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Abstract

We analyze the spectrum of a periodic quantum graph of the Cairo lattice form. The used
vertex coupling violates the time reversal invariance and its high-energy behavior depends on
the vertex degree parity; in the considered example both odd and even parities are involved.
The presence of the former implies that the spectrum is dominated by gaps. In addition, we
discuss two modi�cations of the model in which this is not the case, the zero limit of the length
parameter in the coupling, and the sign switch of the coupling matrix at the vertices of degree
three; while di�erent they both yield the same probability that a randomly chosen positive
energy lies in the spectrum.

1 Introduction

Spectral properties of Laplacians on metric graphs, usually referred to as quantum graphs, o�er a

number of mathematically interesting questions as well as many important applications [1, 2]. The

graph edges being identi�ed with �nite or semi-in�nite intervals, the operator acts as ψj 7→ −ψ′′
j on

the jth edge. To make it a self-adjoint operator on the Hilbert space which is the orthogonal sum

of L2 spaces on the graph edges, one has to impose appropriate boundary conditions at the graph

vertices. Those are by far not unique: for a given vertex v in which dv number of edges meet, the

self-adjointness is ensured provided the functions at the vertex are matched through the condition

(Uv − I)ψ(v) + iℓ(Uv + I)ψ′(v) = 0, (1)

in which ψ(v) and ψ′(v) are respectively the vectors of the boundary values of the functions and

their `outward' derivatives at the vertex, Uv is a dv × dv unitary matrix, I is the identity matrix,
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and ℓ > 0 is the parameter �xing the length scale. In the quantum graph literature most attention

is paid to simple cases of such coupling, in particular, to those leading to continuity at the vertices.

However, other types of vertex coupling may be also of interest, having in the �rst place in

mind that they give rise to di�erent physical models. This concerns, inter alia, couplings that

violate the time-reversal invariance. An example of such a coupling was proposed in [5] motivated

by a recent attempt to model the anomalous Hall e�ect in a quantum graph setting [3, 4]. This

coupling has interesting properties, among them the dependence of the high-energy transport on

vertex parity, with the consequences explored in [5] and subsequent papers mentioned below. The

examples discussed typically involved graphs, both �nite and in�nite, where all the vertices had the

same degree. This motivates us to look at a situation where the degrees are di�erent, combining

di�erent parities. Speci�cally, we are going to investigate an in�nite periodic graph in the form of a

Cairo lattice, see Fig. 1 below, with the vertices of degrees three and four and two incommensurate

edge lengths.

The band spectrum of such a lattice is dominated by gaps because any in�nite path of the

graph must pass through vertices of degree three which are opaque at high energies. This changes,

however, if we send the length-scale parameter in such a coupling to zero changing it to the simplest

matching condition usually called Kirchho�. Another way to change the transport properties of the

lattice is a small modi�cation of the coupling of [5] consisting of the sign change of the matrix Uv in

vertices of degree three. We �nd that while the couplings are di�erent, they lead to similar overall

transport properties manifested by the fact that the probability that a randomly chosen positive

number lies in the spectrum, introduced in [13] to characterize the so-called spectral universality, is

the same in both cases. Note that the universality concept was introduced for graphs with Kirchho�

coupling but our present discussion shows it can apply in other situations too.

The paper is organized as follows. As a preliminary, we recall in the next section the necessary

information about the vertex couplings. Then, in Sec. 3, we introduce and discuss the Cairo lattice

model with the coupling of [5], called here R; we �nd its spectrum and show how it changes in the

Kirchho� limit at the vertices of degree three. Sec. 4 is devoted to the modi�cation mentioned,

the replacement of the R coupling by −R at vertices of degree three. The results of each case are

summarized at the end of each section. The functions appearing in the spectral conditions are quite

complicated; to make the presentation lucid, we defer them to two appendices.

2 The vertex coupling

Let us �rst recall the vertex coupling introduced in [5] and introduce its modi�cation we will use.

At a vertex v of degree dv they are described by the condition (1) with the dv × dv unitary matrices
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Uv of the circulant type,

Uv = ±R :=


0 ±1 0 . . . 0 0

0 0 ±1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 ±1

±1 0 0 . . . 0 0

 , (2)

which are obviously non-invariant with respect to the transposition; hence the corresponding quan-

tum graph dynamics violates the time-reversal invariance [6]. Written in components, the condition

(1) acquies the form

±(ψj+1 ∓ ψj) + iℓdv (±ψ′
j+1 + ψ′

j) = 0, (3)

where we have used for the sake of simplicity the symbols ψj and ψ′
j, j ∈ Z (mod dv) for the

components of the vectors ψ(v) and ψ′(v) of boundary values, respectively. Moreover, since our

model, described in Sec. 3 below, contains vertices of di�erent degrees, we have added the subscript

dv to the length-scale parameter ℓ in (1); speci�cally, we will consider the lengths ℓ3 and ℓ4 at the

vertices of the appropriate degrees. For the sake of brevity, we refer in the following to the vertex

conditions (3) with the upper and lower sign as to the R and −R coupling, respectively.

Let us �rst inspect properties of a single vertex considering a star-shaped graph of dv hal�ines

supporting the LaplacianH determined, as a self-adjoint operator, by the±R couplings. Concerning

the essential component of the spectrum, it is easy to check that it is absolutely continuous and

coincides with the interval [0,∞) ; the quantity of interest in this part of the spectrum is the on-

shell scattering matrix equal to S(k) =
kℓdv−1+(kℓdv+1)Uv

kℓdv+1+(kℓdv−1)Uv
with Uv given by (2), where the momentum

variable k is the square root of energy [1]. The entries of S(k) are found as in [5] being

S±R
ij (k) = ± 1− η2

1− ηdv

{
− η

1− ηdv−2

1− η2
δij + (1− δij) η

(j−i−1)(mod dv)
}
, (4)

where η := ±1−kℓdv
1+kℓdv

; note that the signs ± in the of S±R
ij (k) correspond to those on the right-hand

side of (4) and that the variable η sign depends on the choice of the coupling.

The scattering matrices corresponding to the ±R couplings behave di�erently in the high-energy

asymptotic regime. It was observed in [5] that in the +R case the parity plays a decisive role: for an

odd dv we have limk→∞ SR(k) = I, implying that the particle coming to the vertex is fully re�ected

and its wave function remains thus con�ned to a single edge only. For an even dv, on the other hand,

the limit is not a multiple of I and the scattering at high energies is non-trivial. Consequences of

this fact have been explored in a number papers [8�10] and references therein.

The reason of the di�erence is not the parity itself, however, rather the absence or presence,

respectively, of the Dirichlet component of the coupling, in the terminology of [1], corresponding to
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the eigenvalue −1 of Uv. Since eigenvalues of R are the complex roots of unity, −1 is an eigenvalue

if and only if dv is even. The consequences of its absence were illustrated in [6] on the example

of a coupling in which the matrix R was modi�ed by a phase factor. In this paper we consider

another modi�cation of that type, this time referring just to a change of sign. In this case there is

no e�ective decoupling of the edges at high energies regardless of the vertex parity, because −1 is

always an eigenvalue of −R, and consequently, limk→∞ S−R(k) is never a multiple of unit matrix.

The negative spectrum of H is necessarily discrete and it can be easily checked that it is always

nonempty for any dv ≥ 3. It is su�cient to use the Ansätze ψj(x) = Cj e
−κx with κ > 0 for the wave

function components; plugging them into the conditions (3), we get a system of dv linear equations

the non-trivial solutions of which are determined by the characteristic equations

(−1− iℓdvκ)
dv − (∓1± iℓdvκ)

dv = 0, (5)

where the upper and lower signs correspond to the R and −R couplings, respectively. It follows that

the negative eigenvalues of a star graph Hamiltonian with the ±R couplings at the vertex equal

E±R,m = −κ2 = −ℓ−2
dv

(
tan2 mπ

dv

)±1

, (6)

with m running through 1, · · · , [dv
2
] and 1, · · · , [dv−1

2
] for odd and even dv , respectively. Note that

for even values of dv, the sets {E±R,m} in (6) coincide, di�ering only in the numbering, which is

also obvious from (5) given the fact that the two expressions in the second brackets di�er only by

sign.

3 Cairo model with R coupling at all vertices

After the preliminary matters, let us proceed to describing the system of our interest. We consider

an in�nite quantum graph in the form of Cairo lattice as sketched in Fig. 1. It is obtained by

tiling the plane by non-equilateral pentagons with four edges of a length a > 0 and one short one,

b = (
√
3− 1)a, marked respectively by blue and red colors in Fig. 1; accordingly, the long and short

edges are (rationally) incommensurate. The system is periodic; an elementary cell of the model

containing six vertices � two vertices of degree four and four vertices of degree three � is shown

as the grey shaded area in Fig. 1. By elementary calculus, taking into account that the angles of

the pentagons form the sequence 2π
3
, 2π

3
, π

2
, 2π

3
, π

2
, one is able to �nd the lengths of the `loose-end'

edges within the cell as c = a
2
(
√
3 − 1) and d = a

2
(3 −

√
3). Consequently, all the edge lengths in

the elementary cell scale with the parameter a. We begin with the `homogenous' situation where

in all the vertices � both of degree three and four � the wave functions are matched through the R

condition. For the sake of clarity, we divide the following discussion of the spectral properties into

several parts; the results are summarized in Theorem 3.1 at the end of this section.
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Fig. 1. Cairo lattice structure and its elementary cell indicated by the shaded area.

3.1 Positive spectrum

In view of the lattice periodicity, the spectral analysis can be reduced by the Floquet-Bloch de-

composition theorem [1, Chap. 4] to investigation of an elementary cell of the graph. Since the

motion is supposed to be free on the edges so that the Hamiltonian acts as ψ(x) 7→ −ψ′′(x) on

each component of the wavefunction, seeking positive energies E = k2 > 0 , we employ the Ansätze

ψγ(x) = C+
γ e

ikx + C−
γ e

−ikx with γ = 1, 2, ..., 20 on the graph edges with the numbering shown in

Fig. 1. To treat the negative spectrum, one has simply to replace k by iκ with κ > 0.

As already mentioned, each edge of the graph is identi�ed with an interval. We choose the

coordinates on the graph edges to increase from `left to right' and from `bottom to top', thus the

variable x in ψ1(x) ranges through the interval [−c, 0] , the variable in ψ2(x) and ψ3(x) ranges

through [− b
2
, 0] and [0, b

2
], respectively, etc. Obviously, this parametrization requires the functions

to match smoothly at the midpoints of the edges in the interior of the elementary cell, in other

words

ψγ(0) = ψγ+1(0) and ψ′
γ(0) = ψ′

γ+1(0), (7)

for γ = 2, 5, 9, 11, 15, 19. In addition, since the model is periodic in two independent directions, the

Floquet-Bloch decomposition imposes eight additional conditions at the loose ends of the edges,

namely
ψ8(d) = eiθ1ψ1(−c), ψ′

8(d) = eiθ1ψ′
1(−c),

ψ13(c) = eiθ1ψ18(−d), ψ′
13(c) = eiθ1ψ′

18(−d),
ψ14(c) = eiθ2ψ7(−d), ψ′

14(c) = eiθ2ψ′
7(−d),

ψ17(d) = eiθ2ψ4(−c), ψ′
17(d) = eiθ2ψ′

4(−c)

(8)
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with the quasimomentum components running through the Brillouin zone, θ1, θ2 ∈ [−π, π). Fur-

thermore, and most importantly, one has to impose the R coupling condition (3) at all the six

vertices of the elementary cell. For the sake of brevity, having in mind that the procedure is the

same, we mention here the conditions only for two vertices of di�erent parities. We choose the

`clockwise' orientation at all the vertices. For instance, let us consider the vertex (of degree three)

connecting the edges with the wavefunctions ψ1, ψ2 and ψ20; imposing the R coupling there and

paying proper attention to the sign of derivatives that are taken in the `outward' direction, we get

ψ2(− b
2
)− ψ1(0) + iℓ3

(
ψ′
2(− b

2
)− ψ′

1(0)
)
= 0,

ψ20(−a
2
)− ψ2(− b

2
) + iℓ3

(
ψ′
20(−a

2
) + ψ′

2(− b
2
)
)
= 0,

ψ1(0)− ψ20(−a
2
) + iℓ3

(
−ψ′

1(0) + ψ′
20(−a

2
)
)
= 0.

Next, let us consider the vertex (of degree four) at which the edges with the wave functions ψ6, ψ7,

ψ8 and ψ9 meet; the matching conditions are

ψ7(0)− ψ6(
a
2
)− iℓ4

(
ψ′
7(0) + ψ′

6(
a
2
)
)
= 0,

ψ8(0)− ψ7(0) + iℓ4
(
ψ′
8(0)− ψ′

7(0)
)
= 0,

ψ9(−a
2
)− ψ8(0) + iℓ4

(
ψ′
9(−a

2
) + ψ′

8(0)
)
= 0,

ψ6(
a
2
)− ψ9(−a

2
) + iℓ4

(
−ψ′

6(
a
2
) + ψ′

9(−a
2
)
)
= 0.

In a similar way, by imposing the R coupling at the other four vertices of the elementary cell, we

get thirteen more matching conditions. As a result, taking into account the constraints imposed by

conditions (7) and (8), we arrive at a system of twenty linear equations which is solvable provided

its determinant vanishes; this yields the spectral condition

f(k) = g(k) (cos θ1 + cos θ2) + h(k) (cos 2θ1 + cos 2θ2) + w(k) cos θ1 cos θ2 , (9)

where f(k), g(k), h(k) and w(k) are functions of the momentum variable k depending also on the

other parameters, a and ℓdv > 0 , dv = 3, 4 . Their explicit forms is cumbersome; they are given

in Appendix A through Eqs. (A.1)-(A.4). Inspecting the spectral condition (9), we infer that the

spectrum consists of two types of spectral bands:

� The �rst are in�nitely degenerate eigenvalues, �at bands in the physicist's language, that

appear when the spectral condition has solutions independent of the quasimomentum compo-

nents θ1 and θ2 . In the present case, it can happen only if ℓ3 = ℓ4, then the number k = ℓ−1
3

belongs to the spectrum for a = 2nπ√
3+3

ℓ3 with n ∈ N. This can be checked by inspecting the

functions g(k), h(k) and w(k) in (9), given by Eqs. (A.2)-(A.4), checking whether they can

vanish simultaneously. Consider �rst the simplest one, h(k), which obviously vanishes either
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for k = nπ
a

or k = ℓ−1
3 provided ℓ3 = ℓ4. Evaluating then g(k), w(k) and f(k) at these values,

we �nd that while the �rst two functions vanish, the third one, f(k), reduces respectively to

8192a−4π4ℓ43 cos
4
√
3π
2

̸= 0 and 8192 sin4 (
√
3+3)a
2ℓ3

which yields the claim.

� Apart from the possible �at band mentioned above, the spectrum is absolutely continuous

having a band-gap structure. To �nd it, we denote the right-hand side of (9) by R(θ1, θ2)

and employ the Hessian matrix method for multivariable functions. First, we �nd that there

exist six sets of critical points pi := (θ1, θ2) , i = 1, 2, ..., 6 � note that R(θ1, θ2) is symmetric

with respect to the exchange of θ1 and θ2. Denoting then, for the sake of brevity, g := g(k),

h := h(k) and w := w(k), the critical points are as follows,

p1 : (0,±π),
p2 : (0, 0),

p3 : (±π,±π),

p4 :

(
±π, arctan

(w − g

h
,±1

h

√
(−g + 4h+ w)(g + 4h− w)

))
,

p5 :

(
0, arctan

(
− g + w

h
,±1

h

√
(−g + 4h− w)(g + 4h+ w)

))
,

p6 :

(
arctan

( −g
4h+ w

,±

√
(4h+ w)2 − g2

(4h+ w)2

)
, arctan

( −g
4h+ w

,±

√
(4h+ w)2 − g2

(4h+ w)2

))
,

(10)

where we have denoted arctan(x, y) := arctan y
x
taking into account which quadrant the point

(x, y) belongs to; the notation (±,±) in (10) includes all four combination possibilities. Note

also that the dispersion functions are even with respect to the quasimomentum components

since θ1 and θ2 enter the arguments of cosine which is an even function. Computing next the

determinant of the Hessian matrix, ∂2R(θ1,θ2)

∂θ21

∂2R(θ1,θ2)

∂θ22
− ∂2R(θ1,θ2)

∂θ1 ∂θ2
, and inspecting the boundary

of the Brillouin zone, we arrive at six local extrema of the function R(θ1, θ2), namely

Λ1(k) = 2h− w,

Λ2(k) = 2g + 2h+ w,

Λ3(k) = −2g + 2h+ w,

Λ4(k) = −g
2 + 8gh− 2gw + w2

8h
i� (−g + 4h+ w)(g + 4h− w) > 0,

Λ5(k) = −g
2 − 8gh+ 2gw + w2

8h
i� (−g + 4h− w)(g + 4h+ w) > 0,

Λ6(k) = − g2

4h+ w
− 2h i� (4h+ w)2 − g2 > 0,

(11)

in which each function Λi(k) corresponds to the set of the critical points pi , i = 1, 2, ..., 6 ,

7



in (10); needless to say, the constraints over the last three extrema are imposed by the real

nature of the corresponding critical points. All of the above leads us thus to the conclusion

that a number k2 belongs to a spectral band if its square root, k, satis�es the conditions

Λi(k) ≤ f(k) ≤ Λj(k), (12)

for some i ̸= j where i, j ∈ {1, 2, ..., 6} , otherwise it belongs to a spectral gap. Let us empha-

size one more time that one should pay proper attention to the accompanying constraints on

the three extrema Λi(k) with i = 4, 5, 6 when using the band condition (12). The band-gap

pattern in dependence on the free parameter a and the length scales ℓ3 and ℓ4 is illustrated

in Figs. 2a�5a.

3.2 High-energy asymptotics

Let us now take a look at the spectrum in the high-energy regime, k → ∞. Recall �rst that

our Cairo model contains vertices of degree three and four at which the high-energy limit of the

scattering matrix (4) is respectively given by limk→∞ SR(k) = I3 and

lim
k→∞

SR(k) =
1

2


1 1 −1 1

1 1 1 −1

−1 1 1 1

1 −1 1 1

 . (13)

The latter limit indicates that the probabilities of leaving the vertex are asymptotically the same

in any of the four directions, the former one obviously implies that the vertex becomes e�ectively

decoupled at high energies. Consequently, as in the other examples of quantum graphs with the

R coupling at vertices of odd parities mentioned above, one expects the spectrum of the present

model to be dominated by gaps which is indeed the case. To show that, we rewrite the spectral

condition (9) keeping the highest power of k, that is

512 ℓ44 ℓ
8
3

(
sin6 ka cos2 ka sin2(1−

√
3)ka

)
k12 +O(k10) = 0, (14)

from which we see that as k → ∞ the spectral bands can appear only in the vicinity of the three

numbers, k = nπ
a
, (n − 1

2
)π
a
and (

√
3+1)nπ
2a

, n ∈ N, at which the leading term in (14) vanishes. In

particular, the probability that a randomly chosen positive energy lies in the spectrum, introduced

by Band and Berkolaiko [13] as

Pσ(H) := lim
K→∞

1

K

∣∣σ(H) ∩ [0, K]
∣∣ , (15)
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equals to zero in this case. Let us determine the asymptotic width of these bands.

(i) Narrow bands around the points nπ
a
, n ∈ N

There may be six narrow bands in the vicinity of the roots of sin6 ka, in general overlapping; to

estimate their asymptotic width, we set k1,n = nπ
a
+ δ, and consider the limit n→ ∞ . Substituting

k1,n into (9), and expanding the resulting equation around δ → 0 to the leading order, we arrive at

a sextic equation in δ, in fact cubic for δ2, whose solutions are asymptotically of the form

δn,j = ±Fj(τ1; ℓ3, ℓ4, a)

n
+O(n−2), j = 1, 2, 3,

where τ1 := (cos θ1+1) cos θ2+cos θ1 ∈ [−1, 3] and the explicit form of the functions Fj is given in

Appendix A. Since we have three pairs of solutions, each having both signs, each corresponding pair

of bands has asymptotically the same width. Taking into account the range of the quasimomentume-

dependent quantity τ1, the widths of the bands are

△E1,n =



1
3 a ℓ3 ℓ4

(
2
√

6ℓ3
√

12ℓ24 + ℓ23 cosα + 9ℓ24 + 6ℓ23 − 6
√
ℓ24 + ℓ23

)
+O(n−1),

1
3 a ℓ3 ℓ4

(
2
√

3ℓ3
√

12ℓ24 + ℓ23
(√

3 sinα− cosα
)
+ 9ℓ24 + 6ℓ23 − 6

√
ℓ24 + ℓ23

)
+O(n−1),

2
3 a ℓ3 ℓ4

√
−3ℓ3

√
12ℓ24 + ℓ23

(√
3 sin β + cos β

)
+ 9ℓ24 + 6ℓ23 +O(n−1),

in which α := 1
3
arctan

6
√
3 ℓ4|ℓ23−4ℓ24|

36 ℓ24 ℓ3−ℓ33
and β := 1

3
arctan

6
√
3 ℓ4|ℓ33−4ℓ24 ℓ3|
36 ℓ24 ℓ

2
3−ℓ43

; as can be seen, the bands are of

asymptotically constant width at the energy scale.

(ii) Narrow bands around the points (n− 1
2
)π
a
, n ∈ N

In this case, there are at most two narrow bands in the vicinity of the roots of cos2 ka. As in the

previous case, we set k2,n = (n− 1
2
)π
a
+δ with n→ ∞ ; substituting this Ansatz into (9) and keeping

the leading term, we arrive at a quadratic equation for δ the solutions of which are of the form

δn = ± 1

n

√
τ 2

2πℓ3
+O(n−2),

where τ2 = (cos θ2 + 1)(cos θ1 + 1) ∈ [0, 4]. Consequently, both bands are again of a asymptotically

constant width at the energy scale, namely

△E2,n =
2

a ℓ3
+O(n−1).

The question whether the gap between them is open depends on the error term; we leave it open.
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(iii) Narrow bands around the points (
√
3+1)nπ
2a

, n ∈ N

This time the bands appear in the vicinity of the roots of sin2(1 −
√
3)ka. In analogy with the

previous cases, we set k3,n = (
√
3+1)nπ
2a

+ δ with n → ∞ ; substituting this into (9) and keeping the

leading term, we arrive at a quadratic equation for δ the solutions of which are now di�erent for

the even and odd values of n. For an even n, we have

δn =
a (

√
3− 1)

n2π2 ℓ23

(
2 + 4 cos

√
3nπ − τ±3

)
csc

√
3nπ +O(n−3), n ∈ 2N,

in which τ±3 := cos θ1 + cos θ2 ± 2
√

(cos θ1 + 1)(cos θ2 + 1) ; these quantities, τ+3 and τ−3 , run

respectively through the intervals [−2, 6] and [−2, 0]. Since these ranges overlap, the solutions

merge into a single band of the width

△E3,n =
16

nπ ℓ23
|csc

√
3nπ|+O(n−2), n ∈ 2N.

Similarly, for odd values of n we get

δn =
a (

√
3− 1)

n2π2 ℓ23

(
−2 + 4 cos

√
3nπ − τ4

)
csc

√
3nπ +O(n−3), n ∈ 2N− 1,

where τ4 := cos θ1 + cos θ2 ∈ [−2, 2]; the bands width is then obtained as

△E3,n =
8

nπ ℓ23
|csc

√
3nπ|+O(n−2), n ∈ 2N− 1.

The band widths are no longer asymptotically constant, but they remain bounded as n → ∞.

Indeed, the csc modulus does not change if the argument is shifted by πm with m ∈ N. Using the

fact that sinx
x

≥ 1
2
holds for small |x| we get

1

n

∣∣ csc(π(√3n−m)
∣∣ = [

n sin
(
πn

∣∣√3− m
n

∣∣)]−1

≤
[
n 1

2
πn

∣∣√3− m
n

∣∣]−1

,

however,
√
3 is an algebraic number of degree 2, hence there is a c > 0 such that

∣∣√3 − m
n

∣∣ ≥ c
n2

holds for all coprime m,n, cf. [11, 12].

3.3 Negative spectrum

As already mentioned, the secular equation for the negative spectrum can be obtained by replacing

k by iκ with κ > 0 in the spectral condition (9). Mimicking the argument of Sec. 3.1, we infer that

10



a negative number −κ2 belongs to a spectral band if κ satis�es the conditions

Λi(κ) ≤ f(κ) ≤ Λj(κ), (16)

for some i ̸= j ∈ {1, 2, ..., 6}. The Λi(κ) and f(κ) here are obtained from (11) and (A.1), respectively,

by replacement of the real k by imaginary one which changes sine and cosine to their hyperbolic

versions; needless to say, this is also the case for the other three functions g(κ), h(κ) and w(κ)

included in Λi(κ). As a result of (16), the negative spectrum, too, has a band-gap structure, this

time consisting of a �nite number of bands and gaps, cf. the �rst bullet point bellow. The band-gap

pattern is illustrated in Figs. 2a�5a. We see that the negative spectrum has the following properties:

� Concerning the number of negative bands, we have shown in Sec. 2 that the negative eigen-

values of a star graph with dv ≥ 3 semi-in�nite edges connected through R coupling are given

by (6), in particular, we have E+R = −3ℓ−2
3 and −ℓ−2

4 for dv = 3 and 4, respectively; recall

the general result by which the number of negative eigenvalues of a star graph coincides with

the number of eigenvalues of Uv in the upper complex halfplane [7, Thm. 2.6]. The lattice

spectral bands shrink to these eigenvalues in the limit a → ∞ when the tunelling between

the vertices becomes negligible as it seen in Figs. 2a and 3a. Di�erent bands can shrink to

the same eigenvalue, of course, but given the number of vertices in the elementary cell and

the dimension of the corresponding resolvent singularities, we can have at most six negative

spectral bands; in reality there are at most three.

� As it can be expected, the band shrinking to the eigenvalues E+R = −ℓ−2
4 and −3ℓ−2

3 in

the limit a → ∞ is exponentially fast. To see that, we note that cosh(±x) ≈ 1
2
ex and

sinh(±x) ≈ ±1
2
ex holds as x→ ∞ and rewrite the spectral condition as

1

2

(
1− κ2ℓ24

)2 (
3− κ2ℓ23

)4
e2(

√
3+3)κa +O(e8κa) = 0, (17)

which can be satis�ed only if the �rst expression on the left-hand side matches the error

term. To �nd the approximate band width, we set κ1 = ℓ−1
4 + δ; expanding then the resulting

equation in the vicinity of δ = 0, we get in the leading order a linear equation for δ the solution

of which yields

E1 = − 1

ℓ24
− 2

ℓ24

τ1 ℓ
2
4 − ℓ23

3ℓ24 − ℓ23
e
− 2a

ℓ4 +O
(
e

(
√
3−3)a
ℓ4

)
,

where τ1 = (cos θ1 + 1) cos θ2 + cos θ1 ∈ [−1, 3] , and as a result, the band width is given by

△E1 =
8

3ℓ24−ℓ23
e
− 2a

ℓ4 +O
(
e

(
√

3−3)a
ℓ4

)
. Putting similarly κ2 =

√
3 ℓ−1

3 + δ, we get from the spectral

11



condition (17) a quadratic equation in δ the solutions of which yield

E2 = − 3

ℓ23
∓ 2

√
2

ℓ23
e

(
√
3−3)a
ℓ3 − 4

3
√
3ℓ33

(
3(
√
3− 5)a− 3

√
3ℓ3(ℓ

2
3 − 5ℓ24)

ℓ23 − 3ℓ24

)
e

2(
√
3−3)a
ℓ3

±
2
√
2
(
3ℓ24 + ℓ23

)
ℓ43 − 3ℓ24ℓ

2
3

(cos θ1 + cos θ2) e
−2

√
3a

ℓ3 +O
(
e

−(
√
3+3)a
ℓ3

)
with the �rst two terms independent of θ1, θ2, and as −2 ≤ cos θ1 + cos θ2 ≤ 2, the width of

the bands shrinking to −3ℓ−2
3 is △E2 =

8
√
2(3ℓ24+ℓ23)
ℓ43−3ℓ24ℓ

2
3

e
−2

√
3a

ℓ3 +O
(
e

−(
√
3+3)a
ℓ3

)
. Note that the error

terms can be chosen in both cases independent of the quasimomentum.

� There are no �at bands in the negative part of the spectrum. To see that, one has to check

that the quasimomentum-dependent terms in the spectral condition, the functions g(κ), h(κ)

and w(κ) cannot vanish simultaneously. It is su�cient to inspect the simplest one, h(κ) . By

a simple manipulation, the condition h(κ) = 0 can be brought to the form

−
(
κ(ℓ4 − ℓ3)

κ2 ℓ3 ℓ4 + 1

)2

= tanh2 κa,

which cannot hold even if ℓ3 = ℓ4, because the right-hand side is positive for any κ > 0.

12
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-κ2

(a) the model with the R coupling

0 1 2 3 4 5
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-4

-2

0

2

4

6

a

k2

-κ2

(b) the model with the (−1)dvR coupling

Fig. 2. Spectrum of the Cairo lattice in dependence on the parameter a with ℓ3 = ℓ4 = 1. In this
and the subsequent �gures 3�5, the left picture corresponds to the model in which R coupling is
imposed at all vertices (discussed in Sec. 3) while the picture on the right corresponds to the model
where R coupling is imposed at vertices of degree four, and −R coupling is at vertices of degree
three (discussed in Sec. 4). The black dots denote the �at bands.
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(a) the model with the R coupling (b) the model with the (−1)dvR coupling

Fig. 3. Spectrum of the Cairo lattice in dependence on the parameter a with ℓ3 = 2 and ℓ4 =
2
3
.

(a) the model with the R coupling (b) the model with the (−1)dvR coupling

Fig. 4. Spectrum of the Cairo lattice in dependence on the length scale ℓ3 with ℓ4 = 2 and a = 1.
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(a) the model with the R coupling (b) the model with the (−1)dvR coupling

Fig. 5. Spectrum of the Cairo lattice in dependence on the length scale ℓ4 with ℓ3 = 1 and a = 1.

3.4 The Kirchho� limit, ℓ3 → 0

The spectral condition (9) depends continuously on the parameters of the model, even analytically

[1, Thm. 2.5.4], and so do in view of implicit function theorem the eigenvalues of the �ber operators

in the Floquet-Bloch decomposition. The limits of such functions are of particular interest. One

often considers edges shrinking to a point [14, 15]; here in contrast we will look what happens if

the length parameter ℓ3 in (3) with the upper signs tends to zero. Summing this condition over j,

we get
∑

j ψ
′
j = 0, and the limit ℓ3 → 0 yields the continuity, ψj = ψj+1, i.e. we arrive at what

is usually called the Kirchho� coupling. It is clear that the limit changes the spectral character

substantially, a single vertex has no longer a negative spectrum which in accordance with (6) escapes

to −∞, while in the positive part the scattering is independent of k and the edges are no longer

asymptotically decoupled at high energies. Let us look what the limit does with the Cairo lattice

spectrum.

3.4.1 Positive spectrum

We take the limit ℓ3 → 0 in the spectral condition (9), that is, in the functions f(k), g(k), h(k) and

w(k) in Eqs. (A.1)-(A.4); naturally, the condition of belonging to the spectral bands is still given

15



by (12). The band-gap pattern changes as illustrated in Fig. 6, in particular, the spectral bands are

now wider. To get this claim a proper meaning, let us take a closer look at the spectrum behavior

in the high-energy regime and the probability (15) of belonging to the spectral bands; recall that

for any ℓ3 > 0 this quantity was equal to zero.

Keeping the highest power of k in the spectral condition as k → ∞, we rewrite it in the form

4 ℓ44 cos2 ka
{
f̃(k)− g̃(k)(cos θ1 + cos θ2)− h̃(k)(cos 2θ1 + cos 2θ2)− w̃(k) cos θ1 cos θ2

}
k4 (18)

+O(k2) = 0,

in which

f̃(k) = −54 cos 2ka+ 60 cos 4ka− 18 cos 6ka+ cos 2(
√
3− 4)ka+ 27 cos 2

√
3ka

+ 16 cos(
√
3− 3)ka− 6 cos 2(

√
3− 3)ka+ 11 cos 2(

√
3− 2)ka− 32 cos(

√
3− 1)ka

− 6
(
2 cos 2(

√
3− 1)ka+ 8 cos(

√
3 + 1)ka+ 9 cos 2(

√
3 + 1)ka− 10

)
+ 81 cos 2(

√
3 + 2)ka,

g̃(k) = −8 cos 2ka+ 8 cos(
√
3− 5)ka− 32 cos(

√
3− 3)ka+ 36 cos 2

√
3ka+ 56

+ 4 cos 2(
√
3− 2)ka+ 32 cos(

√
3− 1)ka− 24 cos 2(

√
3− 1)ka− 72 cos(

√
3 + 3)ka,

h̃(k) = −16 cos2 ka,

w̃(k) = −40 cos 2ka− 16 cos(
√
3− 3)ka+ 4 cos 2(

√
3− 2)ka+ 36 cos 2

√
3ka+ 24

+ 32 cos(
√
3− 1)ka− 24 cos 2(

√
3− 1)ka+ 48 cos(

√
3 + 1)ka.

(19)

The bands naturally appear where the leading term in (18) matches the error one, that is, around
the points where the leading term vanishes. Consequently, there are two types of spectral bands.
The �rst are narrow bands in the vicinity of the roots of cos2 ka . We can specify their asymptotic
behavior as in Sec. 3.2 but we will not do that. What is more important, are the wide bands around
the points determined by vanishing of the expression in the curly bracket in (18). We are not that
much interested in the bands themselves, rather in the global quantity Pσ(H). Instead of trying to
derive it from (12) directly, we use the spectral universality observed in [13]. This is made possible
by the incommensurability of the graph edges, a and b, which allows us to regard the quantities√
3 ka =: x and ka =: y in the arguments of trigonometric functions in (19) as a pair of independent

identically distributed random variables in [0, 2π). In these new variables, the functions entering
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(19) become

f̃(x, y) = 32
(
cos(x− 2y)− 3 cosx

)
cos y − 6 cos 2(x− 3y) + 24 (5− 3 cos 2y) cos2 2y

+ (92 cos 4y − 66 cos 2y + 27) cos 2x+ 14 (3 sin 2y − 5 sin 4y) sin 2x+ cos 2(x− 4y),

g̃(x, y) = −24 cos 2(x− y)− 32 cos(x− 3y) + 4 cos 2(x− 2y) + 8 cos(x− 5y) + 36 cos 2x+ 56

+ 32 cos(x− y)− 72 cos(x+ 3y)− 8 cos 2y,

h̃(x, y) = −16 cos2 y,

w̃(x, y) = 80 cosx cos y − 24 cos 2(x− y)− 16 cos(x− 3y) + 4 cos 2(x− 2y) + 36 cos 2x+ 24

− 16 sinx sin y − 40 cos 2y.

(20)

Mimicking now the argument used in Sec. 3.1, we infer that points of the spectrum have to satisfy

the condition

Λ̃i(x, y) ≤ f̃(x, y) ≤ Λ̃j(x, y), (21)

in which x, y ∈ [0, 2π) and i ̸= j ∈ {1, 2, ..., 6}; the functions Λ̃i(x, y) are nothing but Λi(k) of (11)

in which g, h, and w have been respectively replaced by g̃(x, y), h̃(x, y), and w̃(x, y) from (20).

Since x and y are identically distributed, the sought probability (15) is nothing but the relative

area of the region speci�ed by conditions (21) in the square (0, 2π)2. The region is shown in Fig. 7a

being indicated by gray color; its area can be computed numerically, and being divided by 4π2 it

yields the probability Pσ(H) ≈ 0.82. This shows that while the spectral pattern converges locally

as ℓ3 → 0, the limit is not uniform because Pσ(H) = 0 holds for any ℓ3 > 0.

3.4.2 Negative spectrum

We obtain it by taking the limit ℓ3 → 0 in the spectral condition (16). There is a single negative

spectral band as illustrated by Fig. 6, see also Fig. 4a where ℓ4 = 2. For large values of the parameter

a, this band shrinks exponentially fast to the eigenvalue of a star graph of degree four given by (6),

that is, −ℓ−2
4 . To see that, we note that in the leading order of a, the spectral condition reads

81

2
e2(

√
3+3)κa(κ2ℓ24 − 1)2 +O(e8κa) = 0.

To �nd the asymptotic expression of the band, we set κ = ℓ−1
4 + δ and substitute it in the spectral

condition. Repeating the argument of Sec. 3.3, we �nd that the energy is

E = − 1

ℓ24
− 2

3ℓ24
τ1 e

− 2a
ℓ4 +O

(
e
− (

√
3+1)a
ℓ4

)
,

where we have denoted again τ1 = (cos θ1 +1) cos θ2 +cos θ1 ∈ [−1, 3]; the band width asymptotics

is thus △E = 8
3ℓ24

e
− 2a

ℓ4 +O
(
e
−
(
√
3+1)a
ℓ4

)
.
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Fig. 6. Spectrum of the Cairo lattice with the R coupling at all the vertices in dependence on the
a with ℓ4 = 1 in the limit ℓ3 → 0.

(a) The region in which the condition (21) with the
functions (20) holds; this corresponds to the Cairo
model with the R coupling in the limit ℓ3 → 0.

(b) The region in which the condition (21) with the
functions (25) holds; this corresponds to the Cairo
model with the (−1)dvR coupling.

Fig. 7. The grey shaded area equals to 4π2 Pσ(H) determined by the conditions (21); the axes
correspond to x :=

√
3 ka and y := ka in the regime k → ∞.
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3.5 The results summary

Before concluding this section, let us summarize our observations. Let H+R
ℓ3,ℓ4

be the quantum graph

Hamiltonian described in the beginning of this section; then, the obtained results can be summarized

in the following theorem:

Theorem 3.1. The spectrum of H+R
ℓ3,ℓ4

has the following properties:

(i) The number k = ℓ−1
3 , ℓ3 > 0 always belongs to σ(H+R

ℓ3,ℓ3
) for a = 2nπ√

3+3
ℓ3 with n ∈ N.

(ii) Away of the above in�nitely degenerate eigenvalue, the spectrum is absolutely continuous hav-

ing a band-and-gap structure determined by the condition (12) together with Eqs. (A.1)-(A.4);

the positive spectrum has in�nitely many gaps.

(iii) Pσ(H
+R
ℓ3,ℓ4

) = 0 for any ℓ3, ℓ4 > 0 , and the spectrum is dominated by gaps; at high energies,

the bands appear only in the vicinity of the numbers k = nπ
a
, (n− 1

2
)π
a
and

(
√
3+1)nπ
2a

, n ∈ N.
(iv) Pσ(H

+R
0,ℓ4

) ≈ 0.82 for any ℓ4 > 0; in the limit ℓ3 → 0, the R coupling at vertices of degree

`three' tends to the Kirchho� one resulting in wider spectral bands.

(v) The negative spectrum consists of at most three number of bands which may merge for partic-

ular values of parameters; there is no �at bands in this part of the spectrum.

(vi) The negative bands become exponentially narrow as a → ∞ shrinking to the eigenvalues of

star graphs of degree three (−3ℓ−2
3 ) and four (−ℓ−2

4 ).

4 Cairo model with the (−1)dvR coupling

Let us modify now the model by changing the matching condition in the vertices of degree three

to −R. According to the discussion in Sec. 2, there is no asymptotic decoupling in that case. As

before, we will discuss di�erent parts of the spectrum separately, and summarize the results in

Theorem 4.1 at the end of the section.

4.1 Positive spectrum

The secular equation is derived in the same way as above: we employ appropriate Ansätze for the

wave function components and match them at the graph vertices, this time with the −R coupling at

vertices of degree three, considering again the clockwise orientation at all the vertices. The obtained

spectral condition has the same structure as (9), however, with di�erent functions f(k), g(k), h(k)

and w(k) given explicitly in Appendix B through eqs. (B.1)�(B.4). The resulting positive spectrum

consists again of two parts:

� If ℓ3 = ℓ4, the number k = ℓ−1
3 belongs to the spectrum, this time for a = (2n−1)π√

3+3
ℓ3 with n ∈ N.

To identify this �at band, one has to �nd when the functions in Eqs. (B.1)�(B.4) can vanish

19



simultaneously. We start again with the simplest case, the function h(k), which vanishes for

three sets of parameters, speci�cally k = 1/
√
ℓ3 ℓ4 and a = (n− 1

2
)π
√
ℓ3 ℓ4, or k = nπ

a
and ℓ3 =

ℓ4, or k = ℓ−1
3 and ℓ3 = ℓ4. Inspecting then g(k), w(k) and f(k) at these values, we see that

the �rst two functions vanish at all the three sets, while the values of the third one, f(k), are

reduced respectively to −1024(−1)nℓ23ℓ
−2
4

(
4 sin

√
3(n− 1

2
)π+(−1)n(cos

√
3(2n−1)π−3)

)
and

1024π8n8ℓ83a
−8
(
4(−1)n cos

√
3nπ+ cos 2

√
3nπ+3

)
in the �rst two cases and 8192 cos4 (

√
3+3)a
2ℓ3

is the last one. The former two expressions can be checked to be nonzero in view of the

irrationality of
√
3, the last one veri�es the claim.

� Apart from the �at bands mentioned above, the rest of the spectrum is absolutely continuous

having a band-gap structure. Repeating the argument of Sec. 3.1, the spectral bands are given

by the conditions (12), this time together with Eqs. (B.1)�(B.4). The band-gap pattern in

dependence on the parameter a and the length scales ℓ3 and ℓ4 is illustrated in Figs. 2b�5b in

which, for the sake of comparison, we use the same values as in the model with R coupling at

all vertices shown in Figs. 2a�5a.

4.2 High-energy regime and the probability Pσ(H)

As we have mentioned, there is no high-energy decoupling of the edges in this case, the scattering

matrix at vertices of degree four being given by (13), while for vertices of degree three we now get

from (4) the limit

lim
k→∞

S−R(k) =
1

3

 1 −2 −2

−2 1 −2

−2 −2 1

 . (22)

As a result, the transport is non-trivial in this case in contrast to the model of the previous section

and the probability of belonging to the spectrum, Pσ(H), is expected to be nonzero. To determine

it, we rewrite the spectral condition keeping the leading order of k as k → ∞ in the form

4 ℓ44 ℓ
8
3 sin2 ka

{
f̃(k)− g̃(k)(cos θ1 + cos θ2)− h̃(k)(cos 2θ1 + cos 2θ2)− w̃(k) cos θ1 cos θ2

}
k12

(23)

+O(k10) = 0,
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where

f̃(k) = 54 cos 2ka+ 60 cos 4ka+ 18 cos 6ka− cos 2(
√
3− 4)ka− 27 cos 2

√
3ka+ 60

+ 16 cos(
√
3− 3)ka− 6 cos 2(

√
3− 3)ka− 11 cos 2(

√
3− 2)ka+ 32 cos(

√
3− 1)ka

− 12 cos 2(
√
3− 1)ka− 48 cos(

√
3 + 1)ka − 54 cos 2(

√
3 + 1)ka− 81 cos 2(

√
3 + 2)ka,

g̃(k) = 8 cos 2ka− 8 cos(
√
3− 5)ka− 32 cos(

√
3− 3)ka− 36 cos 2

√
3ka+ 56

− 4 cos 2(
√
3− 2)ka− 32 cos(

√
3− 1)ka− 24 cos 2(

√
3− 1)ka+ 72 cos(

√
3 + 3)ka,

h̃(k) = −16 sin2 ka,

w̃(k) = 40 cos 2ka− 16 cos(
√
3− 3)ka− 4 cos 2(

√
3− 2)ka− 36 cos 2

√
3ka+ 24

− 32 cos(
√
3− 1)ka− 24 cos 2(

√
3− 1)ka+ 48 cos(

√
3 + 1)ka.

(24)

Inspecting relation (23), we see that there are narrow bands in the vicinity of the roots of sin2 ka
which we are not going to specify, and wide bands corresponding to vanishing of the expression in
the curly brackets, which give rise to the probability Pσ(H). To �nd it, we repeat the argument of
Sec. 3.4.1 regarding x :=

√
3 ka (mod 2π) and y := ka (mod 2π) as a pair of independent identically

distributed random variables on [0, 2π). The mentioned bands are then determined again by the
condition (21) in which the functions f̃(x, y), g̃(x, y), h̃(x, y) and w̃(x, y) are now given by

f̃(x, y) = 2(21 sin 2y + 35 sin 4y − 3 sin 6y) sin 2x− (66 cos 2y + 92 cos 4y + 6 cos 6y + 27) cos 2x

+ 2
(
40 sinx sin y − 8 cosx cos y + 8 cos(x− 3y) + 12(3 cos 2y + 5) cos2 2y

)
− cos 2(x− 4y),

g̃(x, y) = −4
(
cos 2(x− 2y) + 8 cos(x− 3y) + 2 cos(x− 5y) + 9 cos 2x

)
+ 8

(
−4 cos(x− y)− 3 cos 2(x− y) + 9 cos(x+ 3y) + cos 2y + 7

)
,

h̃(x, y) = −16 sin2 y,

w̃(x, y) = −4
(
6 cos 2(x− y) + cos 2(x− 2y) + 4 cos(x− 3y) + 9 cos 2x− 6

)
− 4 (20 sinx sin y − 4 cosx cos y − 10 cos 2y) .

(25)

The probability (15) can be determined numerically by �nding the area of the region in which the

condition (21) with the new functions (25) holds on [0, 2π) × [0, 2π). It is shown in Fig. 7b; the

resulting value is Pσ(H) ≈ 0.82.

We note that it coincides with the probability obtained for the Kirchho� limit in the previous

section. This conclusion is not only numerical. To see that, we observe that the functions in (20)

and (25) are obtained one from the other through the transformations x↔ x+ π
2
and y ↔ y− π

2
, in

other words, that that the two regions in which the band condition (21) together with any of the sets

of functions (20) and (25) holds coincide on the squares [0, 2π)× [0, 2π) and [π
2
, 5π

2
)× [−π

2
, 3π

2
) � cf.

Fig 7 � which together with the 2π-periodicity in both the x and y directions yields the claim. This

exact coincidence is not surprising in view of the fact that the high-energy limit of the scattering
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matrix (22) is the same as obtained from the Kirchho� coupling.

4.3 Negative spectrum

We have to replace k by iκ with κ > 0 again, the spectral condition is then given by (16) in

which f(κ) as well as g(κ), h(κ) and w(κ) that are included in Λi(κ) are now given by Eqs. (B.1)�

(B.4) with the indicated replacement. The negative spectrum, consisting of at most three bands, is

illustrated in Figs. 2b�5b. We see that:

� For large values of the parameter a , the negative bands shrink to points, cf. Figs. 2b and

3b, corresponding to the eigenvalues of star graphs of degree four and three, E+R = −ℓ−2
4

and E−R = −1
3
ℓ−2
3 , respectively � cf. (6). This can be easily seen by rewriting the spectral

condition in the form (
1− κ2ℓ24

)2 (
1− 3κ2ℓ23

)4
e2(

√
3+3)κa +O(e8κa) = 0. (26)

To �nd the asymptotic band widths, we set κ1 = ℓ−1
4 +δ and κ2 = (

√
3 ℓ3)

−1+δ ; in analogy with

Sec. 3.3 we solve the resulting linear/quadratic equation for δ in the two cases, respectively,

arriving at

△E1 =
8ℓ23

ℓ44 − 3ℓ24ℓ
2
3

e
−2a
ℓ4 +O

(
e

−(
√
3+1)a
ℓ4

)
,

and

△E2 =
8
√
2
(
ℓ24 + 3ℓ23

)
9ℓ23

(
3ℓ23 − ℓ24

) e
−2a√
3 ℓ3 +O

(
e

−(
√
3+3)a

3 ℓ3

)
.

� There is no �at band; as in Sec. 3.3 one has to check that the coe�cients of the quasimomentum-

dependent terms, the functions g(κ), h(κ) and w(κ), cannot vanish simultaneously. Focusing

on the simplest of them, the condition h(κ) = 0 can be simpli�ed to

ρ(κ) := (κ2ℓ24 + 1)(κ2ℓ23 + 1) cosh 2κa−
(
κ4ℓ24 ℓ

2
3 − κ2(ℓ24 − 4ℓ4 ℓ3 + ℓ23) + 1

)
= 0,

and since coshx > 1 for x > 0, we have ρ(κ) > 2κ2(ℓ4− ℓ3)
2 and since the inequality is sharp,

the claim is veri�ed.

4.4 The Dirichlet limit, ℓ3 → 0

Let us consider again the limit ℓ3 → 0, now for the−R coupling at vertices of degree three. Summing

the condition (3) in this case over j, we get
∑

j ψj = 0, and in the limit ℓ3 → 0 the condition becomes

ψj+1 = −ψj which in the case of an odd vertex degree means ψj = 0. Consequently, the Cairo lattice

decomposes into an in�nite family of �nite graphs (consisting of one or four edges) with Dirichlet

boundary the spectrum of which is pure point and in�nitely degenerate.
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4.4.1 Positive spectrum

All the three functions (B.2)�(B.4) in (9) have a multiplicative factor ℓ3, hence the quasimomentum-

dependent part vanishes in the limit and the spectrum consists of �at bands only. More explicitly,

the condition f(k) = 0 simpli�es to

32
[
(k2ℓ24 + 1) cos 2ka+ k2ℓ24 − 1

]2
sin2 2ka sin2(

√
3− 1)ka = 0, (27)

so the eigenvalues come from zeros of the three factors, being the squares of k = nπ
(
√
3−1)a

and nπ
2a

with n ∈ N, and of the roots of the expression in the square brackets. More precisely, the latter are

given by the condition
1−k2ℓ24
1+k2ℓ24

= cos 2ka in which the left-hand side is decreasing with respect to k on

the interval k ∈ (0,∞), ranging from 1 to −1, giving rise to an in�nite number of eigenvalues. The

three cases can be easily identi�ed, the second one are the Dirichlet eigenvalues on an interval of

length b, the other two refer to the four-legged cross of edge length a, the �rst belonging to Dirichlet

eigenfunctions vanishing in the center of the cross and last one to the `genuine' eigenfunctions of

the cross with the R coupling in the center. Needles to say, Pσ(H) = 0 holds in this case.

4.4.2 Negative spectrum

Concerning the negative eigenvalues, replacing k by iκ in (27), we arrive at the spectral condition

32
[
(1− κ2ℓ24) cosh 2κa− κ2ℓ24 − 1

]2
sinh2 2κa sinh2(

√
3− 1)κa = 0 ; (28)

since sinhx > 0 for x > 0, it remains to check the term in the square brackets; clearly, a `genuine'

cross eigenfunction only may contribute to the negative spectrum. We claim that an isolated

negative eigenvalue may correspond to a κ ∈ (0, ℓ−1
4 ), and that happens if and only if a > ℓ4.

Indeed, let us denote the square-bracket expression as G(κ), obviously nonzero at κ = ℓ−1
4 .

Introducing positive ω := κ ℓ4 and λ := aℓ−1
4 , the condition G(κ) = 0 reads 1+ω2

1−ω2 = cosh 2λω. Since

the right-hand side is positive, the equation may have solutions only for ω < 1, or equivalently,

0 < κ < ℓ−1
4 , for which the left-hand side of the equation is always positive. On the other hand, the

equation has a unique solution for λ which is λ = 1
2ω

arccosh 1+ω2

1−ω2 > 1. The last claim, λ > 1, can

be proved by showing that ξ(ω) := arccosh 1+ω2

1−ω2 − 2ω is positive. Computing the �rst derivative,

we get ξ′(ω) = 2ω2

1−ω2 which is positive for ω < 1, we see that ξ(ω) is monotonically increasing on the

domain; in combination with ξ(0) = 0 and limω→1 ξ(ω) = +∞ this concludes the argument.

4.5 The results summary

Let us �nally summarize the obtained results: let H±R
ℓ3,ℓ4

be the quantum graph Hamiltonian de-

scribed in the beginning of this section, then our observations can be summarized as follows:

Theorem 4.1. The spectrum of H±R
ℓ3,ℓ4

has the following properties:
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(i) The number k = ℓ−1
3 for ℓ3 > 0 always belongs to σ(H±R

ℓ3,ℓ3
) when a = (2n−1)π√

3+3
ℓ3 with n ∈ N.

(ii) Apart from the above in�nitely degenerate eigenvalues, the spectrum of H±R
ℓ3,ℓ4

for ℓ3, ℓ4 > 0

is absolutely continuous having a band-and-gap structure determined by the condition (12)

together with Eqs. (B.1)�(B.4); the positive spectrum has in�nitely many gaps.

(iii) Pσ(H
±R
ℓ3,ℓ4

) ≈ 0.82 holds for any ℓ3, ℓ4 > 0 ; vertices of both the even and odd parity remain

transparent at high energies.

(iv) In the limit ℓ3 → 0 we have Pσ(H
±R
0,ℓ4

) = 0 for any ℓ4 > 0; the −R coupling at the vertices

of odd degree produces Dirichlet decoupled edges resulting in a pure point spectrum, in�nitely

degenerate, consisting of the squared roots of the functions sin 2ka , sin(
√
3−1)ka and (k2ℓ24+

1) cos 2ka+ k2ℓ24 − 1.

(v) The negative spectrum of H±R
ℓ3,ℓ4

with ℓ3, ℓ4 > 0 consists of at most three number of bands which

may merge for particular values of parameters; there is no negative �at band. The negative

spectrum of H±R
0,ℓ4

, ℓ4 > 0 consists of at most one isolated eigenvalue referring to κ ∈ (0, ℓ−1
4 );

it exists if and only if a > ℓ4.

(vi) The negative bands of H±R
ℓ3,ℓ4

with ℓ3, ℓ4 > 0 become exponentially narrow as a→ ∞ shrinking

to the eigenvalues of star graphs of degree three (−1
3
ℓ−2
3 ) and four (−ℓ−2

4 ).
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Appendices

A Explicit form of some functions appearing in Sec. 3

The functions f(k), g(k), h(k) and w(k) entering the spectral condition (9) in Sec. 3.1, correspond-
ing to the model with R coupling at all the vertices, are as follows

f(k) = −2
(
752k4ℓ24ℓ

2
3 + 128k2ℓ4ℓ3(k

2ℓ24 + 1) + 33(k2ℓ24 + 1)2 + 128k4ℓ4ℓ
3
3(k

2ℓ24 + 1)− 8k6ℓ63(k
4ℓ44 + 1)

)
(A.1)

+ 16(k2ℓ23 + 3)
(
k6(3ℓ44ℓ

2
3 + 4ℓ34ℓ

3
3) + k4(ℓ44 + 12ℓ34ℓ3 + 18ℓ24ℓ

2
3 + 4ℓ4ℓ

3
3) + 3k2(2ℓ24 + 4ℓ4ℓ3 + ℓ23) + 1

)
cos(

√
3 + 3)ka

− 16(k2ℓ23 − 1)2
(
k4ℓ34(ℓ4 + 4ℓ3) + 2k2ℓ4(3ℓ4 + 2ℓ3) + 1

)
cos(

√
3− 5)ka− (k2ℓ24 + 1)2(k2ℓ23 − 1)4 cos 2(

√
3− 5)ka

− (k2ℓ24 + 1)2(k2ℓ23 + 3)4 cos 2(
√
3 + 3)ka+ 4(k4ℓ44 − 1)(k2ℓ23 − 1)4 cos 2(

√
3− 4)ka− 4k4ℓ43(17k

4ℓ44 + 42k2ℓ24 + 17)

− 4(k4ℓ44 − 1)(k2ℓ23 − 1)4 cos 2(
√
3− 2)ka+ 96(k2ℓ24 − 1)2(k2ℓ23 − 1)2 cos(

√
3− 1)ka− 2k8ℓ83(5k

4ℓ44 − 6k2ℓ24 + 5)

+ 2(k2ℓ23 − 1)2
(
k2

(
− 7k2ℓ44 + k2ℓ43(5k

4ℓ44 − 6k2ℓ24 + 5) + 2ℓ23(k
4ℓ44 − 6k2ℓ24 + 1) + 82ℓ24

)
− 7

)
cos 2(

√
3− 1)ka

+ 8(k2ℓ24 − 1)2
(
k8ℓ83 + k6ℓ63 − 3k4ℓ43 + 7k2ℓ23 − 6

)
cos 4ka− 8(k4ℓ44 − 1)(k2ℓ23 − 1)2(k4ℓ43 + 4k2ℓ23 + 3) cos 6ka

+ 8(k2ℓ23 − 1)
(
k10ℓ44ℓ

6
3 − k8ℓ44ℓ

4
3 + k6(7ℓ44ℓ

2
3 − ℓ63) + k4(9ℓ44 + 32ℓ34ℓ3 + ℓ43)− k2ℓ3(32ℓ4 + 7ℓ3)− 9

)
cos 2ka

− 4(k2ℓ23 − 1)(k2ℓ23 + 3)2
(
k2ℓ23(k

2ℓ24 − 1)2 cos 2(
√
3 + 1)ka− (k4ℓ44 − 1)(k2ℓ23 + 3) cos 2(

√
3 + 2)ka

)
− 4k2ℓ3(k

2ℓ24 − 1)(k2ℓ23 − 1)2
(
ℓ3(k

2ℓ24 − 1)(k2ℓ23 − 1) cos 2(
√
3− 3)ka− 32ℓ4 cos(

√
3− 3)ka

)
− 4(k4ℓ44 − 1)(k2ℓ23 − 1)3(k2ℓ23 + 3) cos 2

√
3ka+ 2(k2ℓ24 + 1)2(k4ℓ43 + 2k2ℓ23 − 3)2 cos 8ka

− 128(k2ℓ24 − 1)(k2ℓ23 − 1)
(
k4ℓ4ℓ

2
3(ℓ4 + ℓ3) + k2(ℓ24 + 3ℓ4ℓ3 + ℓ23) + 1

)
cos(

√
3 + 1)ka.

g(k) = 8(k4ℓ44 − 1)(k2ℓ23 − 1)3 cos(
√
3− 7)ka− 16(k4ℓ44 − 1)(k2ℓ23 − 1)2(k2ℓ23 + 3) cos 2

√
3ka− 104 (A.2)

+ 8(k4ℓ44 − 1)(k2ℓ23 − 1)2(5k2ℓ23 + 3) cos(
√
3− 3)ka− 8(k4ℓ44 − 1)(5k6ℓ63 + k4ℓ43 − k2ℓ23 − 5) cos(

√
3 + 1)ka

+ 4(k2ℓ24 − 1)2(k2ℓ23 − 1)(k2ℓ23 + 3)2 cos 2(
√
3 + 1)ka− 8(k4ℓ44 − 1)(k2ℓ23 − 1)(k2ℓ23 + 3)2 cos(

√
3 + 5)ka

+ 8k2
(
ℓ24(−2k6ℓ63 + 6k4ℓ43 + 58k2ℓ23 + 2)− ℓ23(3k

4ℓ43 + 7k2ℓ23 + 9)− k2ℓ44(3k
6ℓ63 + 7k4ℓ43 + 9k2ℓ23 + 13)

)
+ 32(k4ℓ44 − 1)(k6ℓ63 + 3k4ℓ43 − k2ℓ23 − 3) cos 2ka− 8(k2ℓ24 − 1)2(k6ℓ63 + 5k4ℓ43 − 5k2ℓ23 − 1) cos 4ka

+ 16(k2ℓ23 + 3)
(
2k4ℓ43(k

4ℓ44 + 1) + 3k4ℓ44 − 2k2ℓ24 − k2ℓ23(k
4ℓ44 + 6k2ℓ24 + 1) + 3

)
cos(

√
3 + 3)ka

− 16(k2ℓ23 − 1)2
(
(2k2ℓ23(k

4ℓ44 + 1)− (k2ℓ24 + 1)2) cos(
√
3− 5)ka+ 2(k2ℓ24 − 1)2 cos(

√
3− 1)ka

)
+ 4(k2ℓ24 − 1)2(k2ℓ23 − 1)3 cos 2(

√
3− 3)ka− 16(k4ℓ44 − 1)(k2ℓ23 − 1)3 cos 2(

√
3− 2)ka

+ 8(k2ℓ23 − 1)2
(
k2(ℓ24(k

2(ℓ23(3k
2ℓ24 + 2) + ℓ24)− 10) + 3ℓ23) + 1

)
cos 2(

√
3− 1)ka.

h(k) = 64
(
(k2ℓ4ℓ3 − 1)2 sin2 ka+ k2(ℓ4 − ℓ3)

2 cos2 ka
)2

. (A.3)
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w(k) = −16(k2ℓ23 − 1)2
(
k2(ℓ24(k

2(ℓ23(3k
2ℓ24 + 2) + ℓ24)− 10) + 3ℓ23) + 1

)
sin2(

√
3− 1)ka (A.4)

− 16(k2ℓ23 + 3)
(
k6ℓ34ℓ

2
3(3ℓ4 − 4ℓ3) + 3k2(2ℓ24 − 4ℓ4ℓ3 + ℓ23) + k4ℓ4(ℓ

3
4 − 12ℓ24ℓ3 + 18ℓ4ℓ

2
3 − 4ℓ33) + 1

)
cos(

√
3 + 3)ka

+ 4(k2ℓ24 − 1)2(k2ℓ23 − 1)(k2ℓ23 + 3)2 cos 2(
√
3 + 1)ka+ 128k2ℓ4ℓ3(k

2ℓ24 − 1)(k2ℓ23 − 1)2 cos(
√
3− 3)ka

− 16(k4ℓ44 − 1)(k2ℓ23 − 1)2(k2ℓ23 + 3) cos 2
√
3ka− 8(k2ℓ24 − 1)2(k6ℓ63 + k4ℓ43 + 3k2ℓ23 − 5) cos 4ka

+ 128(k2ℓ24 − 1)(k2ℓ23 − 1)
(
k4ℓ4ℓ

2
3(ℓ4 − ℓ3) + k2(ℓ24 − 3ℓ4ℓ3 + ℓ23) + 1

)
cos(

√
3 + 1)ka

+ 4(k2ℓ24 − 1)2(k2ℓ23 − 1)3 cos 2(
√
3− 3)ka+ 32(k4ℓ44 − 1)(k4ℓ43 − 1)(k2ℓ23 − 1) cos 2ka

− 96(k2ℓ24 − 1)2(k2ℓ23 − 1)2 cos(
√
3− 1)ka− 16(k4ℓ44 − 1)(k2ℓ23 − 1)3 cos 2(

√
3− 2)ka

+ 4(k2ℓ23 − 1)2
(
4k2ℓ4(ℓ4(k

2ℓ4(ℓ4 − 4ℓ3) + 6)− 4ℓ3) + 4
)
cos(

√
3− 5)ka.

Furthermore, the functions Fj , j = 1, 2, 3, appearing in Sec. 3.2(i) are of the form

F1 =

√
−6 3

√
2 ζ1 ζ3 + 2 3

√
2 ζ22 − 2 ζ2

3
√
ζ4 + (2 ζ4)2/3

6 ζ1
3
√
ζ4

,

F2 =

√√√√(
6 3
√
2 ζ1 ζ3 − 2 3

√
2 ζ22

)(
1− i

√
3
)
− 4ζ2

3
√
ζ4 −

(
1 + i

√
3
)
(2 ζ4)2/3

12 ζ1
3
√
ζ4

,

F3 =

√√√√(
6 3
√
2 ζ1 ζ3 − 2 3

√
2 ζ22

)(
1 + i

√
3
)
− 4ζ2

3
√
ζ4 −

(
1− i

√
3
)
(2 ζ4)2/3

12 ζ1
3
√
ζ4

,

where

ζ1 =
1

a6

(
512π12 ℓ44 ℓ

8
3 sin2

√
3nπ

)
,

ζ2 = − 1

a6

(
128π10 ℓ24 ℓ

6
3

(
ℓ24(τ1 + 9) + 8ℓ23

)
sin2

√
3nπ

)
,

ζ3 =
1

a6

(
256π8 ℓ43

(
ℓ44(τ1 + 3)− ℓ24 ℓ

2
3(τ1 − 3) + 2ℓ43

)
sin2

√
3nπ

)
,

ζ4 = 3
√
3 ζ21

(
27 ζ21 ζ

2
5 − 18 ζ1 ζ2 ζ3 ζ5 + 4ζ1 ζ33 + 4ζ32 ζ5 − ζ22 ζ

2
3

)
− 27ζ21 ζ5 + 9ζ1 ζ2 ζ3 − 2ζ32 ,

ζ5 =
1

a6

(
64π6(τ1 + 1)

(
ℓ33 − ℓ24 ℓ3

)2 (
cos 2

√
3nπ − 1

))
.
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B Explicit form of some functions appearing in Sec. 4

The functions f(k), g(k), h(k) and w(k) entering the spectral condition (9) in Sec. 4 are as follows

f(k) = 2
(
5k4ℓ44 − 6k2ℓ24 − 8k2ℓ23(k

4ℓ44 + 1) + 2k4ℓ43(17k
4ℓ44 + 42k2ℓ24 + 17) + 128k6ℓ4ℓ

5
3(k

2ℓ24 + 1) + 5
)

(B.1)

+ 2(k2ℓ23 − 1)2
(
k2(−5k2ℓ44 + k2ℓ43(7k

4ℓ44 − 82k2ℓ24 + 7)− 2ℓ23(k
4ℓ44 − 6k2ℓ24 + 1) + 6ℓ24)− 5

)
cos 2(

√
3− 1)ka

+ (k2ℓ23 − 1)4
(
(k2ℓ24 + 1)2 cos 2(

√
3− 5)ka+ 8(k4ℓ44 − 1) sin 2ka sin 2(

√
3− 3)ka

)
+ 256k8ℓ4ℓ

7
3(k

2ℓ24 + 1)

+ 32k4ℓ33(k
2ℓ24 − 1)(k2ℓ23 − 1)2

(
3ℓ3(k

2ℓ24 − 1) cos(
√
3− 1)ka− 4ℓ4 cos(

√
3− 3)ka

)
+ 66k8ℓ83(k

2ℓ24 + 1)2

− 8(k2ℓ23 − 1)
(
9k10ℓ44ℓ

6
3 + k8ℓ34ℓ

4
3(7ℓ4 + 32s)− k6ℓ23(ℓ

4
4 + 32ℓ4ℓ

3
3 + 9ℓ43) + k4(ℓ44 − 7ℓ43) + k2ℓ23 − 1

)
cos 2ka

− 128k4ℓ33(k
2ℓ24 − 1)(k2ℓ23 − 1)

(
3k2ℓ4ℓ

2
3 + k2ℓ33 + ℓ24(k

4ℓ33 + k2ℓ3) + ℓ4 + ℓ3

)
cos(

√
3 + 1)ka+ 1504k8ℓ24ℓ

6
3

+ 8(k2ℓ24 − 1)2
(
6k8ℓ83 − 7k6ℓ63 + 3k4ℓ43 − k2ℓ23 − 1

)
cos 4ka− 2(k2ℓ24 + 1)2(−3k4ℓ43 + 2k2ℓ23 + 1)2 cos 8ka

+ 4(k4ℓ44 − 1)(k2ℓ23 − 1)3(3k2ℓ23 + 1) cos 2
√
3ka− 4(k4ℓ44 − 1)(k2ℓ23 − 1)(3k2ℓ23 + 1)3 cos 2(

√
3 + 2)ka

− 4(k2ℓ24 − 1)2(k2ℓ23 − 1)(3k2ℓ23 + 1)2 cos 2(
√
3 + 1)ka+ (k2ℓ24 + 1)2(3k2ℓ23 + 1)4 cos 2(

√
3 + 3)ka

− 4(k2ℓ24 − 1)2(k2ℓ23 − 1)3 cos 2(
√
3− 3)ka− 8(k4ℓ44 − 1)(k2ℓ23 − 1)2

(
3k4ℓ43 + 4k2ℓ23 + 1

)
cos 6ka

+ 16k4ℓ33(3k
2ℓ23 + 1)

(
(12k2ℓ23 + 4)(k2ℓ34 + ℓ4) + (k2ℓ33 + 3ℓ3)(k

4ℓ44 + 6k2ℓ24 + 1)
)
cos(

√
3 + 3)ka

− 16k4ℓ33(k
2ℓ23 − 1)2

(
ℓ4(k

2ℓ4(ℓ4(k
2ℓ4ℓ3 + 4) + 6s) + 4) + s

)
cos(

√
3− 5)ka.
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g(k) = 4k2ℓ23 ×

[
2k2

(
k2(−ℓ44(k

2ℓ23 − 1)(3k2ℓ23 + 1)2 + 9k2ℓ63 − 3ℓ43)− 5ℓ23

)
cos(

√
3 + 5)ka (B.2)

+ 4k2
(
k2(ℓ44(k

2ℓ23 − 1)3 − k2ℓ63 + 3ℓ43)− 3ℓ23

)
cos 2(

√
3− 2)ka− 2(k2ℓ24 − 1)2(k6ℓ63 + 5k4ℓ43 − 5k2ℓ23 − 1) cos 4ka

− 4k2
(
k2(ℓ44(k

2ℓ23 − 1)2(3k2ℓ23 + 1)− 3k2ℓ63 + 5ℓ43)− ℓ23

)
cos 2

√
3ka− 8k2ℓ23(k

2ℓ24 − 1)2(k2ℓ23 − 1)2 cos(
√
3− 1)ka

+ 2k2
(
k2(ℓ44(k

2ℓ23 − 1)3 − k2ℓ63 + 3ℓ43)− 3ℓ23

)
cos(

√
3− 7)ka− 8(k4ℓ44 − 1)(3k6ℓ63 + k4ℓ43 − 3k2ℓ23 − 1) cos 2ka

+ 2k2
(
ℓ23(13k

4ℓ43 + 9k2ℓ23 + 7) + k2ℓ44(13k
6ℓ63 + 9k4ℓ43 + 7k2ℓ23 + 3)− 2ℓ24(k

6ℓ63 + 29k4ℓ43 + 3k2ℓ23 − 1)
)
+ 6

+ 2
(
−8 sin4 ka− k6ℓ63 − k4ℓ43 − k2ℓ24(k

2ℓ23 − 1)2(k2(ℓ24(k
2ℓ23 + 3)− 10ℓ23) + 2) + 5k2ℓ23

)
cos 2(

√
3− 1)ka

+ k2
(
−k2ℓ44 − 3k2ℓ43(k

2ℓ24 − 1)2 − 5ℓ23(k
2ℓ24 − 1)2 + 9k4ℓ63(k

2ℓ24 − 1)2 + 2ℓ24

)
cos 2(

√
3 + 1)ka

+ 4k2
(
k2(9k2ℓ63 + ℓ44(9k

6ℓ63 + 5k2ℓ23 + 2)− 2ℓ24ℓ
2
3(3k

4ℓ43 + 10k2ℓ23 + 3)) + 5ℓ23

)
cos(

√
3 + 3)ka

+ 4k2
(
k2(ℓ44(k

2ℓ23 − 2)(k2ℓ23 − 1)2 + 2ℓ24ℓ
2
3(k

2ℓ23 − 1)2 + k2ℓ63 − 4ℓ43) + 5ℓ23

)
cos(

√
3− 5)ka

− 2
(
16 sin4 ka+ k2ℓ23 + k6(ℓ44(5k

6ℓ63 + k4ℓ43 − k2ℓ23 − 5)− ℓ43(5k
2ℓ23 + 1))

)
cos(

√
3 + 1)ka

+ 2
(
16 sin4 ka− 7k2ℓ23 − k4(ℓ44(k

2ℓ23 − 1)2(3k2ℓ23 + 5)− 3k2ℓ63 + ℓ43)
)
cos(

√
3− 3)ka

+ k2
(
k2ℓ44(k

2ℓ23 − 1)3 − 2ℓ24(k
2ℓ23 − 1)3 + ℓ23(k

4ℓ43 − 3k2ℓ23 + 3)
)
cos 2(

√
3− 3)ka

]
.

h(k) = −16k4ℓ43

(
−(k2ℓ24 − 1)(k2ℓ23 − 1) cos 2ka+ k4ℓ24ℓ

2
3 + k2(ℓ24 − 4ℓ4ℓ3 + ℓ23) + 1

)2

. (B.3)

w(k) = 4k2ℓ23 ×

[
(k2ℓ23 − 1)2

(
2k2(ℓ24(k

2(ℓ24(k
2ℓ23 + 3)− 10ℓ23) + 2) + ℓ23) + 6

)
(B.4)

+ (k2ℓ23 − 1)2
(
(k2(ℓ24(k

2ℓ24 − 2)(k2ℓ23 − 1) + ℓ23)− 1) cos 2(
√
3− 3)ka− 32k2ℓ4ℓ3(k

2ℓ24 − 1) cos(
√
3− 3)ka

)
+ (k2ℓ23 − 1)

(
(k2ℓ24 − 1)2(3k2ℓ23 + 1)2 cos 2(

√
3 + 1)ka− 4(k4ℓ44 − 1)(3k4ℓ43 − 2k2ℓ23 − 1) cos 2

√
3ka

)
+ 4(k2ℓ23 − 1)2

(
(k2(ℓ23(k

4ℓ44 − 1)− k2ℓ44) + 1) cos 2(
√
3− 2)ka− 6k2ℓ23(k

2ℓ24 − 1)2 cos(
√
3− 1)ka

)
− 4k2ℓ3(3k

2ℓ23 + 1)
(
(k2ℓ33 + 3ℓ3)(k

4ℓ44 + 6k2ℓ24 + 1)− 4(k2ℓ34 + ℓ4)(1 + 3k2ℓ23)
)
cos(

√
3 + 3)ka

+ 32k2ℓ3(k
2ℓ24 − 1)(k2ℓ23 − 1)

(
−m(3k2ℓ23 + 1) + k2ℓ33 + ℓ24(k

4ℓ33 + k2ℓ3) + ℓ3

)
cos(

√
3 + 1)ka

+ (k2ℓ23 − 1)
(
8(k4ℓ44 − 1)(k4ℓ43 − 1) cos 2ka− 2(k2ℓ24 − 1)2(5k4ℓ43 + 2k2ℓ23 + 1) cos 4ka

)
− 2(k2ℓ23 − 1)2

(
3 + k2(ℓ24(k

2(ℓ23(k
2ℓ24 − 10) + 3ℓ24) + 2) + ℓ23)

)
cos 2(

√
3− 1)ka

+ 4k2ℓ3(k
2ℓ23 − 1)2

(
ℓ4(k

2ℓ4(ℓ4(k
2ℓ4ℓ3 − 4) + 6ℓ3)− 4) + s

)
cos(

√
3− 5)ka

]
.
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