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Abstract. We construct periodic and quasiperiodic solutions for the nonlinear plate equation
on the unit sphere in R3. Periodic solutions for the nonlinear wave equation are constructed as
well. The methods do not involve small parameters. In the case of a cubic nonlinear term, our
approach is computer-assisted and thus yields detailed information about each solution. For
nonlinearities that are in some sense close to linear, weak solutions are obtained by a variational
method.

1. Introduction and main results

We consider the wave equation (ν = 1) and plate equation (ν = 2)

∂2
τv + (−∆S)

νv = f(v) , (1.1)

for a function v = v(x, τ) on the product S×R of the sphere S =
{
x ∈ R3 : |x| = 1

}
with

the real line. Here, ∆S denotes the Laplacean on S, and f is a nonlinear function on R. In
this paper we focus on solutions that are periodic or quasiperiodic in time τ .

We parameterize the sphere via Euler angles ϑ ∈ [0, π] and ϕ ∈ [−π, π], writing
v = v(ϑ, ϕ, τ). The corresponding point on the sphere is x = (sinϑ cosϕ, sinϑ sinϕ, cosϑ).

Stationary solutions of the equation (1.1) are of the from v(ϑ, ϕ, τ) = u(ϑ, ϕ), for some
function u on the sphere that satisfies

Lu = f(u) , L = (−∆S)
ν . (1.2)

The first three plots in Figure 1 depict solutions of this equation, with ν = 1 and f(u) = u3.
Our plots use the sinusoidal projection, also known as Mercator equal-area projection. The
coordinates used are ξ = ϕ sinϑ horizontally and η = π/2− ϑ vertically. The value of u is
indicated by colors and contour lines.

Some of the properties of these stationary solutions will be described below. For
results on semilinear equations −∆u = f(u) on planar domains we refer to [25,30] and
references therein.

To find time-periodic solutions with period T > 0, we change variables to t = βτ ,
with β = 2π/T , and consider functions that are 2π-periodic in t. In the simplest case,
which we refer to as “periodic rotating waves”, we have v(ϑ, ϕ, τ) = u(ϑ, ϕ+ βτ) for some
function u on the sphere. The equation for u = u(ϑ, ϕ) is

Lu = f(u) , L = β2∂2
ϕ + (−∆S)

ν . (1.3)

The last plot in Figure 1 shows a solutions of this equation, with ν = 2 and β = 8
7 . Some

of its properties will be described below. The solutions in Figure 1 will be referred to
as solutions 1,2,3, and 4. Here, and in what follows, we assume that f(u) = u3, unless
specified otherwise.
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Figure 1. Solutions 1,2,3 of equation (1.2) and Solution 4 of equation (1.3).

For more general periodic solutions we make the ansatz v(ϑ, ϕ, τ) = u(ϑ, ϕ, ατ), where
u is a function on S×T, with T = R/(2πZ). The resulting equation for u = u(ϑ, ϕ, t) can
be written as

Lu = f(u) , L = α2∂2
t + (−∆S)

ν . (1.4)

Three solutions of this equation, referred to as solutions 5,6, and 7, are depicted in Figure
2. The corresponding values of ν and α are listed in Table 1. To be more precise, we
only plot their values at time t = 0, since these solutions are close to (but different from)
functions of the form (x, t) 7→ X(x)T (t). Additional data are given in Section 7. The
solution numbers in Figure 2 and subsequent figures are links to short animations of the
corresponding solutions.

Figure 2. Solutions 5,6,7 of equation (1.4) at time t = 0.

One of our goals is to prove the existence of these periodic solutions. (Quasiperiodic
solutions will be considered below.) Starting from an approximate numerical solution ū,
we show that there exists a true solution u nearby. This is done with the aid of a computer.
Similar techniques have been used in [20,22] for the nonlinear wave and beam equations
on an interval. Computer-assisted proofs for the existence of periodic solutions of some
other evolution-type PDEs are given e.g. in [19,21,27,28].

The existence of periodic solutions for some nonlinear parabolic equations can be
proved also by KAM type methods (for small amplitudes) or variational methods. For spe-
cific results we refer to [14,15,16,17,18,24,26] or [2,3,4,5,6,7,8,9,10,11,12,13,16], respectively,
and references therein.

In what follows, α is assumed to be a positive rational number. We consider solutions
u in a space Bk of real analytic functions, imposing certain symmetries which guarantee
that L has a bounded inverse on Bk. The symmetries considered are of the following type.

Definition 1. We say that u : S×T→ C has even time-parity, if u ◦R = u for the time
reflection R : (ϑ, ϕ, t) 7→ (ϑ, ϕ,−t). We say that u has even mixed-parity, if u ◦R′ = u for
the mixed reflection R′ : (ϑ, ϕ, t) 7→ (ϑ,−ϕ,−t). We say that u has even frequency-parity,
if u◦R′′ = u for the time-translation R′′ : (ϑ, ϕ, t) 7→ (ϑ, ϕ, t+π). Odd parities are defined
analogously. Furthermore, if k is a positive integer, we say that u is k-antisymmetric, if
u ◦Rk = −u for the rotation Rk : (ϑ, ϕ, t) 7→ (ϑ, ϕ+ π/k, t).

https://web.ma.utexas.edu/users/koch/papers/spheric/anim/5.mp4
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/6.mp4
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/7.mp4
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We will restrict to nonlinearities f that are odd. Then u 7→ f(u) preserves time-parity,
mixed-parity, frequency-parity, and k-antisymmetry.

For quasiperiodic solutions of (1.1), we make the ansatz v(ϑ, ϕ, τ) = w(ϑ, ϕ, τω), where
w = w(ϑ, ϕ, y) is a function on S × T2, and where ω = (β, α) with β > 0 an irrational
number. To simplify the analysis, we restrict to solutions that represent rotating waves,
meaning that w(ϑ, ϕ, (s, t)) = u(ϑ, ϕ + s, t), for some function u on S × T. The equation
(1.1) reduces to

Lu = f(u) , L = (α∂t + β∂ϕ)2 + (−∆S)
ν . (1.5)

Notice that this equation is not invariant under time-reflection. Thus, in the quasiperiodic
case, we only allow “mixed” as a possible parity.

We consider quasiperiodic solutions only for the plate equation, meaning ν = 2. To
avoid excessively small denominators when inverting L, we restrict to irrationals β of
bounded type. In fact, unless stated otherwise, β = |i+ θj | for some integers i and j > 0,
where θj > 0 is defined by the equation θj = 1/(j + θj). Notice that θ1 is the inverse
golden mean.

Figure 3 depicts three solutions of the equation (1.5) for ν = 2. The corresponding
values of α and β are listed in rows 8,9, and 10 of Table 1. To save space, only the values
at time t = 0 are shown in Figure 3. But additional data are given Section 7.

Figure 3. Solutions 8,9,10 of equation (1.5) at time t = 0.

Finding nontrivial quasiperiodic solutions turned out to be quite difficult. Solution 8
was found by chance, and the others are the result of extensive random searches. Most
numerical solutions that we found were not accurate enough at a reasonable level of trun-
cation. A likely cause for this are near-resonances at high frequencies. A quasiperiodic
solution that seems particularly simple corresponds to row 11 of Table 1. Figure 4 shows
snapshots of this solution at times tj = πj/4 for j = 0, 1, . . . , 7.

Figure 4. Solution 11 of equation (1.5) at times tj = πj/4 for j = 0, 1, . . . , 7.

https://web.ma.utexas.edu/users/koch/papers/spheric/anim/8.mp4
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/9.mp4
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/10.mp4
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/11.mp4
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In Section 2 we will define a Banach algebra A of analytic functions u : S × T → C

that admit an expansion

u(ϑ, ϕ, t) =
∑
l,m,n

ul,m,nYml (ϑ, ϕ)eint , Yml (ϑ, ϕ) = Pml (ϑ)eimϕ , (1.6)

with exponentially decreasing coefficients ul,m,n. The sum in this equation ranges over all
integers l,m, n that satisfy |m| ≤ l. The functions Yml are, modulo constant factors, the
standard spherical harmonics, and the functions Pml are related to the associated Legendre
functions. Yml is an eigenfunction of the negative Laplacean −∆S with eigenvalue l(l+ 1).

The operator L is “diagonal” in the representation (1.6), with eigenvalues

λl,m,n = lν(l + 1)ν − (αn+ βm)2 , |m| ≤ l . (1.7)

In order to avoid zero eigenvalues, we restrict our analysis to k-antisymmetric functions,
as described in Definition 1. This is equivalent to the condition that ul,m,n = 0 unless
m ≡ k (mod 2k).

The space of real-valued functions in A is denoted by B. When no confusion can
arise, we use the same symbols for the spaces that describe functions on S only. This
corresponds to restricting the sum in (1.6) to n = 0. The equations (1.2), (1.3), and (1.4)
can be regarded as special cases of (1.5), if we set α and/or β equal to zero. In the same
sense, the equation (1.7) describes the eigenvalues of L in all cases considered here.

Convention 2. All periodic (quasiperiodic) solutions considered in this paper have even
time-parity (mixed-parity). And all non-stationary solutions have odd frequency-parity.
In addition, we restrict to functions u that are odd under mixed-reflection (time-reflection)
when considering quasiperiodic periodic (non-stationary periodic) solutions. The subspace
of B characterized by these parities will be denoted by B0. The space of k-antisymmetric
functions in B0 will be denoted by Bk.

label type ν α β k l ↔ norm

1 s 1 1 e e 3.0979 . . .
2 s 1 1 o e 7.5742 . . .
3 s 1 2 o e 12.433 . . .
4 r 2 8/7 3 e e 1.2606 . . .
5 p 2 3/5 1 e e 5.9524 . . .
6 p 1 17/5 1 e e 2.9935 . . .
7 p 1 17/5 2 o e 2.1303 . . .

8 q 2 2
(√

5− 1
)
/2 1 e 8.4941 . . .

9 q 2 2
√

2 1 e 22.955 . . .

10 q 2 3/2
√

2 1 e 16.275 . . .

11 q 2 1 2−
√

2 1 12.301 . . .

Table 1. Parameter values and properties of solutions.

The following theorem concerns the solutions depicted in Figures 1,2,3,4, that use the
parameter values listed in Table 1 and f(u) = u3. The label entries in this table links to
a plot or animation of the given solution.

https://web.ma.utexas.edu/users/koch/papers/spheric/anim/1.png
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/2.png
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/3.png
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/4.png
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/5.mp4
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/6.mp4
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/7.mp4
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/8.mp4
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/9.mp4
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/10.mp4
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/11.mp4
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Theorem 1.1. For each row in Table 1 there exists a real analytic solution w of the
equation (1.1) with the properties indicated in the given row. Column 3 specifies the
exponent ν in the equation (1.1). All solutions are k-antisymmetric, for the value of k that
is specified in column 6. Column 2 describes the type of solution: an entry “s” indicates
a stationary solution of the equation (1.1), given by a function u ∈ Bk satisfying (1.2); an
entry “r” indicates a non-stationary rotating periodic solution, given by a function u ∈ Bk
satisfying (1.3); an entry “p” indicates a non-stationary non-rotating periodic solution,
given by a function u ∈ Bk satisfying (1.4); and an entry “q” indicates a nonperiodic quasi-
periodic solution, given by a function u ∈ Bk satisfying (1.5). The values of α and/or β
are given in Columns 4 and/or 5, respectively. The periodic (quasiperiodic) solutions all
have even time-parity (mixed-parity), and all non-stationary solutions have odd frequency-
parity. Columns 7 and 8 describe additional reflection symmetries, if present. Column 7
indicates an even (e) or odd (o) parity with respect to north-south reflection ϑ 7→ π − ϑ.
Column 8 indicates an even (e) or odd (o) parity with respect to east-west reflection
ϕ 7→ −ϕ. A bound on the norm of u ∈ Bk is given in column 9, and bounds on the leading
coefficients in the (real version of) the expansion (1.6) are given in Section 7.

The nonlinearity f(u) = u3 has been chosen for its simplicity. What matters in our
approach is that f is odd and can be estimated well as a function on the Banach algebra B.
So f need not be a polynomial. It suffices for f : R→ R to be odd and extend analytically
to a complex disk |z| < r with sufficiently large radius r. In particular, Theorem 1.1
remains valid if f is a small perturbation of u 7→ u3 of type described above, with r larger
than the norm in column 9. See Remark 5.

A proof of Theorem 1.1 is given in Section 3. Starting from an approximate numerical
solution ū, we show that there exists a true solution u nearby. This is done with the aid
of a computer. As a by-product we obtain accurate estimates [31] for each solution. This
includes an explicit expression for ū, and a bound on the norm of u− ū which is typically
by a factor 10−12 smaller than the norm of ū. Here we take advantage of the fact that
L has a compact inverse on Bk. But the degree of compactness is relatively weak in the
non-periodic case. In fact, compactness is not necessary for this type of proof, but L−1

has to be small on the complement of an appropriate finite-dimensional subspace.
We note that the equation (1.1) is Hamiltonian. Most known results on quasiperiodic

solutions for such PDEs concern small amplitude solutions and are based on KAM type
methods; see e.g. [14,15,16,17,18,24,26] and references therein. Nontrivial solutions can be
obtained by a variational method as well. But the choice f(u) = u3 for the equations (1.4)
and (1.5) seems beyond the reach of existing techniques.

The following theorem is proved by using ideas developed in [3,11,16].
We say that a function f : R → R is near-linear, if f is increasing, has a weak

derivative f ′ ∈ L∞(R) that is bounded away from 0, and satisfies

f(0) = 0 , lim
t→0

f(t)

t
= b0 ,

f(x)

x
≤ b∞ , (1.8)

for some positive constants b∞ < b0 and |x| sufficiently large.

Theorem 1.2. Fix ν ∈ {1, 2}. Consider the equation (1.2), or (1.3) with β rational, or
(1.4) with α rational, or (1.5) with α rational and β an irrational number of bounded type.
Here α, β > 0. Choose k ≥ 1 and restrict to functions u that are k-antisymmetric. Consider
the set Λ of all eigenvalues λl,m,n of L that admit a k-antisymmetric eigenvector. Assume
that 0 6∈ Λ. (This holds for all choices described in Table 1.) Let λ be the smallest positive
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eigenvalue in Λ. Then for every odd function f that is near-linear, with b∞ < λ < b0, the
given equation has a nonzero solution u that belongs to the Sobolev space Hs for some
s > 1. (Specific bounds on s are given in Section 4.) For periodic solutions, s is sufficiently
large to guarantee that u is at least continuous.

For periodic rotating waves, and either ν = 2 or β < 1, the same results hold if β is
chosen irrational.

The remaining part of this paper is organized as follows. In Section 2 we define spaces
of analytic functions on S and S × T. Proofs of Theorem 1.1 and Theorem 1.2 are given
in Section 3 and Section 4, respectively. Section 5 is devoted to the linear operators L
and its eigenvalues. Our proof of Theorem 1.1 is based on estimates given in Lemma 3.2.
This lemma is proved with the aid of a computer, as described in Section 6. The full
details for this part, including the source text of our programs and data files, are given in
[31]. Section 7 contains bounds on the largest terms in the series (1.6) for the solutions
described in Theorem 1.1.

2. Analytic functions on the sphere

2.1. Spherical harmonics

The standard (L2 normalized) spherical harmonics Y ml and our un-normalized spherical
harmonics Yml are related to the Wigner matrices Dl and dl via the identity

Yml (ϑ, ϕ) =

√
4π

2l + 1
Y ml (ϑ, ϕ) = Dl

m,0(−ϕ, ϑ, 0) = Pml (ϑ)eimϕ , (2.1)

where Pml = dlm,0. Here, m and l are integers that satisfy |m| ≤ l. From the definition of
the Wigner d-matrix one readily sees that Pml is even, entire analytic, and takes real values
for real arguments. We note that Pml agrees up to a constant factor with ϑ 7→ Pml (cosϑ),
where Pml is the associated Legendre function.

The Wigner matrix Dl is a unitary matrix in an irreducible representation of the
rotation group SO(3) or its double cover SU(2). Decomposing a product representation
into irreducible representations yields the well-known product expansion

Pm1

l1
Pm2

l2
=
∑
l3

Γm1m2m3

l1 l2 l3
Pm3

l3
, Γm1m2m3

l1 l2 l3

def
= 〈l1m1 l2m2|l3m3〉〈l10 l20|l30〉 , (2.2)

where m3 = m1 + m2. The constants 〈l1m1 l2m2|l3m3〉 are known as Clebsch-Gordan
coefficients. They are zero unless |l1− l2| ≤ l3 ≤ l1 + l2. Furthermore, 〈l10 l20|l30〉 vanishes
unless l1 + l2 + l3 is even. And

∑
l3
|〈l1m1 l2m2|l3m3〉|2 = 1 by unitarity. Here, and in what

follows, we assume that |mj | ≤ lj for all j, and that m3 = m1 + m2. For the coefficients
Γm1m2m3

l1 l2 l3
, the Cauchy-Schwarz inequality yields

∑
l3

∣∣Γm1m2m3

l1 l2 l3

∣∣ ≤ (∑l3

∣∣〈l1m1 l2m2|l3m3〉
∣∣2)1/2(∑

l3

∣∣〈l10 l20|l30〉
∣∣2)1/2

= 1 . (2.3)
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2.2. Spaces of analytic functions

Consider functions u on the sphere S that admit an expansion

u =

∞∑
l=0

l∑
m=−l

ul,mYml . (2.4)

For real-valued functions on S we have ul,m ∈ C. This applies e.g. to solutions of the
equation (1.2) or (1.3). But when considering the equation (1.4) or (1.5) on S × T, the
coefficients ul,m are taken to be functions on T. In this case, setting ul,m(t) =

∑
n ul,m,ne

int

with ul,m,n ∈ C, we obtain the expansion (1.6).
To cover both cases, let C be a Banach algebra over C. Given a pair ρ = (ρL, ρM) of

real numbers ≥ 1, denote by Aρ(C) the vector space of all functions u : S→ C that admit
an expansion (2.4) with coefficients cl,m ∈ C, and that have a finite norm

‖u‖ρ =
∑
l,m

‖ul,m‖ρlLρmM . (2.5)

The sum in this equation is an abbreviation for the double sum in (2.4).
In what follows, when the choice of C does not matter, we write Aρ in place of Aρ(C).

Lemma 2.1. Aρ is a Banach algebra under pointwise multiplication, in the sense that
‖uv‖ρ ≤ ‖u‖ρ‖v‖ρ for every u, v ∈ Aρ. Furthermore, if u ∈ Aρ with ρL > 1, then
u = u(ϑ, ϕ) extends analytically to a complex open neighborhood of R2.

Proof. Consider first fixed integers m1, m2, and define m3 = m1 +m2. By (2.2) we have

Ym1

l1
Ym2

l2
=
∑
l3

Γm1m2m3

l1 l2 l3
Ym3

l3
, l1 ≥ |m1| , l2 ≥ |m2| . (2.6)

The coefficients Γm1m2m3

l1 l2 l3
vanish unless l3 ≤ l1 + l2 and |m3| ≤ |m1| + |m2|. Thus, using

(2.3), we have

‖Ym1

l1
Ym2

l2
‖ρ ≤

∑
l3

∣∣Γm1m2m3

l1 l2 l3

∣∣ρ|m3|
M ρl3L ≤ ρl1+l2

L ρ
|m1|+|m2|
M . (2.7)

Let now u and v be two functions in Aρ. To simplify notation, we define um,l = 0
and vm,l = 0 whenever l < |m|. By using the bound (2.7), we immediately get

‖uv‖ρ ≤
∑

m1,l1,m2,l2

‖um1,l1vm2,l2‖‖Y
m1

l1
Ym2

l2
‖ρ

≤
∑

m1,l1,m2,l2

‖um1,l1‖‖vm2,l2‖ρl1+l2
L ρ

|m1|+|m2|
M = ‖u‖ρ‖v‖ρ .

(2.8)

This shows that Aρ is a Banach algebra, as claimed.

As mentioned after (2.1), the functions Yml are analytic on all of C2. To obtain
explicit bounds, we can use that the Wigner matrix Dl defines a unitary representation of
SO(3) on Cn, with n = 2l + 1. In particular, the matrix element dlm,0 is an inner product

dlm,0(ϑ) =
〈
lm
∣∣e−iϑJ2

∣∣l0〉, where |l0〉 and |lm〉 are certain unit vectors in Cn, and where J2
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is a Hermitian n×n matrix with eigenvalues in {−l,−l+ 1, . . . , l−1, l}. This immediately
yields the bound ∣∣Yml (ϑ, ϕ)

∣∣ =
∣∣〈lm∣∣e−iϑJ2

∣∣l0〉eimϕ∣∣ ≤ e|l Imϑ|e|m Imϕ| , (2.9)

for all ϑ, ϕ ∈ C. Recall that |m| ≤ l. Thus, if u ∈ Aρ with ρL > 1, then the series (2.4) for
u converges uniformly on compact subsets of the domain | Imϑ|+ | Imϕ| < log ρL. Given
that each term is analytic in this domain, the same holds for u. QED

Let R be a Banach algebra over R of real-valued functions. Consider C = R + iR
equipped with the norm

‖x+ iy‖ = ‖x‖+ ‖y‖ , x, y ∈ R . (2.10)

Then C is a Banach algebra over C of complex-valued functions. Restricting to real-valued
functions in Aρ(C) yields a Banach algebra Bρ(R) of real-valued functions. Every function
u in this space admits a representation

u(ϑ, ϕ) =
∑
l≥0

al,0P0
l (ϑ) +

∑
m>0

∑
l≥m

Pml (ϑ)
[
al,mcm(ϕ) + bl,msm(ϕ)

]
, (2.11)

with al,m, bl,m ∈ R, where cm(ϕ) = cos(mϕ) and sm(ϕ) = sin(mϕ). Here, we have
restricted to nonnegative values of m by using the symmetry property

P−ml = (−1)mPml . (2.12)

A straightforward computation shows that the norm in Bρ(R) is given by

‖u‖ρ =
∑
l≥0

‖al,0‖ρlL +
∑
m>0

∑
l≥m

(
‖al,m‖+ ‖bl,m‖

)
ρlLρ

m
M . (2.13)

Notice that the real part Bρ(R) of the Banach algebra Aρ(C) is a Banach algebra as well.
Banach algebras of functions related to spherical harmonics have been used before in [25].

Convention 3. In what follows, we only consider ρM = 1 and write ρ in place of (ρ, 1).

For real analytic functions h : T→ R we use a space T% with norm

‖h‖% = |a0|+
∑
n>0

(
|an|+ |bn|

)
%n , h = a0 +

∑
n>0

[
ancn + bnsn

]
, (2.14)

where % > 1. Our solutions for (1.4) and (1.5) belong to Bρ(T%) for some ρ, % > 1.

Remark 4. The multiplication of two functions in Bρ reduces to a large number of
products of the form (2.6), and each such product involves a substantial number of Clebsch-
Gordan coefficients. Computing these coefficients (accurately) each time they are needed
is a prohibitive amount of work, so they have to be computed beforehand and stored.
This in turn creates a nontrivial storage problem. Fortunately, the set of Clebsch-Gordan
coefficients can be partitioned into a significantly smaller set of equivalence classes that
share the same value up to a sign. We will not explain these issues here but refer to [25]
for details and references.
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3. The fixed point equation
Here we reduce the proof of Theorem 1.1 to specific estimates. Throughout this section,
we consider a fixed but arbitrary row of Table 1. Let % = 33

32 and ρ = 65
64 .

The column entries in the chosen row specify the type of solution and the correspond-
ing parameters. For the equations (1.2) and (1.3) that describe stationary solutions and
periodic rotating waves, respectively, B = Bρ(R). For the equations (1.4) and (1.5) that
describe ordinary periodic and quasiperiodic solutions, respectively, B = Bρ(T%). The sub-
space Bk of B is defined by the chosen symmetries: the main symmetries as described in
Convention 2, with the value of k given in Column 6, as well as the reflection symmetries
described in Columns 7 and 8.

The following proposition gives a rough lower bound on the eigenvalues of L on the
space Bk. It implies that L has a compact inverse on Bk. More accurate bounds will be
proved in Section 5.

Proposition 3.1. There exists constants cs, cr, cp, cq > 0 such that the eigenvalues of L
on Bk satisfy the following bounds.
(s) |λl,m| ≥ cslν for L as defined by (1.2).
(r) |λl,m| ≥ crlν for L as defined by (1.3).
(p) |λl,m,n| ≥ cp(lν + n) for L as defined by (1.4).
(q) |λl,m,n| ≥ cq

(
l + n1/2

)
for L as defined by (1.5) with ν = 2.

(Here β can be any positive irrational number of bounded type.)

Recall that β ∈ R \ Q is said to be of bounded type if the sequence j 7→ bj in the
continued fraction expansion β = b0 + 1/(b1 + 1/(b2 + 1/(b3 + . . .))) is bounded.

The goal is to find a solution u ∈ Bk of the equation Lu = f(u). This is equivalent to
solving the fixed point equation

u = G(u) , G(u)
def
= L−1f(u) . (3.1)

As is common in many computer-assisted proofs, we associate with G a quasi-Newton map
N as follows. Given a function ū ∈ Bk and a bounded linear operator M on Bk, define

N (h) = G(ū+Ah)− ū+Mh , A = I−M , (3.2)

for every h ∈ Bk. Clearly, if h is a fixed point of N , then ū+Ah is a fixed point of G.
Our goal is to apply the contraction mapping theorem to the map N , acting on a ball

Bδ = {h ∈ Bk : ‖h‖ < δ}. Thus, ū is chosen to be an approximate fixed point of G, and
M is chosen in such a way that A = I−M is an approximate inverse of I−DG(ū).

Lemma 3.2. There exists a function ū ∈ Bk and a bounded linear operator M on Bk,
such that the following holds. The equation (3.2) defines a compact cubic map N on Bk.
Furthermore, there exist positive real numbers δ, ε, and K, satisfying ε + Kδ < δ, such
that

‖N (0)‖ ≤ ε , ‖DN (h)‖ < K , ∀h ∈ Bδ . (3.3)

For every h ∈ Bδ, the function u = ū + Ah has the symmetries described in Columns
6,7, and 8 of Table 1. In addition, u satisfies the norm bound given in Column 9 and the
coefficient bounds given in Section 7. Furthermore, the associated function v is precisely
of the type indicated in Column 2.

Our proof of this lemma is computer-assisted and will be described in Section 6.
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Lemma 3.2 implies Theorem 1.1. Namely, the contraction mapping theorem guaran-
tees that N has a fixed point h ∈ Bk. The associated function u = ū+Ah is a fixed point
of G and thus a solution of the given equation Lu = f(u). Clearly, u has the properties
described in Lemma 3.2 after (3.3). In particular, the associated solution v of the equation
(1.1) is precisely of the type indicated in Column 2. As described in Theorem 1.1, this
means e.g. that our solutions labeled 8,9,10,11 are non-periodic.

Remark 5. Verifying the bounds in Lemma 3.2 is a finite computation with rigorous
error estimates. The constant ε in (3.3) is obtained as an upper bound on the norm of
N (0), while K < 1 is fixed beforehand. Given that B is a Banach algebra, it is clear that
all necessary inequalities remain true under perturbations of the nonlinearity f by a small
odd analytic function with the proper domain.

4. Weak solutions
In this section we give a proof of Theorem 1.2.

4.1. Existence for the dual equation

We consider the dual formulation that was used in [3,11,16] to find weak solutions of the
nonlinear wave equation ∂2

t u−∂2
xu+f(u) = 0 on an interval with zero boundary conditions

or periodic boundary conditions. The functions f considered in [3,16] include f(u) = u3,
while [11] considers near-linear functions f .

We start by giving a purely formal description. Consider an equation Lu = f(u) on
some space U of functions u : Ω → R. Denote by V the null space of the linear operator
L. Write w = Lu and L−1w = u + v for some v ∈ V . Then Lu = f(u) if and only if
w = f(u). Assuming that f has an inverse g = f−1, the equation for w and v is

L−1w = g(w) + v , Lv = 0 . (4.1)

This is the equation for a critical point of the functional Φ defined by

Φ(w) =

∫
Ω

[
− 1

2wL
−1w +G(w)

]
, G′ = g , w ∈ U ∩ V ⊥ , (4.2)

assuming that L−1 extends to a self-adjoint linear operator on L2(Ω).
In the cases considered here, L is defined on a space B of analytic functions and has

a compact inverse A = L−1 on some subspace Bk. The eigenfunctions of A : Bk → Bk
constitute an orthogonal set in L2 = L2(Ω), where Ω = S in equation (1.2) and (1.3), and
Ω = S× T in equation (1.4) and (1.5). Thus, A extends trivially to a compact self-adjoint
linear operator on L2, if we set Av = 0 for v ∈ B⊥k . Using that both Bk and B⊥k are
characterized by symmetries, we will show below that it suffices to solve the equation (4.1)
with v = 0. This makes our setup similar to the one considered in [11].

Under the assumptions on f stated before Theorem 1.2, f has an inverse g = f−1

that is increasing, globally Lipschitz, and satisfies

g(0) = 0 , lim
t→0

g(t)

t
= a0 ,

g(x)

x
≥ a∞ , (4.3)

for |x| sufficiently large, with a0 < a∞. Notice that a0 = b−1
0 and a∞ = b−1

∞ .
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In the following lemma, g can be any function with the above-mentioned properties.

Lemma 4.1. Let (Ω,Σ, µ) be a measure space with µ(Ω) finite and positive. Let A be
a compact self-adjoint linear operator on L2 = L2(Ω,Σ, µ). Denote by κ be the largest
eigenvalue of A, and assume that a0 < κ < a∞. Then the equation Aw = g(w) has a
nonzero solution w ∈ L2.

Proof. Let G be the antiderivative of g satisfying G(0) = 0. Consider the functional
Φ : L2 → R defined by

Φ(w) = − 1
2 〈w,Aw〉+ Ψ(w) , Ψ(w) =

∫
Ω

G(w) dµ . (4.4)

Notice that Φ is differentiable at every w ∈ L2. In fact, Φ is of class C1 with Lipschitz
derivative. Namely, if u, v, h ∈ L2, then

∣∣[DΨ(u)−DΨ(v)]h
∣∣ ≤ ∣∣∣∣∫

Ω

[g(u)− g(v)]h dµ

∣∣∣∣
≤ a

∫
Ω

|u− v||h| dµ ≤ a‖u− v‖‖h‖ ,
(4.5)

where a is the Lipschitz constant for g. Furthermore, Φ is coercive in the following sense.
By (4.3) there exists C > 0 such that G(x) ≥ 1

2a∞x
2 − C for all x. So we have

Φ(w) ≥ 1
2

(
−κ+ a∞

)
‖w‖2 − Cµ(Ω) . (4.6)

Since κ < a∞ by assumption, this shows e.g. that c = inf Φ exists in R.
Let n 7→ wn be a minimizing sequence in L2, meaning that Φ(wn)→ c. By (4.6), this

sequence is bounded. So some subsequence converges weakly in L2 to some w ∈ L2. To
simplify notation, denote this subsequence again by n 7→ wn. Given that A is compact,
we have Awn → Aw, and thus

〈wn, Awn〉 = 〈wn, Aw〉+ 〈wn, Awn −Aw〉 → 〈w,Aw〉+ 0 . (4.7)

Since the sequence n 7→ Φ(wn) converges, so does the sequence n 7→ Ψ(wn).
Given that G′ = g is increasing, the function Ψ is convex. Thus lim inf Ψ(wn) ≥ Ψ(w),

implying that c = lim Φ(wn) ≥ Φ(w). But Φ(w) cannot be less that inf Φ = c. So w is a
minimizer of Φ,

Φ(w) = inf Φ . (4.8)

As a critical point of Φ, the function w satisfies −Aw + g(w) = ∇Φ(w) = 0, as claimed.
To see that w 6= 0, let h be a normalized eigenvector of A for the eigenvalue κ. Then

Φ(th) ≤ 1
2

(
−κt2 + a0t

2
)

+ O
(
t2
)
, (4.9)

for t 6= 0 near 0. By assumption, we have κ > a0. So Φ(th) < 0 for t 6= 0 sufficiently close
to 0. This shows that inf Φ < 0, implying that w 6= 0. QED
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4.2. Regularity

Assume now that g = f−1, where f has the properties described before Theorem 1.2.
Notice that g(w) belongs to L2 if and only if w ∈ L2. This follows from the fact that
|g(x)| ≤ a|x| and |f(x)| ≤ b|x| for some a, b > 0.

In our application of Lemma 4.1, we have Ω = S or Ω = S× T.

In what follows, (Ω, g) can be any compact oriented smooth Riemannian manifold
without boundary. So Ω carries a canonical volume form defining a finite measure µ.
Denote by ∆Ω the Laplace-Beltrami operator on Ω. It is well-known that the eigenfunctions
Y0, Y1, Y2, . . . of −∆Ω are smooth and constitute a complete orthogonal basis for L2 =
L2(Ω, µ). The associated eigenvalues are real numbers µj ≥ 0 that grow asymptotically
like µj ∼ j2/n, where n is the dimension of Ω. Consider the normalization ‖Yj‖L2 = 1
for all j. As usual, we define the Sobolev space Hs = Hs(Ω, µ) for s ∈ R to be the space
of all distributions u =

∑
j ujYj in the dual of C∞(Ω), with the property that the sum∑

j(1 + µj)
s|uj |2 is finite. The norm in Hs is defined as

‖u‖Hs =
∥∥(I−∆Ω)s/2u

∥∥
L2 , (I−∆Ω)s/2u =

∑
j

(1 + µj)
s/2ujYj . (4.10)

A linear operator B on Hs will be called a (real) Fourier multiplier, if there exists a sequence
j 7→ bj of (real) numbers such that BYj = bjYj for all j.

In what follows, we only consider s > 0. Then Hs is compactly embedded in L2.

Corollary 4.2. Assume that A : L2 → L2 is self-adjoint and admits a factorization

A = (I−∆Ω)−r/2B , (4.11)

with r > 0 and B : L2 → L2 a bounded real Fourier multiplier. If A satisfies the spectral
condition in Lemma 4.1, and if f is as described earlier, then the equation u = Af(u) has
a nonzero solution in Hr.

The function u is obtained from a nonzero solution w ∈ L2 of the equation Aw = g(w)
by setting u = g(w). Then u = Af(u), and u = (I−∆Ω)−r/2Bw belongs to Hr.

Lemma 4.3. Assume that Ω has dimension n ≥ 2. Then the solution of u = Af(u)
described in Corollary 4.2 belongs to Hs for every s < 1 + r.

Proof. Let 0 < σ < 1. Then the norm (4.10) on Hσ is known to be equivalent [23,29] to
the norm ‖.‖σ defined by the equation

‖u‖2σ = ‖u‖2L2 + [u]2σ , [u]2σ
def
=

∫∫
Ω×Ω

|u(x)− u(y)|2

d(x, y)n+2σ
dµ(x)dµ(y) . (4.12)

Assume that u belongs to Hσ. Then

|f(u(x))− f(u(y))| ≤ b|u(x)− u(y)| , x, y ∈ R , (4.13)

with b = ‖f ′‖L∞ . So we have [f(u)]σ ≤ b[u]σ, and thus f(u) ∈ Hσ. Assume furthermore
that u = Af(u). Given that w = f(u) belongs to Hσ, and that A maps Hσ into Hσ+r, we
conclude that u = Aw belongs to Hσ+r.
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By iterating this procedure, if necessary, we find that u ∈ Hs for some s > 1. Now
pick an arbitrary σ < 1. Applying the above once more yields u ∈ Hσ+r. QED

Proof of Theorem 1.2. To start with, let us restrict to the choices made in Theorem 1.1.
First, we need to verify the assumptions of Lemma 4.1. By Proposition 3.1, L has a

compact inverse A on a subspace Bk of B. Here, B is one of our spaces Bρ(R) or Bρ(T%),
depending on whether Ω = S or Ω = S×T, respectively. And the subspace Bk is determined
by fixing certain parities.

Let J be a set indexing the eigenvectors Yj of A : Bk → Bk. So we have LYj = λjYj
for all j ∈ J , with λj 6= 0 and |λj | → ∞ as j →∞ in J . And AYj = λ−1

j Yj for all j ∈ J .
Notice that these functions Yj are eigenvectors of the Laplacean ∆Ω as well. So we may
assume that they are part of a complete orthonormal system for L2 = L2(Ω) that consists
of eigenvectors of ∆Ω.

Denote by W the closure of Bk in L2. Clearly A extends to a compact self-adjoint
linear operator on W . Now we extend A to all of L2 by setting Av = 0 for all v ∈ W⊥.
The eigenvalue condition a0 < κ < a∞ needed for Lemma 4.1 follows from the assumption
b∞ < λ < b0 in Theorem 1.2, setting κ = λ−1. Thus, Lemma 4.1 guarantees the existence
of a nonzero function w ∈ L2 that satisfies Aw = g(w).

Clearly u = g(w) belongs to W , so we have a solution u ∈ W of the equation u =
Af(u). In principle, f(u) need not belong to W . However, W is characterized by a finite
number of parity conditions u ◦ Si = ±u, where Si : Ω → Ω is a reflection or rotation.
(And each u 7→ u ◦ Si is unitary.) Thus, since f is odd by assumption, f(u) has the same
parities as u. So f(u) ∈ W whenever u ∈ W . This implies that Lu = f(u) holds in weak
sense.

In order to complete the proof of Theorem 1.2, we need to verify that A admits a
factorization A = (I − ∆Ω)−r/2B, with r > 0 and B a bounded real Fourier multiplier.
Then Lemma 4.3 guarantees that u belongs to Hs for every s < 1 + r. To this end, it
suffices to check that there exists constants C, r > 0 such that

|λj | ≥ C(1 + µj)
r/2 , j ∈ J , (4.14)

where µj is the eigenvalue of −∆Ω for the eigenvector Yj . Notice that µj = l(l + 1) + n2

for j = (l,m, n) in the case Ω = S× T, and µj = l(l + 1) for j = (l,m) in the case Ω = S.
The bound (4.14) follow from Proposition 3.1. Our discussion of L is Section 5 shows

that, aside from the value of C, these estimates do not depend on any specific choice of
symmetries, as long as these symmetries prevent L from having an eigenvalue zero in the
chosen subspace. The same applies to the choice of rational values for α > 0. QED

For completeness, we list here the values of r that are obtained from Proposition 3.1.
In what follows, ε is a positive real number that can be chosen arbitrarily small. And n
denotes the dimension of the domain of u.

(r2) For periodic rotating waves with ν = 2, we have r = 4. So our solutions u are in H5−ε.
Since n = 2, these solutions are of class C3 by standard Sobolev embedding theorems.

(s2) The same holds for stationary solutions with ν = 2.
(r1) For periodic rotating waves with ν = 1, we obtain r = 2 if β < 1, or r = 1 if β ≥ 1.

Here, we assume that β is rational, if larger than 1. So our solutions are in H3−ε and
of class C1 for β < 1, or in H2−ε and of class C0 for β ≥ 1. Notice that n = 2.

(s1) For stationary solutions with ν = 1, we have r = 2 and thus u ∈ H3−ε ∩ C1.



14 GIANNI ARIOLI and HANS KOCH

(p) For ordinary periodic solutions (not rotating waves) with α rational, we have r = 1.
So our solutions belong to H2−ε. Since n = 3, these solutions are at least of class C0.

(q2) For quasiperiodic solutions with ν = 2 and β ∈ R \ Q of bounded type, we obtain
r = 1/2. So our solutions are in H3/2−ε. Since n = 3, they need not be continuous.

5. The linear operator
In this section we establish lower bounds on the eigenvalues of L on the spaces Bk. These
bounds are used in our proof of Lemma 3.2. They also imply Proposition 3.1.

5.1. The periodic case

Consider the equation (1.4) on a space B = Bρ(T%) of real analytic functions on S × T,
with ρ, % > 1 fixed. The eigenvalues of L = α2∂2

t + (−∆S)
ν are those given in (1.7), if we

set β = 0. That is,

λl,n = lν(l + 1)ν − (αn)2 =
(
bl − αn

)(
bl + αn

)
, bl

def
= [l(l + 1)]ν/2 , (5.1)

with n ≥ 0, since we only consider real eigenfunctions. The goal here is to have bl − αn
bounded away from 0. Since b0 = 0, we restrict to functions that have odd frequency
parity, so the value of n belongs to N = {1, 3, 5, . . .}. This defines our subspace B0 of
B. As it turns out, no other parity conditions are needed here. But we assume that α is
rational, say α = p/q with p, q > 0 coprime. Then we have a bound

|λl,n| ≥ δl(bl + αn) , δl
def
= inf

n∈N
|bl − αn| = q−1 inf

n∈N
|qbl − pn| . (5.2)

To obtain a lower bound of the type described in part (p) of Proposition 3.1, it suffices to
show that there exists δ > 0 such that δl ≥ δ for all l.

The plate operator. Consider ν = 2. Here bl is an even integer, so we can achieve
|qbl − pn| ≥ 1 for all l by restricting to odd values of p.

The NLW operator. Consider ν = 1. Notice that δl 6= 0 for all l ≥ 0. So it suffices to
estimate δl for large values of l. Then bl is close to an odd multiple of 1

2 , so [blq−pn]/q can

be bounded away from 0 by choosing q odd. To be more precise, write bl =
(
l+ 1

2

)√
1− z

with z = (2l + 1)−2. Expanding in powers of z and estimating the O(z3) terms by a
geometric series, we obtain

bl = l + 1
2 − εl , 0 < εl <

1

4(2l + 1)

[
1 +

1/4

(2l + 1)2 − 1

]
. (5.3)

Notice that l 7→ εl is decreasing. Choosing l0 ≥ 0 in such a way that qεl0 <
1
2 , we have a

bound
δl ≥ q−1

∣∣ 1
2 − qεl

∣∣ ≥ q−1
(

1
2 − qεl0

)
> 0 , l ≥ l0 . (5.4)

Next, we consider the equations (1.3) and (1.2) for periodic rotating waves and sta-
tionary solutions, respectively. The spaces used in these cases are B = Bρ(R).

Periodic rotating waves. Here we have L = β2∂2
ϕ + (−∆S)

ν , with eigenvalues

λl,m = lν(l + 1)ν − (βm)2 , 0 ≤ m ≤ l . (5.5)
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This is similar to (5.1), except that (α, n) is replaced by (β,m), with m ≤ l. The restriction
m ≤ l makes some cases rather simple: if ν = 2, then λl,n ∼ l2 for large values of l; or if
ν = 1 and β ≤ 1, then λl,n ∼ l for large values of l. In these cases, β need not be rational.

Consider now ν = 1 and β > 1. In this case, the the restriction m ≤ l is not
particularly helpful, and the situation is similar to the NLW case described above. So
we choose β = p/q with p, q > 0 coprime and q odd. And m is assumed to satisfy
m ≡ k (mod 2k) for some k ≥ 1. Then we have a bound |λl,m| ≥ δl(bl + βm), with δl
satisfying (5.4).

Stationary solutions. Here we have L = (−∆S)
ν , with eigenvalues λl = lν(l + 1)ν that

grow like l2ν as l → ∞. The eigenvalue λ0 = 0 is avoided by requiring k-antisymmetry,
meaning that m ≡ k (mod 2k) for some k ≥ 1.

5.2. Eigenvalues in the quasiperiodic case

For concrete estimates, it is useful to expand into eigenfunctions for the generator α∂t+β∂ϕ
of the quasiperiodic motion in the variable (ϕ, t) ∈ T2. Among these eigenfunctions are

F±m,n = cm × cn ∓ sm × sn , F±m,n(ϕ, t) = cos(nt±mϕ) . (5.6)

In particular, we have

(α∂t + β∂ϕ)2F±m,n = −(αn± βm)2F±m,n . (5.7)

A second family of eigenfunctions is given by G±m,n = cm× sn± sm× cn. Theses functions
are not needed here, since they are odd under the mixed-reflection (ϕ, t) 7→ (−ϕ,−t).

In what follows, Bk denotes the space of functions in Bρ(T%) that have odd frequency-
parity, are even under the mixed-reflection, and are k-antisymmetric for some given k ≥ 1.
A function u ∈ Bk admits an expansion

u(ϑ, ϕ, t) =
∑

l,m,n,±

u±l,m,nP
m
l (ϑ)F±m,n(ϕ, t) , (5.8)

where the sum is restricted to positive integers l, m ≤ l, and n, with m ≡ k (mod 2k) and
n odd. The eigenvalues of the operator L = (α∂t + β∂ϕ)2 + ∆2

S on this space are given by

λ±l,m,n = l2(l + 1)2 − (αn± βm)2

=
[
l(l + 1)− (αn± βm)

][
l(l + 1) + (αn± βm)

]
.

(5.9)

We assume that α = p/q with p, q > 0 coprime. Assume also that β is a positive irrational
number of bounded type. Then the function (P,Q) 7→ Q|P − βQ| on Z × {1, 2, 3, . . .} is
bounded from below by a positive constant. So the equation

ΓN = inf
Q≥N

Qmin
P
|P − βQ| (5.10)

defines positive real numbers Γ1 ≤ Γ2 ≤ Γ3 ≤ . . .. A lower bound on ΓN will be given
in Subsection 5.4, for the values of β considered in Theorem 1.1. As a result of (5.10) we
have

|ql(l + 1)− pn∓ βqm| ≥ Γqm(qm)−1 . (5.11)
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By (5.9) this yields the following eigenvalue bound∣∣λ±l,m,n∣∣ ≥ Γqmq
−2m−1

∣∣l(l + 1) + (αn± βm)
∣∣ ≥ Γqmq

−2
[
(l + 1)± β

]
. (5.12)

The bound represented by the last inequality can be improved by roughly a factor of 2.
The idea is that, if |a− b| ≈ 0, then |a+ b| ≈ 2|a|. To be more precise, we have∣∣λ±l,m,n∣∣ ≥ 2Γqmq

−2
[
(l + 1)− β′

]
, β′ = max

{
β,Γqm/

(
q2kl

)}
. (5.13)

The bound with β′ = β is obtained in the case where
∣∣ql(l+1)−pn∓βqm

∣∣ ≥ C, with C =

2Γqm/(qm). The bound with β′ = Γqm/
(
q2kl

)
is obtained when

∣∣ql(l+1)−pn∓βqm
∣∣ < C.

The bound (5.13) is used in our programs to estimate terms in the expansion with
unspecified frequency n; of course only when l(l + 1) > β′. For fixed values of l and m,
bounds that hold for all n ≥ N with N fixed can be obtained directly from (5.9).

The first inequality in (5.12) shows that L has a compact inverse on Bk. But it does
not yield a lower bound on

∣∣λ±l,m,n∣∣ that grows with n, uniformly in l.

The following estimate implies part (q) of Proposition 3.1. First, notice that |λl,m,n| ≥
cln

2 for any fixed value of l. So we may assume that l ≥ l0. Then (5.12) yields a bound∣∣λ±l,m,n∣∣ ≥ cl for some fixed c > 0. Consider first the case where n ≤ Cl2, for some C > 0
to be determined. Then ∣∣λ±l,m,n∣∣ ≥ cl , ∣∣λ±l,m,n∣∣ ≥ c′n1/2 , (5.14)

with c′ = cC−1/2. Next, consider the case n ≥ Cl2. If we choose C sufficiently large,
then the factor [l(l + 1) − (αn ± βm)] in (5.9) is larger than α−1 in modulus, and thus∣∣λ±l,m,n∣∣ ≥ n. So a bound of the form (5.14) holds for all values of n and l.

5.3. The inverse of L in the quasiperiodic case

Explicit expressions. Consider the action of L−1 on the subspace of Bk spanned by func-
tions (ϑ, ϕ, t) 7→ Pml (ϑ)F (ϕ, t), for fixed values of l and m. The corresponding restriction
of L−1 maps a function F of the form

F (ϕ, t) = cos(mϕ)C(t) + sin(mϕ)S(t) , (5.15)

to a function F̃ of the same form, with (C,S) replaced by
(
C̃, S̃

)
. Here C and C̃ are even,

while S and S̃ are odd. The functions C and S are represented as Fourier series

C =
∑
n

Cncn , S =
∑
n

Snsn , (5.16)

where cn(t) = cos(nt) and sn(t) = sin(nt). Let

b±n = 1
2

(
Cn ∓ Sn) , F±n = cm × cn ∓ sm × sn . (5.17)

Then Cn = b−n + b+n and Sn = b−n − b+n , so

F =
∑
n

Cncm × cn +
∑
n

Snsm × sn =
∑
n

b−nF
−
n +

∑
n

b+nF
+
n . (5.18)
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Under the restricted operator L−1, this function is mapped to

F̃ =
∑
n

b̃−nF
−
n +

∑
n

b̃+nF
+
n , b̃±n = (λ±n )−1b±n . (5.19)

Write
λ±n = l2(l + 1)2 − (αn± βm)2 = σn ∓ δn , (5.20)

with
σn = l2(l + 1)2 − α2n2 − β2m2 , δn = 2αβmn . (5.21)

So σn = 1
2

[
λ−n + λ+

n

]
and δn = 1

2 [λ−n − λ+
n

]
. Similarly, define

Σn =
1

2

[
(λ−n )−1 + (λ+

n )−1
]

=
1

2

λ+
n + λ−n
λ−n λ

+
n

=
σn

σ2
n − δ2

n

, (5.22)

and

∆n =
1

2

[
(λ−n )−1 − (λ+

n )−1
]

=
1

2

λ+
n − λ−n
λ−n λ

+
n

=
−δn

σ2
n − δ2

n

=
δn

δ2
n − σ2

n

. (5.23)

As a Fourier series, we now have

F̃ =
∑
n

C̃ncm × cn +
∑
n

S̃nsm × sn , (5.24)

where

C̃n = b̃−n + b̃+n = ΣnCn + ∆nSn , S̃n = b̃−n − b̃+n = ∆nCn + ΣnSn . (5.25)

High frequencies. We need bounds on Σn and ∆n for large values of n. To this end,
pick n0 > 0 such that (

l + 1
2

)2 ≤ cn0 , (5.26)

with c < α. Consider n ≥ n0. Using that l(l + 1) ≤
(
l + 1

2

)2
, we have

|σn| = α2n2 + β2m2 − l2(l + 1)2 ≥ α2n2 − c2n2
0 ≥

(
α2 − c2

)
n2 . (5.27)

Furthermore, δn = 2αβmn ≤ 2αβ
(
l + 1

2

)
n ≤ 2αβc1/2n3/2 . So

δn
|σn|

≤ εn
def
=

2αβc1/2

α2 − c2
n−1/2 , n ≥ n0 . (5.28)

Assuming that n0 has been chosen sufficiently large to have εn < 1, this yields the bounds

|Σn| =
|σn|

σ2
n − δ2

n

≤ 1

(1− ε2
n)|σn|

, |∆n| =
δn

σ2
n − δ2

n

≤ εn
(1− ε2

n)|σn|
. (5.29)

Notice that n 7→ |σn| is increasing for n ≥ n0.

Low frequencies. For fixed values of l and m, we use that∣∣C̃n∣∣+
∣∣S̃n∣∣ ≤ (|Σn|+ |∆n|

)(
|Cn|+ |Sn|

)
≤ Λ

(
|Cn|+ |Sn|

)
, (5.30)
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whenever n belongs to N = {1, 3, 5, . . .}, where

Λ = max
n∈N

(
|Σn|+ |∆n|

)
. (5.31)

For finitely many values of n, the sum |Σn| + |∆n| can be estimated explicitly by using
that

|Σn|+ |∆n| = 1
2

∣∣(λ−n )−1 + (λ+
n )−1

∣∣+ 1
2

∣∣(λ−n )−1 − (λ+
n )−1

∣∣
= max

{
|λ−n
∣∣−1

, |λ+
n

∣∣−1
}
.

(5.32)

Large wavenumbers. So far we have considered fixed values of l. A bound on

Λ`
def
= max

l≥`
max
m≤l

max
n∈N

max
±

∣∣λ±l,m,n∣∣−1
. (5.33)

for large values of ` is obtained by using (5.13).

5.4. A Diophantine bound

The goal here is to give an accurate lower bound on the constants ΓN in equation (5.10)
for the quadratic irrationals β considered in Theorem 1.1. The variables k,m, n, p, q in this
subsection are unrelated to the ones used in other parts of this paper.

Given an arbitrary irrational number β, define

‖nβ‖ = min
m∈Z
|nβ −m| , n = 1, 2, 3, . . . (5.34)

The approximant for β with a given denominator q > 0 is defined to be the rational number
p/q closest to β. The denominators 1 = q0 < q1 < q2 < q3 < . . . of the best approximants
βk = pk/qk for β are defined by the condition that ‖qk+1β‖ < ‖qkβ‖, and that

‖nβ‖ ≥ ‖qkβ‖ for qk ≤ n < qk+1 . (5.35)

Notice that −β and b0 +β have the same denominators qk as β, for any integer b0. So let us
restrict now to 0 < β < 1. Consider the continued fraction expansion β = [b1, b2, b3, . . .] =
1/(b1 + 1/(b2 + 1/(b3 + . . .))). A useful expression for qk‖qkβ‖ is

qk‖qkβ‖ =
(
bk + β̂k+1 + β̌k−1

)−1
, (5.36)

where β̂k = [bk, bk+1, bk+2, . . .] and β̌k = qk/qk+1. See e.g. equation (1.15) in [1].
Consider now the choice β = |i+θ|, where θ > 0 is given by the equation θ = 1/(j+θ).

Here i and j > 0 are given integers. Notice that the continued fraction denominators qk
for β are independent of the value of i. Thus, assume from now on that β = θ.

Clearly β = [j, j, j, . . .]. So β̂k = β and β̌k = βk+1. The identity (5.36) becomes

qk‖qkβ‖ = (j + β + βk)−1 . (5.37)

Given that βk → β as k →∞, this shows e.g. that qk‖qkβ‖ → (j + 2β)−1 =
(
j2 + 4

)−1/2
.

From (5.35) and (5.37) we obtain the bound

n‖nβ‖ ≥ qk‖qkβ‖ >
1

j + 2 max(βk, β)
, qk ≤ n < qk+1 . (5.38)
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A basic fact about the best approximants βk is that β2 < β4 < . . . < β < . . . < β3 < β1.
Thus max(βk, β) ≤ max(βk, βk+1), and the sequence k 7→ max(βk, βk+1) is decreasing. So

n‖nβ‖ > 1

j + 2 max(βk, βk+1)
, n ≥ qk , (5.39)

holds for all k. A lower bound for the constant ΓN defined in (5.10) is now given by the
right hand side of (5.39) with n = N , for some k with qk ≤ n.

6. Computer estimates
The estimates that are necessary to prove Lemma 3.2 are carried out with the aid of a
computer. This part of the proof is written in the programming language Ada [32] and
is given in [31]. The following is meant to be a rough guide for the reader who wishes to
check the correctness of our programs.

6.1. Enclosures and data types

Bounds on a vector x in a space X , also referred to as enclosures for x, are given here by
sets X ⊂ X that include x and are representable as data on a computer. The enclosure
associated with data B will be denoted by BX . Our basic data type Ball consists of
a pair B = (B.C, B.R), where B.C is a representable number [34] and B.R a nonnegative
representable number (type Radius). If X is a real Banach algebra with unit 1, then
BX = {x ∈ X : ‖x− (B.C)1‖ ≤ B.R}.

Other types of enclosures depend on the algebra X . At a level where details are
irrelevant, we use an unspecified type Scalar. For spaces of vectors in Xn and matrices
in Xm×n, we use enclosures of type Vector and Matrix, respectively, based on arrays of
Scalar. In what follows, we restrict our description to more problem-specific spaces and
enclosures.

For our spaces T = T% with fixed Radius % ≥ 1, we use the following type of enclosure.
Given an integer d ≥ 0, data of type CosSin1 consist of a triple H=(H.P,H.C,H.E) with
H.P ∈ {0, 1}, where H.C is an array (0 . . d) of Scalar and H.E is an array (0 . . 2*d)
of Radius. Here, a Scalar is a Ball in R. Define φ0,n(t) = cos(nt) and φ1,n(t) = sin(nt).
If d > 0, then the enclosure HT ⊂ T associated with H is the set of all functions

h =
d∑

n=p

hnφp,n +
2d∑
j=p

ej , p = H.P , (6.1)

with hn ∈ H.C(n)R and ej ∈ T a function of the form
∑
n≥j cnφp,n whose norm satisfies

‖ej‖ ≤ H.E(j). If d = 0, then h = h0 ∈ H.C(0)R. In this case, T% is simply the space of all
constant functions on T. For details we refer to the Ada package TCosSins1.

Our type Spheric is used for enclosures in the spaces B = Bρ(T ) with fixed Radius

ρ ≥ 1. Given D > 0, data of this type consist of a pair U=(U.C,U.E), where U.C is an array

(0 . . D, 0 . . D) of CosSin1, and U.E is an array (0 . . 2*D) of Radius. The enclosure
UB ⊂ B associated with U is the set of all functions u ∈ B that admit a representation

u(ϑ, ϕ, t) =

D∑
l=0

l∑
m=0

Pml (ϑ) cos(mϕ)Al,m(t)

+

D∑
l=1

l∑
m=1

Pml (ϑ) sin(mϕ)Bl,m(t) +

2D∑
j=0

Ej(ϑ, ϕ, t) ,

(6.2)
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with Al,m ∈ U.C(l, l− m)T for m ≤ l and Bl,m ∈ U.C(l− m, l)T for m < l, and with Ej a
function in P{j,j+1,...}B that has norm ‖Ej‖ ≤ U.E(j).

Here, and in what follows, if J is a set of nonnegative integers, PJ : B → B denotes
the projection operator that acts on a function u ∈ B by restricting its expansion (2.11)
to indices l ∈ J .

6.2. Bounds and procedures

In the context of enclosures, a bound on a map f : X → Y is a function F that assigns to
a set X ⊂ X of a given type (Xtype) a set Y ⊂ Y of a given type (Ytype), in such a way
that y = f(x) belongs to Y whenever x ∈ X. In Ada, such a bound F can be implemented
by defining an appropriate procedure F(X: in Xtype; Y: out Ytype). By definition, X
belongs to the domain of F if no Exception is being raised.

Bounds on the basic operations involving the type Ball and CosSin1 are defined in
the packages Flts.Std.Balls and TCosSins1, respectively.

The type Spheric and bounds on functions involving this type are defined in the
package TSpherics. Among the general-purpose procedures in TSpherics is the product
Prod of two Spheric. It involves the use of Clebsch-Gordan (CG) coefficients; see also
Remark 4. Enclosures for these coefficients are computed and stored in the packages
CG and CG.Spher. The package CG is an extension of a homonymous package that was
developed in [25]. The extensions are mostly related to the fact that the Zernike functions
used in [25] are based on generalized spherical harmonics for half-integer angular momenta
l and m, while here, l and m are always integers. For a description of the techniques
involved, we refer to Section 5 in [25].

Most procedures in TSpherics are specific to the problem at hand. This includes
the bounds NegInvLap, RotWave, InvPlate, InvWave, and InvQP, on the operators L−1

used for stationary solutions, rotating periodic solutions, ordinary periodic solutions (for
the plate and wave equations), and quasiperiodic solutions, respectively. These procedures
use the estimates given in Section 5. Enclosures for the constants that appear in these
estimates are obtained via the procedures in TSpherics Aux. Some other procedures in
TSpherics are used to plot graphs and are not part of the proof.

TSpherics also defines the type TSMode that characterizes subspaces like P{j}B (coef-
ficient modes) and P{j,j+1,...}B (error modes). Arrays of TSMode are used by the function
Make to define partitions of unity (in the sense of direct sums) for the spaces B or the sym-
metric subspaces Bk. This is the problem-specific part of a general infrastructure designed
to implement bounds on quasi-Newton maps. Another part is handled by the packages
Linear and Linear.Contr that work with a generic type Fun and associated Modes. These
two packages include all the tools needed to construct (in terms of bounds) a quasi-Newton
map N for a given map G, and to verify bounds like (3.3). The main task is to estimate
the derivative of a linear operator such as DN (h).

The package at the top of our hierarchy is TSpherics.Fix. It first implements a
bound GMap on the map G defined by (3.1), as well as a bound DGMap on the derivative
of G. These are just compositions of bounds defined in TSpherics. Then TSpherics.Fix

instantiates the packages Linear and Linear.Contr with Fun => Spheric and Mode =>

TSMode. Using the procedures Op Norm and DContr from these two packages, implementing
a bound DContrNorm on the map h 7→ ‖DN (h)‖ is straightforward. This bound is used by
ContrFix to verify the inequalities in the claim of Lemma 3.2. The ball Bδ mentioned in
this lemma has a representable radius δ > 0 and is described by a Spheric-type enclosure.
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6.3. Organizing the bounds

Our proof of Lemma 3.2 is organized by the program Run All. For each row in Table 1,
Run All fetches the necessary parameter values from the package Params and then calls
the (standalone) procedures Approx Fixpt and Check Fixpt with an argument of type
Param. Both of these procedures use an approximate fixed point ū that is provided in a
data file [31]. The procedure Approx Fixpt is purely numerical and determines a matrix
M that defines the operator M used in (3.2). Using the values in Param, the procedure
Check Fixpt instantiates the package TSpherics.Fix with the proper arguments. Then
it calls ContrFix to verify the inequalities in the claim of Lemma 3.2. Finally, it calls
TSpherics.Leading Coeffs to generate the bounds given in Section 7.

Our programs were run successfully on a standard desktop machine, using a public
version of the gcc/gnat compiler [33]. Instructions on how to compile and run these
programs can be found in the README file that is included with the source text [31].

7. Additional data
Each of our solutions u can be represented as a series

u =
∑

0≤m≤l

Pml × cm ×Al,m +
∑

0<m≤l

Pml × sm ×Bl,m , (7.1)

where f × g × h stands for the function (ϑ, ϕ, t) 7→ f(ϑ)g(ϕ)h(t), and h is represented as
a Fourier series h = a0 +

∑
n>0(ancn + bnsn). Here cj = cos(j.) and sj = sin(j.).

So u can be specified by giving a list of all modes cl,m,nP lm×φm×φn that contribute
to the sum (7.1), with cl,m,n ∈ R and φ ∈ {c, s}. We consider an ordered version of this
list, where the modes are listed in non-increasing order of the absolute values |cl,m,n|.

The following tables show the first few modes in this ordered list, for each of our
solutions u. The top-left entry in each table is the label of the solution u being described.
This entry also links to a plot or animation of the solution u.

1 2.3846 . . . ∗ P1
1 × c1 × c0

0.3061 . . . ∗ P3
3 × c3 × c0

−0.2371 . . . ∗ P1
3 × c1 × c0

2 −4.6095 . . . ∗ P1
2 × c1 × c0

−0.9063 . . . ∗ P3
4 × c3 × c0

0.4272 . . . ∗ P1
6 × c1 × c0

3 7.7561 . . . ∗ P2
3 × c2 × c0

−1.1214 . . . ∗ P2
7 × c2 × c0

1.0315 . . . ∗ P6
7 × c6 × c0

0.5973 . . . ∗ P6
9 × c6 × c0

4 1.1841 . . . ∗ P3
3 × c3 × c0

−0.0103 . . . ∗ P9
9 × c9 × c0

−0.0067 . . . ∗ P3
5 × c3 × c0

5 4.2884 . . . ∗ P1
1 × c1 × c1

−0.8516 . . . ∗ P1
1 × c1 × c3

0.2213 . . . ∗ P1
1 × c1 × c5

0.0603 . . . ∗ P3
3 × c3 × c1

6 1.4762 . . . ∗ P3
3 × c3 × c1

−1.1434 . . . ∗ P1
3 × c1 × c1

−0.0230 . . . ∗ P1
1 × c1 × c1

0.0206 . . . ∗ P5
5 × c5 × c1

7 1.9273 . . . ∗ P2
3 × c2 × c1

−0.0088 . . . ∗ P2
7 × c2 × c1

0.0081 . . . ∗ P6
7 × c6 × c1

https://web.ma.utexas.edu/users/koch/papers/spheric/anim/1.png
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/2.png
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/3.png
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/4.png
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/5.mp4
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/6.mp4
https://web.ma.utexas.edu/users/koch/papers/spheric/anim/7.mp4
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8 2.1316 . . . ∗ P1
1 × c1 × c1

2.1316 . . . ∗ P1
1 × s1 × s1

−1.5855 . . . ∗ P3
3 × c3 × c5

1.5855 . . . ∗ P3
3 × s3 × s5

−0.0171 . . . ∗ P1
3 × c1 × c1

−0.0171 . . . ∗ P1
3 × s1 × s1

9 −8.9871 . . . ∗ P1
3 × c1 × c5

8.9871 . . . ∗ P1
3 × s1 × s5

0.1390 . . . ∗ P3
5 × c3 × c15

−0.1390 . . . ∗ P3
5 × s3 × s15

0.0957 . . . ∗ P1
1 × c1 × c5

−0.0957 . . . ∗ P1
1 × s1 × s5

10 −2.8236 . . . ∗ P1
1 × c1 × c1

−2.8236 . . . ∗ P1
1 × s1 × s1

2.4385 . . . ∗ P3
3 × c3 × c5

−2.4385 . . . ∗ P3
3 × s3 × s5

1.2649 . . . ∗ P1
3 × c1 × c7

−1.2649 . . . ∗ P1
3 × s1 × s7

−0.2916 . . . ∗ P1
3 × c1 × c9

−0.2916 . . . ∗ P1
3 × s1 × s9

11 −3.3000 . . . ∗ P1
1 × c1 × c1

−3.3000 . . . ∗ P1
1 × s1 × s1

1.5528 . . . ∗ P1
2 × c1 × c5

−1.5528 . . . ∗ P1
2 × s1 × s5

−0.3465 . . . ∗ P1
2 × c1 × c7

−0.3465 . . . ∗ P1
2 × s1 × s7

−0.1045 . . . ∗ P1
3 × c1 × c11

0.1045 . . . ∗ P1
3 × s1 × s11
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