def /discard { save /discardSave exch store discardDict begin /endString exch store gt38? { 2 add } if load stopped pop end discardSave restore } bind def userdict /discardDict 7 dict dup begin put /pre38Initialize { /endStringLength endString length store /newBuff buffer 0 endStringLength getinterval store /newBuffButFirst newBuff 1 endStringLength 1 sub getinterval store /newBuffLast newBuff endStringLength 1 sub 1 getinterval store } def /shiftBuffer { newBuff 0 newBuffButFirst putinterval newBuffLast 0 currentfile read not { stop } if put } def 0 { pre38Initialize mark currentfile newBuff readstring exch pop { { newBuff endString eq { cleartomark stop } if shiftBuffer } loop } { stop } ifelse } def 1 { pre38Initialize /beginString exch store mark currentfile newBuff readstring exch pop { { newBuff beginString eq { /layerCount dup load 1 add store } { newBuff endString eq { /layerCount dup load 1 sub store layerCount 0 eq { cleartomark stop } if } if } ifelse shiftBuffer } loop } { stop } ifelse } def 2 { mark { currentfile buffer readline not { stop } if endString eq { cleartomark stop } if } loop } def 3 { /beginString exch store /layerCnt 1 store mark { currentfile buffer readline not { stop } if dup beginString eq { pop /layerCnt dup load 1 add store } { endString eq { layerCnt 1 eq { cleartomark stop } { /layerCnt dup load 1 sub store } ifelse } if } ifelse } loop } def end userdict /clipRenderOff 15 dict dup begin put { /n /N /s /S /f /F /b /B } { { _doClip 1 eq { /_doClip 0 ddef clip } if newpath } def } forall /Tr /pop load def /Bb {} def /BB /pop load def /Bg {12 npop} def /Bm {6 npop} def /Bc /Bm load def /Bh {4 npop} def end /Lb { 4 npop 6 1 roll pop 4 1 roll pop pop pop 0 eq { 0 eq { (%AI5_BeginLayer) 1 (%AI5_EndLayer--) discard } { /clipForward? true def /Tx /pop load def /Tj /pop load def currentdict end clipRenderOff begin begin } ifelse } { 0 eq { save /discardSave exch store } if } ifelse } bind def /LB { discardSave dup null ne { restore } { pop clipForward? { currentdict end end begin /clipForward? false ddef } if } ifelse } bind def /Pb { pop pop 0 (%AI5_EndPalette) discard } bind def /Np { 0 (%AI5_End_NonPrinting--) discard } bind def /Ln /pop load def /Ap /pop load def /Ar { 72 exch div 0 dtransform dup mul exch dup mul add sqrt dup 1 lt { pop 1 } if setflat } def /Mb { q } def /Md { } def /MB { Q } def /nc 3 dict def nc begin /setgray { pop } bind def /setcmykcolor { 4 npop } bind def /setcustomcolor { 2 npop } bind def currentdict readonly pop end currentdict readonly pop end setpacking %%EndResource %%EndProlog %%BeginSetup %%IncludeFont: Symbol %%IncludeFont: Times-Roman Adobe_level2_AI5 /initialize get exec Adobe_IllustratorA_AI5_vars Adobe_IllustratorA_AI5 Adobe_typography_AI5 /initialize get exec Adobe_IllustratorA_AI5 /initialize get exec [ 39/quotesingle 96/grave 128/Adieresis/Aring/Ccedilla/Eacute/Ntilde/Odieresis /Udieresis/aacute/agrave/acircumflex/adieresis/atilde/aring/ccedilla/eacute /egrave/ecircumflex/edieresis/iacute/igrave/icircumflex/idieresis/ntilde /oacute/ograve/ocircumflex/odieresis/otilde/uacute/ugrave/ucircumflex /udieresis/dagger/degree/cent/sterling/section/bullet/paragraph/germandbls /registered/copyright/trademark/acute/dieresis/.notdef/AE/Oslash /.notdef/plusminus/.notdef/.notdef/yen/mu/.notdef/.notdef /.notdef/.notdef/.notdef/ordfeminine/ordmasculine/.notdef/ae/oslash /questiondown/exclamdown/logicalnot/.notdef/florin/.notdef/.notdef /guillemotleft/guillemotright/ellipsis/.notdef/Agrave/Atilde/Otilde/OE/oe /endash/emdash/quotedblleft/quotedblright/quoteleft/quoteright/divide /.notdef/ydieresis/Ydieresis/fraction/currency/guilsinglleft/guilsinglright /fi/fl/daggerdbl/periodcentered/quotesinglbase/quotedblbase/perthousand /Acircumflex/Ecircumflex/Aacute/Edieresis/Egrave/Iacute/Icircumflex /Idieresis/Igrave/Oacute/Ocircumflex/.notdef/Ograve/Uacute/Ucircumflex /Ugrave/dotlessi/circumflex/tilde/macron/breve/dotaccent/ring/cedilla /hungarumlaut/ogonek/caron TE %AI3_BeginEncoding: _Symbol Symbol [/_Symbol/Symbol 0 0 0 TZ %AI3_EndEncoding TrueType %AI3_BeginEncoding: _Times-Roman Times-Roman [/_Times-Roman/Times-Roman 0 0 1 TZ %AI3_EndEncoding TrueType %AI5_Begin_NonPrinting Np %AI3_BeginPattern: (Yellow Stripe) (Yellow Stripe) 8.4499 4.6 80.4499 76.6 [ %AI3_Tile (0 O 0 R 0 0.4 1 0 k 0 0.4 1 0 K) @ ( 800 Ar 0 J 0 j 3.6 w 4 M []0 d %AI3_Note: 0 D 8.1999 8.1999 m 80.6999 8.1999 L S 8.1999 22.6 m 80.6999 22.6 L S 8.1999 37.0001 m 80.6999 37.0001 L S 8.1999 51.3999 m 80.6999 51.3999 L S 8.1999 65.8 m 80.6999 65.8 L S 8.1999 15.3999 m 80.6999 15.3999 L S 8.1999 29.8 m 80.6999 29.8 L S 8.1999 44.1999 m 80.6999 44.1999 L S 8.1999 58.6 m 80.6999 58.6 L S 8.1999 73.0001 m 80.6999 73.0001 L S ) & ] E %AI3_EndPattern %AI5_End_NonPrinting-- %AI5_Begin_NonPrinting Np 3 Bn %AI5_BeginGradient: (Black & White) (Black & White) 0 2 Bd [ < FFFEFDFCFBFAF9F8F7F6F5F4F3F2F1F0EFEEEDECEBEAE9E8E7E6E5E4E3E2E1E0DFDEDDDCDBDAD9D8 D7D6D5D4D3D2D1D0CFCECDCCCBCAC9C8C7C6C5C4C3C2C1C0BFBEBDBCBBBAB9B8B7B6B5B4B3B2B1B0 AFAEADACABAAA9A8A7A6A5A4A3A2A1A09F9E9D9C9B9A999897969594939291908F8E8D8C8B8A8988 87868584838281807F7E7D7C7B7A797877767574737271706F6E6D6C6B6A69686766656463626160 5F5E5D5C5B5A595857565554535251504F4E4D4C4B4A494847464544434241403F3E3D3C3B3A3938 37363534333231302F2E2D2C2B2A292827262524232221201F1E1D1C1B1A19181716151413121110 0F0E0D0C0B0A09080706050403020100 > 0 %_Br [ 0 0 50 100 %_Bs 1 0 50 0 %_Bs BD %AI5_EndGradient %AI5_BeginGradient: (Red & Yellow) (Red & Yellow) 0 2 Bd [ 0 < 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F2021222324252627 28292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E4F 505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F7071727374757677 78797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F909192939495969798999A9B9C9D9E9F A0A1A2A3A4A5A6A7A8A9AAABACADAEAFB0B1B2B3B4B5B6B7B8B9BABBBCBDBEBFC0C1C2C3C4C5C6C7 C8C9CACBCCCDCECFD0D1D2D3D4D5D6D7D8D9DADBDCDDDEDFE0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF > < FFFFFEFEFDFDFDFCFCFBFBFBFAFAF9F9F9F8F8F7F7F7F6F6F5F5F5F4F4F3F3F3F2F2F1F1F1F0F0EF EFEFEEEEEDEDEDECECEBEBEBEAEAE9E9E9E8E8E7E7E7E6E6E5E5E5E4E4E3E3E3E2E2E1E1E1E0E0DF DFDFDEDEDDDDDDDCDCDBDBDBDADAD9D9D9D8D8D7D7D7D6D6D5D5D5D4D4D3D3D3D2D2D1D1D1D0D0CF CFCFCECECDCDCDCCCCCBCBCBCACAC9C9C9C8C8C7C7C7C6C6C5C5C5C4C4C3C3C3C2C2C1C1C1C0C0BF BFBFBEBEBDBDBDBCBCBBBBBBBABAB9B9B9B8B8B7B7B7B6B6B5B5B5B4B4B3B3B3B2B2B1B1B1B0B0AF AFAFAEAEADADADACACABABABAAAAA9A9A9A8A8A7A7A7A6A6A5A5A5A4A4A3A3A3A2A2A1A1A1A0A09F 9F9F9E9E9D9D9D9C9C9B9B9B9A9A9999 > 0 1 %_Br [ 0 1 0.6 0 1 50 100 %_Bs 0 0 1 0 1 50 0 %_Bs BD %AI5_EndGradient %AI5_BeginGradient: (Yellow & Blue Radial) (Yellow & Blue Radial) 1 2 Bd [ < 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F2021222324252627 28292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E4F 505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F7071727374757677 78797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F909192939495969798999A9B9C9D9E9F A0A1A2A3A4A5A6A7A8A9AAABACADAEAFB0B1B2B3B4B5B6B7B8B9BABBBCBDBEBFC0C1C2C3C4C5C6C7 C8C9CACBCCCDCECFD0D1D2D3D4D5D6D7D8D9DADBDCDDDEDFE0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF > < 1415161718191A1B1C1D1E1F1F202122232425262728292A2A2B2C2D2E2F30313233343536363738 393A3B3C3D3E3F40414142434445464748494A4B4C4D4D4E4F50515253545556575858595A5B5C5D 5E5F60616263646465666768696A6B6C6D6E6F6F707172737475767778797A7B7B7C7D7E7F808182 83848586868788898A8B8C8D8E8F90919292939495969798999A9B9C9D9D9E9FA0A1A2A3A4A5A6A7 A8A9A9AAABACADAEAFB0B1B2B3B4B4B5B6B7B8B9BABBBCBDBEBFC0C0C1C2C3C4C5C6C7C8C9CACBCB CCCDCECFD0D1D2D3D4D5D6D7D7D8D9DADBDCDDDEDFE0E1E2E2E3E4E5E6E7E8E9EAEBECEDEEEEEFF0 F1F2F3F4F5F6F7F8F9F9FAFBFCFDFEFF > < ABAAAAA9A8A7A7A6A5A5A4A3A3A2A1A1A09F9F9E9D9D9C9B9B9A9999989797969595949393929191 908F8F8E8D8D8C8B8B8A8989888787868585848383828181807F7F7E7D7D7C7B7B7A797978777776 7575747373727171706F6F6E6D6D6C6B6B6A6969686767666565646362626160605F5E5E5D5C5C5B 5A5A5958585756565554545352525150504F4E4E4D4C4C4B4A4A4948484746464544444342424140 403F3E3E3D3C3C3B3A3A3938383736363534343332323130302F2E2E2D2C2C2B2A2A292828272626 25242423222121201F1F1E1D1D1C1B1B1A1919181717161515141313121111100F0F0E0D0D0C0B0B 0A090908070706050504030302010100 > 0 1 %_Br [ 0 0.08 0.67 0 1 50 14 %_Bs 1 1 0 0 1 50 100 %_Bs BD %AI5_EndGradient %AI5_End_NonPrinting-- %AI5_BeginPalette 0 2 Pb Pn Pc 1 g Pc 0 g Pc 0 0 0 0 k Pc 0.75 g Pc 0.5 g Pc 0.25 g Pc 0 g Pc Bb 2 (Black & White) -4014 4716 0 0 1 0 0 1 0 0 Bg 0 BB Pc 0.25 0 0 0 k Pc 0.5 0 0 0 k Pc 0.75 0 0 0 k Pc 1 0 0 0 k Pc 0.25 0.25 0 0 k Pc 0.5 0.5 0 0 k Pc 0.75 0.75 0 0 k Pc 1 1 0 0 k Pc Bb 2 (Red & Yellow) -4014 4716 0 0 1 0 0 1 0 0 Bg 0 BB Pc 0 0.25 0 0 k Pc 0 0.5 0 0 k Pc 0 0.75 0 0 k Pc 0 1 0 0 k Pc 0 0.25 0.25 0 k Pc 0 0.5 0.5 0 k Pc 0 0.75 0.75 0 k Pc 0 1 1 0 k Pc Bb 0 0 0 0 Bh 2 (Yellow & Blue Radial) -4014 4716 0 0 1 0 0 1 0 0 Bg 0 BB Pc 0 0 0.25 0 k Pc 0 0 0.5 0 k Pc 0 0 0.75 0 k Pc 0 0 1 0 k Pc 0.25 0 0.25 0 k Pc 0.5 0 0.5 0 k Pc 0.75 0 0.75 0 k Pc 1 0 1 0 k Pc (Yellow Stripe) 0 0 1 1 0 0 0 0 0 [1 0 0 1 0 0] p Pc 0.25 0.125 0 0 k Pc 0.5 0.25 0 0 k Pc 0.75 0.375 0 0 k Pc 1 0.5 0 0 k Pc 0.125 0.25 0 0 k Pc 0.25 0.5 0 0 k Pc 0.375 0.75 0 0 k Pc 0.5 1 0 0 k Pc 0 0 0 0 k Pc 0 0.25 0.125 0 k Pc 0 0.5 0.25 0 k Pc 0 0.75 0.375 0 k Pc 0 1 0.5 0 k Pc 0 0.125 0.25 0 k Pc 0 0.25 0.5 0 k Pc 0 0.375 0.75 0 k Pc 0 0.5 1 0 k Pc 0 0 0 0 k Pc 0.125 0 0.25 0 k Pc 0.25 0 0.5 0 k Pc 0.375 0 0.75 0 k Pc 0.5 0 1 0 k Pc 0.25 0 0.125 0 k Pc 0.5 0 0.25 0 k Pc 0.75 0 0.375 0 k Pc 1 0 0.5 0 k Pc 0 0 0 0 k Pc 0.25 0.125 0.125 0 k Pc 0.5 0.25 0.25 0 k Pc 0.75 0.375 0.375 0 k Pc 1 0.5 0.5 0 k Pc 0.25 0.25 0.125 0 k Pc 0.5 0.5 0.25 0 k Pc 0.75 0.75 0.375 0 k Pc 1 1 0.5 0 k Pc 0 0 0 0 k Pc 0.125 0.25 0.125 0 k Pc 0.25 0.5 0.25 0 k Pc 0.375 0.75 0.375 0 k Pc 0.5 1 0.5 0 k Pc 0.125 0.25 0.25 0 k Pc 0.25 0.5 0.5 0 k Pc 0.375 0.75 0.75 0 k Pc 0.5 1 1 0 k Pc 0 0 0 0 k Pc 0.125 0.125 0.25 0 k Pc 0.25 0.25 0.5 0 k Pc 0.375 0.375 0.75 0 k Pc 0.5 0.5 1 0 k Pc 0.25 0.125 0.25 0 k Pc 0.5 0.25 0.5 0 k Pc 0.75 0.375 0.75 0 k Pc 1 0.5 1 0 k Pc PB %AI5_EndPalette %%EndSetup %AI5_BeginLayer 1 1 1 1 0 0 0 79 128 255 Lb (Layer 1) Ln 0 A 0 R 0 G 800 Ar 0 J 0 j 2 w 4 M []0 d %AI3_Note: 0 D 271.5 686.75 m 539.5 542.75 l S 267.875 447 m 264.875 465 268.875 478 v 272.875 491 274.875 507 y 276.5 502 273.875 520 v 271.0732 539.2133 266.875 535 270.875 554 c 274.875 573 273.875 565 281.875 580 c 289.875 595 288.5226 593.3551 291.875 609 c 294.875 623 292.875 614 296.875 627 c 300.7095 639.4618 301 637 305 641 c S 287.5625 590.1875 m 285.5625 592.1875 295.5625 597.1875 v 305.5625 602.1875 299.6002 601.2047 310.5625 606.1875 c 321.5625 611.1875 313.5625 612.1875 327.5625 611.1875 c 340.8703 610.237 335.5625 605.1875 346.5625 609.1875 c 357.5625 613.1875 358 612 360 615 c S 330.5 610 m 328.5 610.5 330.5 603 v 332.5 595.5 330 600.5 335.5 592.5 c 341 584.5 338.5 591 342 581.5 c 345.5 572 344 580 346.5 569 c 348.6083 559.7234 344.5 564 346.5 556.5 c 348.537 548.8612 345.5 554 352 548.5 c 358.5 543 357.5 544.5 y S 340.5 508 m 354.0531 516.0335 367.5 524.5 v 381 533 369 528 388 534.5 c 406.0144 540.6627 401 540.5 413 541 c 425 541.5 419 543.5 432 542 c 445 540.5 469.4792 546.5 475.9792 548.5 c S 1 Ap 5 w 425.6372 612.1336 m 427.5702 612.1336 429.1372 613.7006 429.1372 615.6336 c 429.1372 617.5666 427.5702 619.1336 425.6372 619.1336 c 423.7042 619.1336 422.1372 617.5666 422.1372 615.6336 c 422.1372 613.7006 423.7042 612.1336 425.6372 612.1336 c s 408.0833 597.8958 m 410.0163 597.8958 411.5833 599.4629 411.5833 601.3958 c 411.5833 603.3288 410.0163 604.8958 408.0833 604.8958 c 406.1504 604.8958 404.5833 603.3288 404.5833 601.3958 c 404.5833 599.4629 406.1504 597.8958 408.0833 597.8958 c s 0 Ap 0 O 0.74 g 2 w 87 510.5 m 90 513.5 107.5 511 v 125 508.5 121.5 511 133 503 c 144.5 495 141.5 500.5 157 485.5 c 172.5 470.5 179.5 467 187 456 c 194.5 445 190.5 446 198.5 437.5 c 206.5 429 194 437.5 212.5 425.5 c 231 413.5 222.5 415 247.5 407 c 272.5 399 266.5 406.5 284 393.5 c 301.5 380.5 299 385.5 306.5 372.5 c 314 359.5 317 350 y 87 349.5 l 87 510.5 l b 5 w 165 349.6667 m 175 370 l 177 374 185 381 v 193 388 202 401 y 207 409 214 415 v 221 421 222 423 232 429 c 242 435 230 431 250 439 c 270 447 258 442 278 453 c 298 464 291 458 306 471 c 321 484 310 471 324 489 c 338 507 335 497 345 516 c 355 535 350 537 361 552 c 372 567 366 564 381 578 c 396 592 388 591 404 600 c 420 609 415.7212 611.6146 428 616 c 442 621 453.068 628.9047 458 622 c 463 615 458.6667 607.3333 460.6667 595.3333 c 462.6667 583.3333 461.3333 586.6667 465 576.6667 c 468.8488 566.1697 465.3333 570 471.3333 565.3333 c 478.3935 559.8421 476.967 561.305 485.3333 565.3333 c 494.3333 569.6667 483.3333 563.3333 494 572.6667 c 501.2359 578.998 496 577.3333 502 594 c 508.3639 611.6777 516 616 524 623 c 532 630 538.9619 632.9285 539.3333 632 c S 1 Ap 0 O 0 g 2 w 475.9792 544.9999 m 477.9121 544.9999 479.4792 546.567 479.4792 548.4999 c 479.4792 550.4329 477.9121 551.9999 475.9792 551.9999 c 474.0462 551.9999 472.4792 550.4329 472.4792 548.4999 c 472.4792 546.567 474.0462 544.9999 475.9792 544.9999 c b 231.3333 424.6667 m 233.2663 424.6667 234.8333 426.2337 234.8333 428.1667 c 234.8333 430.0996 233.2663 431.6667 231.3333 431.6667 c 229.4004 431.6667 227.8333 430.0996 227.8333 428.1667 c 227.8333 426.2337 229.4004 424.6667 231.3333 424.6667 c b 0 Ap 303.3333 432 m 313.3333 436.6667 322.6667 444 v 332 451.3333 330.6667 450 340.6667 461.3333 c 350.6667 472.6667 358 484 366.6667 488.6667 c 375.3333 493.3333 384.502 497.6437 397 503 c 408.6667 508 414 511 428 512 c 441.3161 512.9511 452.6667 513.3333 464 514 c 475.3333 514.6667 487.6954 515.6782 496 519 c 501 521 500.8132 520.022 505 527 c 508 532 511.3723 537.9976 512 548.6667 c 512.6667 560 513.3333 562 508.6667 570 c 504.6078 576.958 493.3333 582 487.3333 582 c 481.3333 582 477.3333 583.3333 468 580.6667 c 458.6667 578 460 580 449.3333 576.6667 c 438.6667 573.3333 436 573.3333 432.6667 574 c 428.8549 574.7624 429.6667 577 430.3333 580.3333 c 431 583.6667 431.0604 581.5408 434 587 c 436.3333 591.3333 436.6667 591.3333 439 595.3333 c 441.4455 599.5256 441.8586 599.4799 443 602.3333 c 444.3333 605.6667 444.6667 610 444 614 c 443.38 617.7199 442 621.6667 437.6667 626.3333 c 432.9962 631.363 434 631.6667 424 633.3333 c 414.1141 634.9809 407.0326 632.554 402 630.6667 c 396.6667 628.6667 393.7507 628.7415 387.3333 630.6667 c 380.6667 632.6667 378.1809 638.6214 370 640.6667 c 362 642.6667 356.2164 641.4415 352 639.3333 c 349.3333 638 347.3333 635.3333 341.3333 635.3333 c 335.3333 635.3333 333.3333 636.6667 y 332.583 637.6681 332 640 v 331.3333 642.6667 333.3333 650.6667 y 334 657.3333 l 331.3333 662 324 668.6667 318 669.3333 c 312.658 669.9269 307.9832 670.1083 303.3333 669.3333 c 299.3333 668.6667 284 663.3333 281.3333 660 c 278.6667 656.6667 274.6667 650 272.6667 645.3333 c 270.6667 640.6667 270 635.3333 268 629.3333 c 266 623.3333 263.3333 616.6667 260.6667 610.6667 c 258 604.6667 252 596.6667 250 592 c 248 587.3333 243.3333 576 242 571.3333 c 240.6667 566.6667 236.6667 559.3333 236 552 c 235.3333 544.6667 237.6667 533.3333 239 526 c 240.3333 518.6667 243 510.3333 243 505 c 243 499.6667 238 491.3333 236.6667 485.3333 c 235.3333 479.3333 235 468 230 463.3333 c 225.5067 459.1395 222.6667 459.3333 218.6667 456 c 214.6667 452.6667 208 449.3333 206 444.6667 c 204 440 199.3333 436 198.6667 429.3333 c 198 422.6667 196.6667 418.6667 203.3333 412.6667 c 210 406.6667 215.3333 399.3333 222.6667 398.6667 c 230 398 234 398 244.6667 402 c 255.3333 406 260 410 268.6667 414.6667 c 277.3333 419.3333 303.3333 432 y s 1 Ap 499.6415 584.0251 m 501.5745 584.0251 503.1415 585.5921 503.1415 587.5251 c 503.1415 589.4581 501.5745 591.0251 499.6415 591.0251 c 497.7086 591.0251 496.1415 589.4581 496.1415 587.5251 c 496.1415 585.5921 497.7086 584.0251 499.6415 584.0251 c s 0 To 1 0 0 1 464.6667 476 0 Tp TP 0 Tr 0 O 0 g 1 w /_Times-Roman 18 Tf 0 Ts 100 Tz 0 Tt 0 TA %_ 0 XL 36 0 Xb XB 0 0 5 TC 100 100 200 TW 0 0 0 Ti 0 Ta 0 0 2 2 3 Th 0 Tq 0 0 Tl 0 Tc 0 Tw (u) Tx /_Times-Roman 14 Tf -5 Ts (i) Tx /_Times-Roman 18 Tf 0 Ts (+) Tx /_Symbol 18 Tf (\266) Tx /_Times-Roman 18 Tf (G) Tx /_Times-Roman 14 Tf -5 Ts (x) Tx (\r) TX TO 0 To 1 0 0 1 467.3333 528.6667 0 Tp TP 0 Tr /_Times-Roman 18 Tf 0 Ts (w) Tx /_Times-Roman 14 Tf -5 Ts (i) Tx (\r) TX TO 0 To 1 0 0 1 399.3333 580.6667 0 Tp TP 0 Tr /_Times-Roman 18 Tf 0 Ts (v) Tx /_Times-Roman 14 Tf -5 Ts (i) Tx (\r) TX TO 0 To 1 0 0 1 432 640.6667 0 Tp TP 0 Tr /_Times-Roman 18 Tf 0 Ts (v) Tx /_Times-Roman 14 Tf -5 Ts (i) Tx (\r) TX TO 0 To 1 0 0 1 507.3333 584.6667 0 Tp TP 0 Tr /_Times-Roman 18 Tf 0 Ts (u) Tx /_Times-Roman 14 Tf -5 Ts (i+1) Tx (\r) TX TO 0 To 1 0 0 1 242.6667 422.6667 0 Tp TP 0 Tr /_Times-Roman 18 Tf 0 Ts (u) Tx /_Times-Roman 14 Tf -5 Ts (i) Tx (\r) TX TO 0 To 1 0 0 1 138 416 0 Tp TP 0 Tr /_Times-Roman 18 Tf 0 Ts (D) Tx /_Times-Roman 14 Tf -5 Ts (i) Tx (\r) TX TO 0 To 1 0 0 1 312 496.6667 0 Tp TP 0 Tr /_Symbol 18 Tf 0 Ts (g) Tx (\r) TX TO 0 To 1 0 0 1 151.3333 427.3333 0 Tp TP 0 Tr /_Times-Roman 14 Tf (c) Tx (\r) TX TO 0 To 1 0 0 1 442.6667 642 0 Tp TP 0 Tr /_Times-Roman 18 Tf (') Tx (\r) TX TO 0 To 1 0 0 1 384.6667 444 0 Tp TP 0 Tr /_Symbol 18 Tf (\266) Tx /_Times-Roman 18 Tf (R) Tx /_Times-Roman 14 Tf -5 Ts (i) Tx (\r) TX TO 0 Ap 519.3333 510.6667 m F u u 0 R 0 G 2 w 498.9687 490.1647 m 523.7187 540.7272 l B 526.7678 546.627 m 526.4658 543.6134 526.5317 539.658 527.2813 536.86 c 523.7665 540.4953 l 518.7399 541.0408 l 521.4092 542.1654 524.5734 544.5396 526.7678 546.627 c b U U u 357.5525 470.2845 m 381.5525 454.2845 l B 352.5309 473.6322 m 355.478 472.9337 359.4073 472.4754 362.2799 472.8478 c 358.2112 469.8453 l 357.0048 464.9353 l 356.2436 467.7299 354.3093 471.1807 352.5309 473.6322 c b U 1 Ap 539.7083 349.9792 m 539.7083 686.9792 L 86.7083 686.9792 L 86.7083 349.9792 L 539.7083 349.9792 L s 0 To 1 0 0 1 261 264 0 Tp TP 0 Tr 0 O 0 g 1 w /_Times-Roman 18 Tf 0 Ts (\r) TX TO LB %AI5_EndLayer-- %%PageTrailer gsave annotatepage grestore showpage %%Trailer Adobe_IllustratorA_AI5 /terminate get exec Adobe_typography_AI5 /terminate get exec Adobe_level2_AI5 /terminate get exec %%EOF EndOfTheIncludedPostscriptMagicCookie \closepsdump % Finally, here is the rest of powerlawrev.tex: % \documentclass[12pt]{amsart} \usepackage{psfig} \usepackage{amsmath,amsfonts} \theoremstyle{plain} \newtheorem{lemma}{Lemma}[section] \newtheorem{theorem}[lemma]{Theorem} \newtheorem{corollary}[lemma]{Corollary} \newtheorem{proposition}[lemma]{Proposition} \theoremstyle{definition} \newtheorem{definition}[lemma]{Definition} \newtheorem{remark}[lemma]{Remark} \numberwithin{equation}{section} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{0.0in} \setlength{\evensidemargin}{0.0in} \setlength{\textheight}{7.5in} \DeclareMathOperator{\cov}{cov} \DeclareMathOperator{\Var}{Var} \DeclareMathOperator{\Co}{Co} \DeclareMathOperator{\diam}{diam} \newcommand{\Zd}{\mathbb{Z}^{d}} \newcommand{\tQxC}{\tilde{Q}_{x}(C)} \newcommand{\lra}{\leftrightarrow} \begin{document} \title[Power-Law Corrections]{Power-Law Corrections to Exponential Decay of Connectivities and Correlations in Lattice Models} \author{Kenneth S. Alexander} \address{Department of Mathematics DRB 155\\ University of Southern California\\ Los Angeles, CA 90089-1113} \email{alexandr@math.usc.edu} \thanks{Research supported by NSF grant DMS-9504462.} \keywords{exponential decay, power-law correction, Ornstein-Zernike behavior, weak mixing, FK model} \subjclass{Primary: 60K35; Secondary: 82B20,82B43} \date{\today} \begin{abstract} Consider a translation-invariant bond percolation model on the integer lattice which has exponential decay of connectivities, that is, the probability of a connection $0 \lra x$ by a path of open bonds decreases like $e^{-m(\theta)|x|}$ for some positive constant $m(\theta)$ which may depend on the direction $\theta = x/|x|$. In two and three dimensions, it is shown that if the model has an appropriate mixing property and satisfies a special case of the FKG property, then there is at most a power-law correction to the exponential decay---there exist $A$ and $C$ such that $e^{-m(\theta)|x|} \geq P(0 \lra x) \geq A|x|^{-C}e^{-m(\theta)|x|}$ for all nonzero $x$. In four or more dimensions, a similar bound holds with $|x|^{-C}$ replaced by $e^{-C(\log |x|)^{2}}$. In particular the power-law lower bound holds for the Fortuin-Kasteleyn random cluster model in two dimensions whenever the connectivity decays exponentially, since the mixing property is known to hold in that case. Consequently a similar bound holds for correlations in the Potts model at supercritical temperatures. \end{abstract} \maketitle \section{Introduction and Statement of Results} Many quantities encountered in statistical mechanics decay at an approximately exponential rate as a function of distance. Typical finite-range spin systems have exponential decay of correlations at sufficiently high tempreatures, and many standard percolation models, such as the Fortuin-Kastelyn random cluster model \cite{FK}, are known or believed to have exponential decay of connectivities for those parameter values (other than critical points) at which there is no percolation. For the modified correlation function \[ \rho(0,x) = \frac{q^{2}}{q-1}\cov(\delta_{[\sigma_{0} = i]}, \delta_{[\sigma_{x} = i]}) \] of the (free-boundary) $q$-state Potts model, or for the connectivity function \[ \rho(0,x) = P(0 \leftrightarrow x) \] of a translation-invariant percolation model having the FKG property, supermultiplicativity holds: \[ \rho(0,x+y) \geq \rho(0,x)\rho(0,y), \] so $-\log \rho(0,x)$ is a subadditive function of $x$. (Here $[0 \leftrightarrow x]$ denotes the event that 0 is connected to $x$ by a path of open bonds, and $\sigma_{x}$ denotes the spin at site $x$.) From standard properties of subadditive sequences, this implies that the limit \begin{equation} \label{E:sublim} m = m(x/|x|) = \lim_{n \to \infty} \frac{1}{n|x|} \log \rho(0,nx) \end{equation} exists, and the exponential approximation is an upper bound for the actual correlation or connectivity function: \[ \rho(0,x) \leq e^{-m|x|}, \quad x \in \Zd . \] It is therefore of interest to find lower bounds, establishing results of the form \begin{equation} \label{E:lowerform} \rho(0,x) \geq f(x)e^{-m|x|}, \quad x \in \Zd, \end{equation} where $\rho$ is the correlation or connectivity function, $f$ decays subexponentially and $| \cdot |$ is the Euclidean norm. Ornstein and Zernike \cite{OZ} predicted for certain models that the analog of the correlation should behave like \begin{equation} \label{E:OZbehav} |x|^{-(d-1)/2}e^{-m|x|} \end{equation} as $|x| \to \infty$, for some constant $m$. This was verified for a wide class of models at very high temperatures by Bricmont and Fr\"{o}hlich \cite{BF}, for self-avoiding random walk by Chayes and Chayes \cite{CC} and Ioffe \cite{Io}, and for Bernoulli percolation at arbitrary subcritical densities, with $x$ ``near an axis,'' by Campanino, Chayes and Chayes \cite{CCC}. For the two-dimensional Ising model at supercritical temperatures, (\ref{E:OZbehav}) can be obtained from the exact solution (see \cite{MW} or Section 7 of \cite{PV}.) (An exception to (\ref{E:OZbehav}) is found for the two-dimensional Ising model at subcritical temperatures under ``plus'' or under ``minus'' boundary conditions, where the correct exponent on $|x|$ is 2, not 1/2; see \cite{MW}. The heuristics for this are discussed in \cite{BF}.) In the case of connectivity functions, the heuristic for (\ref{E:OZbehav}) in general is as follows; see e.g. \cite{CCC} or \cite{Io} for more. For simplicity take $x$ on an axis, and let $H_{x}$ be the hyperplane orthogonal to the axis at $x$. The sum of $P(0 \leftrightarrow y)$ over sites $y$ in $H_{x}$ should be approximately $e^{-m|x|}$ with nearly no correction. Given that there is a path from 0 to $H_{x}$, it should reach only a few close-together sites in $H_{x}$, and from the central limit theorem, since the transverse fluctuations of different segments of the path are approximately independent, the location of these sites in $H_{x}$ should be approximately Gaussian distributed with variance of order $|x|$. This Gaussian distribution accounts for the factor $|x|^{-(d-1)/2}$. (Note constants have been omitted in this heuristic.) Thus the form we should seek for the function $f(x)$ in (\ref{E:lowerform}) is an inverse power of $|x|$, that is, a power-law correction to exponential decay. We will not attempt to obtain the optimal power $(d-1)/2$. We will instead obtain results of form (\ref{E:lowerform}) with $f(x)$ an inverse power of $|x|$ when $d = $ 2 or 3, and with $f(x) = e^{-C(\log |x|)^{2}}$ for some constant $C$ when $d \geq 4$. Analogous results for Bernoulli percolation at arbitrary subcritical densities are in \cite{Al1} and \cite{Al3}. Our results have suboptimal powes of $|x|$ for two reasons. First, we wish to work with quite general models and at arbitrary supercritical temperatures, which likely makes rigorous proof of precise behavior as in (\ref{E:OZbehav}) a particularly difficult problem. Second, interesting applications of (\ref{E:lowerform}) do not always require the optimal power $(d-1)/2$. For example, power-law correction results from \cite{Al1} are applied in \cite{Al2} to study boundary fluctuations in the Wulff construction for Bernoulli percolation, and Pfister and Velenik \cite{PV} use only the existence of a power-law correction (obtained from the exact solution) for correlations in the two-dimensional Ising model in their study of the continuum limit of that model. For simplicity we restrict attention to the integer lattice, but our results apply to more general lattices. For $\Lambda \subset \Zd$ let $\mathcal{B}(\Lambda)$ denote the set of all nearest-neighbor bonds $\langle xy \rangle$ with $x, y \in \Lambda$, and let $\overline{\mathcal{B}}(\Lambda)$ denote the set of all nearest-neighbor lattice bonds $\langle xy \rangle$ with $x$ or $y$ in $\Lambda$. A \emph{bond percolation model} on $\Zd$ is a measure $P$ on $\{0,1\}^{\mathcal{B}(\Zd)}$. We consider here only translation-invariant models. A \emph{bond configuration} is an element $\omega \in \{0,1\}^{\mathcal{B}(\Zd)}$; when convenient we view $\omega$ as a subset of $\mathcal{B}(\Zd)$. A bond $e$ is \emph{open} in a configuration $\omega$ if $\omega_{e} = 1$, and \emph{closed} if $\omega_{e} = 0$. The configuration $\{\omega_{e}: e \in \mathcal{G}\}$ restricted to a set $\mathcal{G}$ of bonds is denoted $\omega_{\mathcal{G}}$. $P$ has \emph{positive connection correlations} if \[ P(0 \leftrightarrow x + y) \geq P(0 \leftrightarrow x)P(x \leftrightarrow x + y) \quad \text{for all} \ x, y; \] this is a special case of the standard FKG property. We write $P_{\Lambda,\rho}$ for $P( \cdot \mid \omega_{\mathcal{B}(\Lambda^{c})} = \rho_{\mathcal{B}(\Lambda^{c})})$; we assume the latter is given by a regular conditional measure. Let $\mathcal{F}_{\Lambda}$ denote the $\sigma$-algebra generated by $\{\omega_{e}: e \in \mathcal{B}(\Lambda)\}$. $P$ has the \emph{weak mixing property} if for some $C, \lambda > 0$, for all finite sets $\Delta, \Lambda$ with $\Delta \subset \Lambda$, \begin{align} \sup \{\Var(&P_{\Lambda,\rho}(\omega_{\mathcal{B}(\Delta)} \in \cdot), P_{\Lambda,\rho^{\prime}}(\omega_{\mathcal{B}(\Delta)} \in \cdot)): \rho, \rho^{\prime} \in \{0,1\}^{\mathcal{B}(\Lambda^{c})}\} \notag \\ &\leq C \sum_{x \in \Delta,y \in \Lambda^{c}} e^{-\lambda |x - y|}, \notag \end{align} where $\Var(\cdot,\cdot)$ denotes total variation distance between measures. Roughly, the influence of the boundary condition on a finite region decays exponentially with distance from that region. Equivalently, for some $C, \lambda > 0$, for all sets $\Delta, \Gamma \subset \Zd$, \begin{align} \label{E:weakmix} \sup \{|&P(E \mid F) - P(E)|: E \in \mathcal{F}_{\Delta}, F \in \mathcal{F}_{\Gamma}, P(F) > 0\} \\ &\leq C \sum_{x \in \Delta,y \in \Gamma} e^{-\lambda |x - y|}. \notag \end{align} $P$ has the \emph{ratio weak mixing} property if for some $C, \lambda > 0$, for all sets $\Delta, \Gamma \subset \Zd$, \begin{align} \label{E:rweakmix} \sup \biggl\{ \biggl|&\frac{P(E \cap F)}{P(E)P(F)} - 1 \biggr|: E \in \mathcal{F}_{\Delta}, F \in \mathcal{F}_{\Gamma}, P(E)P(F) > 0 \biggr\} \\ &\leq C \sum_{x \in \Delta,y \in \Gamma} e^{-\lambda |x - y|}, \notag \end{align} whenever the right side of (\ref{E:rweakmix}) is less than 1. For $\Lambda \subset \Zd$ finite, $\rho \in \{0,1\}^{\mathcal{B}(\Lambda^{c})}$, and $\Gamma \subset \Lambda^{c}$ finite, we call $\mathcal{B}(\Gamma)$ a \emph{controlling region} for $\overline{\mathcal{B}}(\Lambda)$ and $\rho$ if for every $\rho^{\prime} \in \{0,1\}^{\mathcal{B}(\Lambda^{c})}$ such that $\rho = \rho^{\prime}$ on $\mathcal{B}(\Gamma)$, we have $P_{\Lambda,\rho} = P_{\Lambda,\rho^{\prime}}$. We say $P$ has \emph{exponentially bounded controlling regions} if there exist constants $C, \lambda > 0$ such that for every choice of disjoint finite sets $\Lambda$ and $\Gamma$, \begin{align} P(&\{\rho \in \{0,1\}^{\mathcal{B}(\Lambda^{c})}: \mathcal{B}(\Gamma) \ \text{is not a controlling region for} \ \overline{\mathcal{B}}(\Lambda) \ \text{and} \ \rho \}) \notag \\ &\leq C \sum_{x \in \Lambda,y \in \Lambda^{c} \backslash \Gamma} e^{-\lambda |x - y|}. \notag \end{align} Note that when $P(E)$ is much smaller than the right side of (\ref{E:weakmix}), the weak mixing condition (\ref{E:weakmix}) allows $P(E \mid F)$ to be many times larger than $P(E)$, but the ratio weak mixing condition (\ref{E:rweakmix}) does not allow this. Nonetheless, it is proved in \cite{Al4} that if $P$ has exponentially bounded controlling regions and the weak mixing property, then $P$ has the ratio weak mixing property. We say $P$ has \emph{exponential decay of connectivities} if there exist $C, \lambda > 0$ such that for all $x$ and $y$, \[ P(x \leftrightarrow y) \leq Ce^{-\lambda |x - y|}. \] Writing $\theta$ for $x/|x|$, when the limit \[ \lim_{n \to \infty} \frac{1}{n|x|} \log P(0 \leftrightarrow nx) \] exists for all $x \in \Zd$, is finite and depends only on $\theta$ (as for example when $P$ has positive connection correlations), we denote this limit by $m(\theta)$ and say $P$ is \emph{nondegenerate}. Here is the main result of this paper. \begin{theorem} \label{T:main} Suppose \begin{align} \label{E:assump} &P \text{ is a nondegenerate translation-invariant bond percolation model on} \\ &\Zd \text{ which has positive connection correlations, exponential decay of} \notag \\ &\text{connectivities and the ratio weak mixing property.} \notag \end{align} (i) If $d$ = 2 or 3, then there exist positive finite $A, C$ and $m(\theta)$ such that \begin{equation} \label{E:23bound} e^{-m(\theta)|x|} \geq P(0 \leftrightarrow x) \geq \frac{A}{|x|^{C}} e^{-m(\theta)|x|} \quad \text{for all nonzero} \ x \in \Zd, \end{equation} where $\theta = x/|x|$. (ii) If $d \geq$ 4, then there exist positive finite $C$ and $m(\theta)$ such that \begin{equation} \label{E:4bound} e^{-m(\theta)|x|} \geq P(0 \leftrightarrow x) \geq e^{-C(\log |x|)^{2}} e^{-m(\theta)|x|} \quad \text{for all nonzero} \ x \in \Zd, \end{equation} where $\theta = x/|x|$. \end{theorem} The proof will be given in Sections 2 and 3. Theorem \ref{T:main} applies to site percolation models as well; we restrict attention to bond percolation to keep the exposition simple. The only obstacle to proving the superior result (i), instead of (ii), in dimension $d \geq$ 4 is the purely geometric Proposition 2.7 of \cite{Al3}, which is proved only for $d$ = 2 and 3; we believe this Proposition is true in all dimensions, and certainly we expect that (\ref{E:23bound}) is true in all dimensions. The Fortuin-Kasteleyn random cluster model (or simply, the \emph{FK model}) with parameters $(q,p)$ and free boundary, on a finite subgraph $(\Lambda,\mathcal{B}(\Lambda))$ of the lattice $\Zd$, is the percolation model with probabilities given by the weights \[ p^{|\omega|}(1 - p)^{|\mathcal{B}(\Lambda)|-|\omega|}q^{K(\omega)}, \quad \omega \in \{0,1\}^{\mathcal{B}(\Lambda)}, \] where $|\omega|$ denotes the number of open bonds in $\omega$ and $K(\omega)$ denotes the number of connected components in $\omega$. Here $q > 0$ and $p \in [0,1]$. Taking the limit $\Lambda \nearrow \Zd$ yields the FK model, with free boundary, on the full lattice (see \cite{Gr1}.) This model was introduced in \cite{FK}; see also \cite{ACCN} and \cite{Gr1} for basic properties. For the $q$-state Potts model at a supercritical temperature $T$, for $\beta = 1/T, p = 1 - e^{-\beta}$ and the FK model at $(p,q)$, the covariance in the Potts model and the connectivity in the FK model are related by \begin{equation} \label{E:covarconn} q^{2} \cov(\delta_{[\sigma_{0} = i]},\delta_{[\sigma_{x} = i]}) = (q - 1)P(0 \leftrightarrow x), \quad i = 1,..,q; \end{equation} see \cite{ACCN} or \cite{Gr2}. Thus exponential decay of connectivities in the FK model is equivalent to exponential decay of correlations in the corresponding Potts model. Further, the critical inverse temperature $\beta_{c}(q,d)$ of the Potts model and the percolation critical point $p_{c}(q,d)$ of the FK model are related by \[ p_{c}(q,d) = 1 - e^{-\beta_{c}(q,d)}; \] again see \cite{ACCN} or \cite{Gr1}. For $q \geq 1$, the FK model has the FKG property \cite{FK} and hence has positive connection correlations. For the two-dimensional FK model, the following facts are known. For $q = 1, q = 2,$ and $q \geq 25.72$, we have $p_{c}(q,2) = \tfrac{\sqrt{q}}{1 + \sqrt{q}}$ \cite{LMR}, and the connectivity decays exponentially for all $p < p_{c}(q,2)$ \cite{Gr2}. This is believed to be true for all $q$; for $2 < q < 25.72$ the connectivity is known to decay exponentially at least for all $p < \tfrac{\sqrt{q-1}} {1 + \sqrt{q-1}}$ \cite{Al5}. For general $q \geq 1$ and $p < p_{c}(q,2)$, if the connectivity decays exponentially then the model has the ratio weak mixing property \cite{Al4}. With Theorem \ref{T:main} and (\ref{E:covarconn}), these facts yield the following results. \begin{theorem} \label{T:FKcase} Suppose that the FK model on $\mathbb{Z}^{2}$ with parameters $(q,p)$, with $q \geq 1$ and $p < p_{c}(q,2)$, has exponential decay of connectivities. Then there exist positive finite $A, C$ and $m(\theta)$, depending on $p$ and $q$, such that \begin{equation} \label{E:FKbounds} e^{-m(\theta)|x|} \geq P(0 \leftrightarrow x) \geq \frac{A}{|x|^C} e^{-m(\theta)|x|} \quad \text{for all} \ x \in \mathbb{Z}^{2}, \end{equation} where $\theta = x/|x|$. In particular (\ref{E:FKbounds}) holds for all $p < p_{c}(q,2) = \tfrac{\sqrt{q}}{1 + \sqrt{q}}$ if $q = 2$ or $q \geq 25.72$, and (\ref{E:FKbounds}) holds for all $p < \tfrac{\sqrt{q-1}} {1 + \sqrt{q-1}}$ if $2 < q < 25.72$. \end{theorem} \begin{corollary} \label{T:Pottscase} Suppose that the $q$-state Potts model on $\mathbb{Z}^{2}$ at inverse temperature $\beta < \beta_{c}(q,2)$ has exponential decay of correlations. Then there exist positive finite $A, C$ and $m(\theta)$, depending on $\beta$ and $q$, such that \begin{equation} e^{-m(\theta)|x|} \geq \cov(\delta_{[\sigma_{0} = i]}, \delta_{[\sigma_{x} = i]}) \geq \frac{A}{|x|^C} e^{-m(\theta)|x|} \quad \text{for all} \ x \in \mathbb{Z}^{2}, i \leq q, \end{equation} where $\theta = x/|x|$. \end{corollary} For the FK model in general dimension, exponential decay of connectivities implies exponentially bounded controlling regions (see \cite{Al4}), so that weak mixing and exponential decay of connectivities together imply ratio weak mixing. It is believed that weak mixing and exponential decay of connectivities hold whenever $p < p_{c}(q,d)$, in which case Theorem \ref{T:main} gives a power-law correction for all subcritical $p$, for $d = 3$ and $q \geq 1$, and a correction as in (\ref{E:4bound}) for all subcritical $p$, for $d \geq 4$ and $q \geq 1$. It is of interest in certain contexts (see e.g. Lemma 4.3 and Theorem 4.1 of \cite{Al2}) to have an analog of Theorem \ref{T:main} for connections in halfspaces; this is our next result. \begin{theorem} \label{T:halfspace} Assume (\ref{E:assump}). Let $H$ be the intersection with $\Zd$ of a closed halfspace in $\mathbb{R}^{d}$ containing 0. (i) If $d$ = 2 or 3, then there exist positive finite $A, C$ and $m(\theta)$ such that \begin{equation} \label{E:H23bound} e^{-m(\theta)|x|} \geq P(0 \leftrightarrow x \text{ in } \mathcal{B}(H)) \geq \frac{A}{|x|^{C}} e^{-m(\theta)|x|} \quad \text{for all nonzero} \ x \in H, \end{equation} where $\theta = x/|x|$. (ii) If $d \geq$ 4, then there exist positive finite $C$ and $m(\theta)$ such that \begin{equation} \label{E:H4bound} e^{-m(\theta)|x|} \geq P(0 \leftrightarrow x \text{ in } \mathcal{B}(H)) \geq e^{-C(\log |x|)^{2}} e^{-m(\theta)|x|} \quad \text{for all nonzero} \ x \in H, \end{equation} where $\theta = x/|x|$. \end{theorem} \section{Proof of Theorem 1.1$(ii)$} Throughout the paper, $C_{1},C_{2},...$ and $c_{1},c_{2},...$ denote constants which may depend on the model $P$, but not on $x$. Additional parameters on which these constants may depend are listed in parentheses after the constant, e.g. $C_{9}(C,K)$. Phrases such as ``sufficiently large'' or ``small enough'' implicitly mean ``larger/smaller than a constant depending only on P,'' unless otherwise specified. Throughout the paper we tacitly assume in proofs that $|x|$ and $C$ are sufficiently large, in this sense, and assume (\ref{E:assump}). To facilitate bookkeeping we will use $C_{i}$ for constants appearing in statements of results, and $c_{i}$ for constants which appear only in the course of proofs. Define \[ h(x) = -\log P(0 \leftrightarrow x), \quad x \in \Zd, \] so that, by positive connection correlation, $h$ is subadditive: \[ h(x + y) \leq h(x) + h(y). \] In particular $\{h(nx): n \geq 1\}$ is a subadditive sequence, so by standard methods the limit \begin{equation} \label{E:mdef} m(x) = \lim_{n \to \infty} \frac{h(nx)}{n} \end{equation} exists, extending the definition (\ref{E:sublim}), and for all $x \in \Zd$, \begin{equation} \label{E:mhcompar} m(x) \leq h(x). \end{equation} In fact for $x \in \mathbb{Q}^{d}$, if we restrict $n$ to those values for which $nx \in \Zd$, then the limit in (\ref{E:mdef}) exists, so $m(\cdot)$ extends to $\mathbb{Q}^{d}$. By exponential decay of correlations, $m(x)$ is strictly positive for all $x \neq 0$. Further, from subadditivity, $m(x)$ is finite if and only if $x$ is in the linear span of $\{e_{i}: P(\omega_{\langle 0e_{i} \rangle} = 1) > 0\}$, where $e_{i}$ denotes the ith unit coordinate vector. Under positive connection correlations, nondegeneracy of $P$ is equivalent to \begin{equation} \label{E:posprob} P(\omega_{\langle 0e_{i} \rangle} = 1) > 0 \quad \text{for all} \ i. \end{equation} By the arguments in \cite{ACC}, $m$ is uniformly continuous and $m$ extends to a function on $\mathbb{R}^{d}$ which is continuous, convex, and positive-homogeneous of order 1. In particular, \[ m(x) = m(\theta)|x|, \] where $\theta = x/|x|$. Let \[ m_{0} = \min_{i} m(e_{i}), \quad M_{0} = \max_{i} m(e_{i}). \] It follows from convexity that \begin{equation} \label{E:mbounds} m_{0}|x|_{\infty} \leq m(x) \leq M_{0}|x|_{1}, \end{equation} where $|\cdot |_{r}$ denotes the $l^{r}$ norm. We suppress the $r$ in the notation for the Euclidean norm, $r = 2$. Observe that (\ref{E:4bound}) may be rewritten as \[ m(x) \leq h(x) \leq m(x) + C(\log |x|)^{2} \quad \text{for all} \ x \in \Zd \ \text{with} \ |x| > 1, \] which in the terminology of \cite{Al3} is the \emph{general approximation property}, or \emph{GAP}, with exponent 0 and correction factor $(\log |x|)^{2}$, for the subadditive function $h$. It is proved in \cite{Al3} that to establish this property, it is sufficient to establish what is called the \emph{convex-hull approximation property}, or \emph{CHAP}, with exponent 0 and correction factor $\log |x|$. So we give now a description of CHAP. Let $B_{1} = \{x \in \mathbb{R}^{d}: m(x) \leq 1\}$. For $x \in \mathbb{R}^{d}$ let $T_{x}$ denote a hyperplane tangent to $\partial (m(x)B_{1})$ at $x$; note that if $\partial B_{1}$ is not smooth, there is not necessarily a unique choice of $T_{x}$. Let $T_{x}^{0}$ denote the hyperplane through 0 parallel to $T_{x}$. There is a unique linear functional $m_{x}$ on $\mathbb{R}^{d}$ satisfying \[ m_{x}(y) = 0 \quad \text{for all} \ y \in T_{x}^{0}, \quad m_{x}(x) = m(x). \] The functional $m_{x}$ is a linear approximation to $m$, for vectors nearly parallel to $x$. By convexity and symmetry of $m$ we have \begin{equation} \label{E:mxbound} |m_{x}(y)| \leq m(y) \quad \text{for all} \ y \in \mathbb{R}^{d}. \end{equation} For $y \in \mathbb{R}^{d}, m_{x}(y)$ is the $m$-length of a projection of $y$ onto the line through 0 and $x$. The value $m_{x}(y)$ may therefore be thought of as the amount of progress (measured in the norm $m$) toward $x$ made by a vector increment of $y$. Then for fixed $x$, \[ s_{x}(y) = h(y) - m_{x}(y) \] is a measure of the error or inefficiency associated with an increment of $y$ within a path from 0 to $x$. For $x \in \mathbb{R}^{d}$ and $C > 1$ we define a set of vector increments for which this ``error'' is of order at most $\log |x|$: \[ Q_{x}(C) = \{y \in \Zd: m_{x}(y) \leq m(x), s_{x}(y) \leq C \log |x|\}. \] Note that $s_{x}$ is nonnegative and subadditive, by (\ref{E:mhcompar}) and (\ref{E:mxbound}). For $M > 0$ and $C, t > 1$, we say that $h$ satsfies CHAP($M,C,t$) (with exponent 0 and correction factor $\log(\cdot)$) if \[ \frac{x}{\alpha} \in \Co(Q_{x}(C)) \quad \text{for some} \ \alpha \in [1,t], \quad \text{for all} \ x \in \Zd \ \text{with} \ |x| \geq M, \] where $\Co(\cdot)$ denotes the convex hull. Roughly this says that, up to a bounded constant, every $x$ is in the convex hull of some sites satisfying the desired power-law lower bound, except that $m$ is replaced by the linear approximation $m_{x}$. \begin{remark} \label{cutup} In \cite{Al3} the definition of $Q_{x}(\cdot)$ requires in addition, for some constant $K$, that $|y| \leq K|x|$. No such requirement is needed here because of Lemma 2.4(i) below. From (\cite{Al3}, Lemma 1.6), one way to establish CHAP($M,C,t$) is to find a lattice path $\gamma$ from 0 to $nx$ for some $n$ which can be cut up into at most $tn$ increments, each in $Q_{x}(C)$. That is, there must exist sites $0 = u_{0}, u_{1},..,u_{k} = nx$ in $\gamma$ such that $k \leq tn$ and $u_{i} - u_{i-1} \in Q_{x}(C)$ for all $i \leq k$. This was the approach taken in \cite{Al1}, and our approach here is based somewhat on the methods employed there. Loosely the idea is to show that for large $n$, the probability that 0 is connected to $nx$ by a path of open bonds which \emph{fails} to have this ``cutting-up'' property is strictly less than $P(0 \leftrightarrow nx)$. \end{remark} By a \emph{path} we always implicitly mean a self-avoiding lattice path, that is, a sequence $x_{0}, \langle x_{0}x_{1} \rangle, x_{1}, \langle x_{1}x_{2} \rangle, x_{2},..,x_{n}$ of alternating sites and bonds, with all $x_{i}$ distinct. An \emph{open path} is a path in which all bonds are open. Define \[ G_{x} = \{y \in \Zd: m_{x}(y) \leq m(x)\}. \] For $D \subset \mathbb{R}^{d}$ and $y \in \mathbb{R}^{d}$ we let $D + y$ denote the translate of the set $D$ by the vector $y$. Let $d(\cdot,\cdot)$ denote Euclidean distance, $d(D,E) = \inf \{d(z,w): z \in D, w \in E\}$ and $d(z,D) = d(\{z\},D)$. For $D \subset \Zd$ let \[ \partial D = \{x \in D^{c}: x \ \text{adjacent to} \ D\}, \quad \overline{D} = D \cup \partial D, \quad \partial_{in}D = \partial (D^{c}). \] For $D \subset \mathbb{R}^{d}$ and $y \in D \cap \Zd$ let $\Gamma(y,D)$ denote the union of $\{y\}$ and all sites in open paths in $\mathcal{B}(D)$ which contain $y$; if $y \notin D$ we define $\Gamma(y,D)$ to be empty. Note that \begin{equation} \label{E:gammayd} [\Gamma(y,D) = R] \in \mathcal{F}_{\overline{R}} \quad \text{for all}\ \ y, D \ \text{and} \ R. \end{equation} Given $x$ and $C$, we say a path $\gamma$ is $(x,C)$-\emph{clean} (or just \emph{clean} if confusion is unlikely) if for every pair of sites $u, v$ in $\gamma$ with $u$ preceding $v$, we have $s_{x}(v-u) < C \log |x|$. For sites $y, z \in G \subset \Zd$ we say $z$ is $(x,C)$-\emph{cleanly reachable from} $y$ \emph{inside} $G$ if there exists an $(x,C)$-clean path (not necessarily open!) from $y$ to $z$ having all sites in $G$. Note that clean reachability is a deterministic property, not dependent on the bond configuration. If $z$ is $(x,C)$-cleanly reachable from $y$ inside $G$, but is adjacent to some site in $G$ which is not cleanly reachable from $y$ inside $G$, we say $z$ is \emph{barely} $(x,C)$\emph{-cleanly reachable from} $y$ \emph{inside} $G$. Define \[ \tQxC = \{y \in \Zd: y \ \text{is cleanly reachable from 0 inside} \ G_{x}\} \] and observe that \begin{equation} \label{E:tqq} \tQxC \subset Q_{x}(C). \end{equation} Finally define \begin{align} \Delta_{x,C}(y,D) = \{z &\in \Gamma \bigl( y, (y + \tQxC) \cap D \bigr) \cap \partial_{in}(y + \tQxC): \notag \\ &\langle zw \rangle \ \text{is open for some} \ w \in (y + G_{x}) \backslash (y + \tQxC) \}. \notag \end{align} Note that every site in $\Delta_{x,C}(y,D)$ is connected to $y$ by an open path (not necessarily clean!) with all sites in $(y + \tQxC) \cap D$, and is barely cleanly reachable from $y$ inside $y + G_{x}$. \begin{remark} \label{R:vdbK} Let $u_{0},..,u_{n}$ be sites of $\Zd$. For Bernoulli bond percolation, from the FKG-Harris \cite{Ha} and van den Berg-Kesten \cite{vdBK} inequalities one has \begin{equation} \label{E:prodlbound} P(u_{0} \lra u_{1} \lra .. \lra u_{n}) \geq \prod_{i = 1}^{n} P(u_{i -1} \lra u_{i}) \end{equation} and \begin{equation} \label{E:produbound} P(u_{0} \lra u_{1} \lra .. \lra u_{n} \ \text{via disjoint paths}) \leq \prod_{i = 1}^{n} P(u_{i -1} \lra u_{i}), \end{equation} which together, roughly speaking, allow one to treat distinct segments of a path from $u_{0}$ to $u_{n}$ as independent. Recall that such independence underlies the central limit theorem heuristic for Ornstein-Zernike behavior as in (\ref{E:OZbehav}). The near-independence given by (\ref{E:prodlbound}) and (\ref{E:produbound}) was strongly exploited in \cite{Al1}, though not in the context of the central limit theorem, and the lack of an analog of (\ref{E:produbound}) is perhaps the major difficulty in adapting the methods of \cite{Al1} to other models. The ratio weak mixing property substitutes in part for (\ref{E:produbound}), but its application requires in effect that one specify nonrandom disjoint sets of bonds on which the two events of interest are going to occur, which is not always feasible for pairs of events like $[u_{i-1} \lra u_{i}]$ and $[u_{j-1} \lra u_{j}]$ in the contexts we would like. Our solution, again roughly speaking, involves expressing an event $[u \lra v]$ as a union $\cup_{R} \ [\Gamma(u,D) = R]$ for an appropriate choice of $D$, where the union is over an appropriate collection of sets $R$ containing $u$ and $v$. This is helpful because the event $[\Gamma(u,D) = R]$ necessarily takes place on the set of bonds $\overline{\mathcal{B}}(R)$ (cf. (\ref{E:gammayd}).) \end{remark} For $D \subset \Zd$ and $r \geq 0$ we define \[ D^{r} = \{x \in \mathbb{R}^{d}: d(x,D) \leq r\}. \] \begin{definition} \label{D:skel} For $y$ and $z$ sites in a path $\gamma$ with $y$ preceding $z$, we let $\gamma[y,z]$ denote the segment of $\gamma$ from $y$ to $z$. Suppose there is a path $\gamma$ of open bonds in $\omega$ from 0 to $z$ for some $z$. For $C > 1, x \in \Zd$ and $r > 0$, we can then define the \emph{gapped} $(C,r,x)$-\emph{skeleton} derived from $\gamma$ in $\omega$, a finite sequence $\{(u_{i},v_{i},v_{i}^{\prime},w_{i}), 0 \leq i \leq k\}$ of tuples of sites in $\gamma$, iteratively as follows. Let $u_{0} = 0$ and $D_{0} = \Zd$. Having defined $u_{0},..,u_{i}, v_{0},..,v_{i-1}, v_{0}^{\prime},..,v_{i-1}^{\prime}, w_{0},.., w_{i-1}, D_{0},..,D_{i}$, $\Gamma_{0},..,\Gamma_{i-1}$, and $R_{0}, ..,R_{i-1}$, let \begin{align} \Gamma_{i} &= \Gamma(u_{i},(u_{i} + \tQxC) \cap D_{i}) \notag \\ R_{i} &= (\Gamma_{i})^{r \log |x|} \notag \\ D_{i+1} &= (R_{0} \cup .. \cup R_{i})^{c}. \notag \end{align} Then let $v_{i}^{\prime}$ be the first site of $\gamma[u_{i},z]$ which is not in $\Gamma_{i}$, if such $v_{i}^{\prime}$ exists. If there is no such $v_{i}^{\prime}$, then $z \in \Gamma_{i}$ and we let $v_{i}^{\prime} = v_{i} = w_{i} = z$ and end the construction; otherwise let $v_{i}$ be the site in $\gamma$ immediately preceding $v_{i}^{\prime}$. Next let $u_{i+1}$ be the first site of $\gamma$ after $v_{i}$ with the property that $\gamma[u_{i+1},z]$ is contained in $D_{i+1}$, if such $u_{i + 1}$ exists. If no such $u_{i+1}$ exists then $z \in R_{i} \backslash \Gamma_{i}$ and we let $v_{i}^{\prime} = v_{i} = w_{i} = z$ and end the construction. Let $w_{i}$ be the closest site to $u_{i+1}$ in $\Gamma_{i}$. Note that $v_{k}^{\prime} = v_{k} = w_{k} = z$. See Figures 1 and 2. \end{definition} \begin{figure} \centerline{ \psfig{file=expcor01.eps,width=4in} } \caption{A short increment: $v_{i} \in \Delta_{x,C}(u_{i},D_{i})$. The site $v_{i}^{\prime}$ is not cleanly reachable from $u_{i}$. The path $\gamma$ is the heavy line; lighter lines represent other paths in $\Gamma_{i}$, and boundaries of regions.} \end{figure} \begin{figure} \centerline{ \psfig{file=expcor02.eps,width=4in} } \caption{A long increment: $v_{i} \in u_{i} + \partial_{in}G_{x}$. The path $\gamma$ stays in the cleanly reachable region all the way to $u_{i} + \partial G_{x}$.} \end{figure} From the definition of $u_{i+1}$, the site $u_{i+1}^{\prime}$ immediately preceding $u_{i+1}$ in $\gamma$ must be in $\cup_{j=0}^{i} R_{j}$. Since $\gamma[u_{i},z]$ does not intersect $R_{j}$ for $j < i$, we must in fact have $u_{i+1}^{\prime} \in R_{i}$. Therefore \begin{equation} \label{E:uwdist} r \log |x| \leq |u_{i+1} - w_{i}| \leq 1 + r \log |x|. \end{equation} The gapped $(C,r,x)$-skeleton then has the following properties: \begin{align} &\text{For each} \ i \ \text{there exist both an open path} \ \psi_{i} \ \text{from} \ u_{i} \ \text{to} \ w_{i}, \label{E:prop1} \\ &\text{and the open path} \ \gamma[u_{i},v_{i}] \ \text{from} \ u_{i} \ \text{to} \ v_{i}, \ \text{each having all sites in} \ D_{i} \notag \\ &\text{and all sites cleanly reachable from} \ u_{i} \ \text{inside} \ u_{i} + G_{x}. \notag \\ &\text{For} \ i \neq j, \ \text{the clusters} \ \Gamma_{i} \ \text{and} \ \Gamma_{j} \ \text{are separated by a distance} \label{E:prop2} \\ &\text{of at least} \ r \log |x|. \notag \\ &\text{For each} \ i \leq k - 1, v_{i} \in (u_{i} + \partial_{in}G_{x}) \cup \Delta_{x,C}(u_{i},D_{i}). \label{E:prop3} \end{align} Note that the paths $\psi_{i}$ are not necessarily segments of the path $\gamma$, and we need not have $w_{i} \in \gamma$. For fixed $C$, from (\ref{E:prop3}) we divide the indices into two classes, corresponding to ``short'' and ``long'' increments $v_{i} - u_{i}$, as follows (see Figures 1 and 2): \begin{align} S\bigl( (u_{i},v_{i},v_{i}^{\prime},w_{i})_{i \leq k} \bigr) &= \{i: 0 \leq i \leq k-1, v_{i} \in \Delta_{x,C}(u_{i},D_{i}) \backslash (u_{i} + \partial_{in}G_{x}) \} \notag \\ L\bigl( (u_{i},v_{i},v_{i}^{\prime},w_{i})_{i \leq k} \bigr) &= \{i: 0 \leq i \leq k-1, v_{i} \in u_{i} + \partial_{in}G_{x} \}. \notag \end{align} Set \[ p = \min_{i} P(\omega_{\lbrace 0e_{i} \rbrace} = 1), \] so $p > 0$ by (\ref{E:posprob}), and note that by positive connection correlations, \begin{equation} \label{E:crudelower} P(0 \lra x) \geq p^{|x|_{1}} \quad \text{for all} \ x. \end{equation} The next lemma summarizes some basic properties of the quantities we have defined. \begin{lemma} \label{L:basicprops} (i) Given $C > 1$ there exists a constant $C_{1}(C)$ such that if $y \in Q_{x}(C)$ and $|x| \geq C_{1}(C)$ then \[ m(y) \leq 2m(x) \quad \text{and} \quad |y| \leq 2dM_{0}|x|/m_{0}. \] (ii) For all $y \in \Zd, 0 \leq s_{x}(y) \leq 2|y|_{1}\log \tfrac{1}{p}$. (iii) If $y \in \partial_{in}G_{x}$ then $m_{x}(y) \geq m(x) - M_{0}$. \end{lemma} \begin{proof} (i) Suppose $m(y) > 2m(x)$ and $m_{x}(y) \leq m(x)$. Then from (\ref{E:mhcompar}) and (\ref{E:mxbound}), \[ 2m(x) < m(y) \leq h(y) = m_{x}(y) + s_{x}(y) \leq m(x) + s_{x}(y), \] so from (\ref{E:mbounds}), $s_{x}(y) > m(x) > C \log |x|$, provided $|x|$ is large (depending on $C$.) Thus $y \notin Q_{x}(C)$ and the first inequality in (i) follows. The second inequality then follows from (\ref{E:mbounds}). (ii) The fact that $s_{x}$ is nonnegative has already been noted. From (\ref{E:mhcompar}), (\ref{E:mxbound}) and (\ref{E:crudelower}) we have \[ s_{x}(y) \leq h(y) + |m_{x}(y)| \leq 2h(y) \leq 2|y|_{1}\log \frac{1}{p}. \] (iii) We have $z = y \pm e_{i}$ for some $z \notin G_{x}$ and $i \leq d$. Therefore using (\ref{E:mxbound}) we have $m_{x}(y) = m_{x}(z) - m_{x}(\pm e_{i}) \geq m(x) - M_{0}$. \end{proof} Let $\diam(B)$ denote the $d$-diameter of a set $B$. The following is immediate from the definition of ratio weak mixing. \begin{lemma} \label{L:rweakmix} Let $P$ be a bond percolation model on $\Zd$ with the ratio weak mixing property. There exists a constant $C_{2}$ as follows. Suppose $s > 3$ and $U, V \subset \Zd$ with $\diam(U) \leq s$ and $d(U,V) \geq C_{2}\log s$. Then for $D \in \mathcal{F}_{U}, E \in \mathcal{F}_{V}$ we have $P(D \cap E) \leq 2P(D)P(E)$. \end{lemma} For $y \in \Zd$ and $r > 0$, define $B(y,r) = \{z \in \Zd: |z - y| \leq r\}$. \begin{lemma} \label{L:reachball} Assume (\ref{E:assump}). There exists $C_{3}$ such that for $r \geq C_{3}$, \[ P(0 \lra \partial B(0,r)) \leq e^{-m_{0}r/2d}. \] \end{lemma} \begin{proof} For $y \in \partial B(0,r)$ we have $m(y) > m_{0}r/d$ by (\ref{E:mbounds}), so $P(0 \lra y) \leq e^{-m_{0}r/d}$. The result follows easily. \end{proof} We say there is an $r$-\emph{near connection} from $y$ to $z$ in the configuration $\omega$ if there exist $u, v$ such that $|u - v| \leq r, y \lra u$ in $\omega$, and $v \lra z$ in $\omega$. \begin{lemma} \label{L:rnear} Assume (\ref{E:assump}). There exist $C_{4}$ and $C_{5}$ such that if $|y| > 1, x \neq 0$ and $r \geq C_{4} \log |y|$ then \[ P(\text{there is an r-near connection from 0 to y}) \leq e^{-m_{x}(y)+C_{5}r}. \] \end{lemma} \begin{proof} By Lemma \ref{L:reachball}, (\ref{E:mbounds}) and (\ref{E:mxbound}) there exists $c_{1}$ such that \begin{equation} \label{E:bigball} P(0 \lra \partial B(0,c_{1}|y|)) \leq e^{-m_{x}(y)}. \end{equation} Therefore we need only consider $r$-near connections in $\mathcal{B}(B(0,c_{1}|y|))$. Let $E = B(0,c_{1}|y|)$ and $\Gamma_{0} = \Gamma(0,E \backslash B(y,r))$, and for $R \subset \Zd$ let $F(R) = (R^{r})^{c} \cap E$, so \begin{align} \label{E:F(R)} &[\Gamma_{0} = R] \in \mathcal{F}_{\overline{R}}, \quad \diam(F(R)) \leq \diam(E) \leq 2c_{1}|y| \\ &\quad \text{and} \quad d(\overline{R},F(R)) \geq C_{4} \log |y| - 1. \notag \end{align} If there is an $r$-near connection, but not a connection, from 0 to $y$ in $\mathcal{B}(E)$ in a configuration $\omega$, let $v(\omega)$ be the closest site to $\Gamma_{0}$ which has an open path to $y$ in $\mathcal{B}(F(\Gamma_{0}))$, and let $u(\omega)$ be the closest site to $v(\omega)$ in $\Gamma_{0}$; ties are broken arbitrarily. The existence of the $r$-near connection implies that $r \leq |u(\omega) - v(\omega)| \leq r + 1$. Note that \[ m_{x}(v - u) \leq c_{2}r. \] Using this, along with (\ref{E:F(R)}) and Lemma \ref{L:rweakmix}, we obtain {\allowdisplaybreaks \begin{align} \label{E:rnearbound} P(&\text{there is an} \ r-\text{near connection from 0 to} \ y \ \text{in} \ \mathcal{B}(E)) \\ &\leq P(0 \lra y) + \sum_{R,u,v} P\bigl(\Gamma_{0} = R, u(\omega) = u, v(\omega) = v \bigr) \notag \\ &\leq P(0 \lra y) + \sum_{R,u,v} P\bigl(\Gamma_{0} = R, v \lra y \ \text{in} \ \mathcal{B}(F(R))\bigr) \notag \\ &\leq P(0 \lra y) + \sum_{R,u,v} 2P\bigl(\Gamma_{0} = R)P(v \lra y) \notag \\ &\leq P(0 \lra y) + \sum_{u,v} 2P(0 \lra u) P(v \lra y) \notag \\ &\leq e^{-m_{x}(y)} + \sum_{u,v} 2 e^{-m_{x}(u) - m_{x}(y-v)} \notag \\ &= e^{-m_{x}(y)} + \sum_{u,v} 2 e^{-m_{x}(y) + m_{x}(v - u)} \notag \\ &\leq e^{-m_{x}(y)} + 2 |E|^{2} e^{-m_{x}(y) + c_{2}r} \notag \\ &\leq e^{-m_{x}(y) + c_{3}r}, \notag \end{align} }% end of \allow where the sums are over all $u, v \in E$ with $r \leq |v - u| \leq r + 1$ and over all possible values $R$ of $\Gamma_{0}$ containing $u$. Together (\ref{E:bigball}) and (\ref{E:rnearbound}) yield the lemma. \end{proof} From (\ref{E:mhcompar}) and (\ref{E:mxbound}), the probability of an open path $0 \lra y$ is at most $e^{-m_{x}(y)}$. Consider for some $C$ an $(x,C)$-unclean open path $0 \lra u \lra v \lra y$ with $s_{x}(v - u) \geq C \log |x|$. One can ask whether the cost of such a path (measured by the negative log of the probability) is increased by an amount of order $C \log |x|$, meaning that the probability is at most $e^{-m_{x}(y) - cC \log |x|}$. For Bernoulli percolation the van den Berg-Kesten inequality \cite{vdBK} can be used to show there is always such a cost increase. But for dependent percolation the situation is more complex. Consider the situation in which $u$ and $v$ are approximately on the straight line $[0,y]$, with $v$ closer to 0, so that the path of interest ``doubles back'' from $u$ to $v$ on the way to $y$. If the doubling back occurs in a narrow enough tube around the straight line $[0,y]$, then the three near-parallel segments of the path between approximately $v$ and $u$ are not far enough apart for (ratio) weak mixing to ensure that there is any extra cost. The next lemma, however, shows that if after doubling back from $u$ to $v$ (or otherwise traversing an expensive segment) the path does not return to a neighborhood of $u$, then an extra cost is indeed paid. \begin{lemma} \label{L:uncleancost1} Assume (\ref{E:assump}). There exist $C_{6}$ with the following property: For every $a \geq 1$ and $0 < b < C_{6}$, there exist $C_{7}(a,b), C_{8}(a,b)$ and $C_{9}(a,b)$ such that if $C \geq C_{7}, |x| \geq C_{8}$ and $|y| \leq a|x|$, then \begin{align} \label{E:cost} P(&\text{for some } u, v \in \Zd \text{ with } s_{x}(v - u) \geq C \log |x|, 0 \lra y \text{ via a path } \gamma \text{ which} \\ &\qquad \text{ visits } u \text{ before } v \text{ and does not return to } B(u,bC \log |x|) \text{ after visiting } v) \notag \\ &\leq e^{-m_{x}(y) - C_{9}C \log |x|}. \notag \end{align} \end{lemma} \begin{proof} By Lemma \ref{L:reachball}, (\ref{E:mbounds}) and (\ref{E:mxbound}), there exists $c_{4}(a)$ such that for $E = B(0,c_{4}(|x| + C\log |x|))$, we have \begin{equation} \label{E:reachE} P(0 \lra \partial E) \leq e^{-m_{x}(y) - C \log |x|}\quad \text{for all } |y| \leq a|x|, \end{equation} so it is sufficient to consider paths $\gamma$ within $\mathcal{B}(E)$. For $u, v \in \Zd$ let \begin{align} &B_{u} = B(u,bC \log |x|), \quad \tilde{B}_{u} = B(u,\frac{1}{2}bC \log |x|), \notag \\ &S_{v} = B(v,4dc_{6}C \log |x|), \quad \tilde{S}_{v} = B(v,2dc_{6}C \log |x|), \notag \end{align} where $0 < b < c_{5}$; here $c_{5} < c_{6}$ are constants to be specified later. Provided $c_{6}$ is small enough, we obtain using Lemma \ref{L:basicprops} that for some $c_{7} < 1/8$, for all $u, v$ with $s_{x}(v - u) \geq C \log |x|$, \begin{align} \label{E:BSsep} &m(w - t) \geq 2c_{7}C \log |x| \quad \text{and} \quad s_{x}(w - t) \geq \frac{C}{2} \log |x| \\ &\text{for every } t \in \overline{B_{u}}, w \in \overline{S_{v}} \notag \end{align} so that in particular $B_{u}$ and $S_{v}$ are disjoint. Further, again provided $c_{6}$ is small enough, we have \begin{equation} \label{E:Svar} |m_{x}(q - r)| \leq c_{7}C \log |x| \quad \text{for all } q,r \in \overline{S_{0}} \end{equation} and if also $c_{5}$ is small enough relative to $c_{6}$, \begin{equation} \label{E:Bvar} |m_{x}(t - s)| < \frac{m_{0}}{4}c_{6}C \log |x| < c_{7}C \log |x| \quad \text{for all } s,t \in \overline{B_{0}}. \end{equation} Fix $y \in \Zd$. For $u, v$ with $s_{x}(v - u) \geq C \log |x|$, let $A(u,v)$ be the event that there exists an open path $\gamma$ from 0 to $y$ in $\mathcal{B}(E)$ which visits $u$ before $v$ and does not return to $B_{u}$ after reaching $v$. \emph{Case 1}. $0, y \notin B_{u} \cup S_{v}$. We can then further decompose $A(u,v)$ as follows: for $s, t \in \partial B_{u}$ and $w, z \in \partial S_{v}$, let $A(u,v;s,t,w,z)$ be the event that there exists $\gamma$ as above which first reaches $\partial B_{u}$ at $s$, which last exits $B_{u}$ via a step to $t$, which has $\gamma[t,y]$ first enter $S_{v}$ at $w$, and which last exits $S_{v}$ via a step to $z$. Ideally, when $A(u,v;s,t,w,z)$ occurs we would like the three segments $\gamma[0,s]$ from 0 to $\partial B_{u}, \gamma[t,w]$ from $\partial B_{u}$ to $\partial S_{v}$, and $\gamma[z,y]$ from $\partial S_{v}$ to $y$ to be well-separated from one another, so that Lemma \ref{L:rweakmix} can be applied, but in fact there may be various unwanted connections or near-connections outside $B_{u}$ and/or $S_{v}$ which we must handle. Depending on the presence of these near-connections, the source of the extra cost $C_{9}C \log |x|$ exhibited in (\ref{E:cost}) is either the expensive segment from $u$ to $v$, or the connection from $u$ to $\partial \tilde{B}_{u}$ inside $B_{u}$, or the connection from $v$ to $\partial \tilde{S}_{v}$ inside $S_{v}$. For $q, r \in A \subset \Zd$, let $N(q,r,A)$ be the event that there is a $(2 + c_{8}bC \log |x|)$-near connection from $q$ to $r$ in $\mathcal{B}(A)$, where $c_{8}$ is a (small) constant to be specified. Note that the distance $2 + c_{8}bC \log |x|$ quantifying ``near-connections'' is much less than the diameter of $B_{u}$; $B_{u}$, in turn, is much smaller than $S_{v}$. First consider $A(u,v) \cap N(0,y,E \backslash B_{u})$. When this event occurs we have a near-connection from 0 to $y$ outside $B_{u}$, and a connection from $u$ to $\partial \tilde{B}_{u}$. If $c_{8}$ is sufficiently small (depending on $C_{5}$), and $C$ and $x$ are sufficiently large (depending on $a, b$), then Lemmas \ref{L:rweakmix}, \ref{L:reachball} and \ref{L:rnear} give for some $c_{9}$ \begin{align} \label{E:case1} P(&A(u,v) \cap N(0,y,E \backslash B_{u})) \\ &\leq P([u \lra \partial \tilde{B}_{u}] \cap N(0,y,E \backslash B_{u})) \notag \\ &\leq 2 P(u \lra \partial \tilde{B}_{u}) P(N(0,y,\Zd)) \notag \\ &\leq 2e^{-m_{x}(y) + C_{5}c_{8}bC \log |x| - m_{0}bC (\log |x|)/4d} \notag \\ &\leq 2e^{-m_{x}(y) - c_{9}bC \log |x|}. \notag \end{align} Second, consider $A(u,v;s,t,w,z) \cap N(0,y,E \backslash B_{u})^{c} \cap N(t,y,E \backslash (B_{u} \cup S_{v}))^{c}$. When this occurs we have clusters $\Gamma(0,E \backslash B_{u})$ containing the sites of $\gamma[0,s], \Gamma(t,E \backslash (B_{u} \cup S_{v}))$ containing the sites of $\gamma[t,w]$, and $\Gamma(y,E \backslash (B_{u} \cup S_{v}))$ containing the sites of $\gamma[z,y]$, these clusters being separated from each other by at least $2 + c_{8}bC \log |x|$. Therefore using Lemma \ref{L:rweakmix}, (\ref{E:gammayd}), (\ref{E:BSsep}) and (\ref{E:Svar}), if $C$ is sufficiently large (depending on $b$) and if $|x|$ is sufficiently large (depending on $a, b$), we obtain that for some $c_{10}$, {\allowdisplaybreaks \begin{align} \label{E:case2} P(&A(u,v;s,t,w,z) \cap N(0,y,E \backslash B_{u})^{c} \cap N(t,y,E \backslash (B_{u} \cup S_{v}))^{c}) \\ &\leq \sum_{I,J,K} P\bigl(\Gamma(0,E \backslash B_{u}) = I, \Gamma(t,E \backslash (B_{u} \cup S_{v})) = J, \Gamma(y,E \backslash (B_{u} \cup S_{v})) = K\bigr) \notag \\ &\leq \sum_{I,J,K} 4 P\bigl(\Gamma(0,E \backslash B_{u}) = I \bigr) P\bigl(\Gamma(t,E \backslash (B_{u} \cup S_{v})) = J \bigr) P\bigl(\Gamma(y,E \backslash (B_{u} \cup S_{v})) = K \bigr) \notag \\ &\leq 4 P(0 \lra s) P(t \lra w) P(z \lra y) \notag \\ &\leq 4 e^{-[m_{x}(s) + m_{x}(w - t) + s_{x}(w - t) + m_{x}(y - z)]} \notag \\ &= 4 e^{-[m_{x}(y) - m_{x}(t - s) - m_{x}(z - w) + s_{x}(w - t)]} \notag \\ &\leq 4 e^{-m_{x}(y) + 2c_{7}C \log |x| - \frac{C}{4} \log |x|}\notag \\ &\leq e^{-m_{x}(y) - c_{10}C \log |x|} \notag \end{align} }%end of \allow where the sums are over all $I, J, K \subset E$ with $0,s \in I, t, w \in J, z, y \in K$, and $\min(d(I,J)$, $d(I,K),d(J,K)) > 2 + c_{8}bC \log |x|.$ Third, consider $A(u,v;s,t,w,z) \cap N(0,y,E \backslash B_{u})^{c} \cap N(0,s,E \backslash (B_{u} \cup S_{v}))^{c}$. When this occurs and $\Gamma(0,E \backslash (B_{u} \cup S_{v})) = I, \Gamma(s,E \backslash (B_{u} \cup S_{v})) = J, \Gamma(0,E \backslash B_{u}) = K$, $\Gamma(y,E \backslash (B_{u} \cup S_{v})) = L$ for some $I,J,K,L$, we must have $I \cup J \subset K, d(I,J) > 2 + c_{8}bC \log |x|$ and $d(K,L) > 2 + c_{8}bC \log |x|$; $I$ contains the sites of an open path from 0 to $\partial S_{v}$, $J$ contains the sites of an open path from $\partial S_{v}$ to $s$, and $L$ contains the sites of $\gamma[z,y]$. (Here we do not make use of the cluster containing $t$ and $w$.) Therefore using Lemma \ref{L:rweakmix}, (\ref{E:gammayd}), (\ref{E:BSsep}) and (\ref{E:Svar}), if $C$ and $x$ are sufficiently large (depending on $a, b$), we obtain that for some $c_{11}$, {\allowdisplaybreaks \begin{align} \label{E:case3} P\bigl(&A(u,v;s,t,w,z) \cap N(0,y,E \backslash B_{u})^{c} \cap N(0,s,E \backslash (B_{u} \cup S_{v}))^{c} \bigr) \\ &\leq \sum_{I,J,L} P\bigl(\Gamma(0,E \backslash (B_{u} \cup S_{v})) = I, \Gamma(s,E \backslash (B_{u} \cup S_{v})) = J, \Gamma(y,E \backslash B_{u}) = L \bigr) \notag \\ &\leq \sum_{I,J,L} 4P\bigl(\Gamma(0,E \backslash (B_{u} \cup S_{v})) = I \bigr) P\bigl(\Gamma(s,E \backslash (B_{u} \cup S_{v})) = J \bigr) P\bigl(\Gamma(y,E \backslash B_{u}) = L \bigr) \notag \\ &\leq 4 P(0 \lra \partial S_{v}) P(\partial S_{v} \lra s) P(z \lra y) \notag \\ &\leq 4 \sum_{q,r \in \partial S_{v}} P(0 \lra q) P(r \lra s) P(z \lra y) \notag \\ &\leq 4 \sum_{q,r \in \partial S_{v}} e^{-[m_{x}(q) + m(s - r) + m_{x}(y - z)]} \notag \\ &= 4 \sum_{q,r \in \partial S_{v}} e^{-m_{x}(y) + m_{x}(z - q) - m(s - r)} \notag \\ &\leq |\partial S_{v}|^{2} e^{-m_{x}(y) - c_{7}C \log |x|} \notag \\ &\leq e^{-m_{x}(y) - c_{11}C \log |x|} \notag \end{align} }%end of \allow where the sum is over $I,J,L \subset E$ with $0 \in I, I \cap \partial S_{v} \neq \phi, s \in J, J \cap \partial S_{v} \neq \phi, y, z \in L$, and $\min(d(I,J),d(I,L),d(J,L)) > 2 + c_{8}bC \log |x|$. Fourth, consider \[ A(u,v;s,t,w,z) \cap N(0,y,E \backslash B_{u})^{c} \cap N(0,s,E \backslash (B_{u} \cup S_{v})) \cap N(t,y,E \backslash (B_{u} \cup S_{v})). \] When this occurs and $\Gamma(0,E \backslash (B_{u} \cup S_{v})) \cup \Gamma(s,E \backslash (B_{u} \cup S_{v})) = I, \Gamma(0,E \backslash B_{u}) = J, \Gamma(t,E \backslash (B_{u} \cup S_{v})) \cup \Gamma(y,E \backslash (B_{u} \cup S_{v})) = K$ and $\Gamma(y,E \backslash B_{u}) = L$ for some $I, J, K,L$, we must have $I \subset J, K \subset L$ and $d(J,L) \geq 2 + c_{8}bC \log |x|$; $I$ contains the sites of a near-connection from 0 to $s$, and $K$ contains the sites of a near-connection from $t$ to $y$. There is also an open path from $v$ to $\partial \tilde{S}_{v}$. Therefore assuming $b$ is small enough relative to $c_{6}$, using Lemmas \ref{L:rweakmix} - \ref{L:rnear}, (\ref{E:gammayd}) and (\ref{E:Bvar}), if $C$ and $x$ are sufficiently large (depending on $a, b$), we obtain {\allowdisplaybreaks \begin{align} \label{E:case4} P\bigl(&A(u,v;s,t,w,z) \cap N(0,y,E \backslash B_{u})^{c} \cap N(0,s,E \backslash (B_{u} \cup S_{v})) \cap N(t,y,E \backslash (B_{u} \cup S_{v})) \bigr) \\ &\leq \sum_{I,K} P\bigl(\Gamma(0,E \backslash (B_{u} \cup S_{v})) \cup \Gamma(s,E \backslash (B_{u} \cup S_{v})) = I, \notag \\ &\qquad \qquad \Gamma(t,E \backslash (B_{u} \cup S_{v})) \cup \Gamma(y,E \backslash (B_{u} \cup S_{v})) = K, v \lra \partial \tilde{S}_{v} \bigr) \notag \\ &\leq \sum_{I,K} 4 P\bigl(\Gamma(0,E \backslash (B_{u} \cup S_{v})) \cup \Gamma(s,E \backslash (B_{u} \cup S_{v})) = I \bigr) \notag \\ &\qquad \qquad P\bigl(\Gamma(y,E \backslash (B_{u} \cup S_{v})) \cup \Gamma(t,E \backslash (B_{u} \cup S_{v})) = K \bigr) P(v \lra \partial \tilde{S}_{v}) \notag \\ &\leq 4P(N(0,s,\Zd)) P(N(t,y,\Zd)) P(v \lra \partial \tilde{S}_{v}) \notag \\ &\leq 4e^{-m_{x}(s) - m_{x}(y - t) +2C_{5}c_{8}bC \log |x| - m_{0}c_{6}C \log |x|} \notag \\ &\leq e^{-m_{x}(y) + m_{x}(t - s) - \frac{1}{2}m_{0}c_{6}C \log |x|} \notag \\ &\leq e^{-m_{x}(y) - \frac{1}{4}m_{0}c_{6}C \log |x|}. \notag \end{align} }%end of \allow where the sum is over those $I \ni 0, s$ and $K \ni t, y$ consistent with the event appearing in the first sum in (\ref{E:case4}), with $d(I,K) \geq 2 + c_{8}bC \log |x|$. Combining (\ref{E:case1}), (\ref{E:case2}), (\ref{E:case3}) and (\ref{E:case4})and summing over $s, t, w, z$, provided $C$ and $x$ are sufficiently large (depending on $a, b$), we obtain \begin{equation} \label{E:Auvbound} P(A(u,v)) \leq e^{-m_{x}(y)-C_{14}bC \log |x|}. \end{equation} It remains to consider cases with 0 and/or $y$ in $B_{u} \cup S_{v}$. Note that when $A(u,v)$ occurs we cannot have $y \in B_{u}$. Also, the bound (\ref{E:case1}) is valid regardless of the locations of $u$ and $v$ (the left side is 0 if $0 \in B_{u}$.) \emph{Case 2}. $0 \in B_{u},\ y \notin B_{u} \cup S_{v}$. Here there is no longer a site $s$ but we can define $t, w, z$ and $A(u,v;t,w,v)$ similarly to Case 1. Similarly to (\ref{E:case2}) we obtain \begin{align} \label{E:secondcase1} P\bigl(&A(u,v,t,w,z) \cap N(0,y,E \backslash B_{u})^{c} \cap N(t,y,E \backslash (B_{u} \cup S_{v}))^{c} \bigr) \\ &\leq 2 P(t \lra w) P(z \lra y) \notag \\ &\leq 2 e^{-[m_{x}(w - t) + s_{x}(w - t) + m_{x}(y - z)]} \notag \\ &= 2 e^{-[m_{x}(y) - m_{x}(t) - m_{x}(z - w) + s_{x}(w - t)]} \notag \\ &\leq 2 e^{-m_{x}(y) + 2c_{7}C \log |x| - \frac{C}{4} \log |x|}\notag \\ &\leq e^{-m_{x}(y) - c_{10}C \log |x|}, \notag \end{align} while similarly to (\ref{E:case4}) we obtain \begin{align} \label{E:secondcase2} P\bigl(&A(u,v;t,w,z) \cap N(0,y,E \backslash B_{u})^{c} \cap N(t,y,E \backslash (B_{u} \cup S_{v})) \bigr) \\ &\leq 2 P(N(t,y,\Zd)) P(v \lra \partial \tilde{S}_{v}) \notag \\ &\leq 4e^{-m_{x}(y - t) + C_{5}c_{8}bC \log |x| - m_{0}c_{6}C \log |x|} \notag \\ &\leq e^{-m_{x}(y) + m_{x}(t) - \frac{1}{2}m_{0}c_{6}C \log |x|} \notag \\ &\leq e^{-m_{x}(y) - C_{14}C \log |x|}. \notag \end{align} Summing these over $t,w,z$ and combining with (\ref{E:case1}) yields (\ref{E:Auvbound}). \emph{Case 3}. $0 \in S_{v}, y \notin B_{u} \cup S_{v}$. Similarly to (\ref{E:case3}), using (\ref{E:BSsep}) and (\ref{E:Svar}) we obtain \begin{align} \label{E:thirdcase} P\bigl(&A(u,v;s,t,w,z) \cap N(0,y,E \backslash B_{u})^{c} \bigr) \\ &\leq 2 P(0 \lra s) P(z \lra y) \notag \\ &\leq 2 e^{-[m(s) + m_{x}(y - z)]} \notag \\ &\leq e^{-\frac{C}{2}\log |x| - m_{x}(y) + c_{7}C \log |x|} \notag \\ &\leq e^{-m_{x}(y) - \frac{C}{4} \log |x|}. \notag \end{align} Summing over $s,t,w,z$ and combining with (\ref{E:case1}) again yields (\ref{E:Auvbound}). \emph{Case 4}. $0 \notin B_{u} \cup S_{v}, y \in S_{v}$. This time there is no longer a site $z$ but we can define $s,t,w$ and $A(u,v;s,t,w)$ similarly to Case 1. Similarly to (\ref{E:case2}) we obtain \begin{align} \label{E:fourthcase} P\bigl(&A(u,v;s,t,w) \cap N(0,y,E \backslash B_{u})^{c} \bigr) \\ &\leq 2 P(0 \lra s) P(t \lra w) \notag \\ &\leq 2 e^{-[m_{x}(s) + m_{x}(w - t) + s_{x}(w - t)]} \notag \\ &= 2 e^{-[m_{x}(y) - m_{x}(t-s) - m_{x}(y - w) + s_{x}(w - t)]} \notag \\ &\leq 2 e^{-m_{x}(y) + 2c_{7}C \log |x| - \frac{C}{4} \log |x|}\notag \\ &\leq e^{-m_{x}(y) - c_{10}C \log |x|}. \notag \end{align} Once again, summing over $s,t,w$ and combining with (\ref{E:case1}) yields (\ref{E:Auvbound}). \emph{Case 5}. $0 \in B_{u}, y \in S_{v}$. Here \begin{align} \label{E:fifthcase} P(A(u,v)) &\leq P(u \lra v) \\ &\leq e^{-[m_{x}(v - u) + s_{x}(v - u)]} \notag \\ &= e^{-[m_{x}(y) - m_{x}(y - v) - m_{x}(u) +s_{x}(v - u)]} \notag \\ &\leq e^{-m_{x}(y) + 2c_{7}C \log |x| - C \log |x|} \notag \\ &\leq e^{-m_{x}(y) - \frac{C}{2} \log |x|}, \notag \end{align} so again (\ref{E:Auvbound}) is valid. \emph{Case 6}. $0, y \in S_{v}$. Here, from (\ref{E:BSsep}) and (\ref{E:Svar}), \begin{align} P(A(u,v)) &\leq P(0 \lra u) \notag \\ &\leq e^{-m(u)} \notag \\ &\leq e^{-2c_{7}C \log |x|} \notag \\ &\leq e^{-m_{x}(y) - c_{7}C \log |x|}, \notag \end{align} so once more (\ref{E:Auvbound}) is valid. Thus (\ref{E:Auvbound}) is valid for all $u, v \in E$ with $s_{x}(v - u) \geq C \log |x|$. Summing over such $u, v$ and combining with (\ref{E:reachE}) yields (\ref{E:cost}). \end{proof} As discussed in the remarks preceding Lemma \ref{L:uncleancost1}, an unclean open path from 0 to some $y$ need not cost more than a clean one, outside of the circumstances of (\ref{E:cost}). The next lemma shows that when \emph{all} paths to $y$, open or not, are unclean, then every open path to $y$ must be as in (\ref{E:cost}), so an extra cost is always paid. The lemma is valid for more general $G$ than stated, but we only need the halfspace case. \begin{lemma} \label{L:uncleancost2} Assume (\ref{E:assump}). There exist $C_{i}$ such that if $G$ is either $\Zd$ or the intersection of a halfspace with $\Zd$, $C \geq C_{11}, |x| \geq C_{12}$ and $y \in Q_{x}(C)$ is not $(x,C)$-cleanly reachable from 0 inside $G$, then \[ P(0 \lra y \text{ in } \mathcal{B}(G)) \leq e^{-m_{x}(y) - C_{10}C \log |x|}. \] \end{lemma} \begin{proof} Suppose $y$ is not $(x,C)$-cleanly reachable from 0 but $0 \lra y$ via some path $\gamma$ of open bonds in $\mathcal{B}(G)$. (If there is more than one such $\gamma$, we can choose one arbitrarily.) Define $0 = w_{0}, w_{1},.., w_{m} = y$ inductively as follows: $w_{i+1}$ is the first site in $\gamma$ after $w_{i}$ for which $\gamma[w_{i+1},z] \subset B(w_{i},C_{15}C \log |x|)^{c}$, where $C_{15}$ is a constant to be specified; if there is no such $w_{i+1}$ for some value $i = m-1$, then $y \in B(w_{i}, C_{15}C \log |x|)$ and we end the construction. Let $B_{i} = B(w_{i}, C_{15}C \log |x|)$. Since $w_{i+1} \in \partial B_{i}$, it is easy to see that there exists a lattice path $\alpha$ from 0 to $y$ in $\mathcal{B}(G)$ contained in $\cup_{i=0}^{m} B_{i}$, and $\alpha$ can be chosen so that once $\alpha$ leaves any of the balls $B_{i}$, it does not return to $\cup_{j \leq i} B_{j}$. (Since $G \cap B_{i}$ is ``connected'' for each $i$, one need only ensure that when $\alpha$ exits any ball $B_{i}$, it exits into the ball $B_{j}$ of maximal index $j$ for which $B_{j} \cap B_{i} \neq \phi$. Informally speaking, $\alpha$ is approximately $\gamma$ with doublebacks erased.) Since $y$ is not $(x,C)$-cleanly reachable from 0 inside $G$, there must exist sites $u, v$ in $\alpha$ with $u$ preceding $v$ such that $s_{x}(v - u) \geq C \log |x|$. Let $k$ and $l$ be such that $u \in B_{k}, v \in B_{l}$. Provided $C_{15}$ is small enough, we have by Lemma \ref{L:basicprops}(ii): \[ |s_{x}(u - w_{k})| \leq \frac{1}{4} C \log |x|, \qquad |s_{x}(v - w_{l})| \leq \frac{1}{4} C \log |x| \] and therefore \begin{equation} \label{E:sxwjwi} s_{x}(w_{l} - w_{k}) \geq \frac{1}{2} C \log |x|, \end{equation} which by Lemma \ref{L:basicprops}(ii) implies $|w_{l} - w_{k}| > 2C_{15}C \log |x|$. Thus $B_{k}$ and $B_{l}$ are disjoint. Since $\alpha$ visits $u$ before $v$ and does not visit $\cup_{j \leq k} B_{j}$ after leaving $B_{k}$, it follows that $k < l$ and so $w_{k}$ precedes $w_{l}$ in $\gamma$. But now we are in the situation of Lemma \ref{L:uncleancost1} (with $b = C_{15}$, $a = 2dM_{0}/m_{0}$ obtained from Lemma \ref{L:basicprops}(i), and $C/2$ in place of $C$): we have an open path $\gamma$ from 0 to $y$ which visits $w_{k}$, then $w_{l}$, after which it does not return to $B_{k}$, and (\ref{E:sxwjwi}) holds; provided $C_{15}$ is small enough, the lemma follows. \end{proof} Let $m_{x}^{+}(\cdot) = \max (m_{x}(\cdot),0)$. \begin{lemma} \label{L:extracost} Assume (\ref{E:assump}). There exist constants $C_{i}$ such that if $D \subset \Zd, C \geq 1, |x| \geq C_{13}(C)$ and $v, w \in \tQxC$, then \begin{equation} \label{E:xtracost} P(v \in \Delta_{x,C}(0,D) \ \text{and} \ 0 \lra w ) \leq e^{-m_{x}^{+}(w) - C_{12}C \log |x|}. \end{equation} \end{lemma} Note that, in contrast to (\ref{E:xtracost}), from (\ref{E:mhcompar}) and (\ref{E:mxbound}) one obtains that the probability of the event $0 \lra w$ alone can be bounded above by $e^{-m(w)}$ or $e^{-m_{x}^{+}(w)}$. The significance of Lemma \ref{L:extracost} is that because $v \in \Delta_{x,C}(0,D)$, so that $v$ is barely cleanly reachable from 0, the additional presence of a path $0 \lra v$ introduces an extra cost of $C_{12}C \log |x|$, even though the two paths need not be disjoint. \begin{proof}[Proof of Lemma \ref{L:extracost}] There exist $C_{16}(C)$ and $c_{15}$ such that $|x| \geq C_{16}$ and $w \in \tQxC$ imply $|w| \leq c_{15}|x|$. Hence as in (\ref{E:reachE}), we have for some $c_{16}$: \begin{equation} \label{E:reachball2} P(0 \lra \partial B(0,c_{16}|x|)) \leq e^{-m_{x}(w) - C \log |x|}. \end{equation} Let $0 < c_{17} < c_{18}$ be constants to be specified later, let \[ E = B(0,c_{16}|x|), \qquad B_{v} = B (v,4dc_{18}C \log |x|), \qquad \tilde{B}_{v} = B(v,2dc_{18}C \log |x|), \] and let $N$ denote the event that there is a $(c_{17}C \log |x|)$-near connection from 0 to $w$ in $\mathcal{B}(E \backslash B_{v})$. If $c_{17}$ is sufficiently small relative to $c_{18}$, and $|x|$ and $C$ are sufficiently large, then by Lemmas \ref{L:rweakmix}, \ref{L:reachball} and \ref{L:rnear} we have {\allowdisplaybreaks \begin{align} \label{E:ifrnear} P\bigl([v &\in \Delta_{x,C}(0,D)] \cap N \bigr) \\ &\leq P([v \lra \partial \tilde{B}_{v}] \cap N) \notag \\ &\leq 2P(v \lra \partial \tilde{B}_{v}) P(N) \notag \\ &\leq 2 e^{-m_{0}c_{18}C \log |x|} e^{-m_{x}(w)+ C_{5}c_{17}C \log |x|} \notag \\ &\leq 2 e^{-m_{x}(w) - c_{19}C \log |x|}.\notag \end{align} }% end of \allow Next, we suppose first that $w \notin \overline{B_{v}}$. Using Lemma \ref{L:rweakmix}, again assuming $|x|$ and $C$ are sufficiently large, {\allowdisplaybreaks \begin{align} \label{E:nornear} P\bigl(&[v \in \Delta_{x,C}(0,D)] \cap [0 \lra w] \cap N^{c} \bigr) \\ &\leq P(0 \lra \partial E) + \sum_{I,J} P\bigl(\Gamma(0,E \backslash B_{v}) = I, \Gamma(w,E \backslash B_{v}) = J \bigr) \notag \\ &\leq P(0 \lra \partial E) + \sum_{I,J} 2P\bigl(\Gamma(0,E \backslash B_{v}) = I \bigr)P\bigl(\Gamma(w,E \backslash B_{v}) = J \bigr) \notag \\ &\leq P(0 \lra \partial E) + 2P\bigl(0 \lra \partial B_{v} \text{ in } \mathcal{B}(\tQxC) \bigr) P(\partial B_{v} \lra w ), \notag \end{align} }%end of allow where the sum is over all $I, J$ with $0 \in I, w \in J, J \cap \partial B_{v} \neq \phi, d(I,J) > c_{17}C \log |x|$ and with $I$ containing the sites of a path from 0 to $\partial B_{v}$ in $\mathcal{B}(\tQxC)$. Presuming $c_{18}$ is sufficiently small we have $s_{x}(u - z) \leq (C \log |x|)/4$ for all $u, z \in \overline{B_{v}}$. Since $v$ is barely $(x,C)$-cleanly reachable from 0 inside $G_{x}$, it follows readily that no $y \in \partial B_{v}$ is $(x,C/2)$-cleanly reachable from 0 inside $G_{x}$. Hence by Lemma \ref{L:uncleancost2}, for some $c_{20} < 1$, \begin{equation} \label{E:costofy} P\bigl(0\lra y \text{ in } \mathcal{B}(\tQxC) \bigr) \leq e^{-m_{x}(y) - 5c_{20}C \log |x|} \qquad \text{for all} \ y \in \partial B_{v}. \end{equation} Further, if $|x|$ is large and $c_{18}$ is chosen sufficiently small, for $y \in \overline{B_{v}}$ we have from (\ref{E:mxbound}) and (\ref{E:mbounds}): \begin{equation} \label{E:mxdiff} |m_{x}(y) - m_{x}(v)| \leq c_{20}C \log |x|. \end{equation} Therefore if $|x|$ is sufficiently large, (\ref{E:costofy}) yields \begin{equation} \label{E:costofy2} 2P\bigl(0\lra \partial B_{v} \text{ in } \mathcal{B}(\tQxC) \bigr) \leq 2|\partial B_{v}| e^{-m_{x}(v) - 4c_{20}C \log |x|} \leq e^{-m_{x}(v) - 3c_{20}C \log |x|} \end{equation} and similarly \begin{equation} \label{E:costofvw} P(\partial B_{v} \lra w) \leq e^{-m_{x}(w - v) + 2c_{20}C \log |x|}. \end{equation} If $w \in \overline{B_{v}}$, the same argument applies with $P(\partial B_{v} \lra w)$ replaced by 1 throughout, by (\ref{E:mxdiff}). Combining (\ref{E:reachball2}), (\ref{E:nornear}), (\ref{E:costofy2}) and (\ref{E:costofvw}) shows that \[ P\bigl([v \in \Delta_{x,C}(0,D)] \cap [0 \lra w] \cap N^{c} \bigr) \leq 3 e^{-m_{x}(w) - c_{20}C \log |x|}, \] which with (\ref{E:ifrnear}) proves (\ref{E:xtracost}) with $m_{x}$ in place of $m_{x}^{+}$. But since $v$ is barely $(x,C)$-cleanly reachable from 0 inside $G_{x}$, for some $c_{21}$ and $c_{22}$ we must have $|v| \geq c_{21}C \log |x|$ and hence the left side of (\ref{E:xtracost}) is bounded by \[ P(0 \lra v) \leq e^{-c_{22}C \log |x|}, \] so we can replace $m_{x}$ with $m_{x}^{+}$ in (\ref{E:xtracost}). \end{proof} Let $\mathcal{S}(C,r,x)$ denote the set of all gapped $(C,r,x)$-skeletons derived from all paths $\gamma$ (starting from 0) in all configurations $\omega$, and \begin{align} \mathcal{S}_{jl}(C,r,x) = \{(u_{i},&v_{i},v_{i}^{\prime})_{i \leq k} \in \mathcal{S}(C,r,x): v_{k} = z, \notag \\ &|S((u_{i},v_{i},v_{i}^{\prime},w_{i})_{i \leq k})| = j, |L((u_{i},v_{i},v_{i}^{\prime},w_{i})_{i \leq k})| = l \}. \notag \end{align} The next result is the analog of Lemma 2.3 of \cite{Al1}. \begin{lemma} \label{L:atmost3n} Assume (\ref{E:assump}). There exist constants $C_{i} > 3$ such that if $C \geq C_{13}, r \geq C_{14}$ and $|x| \geq C_{17}(C)$, then for $n$ sufficiently large, there exist a configuration $\omega$ and a path $\gamma$ from 0 to $nx$ for which the gapped $(C,r,x)$-skeleton consists of at most $3n$ tuples. \end{lemma} \begin{proof} Fix $x \in \Zd$ and $C > 1$. The conclusion will follow if we can show that \begin{align} \label{E:goal} P(0 \lra nx \ &\text{via a path} \ \gamma \ \text{for which the gapped } (C,r,x)-\text{skeleton consists of} \\ &\text{more than} \ 3n \ \text{tuples}) < P(0 \lra nx), \quad \text{for} \ n \ \text{large}. \notag \end{align} From the definition of $m(x)$ we have \begin{equation} \label{E:nxlowerbound} P(0 \lra nx) \geq 2^{-n}e^{-nm(x)} \quad \text{for} \ n \ \text{large}. \end{equation} Fix $j, l$ and $U = (u_{i},v_{i},v_{i}^{\prime},w_{i})_{i \leq k} \in \mathcal{S}_{jl}(C,r,x,z).$ Let $\Lambda_{i}, 0 \leq i \leq k$, be subsets of $\mathcal{B}(\Zd)$ which are possible values of the clusters $\Gamma(u_{i},(u_{i} + \tQxC) \cap D_{i})$, subject to (\ref{E:prop2}) and satisfying $v_{i}, w_{i} \in \Lambda_{i}$ whenever $\Lambda_{i} \neq \phi$, where $D_{i} = \Zd \backslash \cup_{j < i}(\Lambda_{j})^{r \log |x|}$ as in Definition \ref{D:skel}. That is, we suppose there exists a configuation $\omega$ for which $v_{i},w_{i} \in \Lambda_{i}$ whenever $\Lambda_{i} \neq \phi$, and $\Gamma(u_{i},(u_{i} + \tQxC) \cap D_{i},\omega) = \Lambda_{i}$ for all $i \leq k$, and (\ref{E:uwdist}) holds. (Note that we can have $\Lambda_{i} = \phi$ only for $i = k$.) We call such sequences of sets $\Lambda_{i}, 0 \leq i \leq k$, \emph{allowable}. Then \begin{align} \label{E:bound1} P&\bigl(0 \lra nx \ \text{via a path} \ \gamma \ \text{with gapped} \ (C,r,x)-\text{skeleton} \ U \\ &\qquad \text{and} \ \Gamma(u_{i},(u_{i} + \tQxC) \cap D_{i}) = \Lambda_{i} \ \text{for all } i \leq k \bigr) \notag \\ &\leq P\bigl( \Gamma(u_{i},(u_{i} + \tQxC) \cap D_{i}) = \Lambda_{i} \ \text{and} \ \langle v_{i}v_{i}^{\prime} \rangle \ \text{is open for all} \ i \leq k \bigr). \notag \end{align} Here, for convenience of notation, we define the event ``$\langle v_{k} v_{k}^{\prime} \rangle$ is open'' to be the full probability space $\{0,1\}^{\mathcal{B}(\Zd)}$, since $v_{k} = v_{k}^{\prime} = z$. If $|x| \geq C_{1}(C)$ then by (\ref{E:tqq}) and Lemma \ref{L:basicprops}(i), \begin{equation} \label{E:diambound} \diam(\overline{\Lambda}_{i}) \leq \diam(Q_{x}(C)) + 2 \leq c_{23}|x|. \end{equation} Since the event $[\Gamma(u_{i},(u_{i} + \tQxC) \cap D_{i}) = \Lambda_{i}$ and $\langle v_{i}v_{i}^{\prime} \rangle$ is open$] \in \mathcal{F}_{\overline{\Lambda}_{i}}$, if $|x|$ and $r$ are sufficiently large then from (\ref{E:prop2}), (\ref{E:diambound}) and Lemma \ref{L:rweakmix} it follows that \begin{align} \label{E:rweakapp} P\bigl(\Gamma &(u_{i},(u_{i} + \tQxC) \cap D_{i}) = \Lambda_{i} \ \text{and} \ \langle v_{i}v_{i}^{\prime} \rangle \ \text{is open for all} \ i \leq k \bigr) \\ &\leq 2^{k} \prod_{i \leq k} P\bigl(\Gamma (u_{i},(u_{i} + \tQxC) \cap D_{i}) = \Lambda_{i} \ \text{and} \ \langle v_{i}v_{i}^{\prime} \rangle \ \text{is open} \bigr). \notag \end{align} From (\ref{E:tqq}) and Lemma \ref{L:basicprops}(i), for a given value of $u_{i}$ there are at most $c_{24}|x|^{d}$ choices for each of $v_{i},v_{i}^{\prime}$ and $w_{i}$, for some $c_{24}(C)$. Therefore for some $c_{25}$, if $|x| \geq C_{1}(C)$ then \begin{equation} \label{E:Sbound} |\mathcal{S}_{jl}(C,r,x,nx)| \leq e^{c_{25}(j+l) \log |x|}. \end{equation} If $C$ is large enough and $|x| \geq c_{26}(C)$ then by (\ref{E:tqq}), (\ref{E:bound1}), (\ref{E:diambound}), Lemma \ref{L:extracost} and Lemma \ref{L:basicprops}(iii), summing (\ref{E:rweakapp}) over all allowable sequences $\{\Lambda_{i}, 0 \leq i \leq k\}$ gives {\allowdisplaybreaks \begin{align} \label{E:bound2} P\bigl(0 &\lra nx \ \text{via a path} \ \gamma \ \text{with gapped } (C,r,x)-\text{skeleton} \ U \bigr) \\ &\leq 2^{k} \prod_{i \leq k} P\bigl(v_{i} \in \Delta_{x,C}(u_{i},D_{i}) \cup (u_{i} + \partial_{in}G_{x}); \notag \\* &\qquad \qquad \qquad u_{i} \lra v_{i} \ \text{and} \ u_{i} \lra w_{i} \ \text{both in} \ \mathcal{B}(u_{i} + \tQxC)) \notag \\ &\leq 2^{k} \exp\left(-\sum_{i \in S(U)} m_{x}^{+}(w_{i} - u_{i}) - C_{12}C|S(U)|\log |x| \right) \notag \\* &\qquad \times \exp\left(-\max\left[\sum_{i \notin S(U)} m_{x}(w_{i} - u_{i}),\sum_{i \in L(U)} m_{x}(v_{i} - u_{i}) \right] \right) \notag \\ &\leq 2^{j+l} \exp\left(-\sum_{i \in S(U)} m_{x}^{+}(w_{i} - u_{i}) - C_{12}Cj \log |x| \right) \notag \\* &\qquad \times \exp\left(-\max\left[\sum_{i \notin S(U)} m_{x}(w_{i} - u_{i}),l(m(x) - M_{0}) \right] \right). \notag \end{align} }%end of \allow The remainder of the proof follows that of Lemma 2.3 of \cite{Al1}. (It should be noted at this point that there is a significant misprint in that proof, corrected in Remark \ref{R:correc} below.) Choose $C$ such that $C_{12}C\geq 4c_{25} + 6dM_{0}r$. We consider first $l \geq 3n$. If $|x|$ is large, then using (\ref{E:bound2}), (\ref{E:Sbound}) and (\ref{E:nxlowerbound}), \begin{align} \label{E:3nplus} \sum_{l \geq 3n} &\sum_{j \geq 0} P\bigl(0 \lra nx \ \text{via a path} \ \gamma \ \text{with gapped} \ (C,r,x)-\text{skeleton in} \ \mathcal{S}_{jl}(C,r,x,nx) \bigr) \\ &\leq \sum_{l \geq 3n} \sum_{j \geq 0} 2^{j+l} e^{c_{25}(j+l) \log |x|} e^{-C_{12}Cj \log |x|} e^{-l(m(x) - M_{0})}\notag \\ &\leq 2 e^{-3n[m(x) - M_{0} - c_{25} \log |x| - \log 2]} \notag \\ &\leq e^{-2nm(x)} \notag \\ &= o(P(0 \lra nx)) \quad \text{as} \ n \to \infty. \notag \end{align} Next we consider $n \leq l < 3n$. Again from (\ref{E:bound2}), (\ref{E:Sbound}) and (\ref{E:nxlowerbound}), for $|x|$ large, \begin{align} \label{E:nto3n} \sum_{n \leq l < 3n} &\sum_{j \geq 3n-l} P\bigl(0 \lra nx \ \text{via a path} \ \gamma \ \text{with gapped} \\ &\qquad \qquad \qquad (C,r,x)-\text{skeleton in} \ \mathcal{S}_{jl}(C,r,x,nx) \bigr) \notag \\ &\leq \sum_{n \leq l < 3n} \sum_{j \geq 3n-l} 2^{j+l} e^{c_{25}(j+l) \log |x|} e^{-C_{12}Cj \log |x|} e^{-l(m(x) - M_{0})}\notag \\ &\leq 2e^{-2C_{12}Cn \log |x|} \sum_{l \geq n} e^{-l(m(x) - M_{0} - 4c_{25} \log |x|)}\notag \\ &\leq 2e^{-nm(x) - n(C_{12}C \log |x| - M_{0})} \notag \\ &= o(P(0 \lra nx)) \quad \text{as} \ n \to \infty. \notag \end{align} Finally we consider $l < n$. From (\ref{E:mxbound}), (\ref{E:mbounds}) and (\ref{E:uwdist}) we have \[ m_{x}(u_{i+1} - w_{i}) \leq 2dM_{0}r \log |x| \] so \[ \sum_{i \leq k} m_{x}(w_{i} - u_{i}) = m_{x}(nx) - \sum_{i \leq k-1} m_{x}(u_{i+1} - w_{i}) \geq nm(x) - 2kdM_{0}r \log |x|. \] With (\ref{E:bound2}), (\ref{E:Sbound}) and (\ref{E:nxlowerbound}) this shows {\allowdisplaybreaks \begin{align} \label{E:upton} \sum_{0 \leq l < n} &\sum_{j \geq 3n-l} P\bigl(0 \lra nx \ \text{via a path} \ \gamma \ \text{with gapped} \\* &\qquad \qquad \qquad (C,r,x)-\text{skeleton in} \ \mathcal{S}_{jl}(C,r,x,nx) \bigr) \notag \\ &\leq \sum_{0 \leq l < n } \sum_{j \geq 3n-l} 2^{j+l} e^{c_{25}(j+l) \log |x|} e^{-\sum_{i \leq k} m_{x}(w_{i} - u_{i}) -C_{12}Cj \log |x|}\notag \\ &\leq \sum_{0 \leq l < n } \sum_{j \geq 3n-l} 2^{j+l} e^{c_{25}(j+l) \log |x|} e^{-nm(x) + 2(j+l)dM_{0}r \log |x| -C_{12}Cj \log |x|}\notag \\ &\leq 2n\cdot 2^{3n}e^{3nc_{25} \log |x| - nm(x) + 6ndM_{0}r \log |x| - 2C_{12}Cn \log |x|} \notag \\ &\leq e^{-nm(x) - C_{12}Cn \log |x|} \notag \\ &= o(P(0 \lra nx)) \quad \text{as} \ n \to \infty. \notag \end{align} }% end of \allow Statement (\ref{E:goal}) now follows from (\ref{E:3nplus}), (\ref{E:nto3n}) and (\ref{E:upton}). \end{proof} Theorem \ref{T:main}(ii) is an immediate consequence of Theorem 1.9 of \cite{Al3} and the next Proposition, which proves slightly more than CHAP for the function $h$. \begin{proposition} \label{P:conhull} Assume (\ref{E:assump}). There exist $C$ and $M$ such that \begin{equation} \label{E:convhull} \frac{x}{\alpha} \in \Co(\tQxC) \quad \text{for some} \ \alpha \in [2,6], \quad \text{for all} \ x \in \Zd \ \text{with} \ x \geq M. \end{equation} \end{proposition} \begin{proof} In the notation of Lemma \ref{L:atmost3n}, let $C, r$ satisfy $C \geq C_{13}$ and $C_{14} \leq r \leq c_{27}C$, where $c_{27}$ is a constant to be specified later, and suppose $|x| \geq C_{17}(C)$. By Lemma \ref{L:atmost3n} there exist $n$ and a gapped $(C,r,x)$-skeleton $(u_{i},v_{i},v_{i}^{\prime},w_{i})_{i \leq k}$ corresponding to some path from 0 to $nx$, with $k < 3n$. From (\ref{E:prop1}) we have $w_{i} - u_{i} \in \tQxC$. For each $i < k$ there is a path $\varphi_{i}$ from $w_{i}$ to $u_{i+1}$ of length $|u_{i+1} - w_{i}|_{1}$. If $z,y$ are vertices of $\varphi_{i}$ then by Lemma \ref{L:basicprops}(ii) and (\ref{E:uwdist}), provided $c_{27}$ is chosen small enough, \[ s_{x}(z - y) \leq 2|z - y|_{1} \log \frac{1}{p} \leq 4dr(log |x|) \log \frac{1}{p} \leq C \log |x|, \] and by (\ref{E:mxbound}) and (\ref{E:mbounds}), if $|x| \geq c_{28}(C)$, \[ m_{x}(z - y) \leq 2M_{0}|u_{i+1} - w_{i}|_{1} \log \frac{1}{p} \leq 4drM_{0}(\log |x|) \log \frac{1}{p} \leq m(x). \] If follows that $u_{i+1} - w_{i} \in \tQxC$. Thus we have \begin{equation} \label{E:nxrep} nx = \sum_{i=0}^{k} (w_{i} - u_{i}) + \sum_{i=0}^{k-1} (u_{i+1} - w_{i}) = \sum_{y \in \tQxC} n(y)y, \end{equation} where $n(y)$ is the number of times $y$ appears in the first two sums in (\ref{E:nxrep}). Since \[ \sum_{y \in \tQxC} n(y) = 2k+1 \in [2n,6n], \] the conclusion (\ref{E:convhull}) is obtained by dividing (\ref{E:nxrep}) by $\sum_{y \in \tQxC} n(y)$. \end{proof} \begin{remark} \label{R:correc} In the proof of (\cite{Al1} Lemma 2.3), the top three lines on page 1554 should read as follows: First, for $||x|| \geq$ some $c_{10}$, by (2.12) and Lemma 2.2(ii), \begin{align} \sum_{k \geq 3n} \sum_{j \geq 0} \sum_{(v_{i}) \in \Gamma_{jk}^{x}(nx)} &\left( \prod_{i \notin L((v_{i}))} e^{-s_{x}(v_{i+1} - v_{i}) - \sigma g_{x}(v_{i+1} -v_{i})} \right) \notag \\ &\times \left( \prod_{i \in L((v_{i}))} e^{-\sigma g_{x}(v_{i+1} - v_{i})} \right). \notag \end{align} \end{remark} \section{Proof of Theorem 1.1$(i)$.} Theorem \ref{T:main}(i) is a consequence of Proposition \ref{P:conhull} above, together with some results from \cite{Al1} (Lemmas 2.6, 2.8, and 2.9 and Proposition 2.7) modified only slightly. Therefore we will give only a sketch of the proof. We say that a path $\gamma \ x$-\emph{backtracks by } $t$ if there exist sites $u, v$ in $\gamma$ with $u$ preceding $v$ but $m_{x}(v - u) \leq -t$. Since $0 \leq h(v-u) = m_{x}(v - u) + s_{x}(v-u)$, this implies $s_{x}(v - u) \geq t$. Thus an $(x,C)$-clean path cannot $x$-backtrack by more than $C \log x$. By Proposition \ref{P:conhull}, there exists $C$ such that for $|x| \geq M$ we can express $x$ as \[ x = \sum_{i=1}^{d+1} \alpha_{i}y_{i} \quad \text{with} \ \alpha_{i} \geq 0, \quad 2 \leq \sum_{i=1}^{d+1} \alpha_{i} \leq 6, \quad \text{and} \quad y_{i} \in \tQxC. \] In fact, since we can have $y_{i} = y_{j}$ for $i \neq j$, we have a similar statement with $\alpha_{i} \leq 1$ for all $i$: \begin{equation} \label{E:convcomb} x = \sum_{i=1}^{d+6} \alpha_{i}y_{i} \quad \text{with} \ 0 \leq \alpha_{i} \leq 1 \quad \text{and} \ y_{i} \in \tQxC. \end{equation} For each $y_{i}$, there is an $(x,C)$-clean path from 0 to $y_{i}$, and consequently $s_{x}(y_{i}) \leq C \log x$. We would like to find a constant $b$, depending only on $P$, such that \begin{equation} \label{E:sxbound} s_{x}(\alpha_{i}y_{i}) \leq bC \log |x| \quad \text{for all} \ i. \end{equation} Of course $\alpha_{i}y_{i}$ need not be in $\Zd$, in which case $s_{x} (\alpha_{i}y_{i})$ is not defined, but we can replace $\alpha_{i}y_{i}$ with an ``adjacent'' lattice site at the expense of an easily manageable error. If we can establish (\ref{E:sxbound}), then (\ref{E:convcomb}) and subadditivity of $s_{x}$ give \begin{equation} \label{E:sxxbound} s_{x}(x) \leq \sum_{i=1}^{d+6} \alpha_{i}y_{i} \leq (d+6)bC \log |x|. \end{equation} Since $m_{x}(x) = m(x) = m(\theta) |x|$, we have $P(0 \lra x) = e^{-m(\theta)|x| - s_{x}(x)}$, so (\ref{E:sxxbound}) yields the desired conclusion (\ref{E:23bound}). Thus it is enough to prove the following: \begin{equation} \label{E:yalphay} \text{there exists} \ b \ \text{such that if} \ y \in \tQxC \ \text{and} \ 0 \leq \alpha \leq 1, \ \text{then} \ s_{x}(\alpha y) \leq bC \log |x|. \end{equation} (Again, $\alpha y$ should be interpreted as an adjacent lattice site if $\alpha y$ is not itself a lattice site.) To prove (\ref{E:yalphay}), let $y \in \tQxC$ and $0 \leq \alpha \leq 1$, and let $\gamma: [0,1] \to \mathbb{R}^{d}$ be an $(x,C)$-clean lattice path from 0 to $y$. Since $\gamma$ does not $x$-backtrack by $C \log |x|$ or more, we can approximate $\gamma$ to within $C \log |x|$ (measured in the norm $m(\cdot)$) by a curve $\tilde{\gamma}$ (not necessarily a lattice path) from 0 to $y$ which does not $x$-backtrack at all; in fact we can have $m_{x}(\tilde{\gamma}(t))$ strictly increasing. Proposition 2.7 of \cite{Al1} then states that there exist $k_{d}$, depending only on the dimension $d = 2$ or 3, and a collection of $k_{d}$ subintervals $[s_{j},t_{j}], j = 1,..,k_{d}$, of [0,1], such that \begin{align} \label{E:alphayrep} \alpha y &= \sum_{i=1}^{k_{d}} (\tilde{\gamma}(t_{j}) - \tilde{\gamma}(s_{j})) \\ &= \sum_{i=1}^{k_{d}} [(\tilde{\gamma}(t_{j}) - \gamma(t_{j})) + (\gamma(t_{j}) - \gamma(s_{j})) + (\gamma(s_{j}) - \tilde{\gamma}(s_{j}))]. \notag \end{align} (The intervals $[s_{j},t_{j}]$ may depend on $\gamma$ here, and may overlap.) Let us assume all the points appearing in (\ref{E:alphayrep}) are lattice sites; otherwise we again approximate them by adjacent lattice sites. Since $\gamma$ is $(x,C)$-clean, we have \[ s_{x}(\gamma(t_{j}) - \gamma(s_{j})) \leq C \log |x|. \] From (\ref{E:mbounds}) and Lemma \ref{L:basicprops}(ii), for some $c_{29}$ depending only on $P$, \[ s_{x}(\tilde{\gamma}(t_{j}) - \gamma(t_{j})) \leq c_{29} m(\tilde{\gamma}(t_{j}) - \gamma(t_{j})) \leq c_{29}C \log |x| \] and similarly for $s_{x}(\tilde{\gamma}(s_{j}) - \gamma(s_{j}))$. Together with (\ref{E:alphayrep}), these bounds yield \[ s_{x}(\alpha y) \leq k_{d}(4c_{29} + 1)C \log |x|, \] so (\ref{E:yalphay}) is proved. \section{Proof of Theorem 1.4} We will adapt the techniques of (\cite{Al1}, Lemma 4.3) to our present context. We may assume that $0 \in \partial H$. Let $n$ denote the outward unit normal to $H$. Given $\omega$ in which $0 \leftrightarrow x$, let $\gamma_{\omega}$ be an open path in $\omega$ from $0$ to $x$ (chosen arbitrarily if there is more than one such path) and let $X(\omega)$ be a site in $\gamma_{\omega}$ which maximizes $n \cdot y$ over $y \in \gamma_{\omega}$ (the first such site, say, if there is more than one.) Note that if the segment of $\gamma_{\omega}$ from $0$ to $X(\omega)$ and the segment from $X(\omega)$ to $x$ are interchanged, the result is a path from $0$ to $x$ in $H$. To make such an interchange possible, in a sense, we must show that the two segments are nearly independent. By Lemma 2.7, provided $|x|$ is large and $c_{30} \geq C_{4}$, the event \[ N = \{\omega: \ \text{there is a} \ (c_{30} \log |x|) \text{-near connection from} \ 0 \ \text{to} \ x \ \text{in} \ \omega\} \] satisfies \begin{equation} \label{E:Nbound} P(N) \leq e^{-m(x) + c_{30}C_{5}\log |x|}. \end{equation} By Lemma \ref{L:reachball} and Theorem \ref{T:main}, there exists $c_{31}$ such that for $B_{0} = B(0,c_{31}|x|)$ the event \[ U = \{\omega: 0 \leftrightarrow \partial B_{0}\} \] satisfies \begin{equation} \label{E:Ubound} P(U) \leq \frac{1}{2}P(0 \leftrightarrow x). \end{equation} Therefore there exist $z \in B_{0}$ and $c_{32}$ such that, letting $H_{z}$ denote the translate of $H$ with $z \in \partial H_{z}$, \begin{equation} \label{E:zprop} P(0 \leftrightarrow z \leftrightarrow x \ \text{in} \ \mathcal{B}(H_{z} \cap B_{0})) \geq P(0 \leftrightarrow x, X = z, U^{c}) \geq \frac{c_{32}}{|x|^{d}} P(0 \leftrightarrow x). \end{equation} Note that $z$ is not in the interior of $H$, so $x-z \in H$. Using positive connection correlations, \begin{align} P(0 \leftrightarrow x \ \text{in} \ \mathcal{B}(H)) &\geq P(0 \leftrightarrow x - z \leftrightarrow x \ \text{in} \ H) \notag \\ &\geq P(0 \leftrightarrow x-z \ \text{in} \ \mathcal{B}(H)) P(x-z \leftrightarrow x \ \text{in} \ \mathcal{B}(H)) \label{E:split} \\ &= P(0 \leftrightarrow z \ \text{in} \ \mathcal{B}(H_{z})) P(z \leftrightarrow x \ \text{in} \ \mathcal{B}(H_{z})). \notag \end{align} We need to compare the left side of (\ref{E:zprop}) to the right side of (\ref{E:split}). For $x \in \Zd$ let $f_{d}(x)$ be $\log |x|$ for $d = 2,3$ and $(\log |x|)^{2}$ for $d \geq 4$. By Lemma \ref{L:reachball}, there exists $c_{33}$ such that, defining \[ B_{z} = B(z,2 + c_{33} f_{d}(x)), \qquad \tilde{B}_{z} = B(z,c_{33} f_{d}(x)), \] we have \begin{equation} \label{E:reach} P(z \leftrightarrow \partial \tilde{B}_{z}) \leq \frac{c_{32}A}{4} e^{-(d+c_{30}C_{5}+C) f_{d}(x)}, \end{equation} where $A, C$ are as in Theorem \ref{T:main}. ($A = 1$ if $d \geq 4$.) Assume first that $0, x \notin B_{z}$. Define \[ \tilde{N} = \{\omega: \ \text{there is a} \ (c_{30} \log |x|) \text{-near connection from} \ 0 \ \text{to} \ x \ \text{outside} \ B_{z} \ \text{in} \ \omega\}. \] For $|x|$ large, Lemma \ref{L:rweakmix}, (\ref{E:reach}), (\ref{E:Nbound}), Theorem \ref{T:main} and (\ref{E:zprop}) give \begin{align} \label{E:Qsmall} P([0 &\leftrightarrow z \leftrightarrow x \ \text{in } H_{z}] \cap \tilde{N}) \\ &\leq P([z \leftrightarrow \partial \tilde{B}_{z}] \cap \tilde{N}) \notag \\ &\leq 2P(z \leftrightarrow \partial \tilde{B}_{z}) P(\tilde{N}) \notag \\ &\leq \frac{c_{32}A}{2} e^{-m(x) - (d+C) f_{d}(x)} \notag \\ &\leq \frac{1}{2} P(0 \leftrightarrow z \leftrightarrow x \ \text{in } H_{z} \cap B_{0}). \notag \end{align} Therefore by Lemma \ref{L:rweakmix}, positive connection correlations and (\ref{E:crudelower}), for some $c_{34}$, provided $c_{30}$ and $|x|$ are large, \begin{align} \label{E:addinN} P\bigl(0 &\leftrightarrow z \leftrightarrow x \ \text{in} \ \mathcal{B}(H_{z} \cap B_{0}) \bigr) \\ &\leq 2P\bigl([0 \leftrightarrow z \leftrightarrow x \ \text{in} \ \mathcal{B}(H_{z} \cap B_{0})] \cap \tilde{N}^{c} \bigr) \notag \\ &\leq 2P\bigl([0 \leftrightarrow \partial B_{z} \ \text{in} \ H_{z} \cap B_{0}] \cap [x \leftrightarrow \partial B_{z} \ \text{in} \ H_{z} \cap B_{0}] \cap \tilde{N}^{c} \bigr) \notag \\ &\leq \sum_{I,J} P\bigl(\Gamma(0,(H_{z} \cap B_{0}) \backslash B_{z}) = I, \Gamma(x,(H_{z} \cap B_{0}) \backslash B_{z}) = J \bigr) \notag \\ &\leq \sum_{I,J} 2 P\bigl(\Gamma(0,(H_{z} \cap B_{0}) \backslash B_{z}) = I \bigr) P\bigl(\Gamma(x,(H_{z} \cap B_{0}) \backslash B_{z}) = J \bigr) \notag \\ &\leq 2P\bigl(0 \lra \partial B_{z} \text{ in } \mathcal{B}(H_{z}) \bigr) P\bigl(x \lra \partial B_{z} \text{ in } \mathcal{B}(H_{z}) \bigr) \notag \\ &\leq \sum_{q,r \in H_{z} \cap \partial B_{z}} 2P(0 \lra q \text{ in } \mathcal{B}(H_{z})) P(x \lra r \text{ in } \mathcal{B}(H_{z})) \notag \\ &\leq e^{c_{34} f_{d}(x)} P(0 \lra z \text{ in } \mathcal{B}(H_{z})) P(z \lra x \text{ in } \mathcal{B}(H_{z})) \notag \end{align} where the sum is over $I, J \subset (B_{0} \cap H_{z}) \backslash B_{z}$ with $0 \in I, I \cap \partial B_{z} \neq \phi, x \in J, J \cap \partial B_{z} \neq \phi$, and $d(I,J) \geq c_{30} \log |x|$. Combining (\ref{E:zprop}), (\ref{E:split}) and (\ref{E:addinN}) yields \begin{equation} \label{E:halffull} P(0 \leftrightarrow x \ \text{in} \ \mathcal{B}(H)) \geq e^{-c_{34}f_{d}(x)} \frac{c_{32}}{|x|^{d}} P(0 \leftrightarrow x). \end{equation} With Theorem \ref{T:main} this completes the proof, when $0 \notin B_{z}$ and $x \notin B_{z}$. When $0 \in B_{z}$ the proof is simpler. We have \begin{equation} \label{E:centercon2} P(0 \leftrightarrow z \ \text{in} \ \mathcal{B}(H_{z})) \geq e^{-c_{35} f_{d}(x)} \end{equation} and in place of (\ref{E:addinN}), \begin{align} \label{E:nodecomp} e^{-c_{36} f_{d}(x)}&P(0 \leftrightarrow z \leftrightarrow x \ \text{in} \ \mathcal{B}(H_{z} \cap B_{0})) \\ &\leq P(0 \leftrightarrow z \ \text{in} \ \mathcal{B}(H_{z})) P(z \leftrightarrow x \ \text{in} \ \mathcal{B}(H_{z})). \notag \end{align} Combining (\ref{E:zprop}), (\ref{E:split}), (\ref{E:centercon2}) and (\ref{E:nodecomp}) again yields (\ref{E:halffull}). The proof when $x \in B_{z}$ is similar. \begin{thebibliography}{99} \bibitem{ACCN} Aizenman, M., Chayes, J.T., Chayes, L., and Newman, C.M., \emph{Discontinuity of the magnetization in the} $1/|x - y|^{2}$ \emph{Ising and Potts models}, J. Stat. Phys. \textbf{50} (1988), 1-40. \bibitem{Al1} Alexander, K.S., \emph{Lower bounds on the connectivity function in all directions for Bernoulli percolation in two and three dimensions}, Ann. Probab. \textbf{18} (1990), 1547-1562. \bibitem{Al2} Alexander, K.S., \emph{Stability of the Wulff minimum and fluctuations in shape for large finite clusters in two-dimensional percolation}, Probab. Theory Rel. Fields \textbf{91} (1992), 507-532. \bibitem{Al3} Alexander, K.S., \emph{Approximation of subadditive functions and convergence rates in limiting shape results}, Ann. Probab. \textbf{25} (1997), 30-55. \bibitem{Al5} Alexander, K.S., \emph{The asymmetric random cluster model and comparison of Ising and Potts models}, preprint (1997). \bibitem{Al4} Alexander, K.S., \emph{On weak mixing in lattice models}, Probab. Theory Rel. Fields \textbf{110} (1998), 441-471. \bibitem{ACC} Alexander, K.S., Chayes, J.T. and Chayes, L., \emph{The Wulff construction and asymptotics of the finite cluster distribution for two dimensional Bernoulli percolation}, Commun. Math. Phys. \textbf{131} (1990), 1-50. \bibitem{vdBK} Berg, J. van den and Kesten, H., \emph{Inequalities with applications to percolation and reliability}, J. Appl. Probab. \textbf{22} (1985), 556-569. \bibitem{BF} Bricmont, J. and Fr\"{o}lich, J., \emph{Statistical mechanical methods in particle structure analysis of lattice field theories. II. Scalar and surface models}, Commun. Math. Phys. \textbf{98} (1985), 553-578. \bibitem{CCC} Campanino, M., Chayes, J.T. and Chayes, L., \emph{Gaussian fluctuations of connectivities in the subcritical regime of percolation}, Probab. Theor. Rel. Fields \textbf{88} (1991), 269-341. \bibitem{CC} Chayes, J.T. and Chayes, L., \emph{Ornstein- Zernike behavior for self-avoiding walks at all noncritical temperatures}, Commun. Math. Phys. \textbf{105} (1986), 221-238. \bibitem{FK} Fortuin, C.M. and Kasteleyn, P.W., \emph{On the random cluster model. I. Introduction and relation to other models}, Physica \textbf{57} (1972), 536-564. \bibitem{Gr1} Grimmett, G.R., \emph{The stochastic random-cluster process and uniqueness of random-cluster measures}, Ann. Probab. \textbf{23} (1995), 1461-1510. \bibitem{Gr2} Grimmett, G.R., \emph{Percolation and disordered systems}, in \emph{Lectures on Probability Theory and Statistics. Lectures from the 26th Summer School on Probability Theory held in Saint-Flour, August 19--September 4, 1996} (P. Bernard, ed.), 153-300, Lecture Notes in Mathematics \textbf{1665} (1997). \bibitem{Ha} Harris, T., \emph{A lower bound for the critical probability in a certain percolation process}, Proc. Camb. Phil. Soc. \textbf{56} (1960), 13-20. \bibitem{Io} Ioffe, D., \emph{Ornstein-Zernike behaviour and analyticity of shapes for self-avoiding walks on} $\mathbb{Z}^{d}$, preprint (1998). \bibitem{LMR} Laanait, L., Messager, A. and Ruiz, J., \emph{Phase coexistence and surface tensions for the Potts model}, Commun. Math. Phys. \textbf{105} (1986), 527-545. \bibitem{MW} McCoy, B.M. and Wu, T.T., The Two-Dimensional Ising Model. Harvard University Press, Cambridge, USA (1973). \bibitem{OZ} Ornstein, L.S. and Zernike, F., \emph{Accidental deviations of density and opalescence at the critical point of a single substance}, Proc. Acad. Sci. (Amst.) \textbf{17} (1914), 793-806. \bibitem{PV} Pfister, C.-E. and Velenik, Y., \emph{Large deviations and continuum limit in the 2D Ising model}, Probab. Theory Rel. Fields \textbf{109} (1997), 435-506. \end{thebibliography} \end{document}