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Abstract. We demonstrate the existence in the sense of sequences of solutions for some
integro-differential type problems in a square in two dimensions with periodic boundary
conditions containing the normal diffusion in one direction and the superdiffusion in the
other direction in a constrained subspace of H2 using the fixed point technique. The ellip-
tic equation involves a second order differential operator satisfying the Fredholm property.
It is established that, under the reasonable technical assumptions, the convergence in the
appropriate function spaces of the integral kernels yields the existence and convergence in
H2

0 of the solutions. We generalize the results obtained in our preceding work [14] for the
analogous equation considered in the whole R

2 which contained a non-Fredholm operator.
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1 Introduction

Let us recall that a linear operator L acting from a Banach space E into another Banach
space F satisfies the Fredholm property if its image is closed, the dimension of its kernel
and the codimension of its image are finite. Consequently, the equation Lu = f is solvable
if and only if φi(f) = 0 for a finite number of functionals φi from the dual space F ∗. These
properties of the Fredholm operators are broadly used in many methods of the linear and
nonlinear analysis.
The elliptic equations considered in bounded domains with a sufficiently smooth bound-
ary satisfy the Fredholm property if the ellipticity condition, the proper ellipticity and the
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Shapiro-Lopatinskii conditions are fulfilled (see e.g. [2], [9], [23], [27]). This is the main result
of the theory of linear elliptic problems. In the case of unbounded domains, these conditions
may not be sufficient and the Fredholm property may not be satisfied. For instance, the
Laplace operator, Lu = ∆u, in R

d fails to satisfy the Fredholm property when considered in
Hölder spaces, L : C2+α(Rd) → Cα(Rd), or in Sobolev spaces, L : H2(Rd) → L2(Rd).
For the linear elliptic equations in the unbounded domains the Fredholm property is sat-
isfied if and only if, in addition to the conditions mentioned above, the limiting operators
are invertible (see [28]). In certain trivial cases, the limiting operators can be constructed
explicitly. For example, if

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R,

where the coefficients of the operator have limits at infinity,

a± = lim
x→±∞

a(x), b± = lim
x→±∞

b(x), c± = lim
x→±∞

c(x),

the limiting operators are:

L±u = a±u
′′ + b±u

′ + c±u.

Because the coefficients are constants, the essential spectrum of the operator, that is the set
of complex numbers λ for which the operator L−λ does not possess the Fredholm property,
can be found explicitly using the standard Fourier transform, so that:

λ±(ξ) = −a±ξ
2 + b±iξ + c±, ξ ∈ R.

The limiting operators are invertible if and only if the origin does not belong to the essential
spectrum.
For the general elliptic problems, the analogical assertions hold true. The Fredholm property
is satisfied if the essential spectrum does not contain the origin or when the limiting operators
are invertible. However, these conditions may not be written explicitly.
For the non-Fredholm operators the usual solvability conditions may not be applicable and
in a general case the solvability relations are unknown. However, there are certain classes of
operators for which the solvability conditions were obtained recently. Let us illustrate them
with the following example. Consider the equation

Lu ≡ ∆u+ au = f (1.1)

in R
d, d ∈ N, where a is a positive constant. The operator L here coincides with its limiting

operators. The corresponding homogeneous problem has a nonzero bounded solution, so that
the Fredholm property is not satisfied. However, since the operator contained in (1.1) has
the constant coefficients, we can apply the standard Fourier transform to find the solution
explicitly. The solvability relations can be formulated as follows. If f(x) ∈ L2(Rd) and
xf(x) ∈ L1(Rd), then there exists a unique solution of this equation in H2(Rd) if and only if

(

f(x),
eipx

(2π)
d

2

)

L2(Rd)

= 0, p ∈ Sd√
a a.e.
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(see Lemmas 5 and 6 of [36]). Here Sd√
a
denotes the sphere in R

d of radius
√
a centered

at the origin. Hence, although the Fredholm property is not satisfied for the operator, the
solvability relations are formulated similarly. Evidently, this similarity is only formal because
the range of the operator is not closed.
In the situation of the operator with a potential,

Lu ≡ ∆u+ a(x)u = f,

the standard Fourier transform is not directly applicable. Nevertheless, the solvability con-
ditions in R

3 can be obtained by a rather sophisticated application of the theory of the
self-adjoint Schrödinger type operators (see [32]). As in the constant coefficient case, the
solvability relations are expressed in terms of the orthogonality to the solutions of the adjoint
homogeneous equation. There are several other examples of linear elliptic non-Fredholm op-
erators for which the solvability conditions can be derived (see [13], [15], [28], [29], [30],
[31], [34], [35], [36]).
Solvability conditions play a significant role in the analysis of the nonlinear elliptic equations.
In the case of the operators without the Fredholm property involved, in spite of the certain
progress in the understanding of the linear problems, there exist only few examples where the
nonlinear non- Fredholm operators are analyzed (see [7], [8], [12], [14], [15], [16], [17], [33],
[36], [37], [38], [39]). Fredholm structures, topological invariants and their applications were
discussed in [9]. The work [10] deals with the finite and infinite dimensional attractors for
evolution equations of mathematical physics. The large time behavior of solutions of a class
of fourth-order parabolic equations defined on unbounded domains using the Kolmogorov
ε-entropy as a measure was investigated in [11]. The attractor for a nonlinear reaction-
diffusion system in an unbounded domain in R

3 was studied in [18]. The articles [19]
and [25] are important for the understanding of the Fredholm and properness properties
of quasilinear elliptic systems of second order and of operators of this kind on R

N . The
exponential decay and Fredholm properties in second-order quasilinear elliptic systems were
covered in [20]. Standing lattice solitons in the discrete NLS equation with saturation were
discussed in [1]. The present article is devoted to another class of stationary nonlinear
equations, for which the Fredholm property is satisfied:

∂2u

∂x2
1

−
√

− ∂2

∂x2
2

u+

∫

Ω

G(x− y)F (u(y), y)dy = 0 (1.2)

with x = (x1, x2) ∈ Ω, y = (y1, y2) ∈ Ω and the square Ω := [0, 2π]× [0, 2π] with the periodic
boundary conditions imposed below. We generalize the results derived for the analogous
equation in the whole R

2 considered in [14]. Therefore, it contained the operator without
the Fredholm property. The novelty of the works of this kind is that in the diffusion term we
add the standard minus Laplacian in the x1 variable with the negative Laplace operator in x2

raised to a fractional power 0 < s < 1 and defined via the spectral calculus. As distinct from

the similar problem studied in [14], in the present work we restrict our attention to s =
1

2
.
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The models of this kind are new. They are not well understood, especially in the context of
the integro-differential equations. The difficulty we have to deal with is that such equation
becomes anisotropic and it is more technical to obtain the desired estimates when working
with it. In the population dynamics in the Mathematical Biology the integro-differential
equations describe the models with the intra-specific competition and nonlocal consumption
of resources (see e.g. [3], [4]). It is important to study the problems of this kind from the point
of view of the understanding of the spread of the viral infections, because many countries
have to deal with the pandemics. Let us use the explicit form of the solvability relations
and demonstrate the existence of solutions of our nonlinear problem. In the situation of the
standard Laplacian in the diffusion term, the equation analogical to (1.2) was studied in [33]
and [39] in the whole space and on a finite interval with the periodic boundary conditions.
The solvability of the integro-differential problems containing in the diffusion term only the
negative Laplace operator raised to a fractional power was actively discussed in recent years
in the context of the anomalous diffusion (see e.g. [17], [37], [38]). The anomalous diffusion
can be described as a random process of the particle motion characterized by the probability
density distribution of the jump length. The moments of this density distribution are finite
in the situation of the normal diffusion, but this is not the case for the anomalous diffusion.
The asymptotic behavior at the infinity of the probability density function determines the
value of the power of the Laplacian (see [24]). In [26] the authors consider the mixed local-
nonlocal semi-linear elliptic equations driven by the superposition of Brownian and Levy
processes and show the L∞ boundedness of any weak solution. The article [6] deals with a
new type of mixed local and nonlocal equation under the Neumann conditions. The spectral
properties associated to a weighted eigenvalue problem are discussed and a global bound for
subsolutions are presented.

2 Formulation of the results

For the nonlinear part of problem (1.2) the following regularity conditions will hold. Here
x = (x1, x2) ∈ Ω.

Assumption 2.1. Function F (u, x) : R × Ω → R is satisfying the Caratheodory condition
(see [22]), so that

|F (u, x)| ≤ k|u|+ h(x) for u ∈ R, x ∈ Ω (2.1)

with a constant k > 0 and h(x) : Ω → R
+, h(x) ∈ L2(Ω). Furthermore, it is a Lipschitz

continuous function, such that

|F (u1, x)− F (u2, x)| ≤ l|u1 − u2| for any u1,2 ∈ R, x ∈ Ω (2.2)

with a constant l > 0. Moreover,

F (u, 0, x2) = F (u, 2π, x2) for u ∈ R, 0 ≤ x2 ≤ 2π
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and
F (u, x1, 0) = F (u, x1, 2π) for u ∈ R, 0 ≤ x1 ≤ 2π.

The solvability of a local elliptic problem in a bounded domain in R
N was studied in [5],

where the nonlinear function was allowed to have a sublinear growth. In order to establish
the existence of solutions of (1.2), we will use the auxiliary equation

−∂2u

∂x2
1

+

√

− ∂2

∂x2
2

u =

∫

Ω

G(x− y)F (v(y), y)dy, (2.3)

where x = (x1, x2) ∈ Ω and y = (y1, y2) ∈ Ω. Let us denote

(f1(x1, x2), f2(x1, x2))L2(Ω) :=

∫ 2π

0

∫ 2π

0

f1(x1, x2)f̄2(x1, x2)dx1dx2. (2.4)

In the article we will work in the Sobolev space

H2(Ω) := {u(x1, x2) : Ω → R | u(x1, x2), ∆u(x1, x2) ∈ L2(Ω), u(0, x2) = u(2π, x2),

∂u

∂x1
(0, x2) =

∂u

∂x1
(2π, x2) for 0 ≤ x2 ≤ 2π,

u(x1, 0) = u(x1, 2π),
∂u

∂x2
(x1, 0) =

∂u

∂x2
(x1, 2π) for 0 ≤ x1 ≤ 2π}.

Here and below the cumulative Laplace operator ∆ :=
∂2

∂x2
1

+
∂2

∂x2
2

. We introduce the follow-

ing auxiliary constrained subspace

H2
0 (Ω) := {u(x1, x2) ∈ H2(Ω) | (u(x1, x2), 1)L2(Ω) = 0}. (2.5)

Clearly, (2.5) is a Hilbert space as well (see e.g. Chapter 2.1 of [21]). It is equipped with
the norm

‖u‖2H2

0
(Ω) := ‖u‖2L2(Ω) + ‖∆u‖2L2(Ω). (2.6)

Equation (2.3) contains the operator

Lr := − ∂2

∂x2
1

+

√

− ∂2

∂x2
2

: H2
0 (Ω) → L2(Ω). (2.7)

Its eigenvalues are
λr,n1,n2

:= n2
1 + |n2|, (n1, n2) ∈ Z× Z. (2.8)

The corresponding eigenfunctions are given by

ein1x1

√
2π

ein2x2

√
2π

, (n1, n2) ∈ Z× Z. (2.9)

5



Evidently, (2.7) is a Fredholm operator with a trivial kernel. In the present article we manage
to demonstrate that under the reasonable technical conditions equation (2.3) defines a map
Tr : H

2
0 (Ω) → H2

0 (Ω), which is a strict contraction.

Theorem 2.2. Let Assumption 2.1 hold, the function G(x1, x2) : Ω → R, so that G(0, x2) =
G(2π, x2) for 0 ≤ x2 ≤ 2π and G(x1, 0) = G(x1, 2π) for 0 ≤ x1 ≤ 2π. Moreover, G(x1, x2) ∈
C(Ω) and

∂G(x1, x2)

∂x2
∈ L1(Ω). Let us also assume that orthogonality relation (4.6) is valid

and that 2
√
2πNrl < 1.

Then the map Trv = u on H2
0 (Ω) defined by equation (2.3) has a unique fixed point vr, which

is the only solution of problem (1.2) in H2
0 (Ω).

This fixed point vr is nontrivial provided the Fourier coefficients Gn1,n2
F (0, x)n1,n2

6= 0 for
some (n1, n2) ∈ Z× Z.

Related to problem (1.2) in our square Ω, we consider the sequence of approximate equations
with m ∈ N

∂2um

∂x2
1

−
√

− ∂2

∂x2
2

um +

∫

Ω

Gm(x− y)F (um(y), y)dy = 0, (2.10)

where x = (x1, x2) ∈ Ω, y = (y1, y2) ∈ Ω. The sequence of kernels {Gm(x)}∞m=1 converges
to G(x) as m → ∞ in the function spaces specified below. Let us establish that, under the
appropriate technical assumptions, each of problems (2.10) admits a unique solution um(x) ∈
H2

0 (Ω), limiting equation (1.2) has a unique solution u(x) ∈ H2
0 (Ω), and um(x) → u(x) in

H2
0 (Ω) as m → ∞. This is the so-called existence of solutions in the sense of sequences. In

this situation, the solvability conditions can be formulated for the iterated kernels Gm. They
give the convergence of the kernels in terms of the Fourier transforms (see the Appendix)
and, consequently, the convergence of the solutions (Theorem 2.3 below). The analogous
ideas in the context of the standard Schrödinger type operators were used in [31]. Our
second main statement is as follows.

Theorem 2.3. Let Assumption 2.1 hold, m ∈ N, the functions Gm(x1, x2) : Ω → R are such
that Gm(0, x2) = Gm(2π, x2) for 0 ≤ x2 ≤ 2π and Gm(x1, 0) = Gm(x1, 2π) for 0 ≤ x1 ≤ 2π.
Furthermore,

Gm(x1, x2) ∈ C(Ω), Gm(x1, x2) → G(x1, x2) in C(Ω) as m → ∞.

Similarly,

∂Gm(x1, x2)

∂x2
∈ L1(Ω),

∂Gm(x1, x2)

∂x2
→ ∂G(x1, x2)

∂x2
in L1(Ω) as m → ∞.

Let us also suppose that for each m ∈ N orthogonality relation (4.9) holds. Finally, we
assume that (4.10) is valid for each m ∈ N with some fixed 0 < ε < 1.

Then each equation (2.10) possesses a unique solution um(x) ∈ H2
0 (Ω), limiting problem

(1.2) admits a unique solution u(x) ∈ H2
0 (Ω) and um(x) → u(x) in H2

0 (Ω) as m → ∞.
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The unique solution um(x) of each equation (2.10) is nontrivial provided the Fourier coeffi-
cients Gm,n1,n2

F (0, x)n1,n2
6= 0 for a certain pair (n1, n2) ∈ Z×Z. Similarly, the unique solu-

tion u(x) of limiting problem (1.2) does not vanish identically in Ω if Gn1,n2
F (0, x)n1,n2

6= 0
for some (n1, n2) ∈ Z× Z.

Remark 2.4. In the present work we deal with the real valued functions by means of the
conditions imposed on F (u, x1, x2), Gm(x1, x2) and G(x1, x2) contained in the nonlocal terms
of the approximate and limiting equations considered in the article.

Remark 2.5. The significance of Theorem 2.3 above is the continuous dependence of the
solution with respect to the integral kernel.

3 Proofs Of The Main Results

Proof of Theorem 2.2. First we suppose that for some v(x) ∈ H2
0 (Ω) there exist two solutions

u1,2(x) ∈ H2
0 (Ω) of equation (2.3). Then their difference w(x) := u1(x)−u2(x) ∈ H2

0 (Ω) will
solve the homogeneous problem

−∂2w

∂x2
1

+

√

− ∂2

∂x2
2

w = 0.

Since the operator Lr : H
2
0 (Ω) → L2(Ω) defined in (2.7) does not possess any nontrivial zero

modes, the function w(x) vanishes identically in Ω.
Let us choose arbitrarily v(x) ∈ H2

0 (Ω). We apply the Fourier transform (4.1) to both sides
of (2.3). This yields for (n1, n2) ∈ Z× Z that

un1,n2
= 2π

Gn1,n2
fn1,n2

n2
1 + |n2|

, (n2
1 + n2

2)un1,n2
= 2π

(n2
1 + n2

2)Gn1,n2
fn1,n2

n2
1 + |n2|

, (3.1)

where fn1,n2
:= F (v(x), x)n1,n2

. Obviously, we have the upper bounds

|un1,n2
| ≤ 2πNr|fn1,n2

|, |(n2
1 + n2

2)un1,n2
| ≤ 2πNr|fn1,n2

|, (n1, n2) ∈ Z× Z.

We have Nr < ∞ by virtue of the result of Lemma 4.1 of the Appendix under the stated
assumptions. This allows us to derive the estimate from above on the norm

‖u‖2H2

0
(Ω) =

=
∑

(n1,n2)∈Z×Z

|un1,n2
|2 +

∑

(n1,n2)∈Z×Z

|(n2
1 + n2

2)un1,n2
|2 ≤ 8π2N 2

r ‖F (v(x), x)‖2L2(Ω). (3.2)

The right side of (3.2) is finite by means of inequality (2.1) of Assumption 2.1 since v(x) ∈
L2(Ω). Hence, for an arbitrary v(x) ∈ H2

0 (Ω) there exists a unique solution u(x) ∈ H2
0 (Ω) of
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equation (2.3), so that its Fourier image is given by (3.1). Therefore, the map Tr : H
2
0 (Ω) →

H2
0 (Ω) is well defined. This enables us to choose arbitrarily the functions v1,2(x) ∈ H2

0 (Ω),
so that their images u1,2 := Trv1,2 ∈ H2

0 (Ω). Evidently, (2.3) gives us

−∂2u1

∂x2
1

+

√

− ∂2

∂x2
2

u1 =

∫

Ω

G(x− y)F (v1(y), y)dy, (3.3)

−∂2u2

∂x2
1

+

√

− ∂2

∂x2
2

u2 =

∫

Ω

G(x− y)F (v2(y), y)dy. (3.4)

We apply the Fourier transform (4.1) to both sides of the equations of system (3.3), (3.4)
above, which yields

u1,n1,n2
= 2π

Gn1,n2
f1,n1,n2

n2
1 + |n2|

, u2,n1,n2
= 2π

Gn1,n2
f2,n1,n2

n2
1 + |n2|

, (n1, n2) ∈ Z× Z. (3.5)

Here f1,n1,n2
and f2,n1,n2

denote the images of F (v1(x), x) and F (v2(x), x) respectively under
transform (4.1). Using (3.5), we obtain the estimates from above

|u1,n1,n2
− u2,n1,n2

| ≤ 2πNr|f1,n1,n2
− f2,n1,n2

|,

|(n2
1 + n2

2)[u1,n1,n2
− u2,n1,n2

]| ≤ 2πNr|f1,n1,n2
− f2,n1,n2

|.
Thus,

‖u1 − u2‖2H2

0
(Ω) =

∑

(n1,n2)∈Z×Z

|u1,n1,n2
− u2,n1,n2

|2 +
∑

(n1,n2)∈Z×Z

|(n2
1 + n2

2)[u1,n1,n2
− u2,n1,n2

]|2 ≤

≤ 8π2N 2
r ‖F (v1(x), x)− F (v2(x), x)‖2L2(Ω).

By means of condition (2.2), we arrive at

‖Trv1 − Trv2‖H2

0
(Ω) ≤ 2

√
2πNrl‖v1 − v2‖H2

0
(Ω). (3.6)

The constant in the right side of (3.6) is less than one as assumed. Therefores, by virtue of the
Fixed Point Theorem, there exists a unique function vr ∈ H2

0 (Ω), so that Trvr = vr, which is
the only solution of equation (1.2) in H2

0 (Ω). Suppose vr(x) vanishes identically in Ω. This
will contradict to the given assumption that the Fourier coefficients Gn1,n2

F (0, x)n1,n2
6= 0

for a certain pair (n1, n2) ∈ Z× Z.

We turn our attention to establishing the solvability in the sense of sequences for our integro-
differential equation in Ω.

Proof of Theorem 2.3. By means of the result of Theorem 2.2 above, each equation (2.10)
admits a unique solution um(x) ∈ H2

0 (Ω), m ∈ N. Limiting problem (1.2) possesses a unique
solution u(x) ∈ H2

0 (Ω) by virtue of Lemma 4.2 below along with Theorem 2.2. We apply the
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Fourier transform (4.1) to both sides of (1.2) and (2.10). This gives us for (n1, n2) ∈ Z× Z

and m ∈ N

un1,n2
= 2π

Gn1,n2
fn1,n2

n2
1 + |n2|

, (n2
1 + n2

2)un1,n2
= 2π

(n2
1 + n2

2)Gn1,n2
fn1,n2

n2
1 + |n2|

, (3.7)

um,n1,n2
= 2π

Gm,n1,n2
fm,n1,n2

n2
1 + |n2|

, (n2
1 + n2

2)um,n1,n2
= 2π

(n2
1 + n2

2)Gm,n1,n2
fm,n1,n2

n2
1 + |n2|

. (3.8)

Here fn1,n2
and fm,n1,n2

denote the Fourier images of F (u(x), x) and F (um(x), x) respectively
under transform (4.1). Evidently,

|um,n1,n2
− un1,n2

| ≤ 2π

∥

∥

∥

∥

Gm,n1,n2

n2
1 + |n2|

− Gn1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

|fn1,n2
|+

+2π

∥

∥

∥

∥

Gm,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

|fm,n1,n2
− fn1,n2

|,

so that

‖um − u‖L2(Ω) ≤ 2π

∥

∥

∥

∥

Gm,n1,n2

n2
1 + |n2|

− Gn1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

‖F (u(x), x)‖L2(Ω)+

+2π

∥

∥

∥

∥

Gm,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

‖F (um(x), x)− F (u(x), x)‖L2(Ω).

Let us recall inequality (2.2) of Assumption 2.1. Thus,

‖F (um(x), x)− F (u(x), x)‖L2(Ω) ≤ l‖um(x)− u(x)‖L2(Ω). (3.9)

Hence, we obtain

‖um(x)− u(x)‖L2(Ω)

{

1− 2π

∥

∥

∥

∥

Gm,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

l

}

≤

≤ 2π

∥

∥

∥

∥

Gm,n1,n2

n2
1 + |n2|

− Gn1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

‖F (u(x), x)‖L2(Ω).

By virtue of (4.8) and (4.10), we have

‖um(x)− u(x)‖L2(Ω) ≤
2π

ε

∥

∥

∥

∥

Gm,n1,n2

n2
1 + |n2|

− Gn1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

‖F (u(x), x)‖L2(Ω).

Let us recall upper bound (2.1) of Assumption 2.1. Thus, F (u(x), x) ∈ L2(Ω) for u(x) ∈
L2(Ω). Therefore, under the stated assumptions

um(x) → u(x), m → ∞ (3.10)

in L2(Ω) by means of the result of Lemma 4.2 of the Appendix. Using (3.7) and (3.8), we
derive

|(n2
1 + n2

2)um,n1,n2
− (n2

1 + n2
2)un1,n2

| ≤ 2π

∥

∥

∥

∥

(n2
1 + n2

2)Gm,n1,n2

n2
1 + |n2|

− (n2
1 + n2

2)Gn1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

|fn1,n2
|+

9



+2π

∥

∥

∥

∥

(n2
1 + n2

2)Gm,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

|fm,n1,n2
− fn1,n2

|.

Hence,

‖∆um(x)−∆u(x)‖L2(Ω) ≤ 2π

∥

∥

∥

∥

(n2
1 + n2

2)Gm,n1,n2

n2
1 + |n2|

− (n2
1 + n2

2)Gn1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

‖F (u(x), x)‖L2(Ω)+

+2π

∥

∥

∥

∥

(n2
1 + n2

2)Gm,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

‖F (um(x), x)− F (u(x), x)‖L2(Ω).

Upper bound (3.9) allows us to obtain the inequality

‖∆um(x)−∆u(x)‖L2(R2) ≤ 2π

∥

∥

∥

∥

(n2
1 + n2

2)Gm,n1,n2

n2
1 + |n2|

− (n2
1 + n2

2)Gn1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

‖F (u(x), x)‖L2(Ω)+

+2π

∥

∥

∥

∥

(n2
1 + n2

2)Gm,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

l‖um(x)− u(x)‖L2(Ω).

By virtue of the result of Lemma 4.2 of the Appendix along with (3.10), we arrive at
∆um(x) → ∆u(x) in L2(Ω) as m → ∞. Definition (2.6) of the norm implies that um(x) →
u(x) in H2

0 (Ω) as m → ∞.
Let us suppose the solution um(x) of equation (2.10) considered above vanishes identically in
Ω for some m ∈ N. This will contradict to the stated assumption that the Fourier coefficients
Gm,n1,n2

F (0, x)n1,n2
6= 0 for a certain pair (n1, n2) ∈ Z × Z. The similar reasoning holds for

the solution u(x) of limiting problem (1.2).

4 Appendix

Let the function G(x1, x2) : Ω → R, so that G(0, x2) = G(2π, x2) for 0 ≤ x2 ≤ 2π and
G(x1, 0) = G(x1, 2π) for 0 ≤ x1 ≤ 2π. Its Fourier transform on our square is given by

Gn1,n2
:=

∫ 2π

0

∫ 2π

0

G(x1, x2)
e−in1x1

√
2π

e−in2x2

√
2π

dx1dx2, (n1, n2) ∈ Z× Z, (4.1)

so that

G(x1, x2) =
∑

(n1,n2)∈Z×Z

Gn1,n2

ein1x1

√
2π

ein2x2

√
2π

, (x1, x2) ∈ Ω.

Evidently, the estimate

‖Gn1,n2
‖l∞ ≤ 1

2π
‖G(x1, x2)‖L1(Ω) (4.2)

holds, where ‖Gn1,n2
‖l∞ := sup(n1,n2)∈Z×Z|Gn1,n2

|. Clearly, (4.2) implies that

‖n2Gn1,n2
‖l∞ ≤ 1

2π

∥

∥

∥

∂G(x1, x2)

∂x2

∥

∥

∥

L1(Ω)
. (4.3)

10



Moreover, for a function continuous in Ω, we have

‖G(x1, x2)‖L1(Ω) ≤ ‖G(x1, x2)‖C(Ω)(2π)
2, (4.4)

where ‖G(x1, x2)‖C(Ω) := max(x1,x2)∈Ω|G(x1, x2)|. For the technical purposes we define the
following auxiliary expression

Nr := max

{
∥

∥

∥

∥

Gn1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

,

∥

∥

∥

∥

(n2
1 + n2

2)Gn1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

}

. (4.5)

Lemma 4.1. Let the function G(x1, x2) : Ω → R, such that G(0, x2) = G(2π, x2) for
0 ≤ x2 ≤ 2π and G(x1, 0) = G(x1, 2π) for 0 ≤ x1 ≤ 2π. Furthermore, G(x1, x2) ∈ C(Ω) and
∂G(x1, x2)

∂x2
∈ L1(Ω). Then Nr < ∞ if and only if the orthogonality condition

(G(x1, x2), 1)L2(Ω) = 0 (4.6)

holds.

Proof. First of all, it can be easily verified that under the given conditions
(n2

1 + n2
2)Gn1,n2

n2
1 + |n2|

is bounded. Indeed, using (4.2) along with (4.4), we obtain that

∣

∣

∣

n2
1Gn1,n2

n2
1 + |n2|

∣

∣

∣
≤ ‖Gn1,n2

‖l∞ ≤ 2π‖G(x1, x2)‖C(Ω) < ∞

as assumed. By means of (4.3) and the one of our assumptions,

∣

∣

∣

n2
2Gn1,n2

n2
1 + |n2|

∣

∣

∣
≤ ‖n2Gn1,n2

‖l∞ ≤ 1

2π

∥

∥

∥

∂G(x1, x2)

∂x2

∥

∥

∥

L1(Ω)
< ∞.

Hence,
(n2

1 + n2
2)Gn1,n2

n2
1 + |n2|

∈ l∞

holds. Let us express

Gn1,n2

n2
1 + |n2|

=
Gn1,n2

n2
1 + |n2|

χ{(n1,n2)∈Z×Z | n1=n2=0} +
Gn1,n2

n2
1 + |n2|

χ{(n1,n2)∈Z×Z | n1=n2=0}c . (4.7)

Here and below χA will denote the characteristic function of a set A ⊆ Z × Z and Ac will
stand for the complement of A. Evidently, the second term in the right side of (4.7) can be
bounded from above in the absolute value by virtue of (4.2) and (4.4) by

|Gn1,n2
| ≤ 2π‖G(x1, x2)‖C(Ω) < ∞

as assumed. Clearly, the first term in the right side of (4.7) is bounded if and only if G0,0 = 0.
This is equivalent to orthogonality condition (4.6).
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Note that the argument of the lemma above relies only on a single orthogonality relation, as
distinct from the analogous situation in the whole R

2 discussed in [14].

In order to study equations (2.10), we introduce the auxiliary quantities

N (m)
r := max

{
∥

∥

∥

∥

Gm,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

,

∥

∥

∥

∥

(n2
1 + n2

2)Gm,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

}

, m ∈ N. (4.8)

Our final proposition is as follows.

Lemma 4.2. Let m ∈ N, the functions Gm(x1, x2) : Ω → R, so that Gm(0, x2) = Gm(2π, x2)
for 0 ≤ x2 ≤ 2π and Gm(x1, 0) = Gm(x1, 2π) for 0 ≤ x1 ≤ 2π. Moreover,

Gm(x1, x2) ∈ C(Ω), Gm(x1, x2) → G(x1, x2) in C(Ω) as m → ∞.

Similarly,

∂Gm(x1, x2)

∂x2
∈ L1(Ω),

∂Gm(x1, x2)

∂x2
→ ∂G(x1, x2)

∂x2
in L1(Ω) as m → ∞.

Let us also assume that for each m ∈ N

(Gm(x1, x2), 1)L2(Ω) = 0 (4.9)

is valid. Finally, we suppose that

2
√
2πN (m)

r l ≤ 1− ε (4.10)

holds for each m ∈ N with a certain fixed 0 < ε < 1.

Then
Gm,n1,n2

n2
1 + |n2|

→ Gn1,n2

n2
1 + |n2|

, m → ∞, (4.11)

(n2
1 + n2

2)Gm,n1,n2

n2
1 + |n2|

→ (n2
1 + n2

2)Gn1,n2

n2
1 + |n2|

, m → ∞ (4.12)

in l∞, so that
∥

∥

∥

∥

Gm,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

→
∥

∥

∥

∥

Gn1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

, m → ∞, (4.13)

∥

∥

∥

∥

(n2
1 + n2

2)Gm,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

→
∥

∥

∥

∥

(n2
1 + n2

2)Gn1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

, m → ∞. (4.14)

Furthermore,
2
√
2πNrl ≤ 1− ε (4.15)

is valid.
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Proof. Clearly, under the given conditions N (m)
r < ∞, m ∈ N by means of the result of

Lemma 4.1 above.
It can trivially checked that the limiting kernel is a periodic function as well. Indeed, for
0 ≤ x2 ≤ 2π, we have

|G(0, x2)−G(2π, x2)| ≤ |Gm(0, x2)−G(0, x2)|+ |Gm(2π, x2)−G(2π, x2)| ≤

≤ 2‖Gm(x1, x2)−G(x1, x2)‖C(Ω) → 0, m → ∞
via our assumptions, so that

G(0, x2) = G(2π, x2) for 0 ≤ x2 ≤ 2π.

Similarly, for 0 ≤ x1 ≤ 2π

|G(x1, 0)−G(x1, 2π)| ≤ |Gm(x1, 0)−G(x1, 0)|+ |Gm(x1, 2π)−G(x1, 2π)| ≤

≤ 2‖Gm(x1, x2)−G(x1, x2)‖C(Ω) → 0, m → ∞
as assumed, such that

G(x1, 0) = G(x1, 2π) for 0 ≤ x1 ≤ 2π.

Let us verify that the limiting orthogonality condition

(G(x1, x2), 1)L2(Ω) = 0 (4.16)

holds. Using (4.9), we obtain

|(G(x1, x2), 1)L2(Ω)| = |(G(x1, x2)−Gm(x1, x2), 1)L2(Ω)| ≤

≤ ‖Gm(x1, x2)−G(x1, x2)‖C(Ω)(2π)
2 → 0, m → ∞

due to the one of our assumptions, so that (4.16) is valid.
Therefore, by virtue of Lemma 4.1, we have Nr < ∞.
Orthogonality relations (4.16) and (4.9) along with the definition of the Fourier transform
(4.1) imply that

G0,0 = 0, Gm,0,0 = 0, m ∈ N.

Then by means of inequalities (4.2) and (4.4), we derive

∥

∥

∥

∥

Gm,n1,n2

n2
1 + |n2|

− Gn1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

≤ 2π‖Gm(x1, x2)−G(x1, x2)‖C(Ω) → 0, m → ∞

as assumed. Hence, (4.11) holds. Obviously, (4.13) easily follows from (4.11) via the standard
triangle inequality.
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Evidently, we can estimate
∣

∣

∣

∣

(n2
1 + n2

2)Gm,n1,n2

n2
1 + |n2|

− (n2
1 + n2

2)Gn1,n2

n2
1 + |n2|

∣

∣

∣

∣

≤ ‖Gm,n1,n2
−Gn1,n2

‖l∞ + ‖n2[Gm,n1,n2
−Gn1,n2

]‖l∞ .

Let us use formulas (4.2), (4.3) and (4.4). This enables us to obtain the upper bound
∥

∥

∥

∥

(n2
1 + n2

2)Gm,n1,n2

n2
1 + |n2|

− (n2
1 + n2

2)Gn1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

≤ 2π‖Gm(x1, x2)−G(x1, x2)‖C(Ω)+

+
1

2π

∥

∥

∥

∥

∂Gm(x1, x2)

∂x2

− ∂G(x1, x2)

∂x2

∥

∥

∥

∥

L1(Ω)

→ 0, m → ∞

according to the given conditions. Thus, (4.12) is valid. We use the standard triangle
inequality to demonstrate that (4.14) is an immediate consequence of (4.12).
A trivial limiting argument using (4.8), (4.10), (4.13) and (4.14) gives us (4.15).

Remark 4.3. The existence in the sense of sequences of the solutions of problem (1.2)
containing the drift term will be addressed in our consecutive work.
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Travaux et Recherches Mathèmatiques, vol. 1, 17th edn., Dunod, Paris (1968),
372 pp.

[24] R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: a
fractional dynamics approach, Phys. Rep., 339 (2000), 1–77.

[25] P.J. Rabier, C.A. Stuart. Fredholm and properness properties of quasilinear
elliptic operators on R

N , Math. Nachr., 231 (2001), 129–168.

[26] X. Su, E. Valdinoci, Y. Wei, J. Zhang. Regularity results for solutions of mixed
local and nonlocal elliptic equations, Math. Z., 302 (2022), no. 3, 1855–1878.

[27] L.R. Volevich. Solubility of boundary value problems for general elliptic systems.
(Russian) Mat. Sb. (N.S.), 68 (110) (1965), 373–416.

[28] V. Volpert. Elliptic partial differential equations. Volume 1: Fredholm theory
of elliptic problems in unbounded domains. Monographs in mathematics, 101.
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