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Abstract. We consider the quantum graph Hamiltonian on the square lattice
in Euclidean space, and we show that the spectrum of the Hamiltonian converges
to the corresponding Schrödinger operator on the Euclidean space in the contin-
uum limit, and that the corresponding eigenfunctions and eigenprojections also
converge in some sense. We employ the discrete Schrödinger operator as the in-
termediate operator, and we use a recent result by the second and third author
on the continuum limit of the discrete Schrödinger operator.

1. Introduction

In mathematics and physics one often meets situations when we investigate a large
structure being interested in its gross properties independent of the local structure.
A classical example is the homogenization theory – see, e.g., [1, 2, 4] and refer-
ences therein. Another example providing deep mathematical problems as well as a
number of applications is represented by properties of large networks [11].

The present paper is devoted to a problem od this type appearing in the theory of
quantum graphs, which is a short name for Schrödinger operators the configuration
space of which is a metric graph [3]. To make such an operator self-adjoint, it is
not enough to have the potential real-valued and sufficiently regular; one also has to
define properly the conditions matching functions from the operator domain at the
graph vertices [3, Thm. 1.4.4]. There is a large number of ways how to choose those
conditions among which there is a smaller and distinguished subset, namely those
preserving continuity at the vertices. In such a case there is just one real parameter
associated with each vertex; usually the term δ-coupling is employed.

This paper is concerned with a family of such quantum graphs. It was observed
in [8] that a square lattice graph with a varying δ-coupling at the vertices and the
vertex spacing tending to zero can approximate Schrödinger operator in L2(Rν) pro-
vided the energy is rescaled by the dimension ν; this approximation was illustrated
on chaotic motion in billiards. What was left out there, however, was the existence
of the limit and the type of the convergence. These are the question addressed here.
To get the answer we combine two main elements. One is the recent result of two of
the present authors [12] on the continuum limit of discrete Schrödinger operators,
the other is the duality [5, 7, 13] between a Schrödinger operator on a metric graph
and a suitable operator on the associated discrete graph.

2. Problem statement and the main result

To begin with, we introduce in the standard way [3] the quantum graph Hamil-
tonian, that is, the Schrödinger operator on the metric graph. The latter will be in
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our case the ν-dimensional square lattice graph of the lattice spacing ℓ > 0,

Γ = (V,L), V = ℓZν , L =
{
Ljn = [j, n]

∣∣ j, n ∈ V, |j − n| = ℓ
}

where [j, n] denotes the line segment connecting j and n ∈ ℓZν . The symbol V
denotes the set of vertices, and L is the set of edges in Γ. We introduce the Hilbert
space of functions on the graph by

H1 = L2(Γ) =
⊕

Ljn∈L
L2(Ljn),

with the inner product

⟨φ,ψ⟩H1 =
ℓν−1

ν

∑
Ljn∈L

∫
Ljn

φjn(t)ψjn(t) dt, where φ = (φjn), ψ = (ψjn) ∈ H1.

We adopt the following hypothesis:

Assumption A. V is a real-valued continuous function on Rd, and bounded from
below. Furthermore, (V (·) +M)−1 is uniformly continuous for some M > 0, and
there is a c1 > 0 such that

c−1
1 (V (x) +M) ≤ V (y) +M ≤ c1(V (x) +M) if |x− y| ≤ 1.

We denote Vj = V (j) for j ∈ V and set αj := ℓVj for j ∈ V. The Sobolev space
of order one on the graph Γ is then given by

H1(Γ) =
{
(φjn) ∈ H1

∣∣ φjn ∈ H1([j, n]), φjn(j) = φjm(j) for j ∈ V and n,m ∈ V(j)
}
,

where V(j) = {n | |j − n| = ℓ} is the set of vertices adjacent to Vj , in other words,
the neighborhood of the point j in the discrete graph associated with Γ.

On the domain Q(H1) =
{
φ ∈ H1(Γ)

∣∣ ∑
j∈V αj |φj |2 < ∞

}
we define the qua-

dratic form qα by means of the formula

qα(φ,ψ) = ⟨φ′, ψ′⟩+
∑
j∈V

αjφjψj , φ, ψ ∈ Q(H1),

where (φ′)jn(t) = d
dtφjn(t) on Ljn, and φj = φjn(j) for n ∈ V(j). We denote the

self-adjoint operator associated with qα by H1, that is, ⟨φ,H1ψ⟩ = qα(φ,ψ) holds
for φ,ψ ∈ D(H1). It is known [3, Sec. 1.4.3] that

D(H1) =

{
ψ = (ψjn) ∈ H1(Γ) ∩

⊕
Ljn∈L

H2(Ljn)

∣∣∣∣∣ ∑
n∈V(j)

ψ′
jn(j) = αjψj

}

and (H1ψ)jn(t) = −ψ′′
jn(t) on Ljn. We recall that Γ is regarded as a non-oriented

graph and the derivatives entering the condition specifying D(H1) are all conven-
tionally taken in the outward direction.

The second object to consider is the Schrödinger operator H on L2(Rν) given by

Hφ(x) = −△φ(x) + V (x)φ(x), x ∈ Rν

for φ ∈ D(H) =
{
φ ∈ H2(Rν)

∣∣ V φ ∈ L2(Rν)
}
. We recall that under our assump-

tion about the potential, H is a self-adjoint operator on L2(Rν).
Our main result claims that in the limit ℓ→ 0 the operators νH1 approximate H

in the sense of norm resolvent convergence.
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Theorem 2.1. Let z ∈ C \ R, and adopt Assumption A. Then there is a bounded
operator Ψ : H1 → L2(Rν) such that in the limit ℓ→ 0 we have∥∥(H − z)−1 −Ψ(νH1 − z)−1Ψ∗∥∥

B(L2)
→ 0,∥∥(νH1 − z)−1 −Ψ∗(H − z)−1Ψ

∥∥
B(H1)

→ 0.

Since the approximation relates operators acting in different Hilbert spaces, it
is essential to specify a suitable identification map between them. Approximations
of such a type have been studied in other situations [9, 12], whereas a general
presentation of the method can be found in the book [14].

We will construct the operator Ψ later, but we note already here that it is not
invertible, and actually neither injective nor surjective. Still this result is sufficient to
establish the convergence of the spectrum. We denote the spectrum of a self-adjoint
operator A by σ(A), and by EA(Ω) its spectral projection to Ω ⊂ R.

Corollary 2.2. Let a, b ∈ R, a < b, and suppose a, b /∈ σ(H). Then a, b /∈ σ(νH1)
if ℓ is sufficiently small, and∥∥ΨEνH1((a, b))Ψ

∗ − EH((a, b))
∥∥
B(L2)

→ 0 as ℓ→ 0.

In particular, if λ is an isolated eigenvalue of H of multiplicity m and ψ ∈ L2 is
a corresponding eigenfunction, Hψ = λψ, then there are isolated eigenvalues λk,ℓ
and eigenfunctions ψk,ℓ ∈ H1 of νH1 for each k = 1, . . . ,m and ℓ > 0, satisfying
νH1ψk,ℓ = λk,ℓψk,ℓ, such that λk,ℓ → λ and

∑m
k=1Ψψk,ℓ → ψ as ℓ→ 0.

We also have the convergence of the spectrum of νH1 to that of H with respect
to the Hausdorff distance, which is defined by

dH(X,Y ) = max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)

}
,

where X,Y ⊂ R and d(·, ·) denotes the Euclidean distance.

Corollary 2.3. Let M > 0 large enough to ensure that −M < inf σ(H). Then for
all sufficiently small ℓ > 0 one has −M /∈ σ(νH1) and

dH(σ((H +M)−1), σ((νH1 +M)−1)) → 0 as ℓ→ 0.

In particular, σ(νH1) converges to σ(H) as ℓ→ 0 locally in terms of the Hausdorff
distance.

These corollaries follow from Theorem 2.1 in a simple way using arguments anal-
ogous to those employed in [12].

3. Discrete Schrödinger operator and its convergence

To prove Theorem 2.1 we choose an appropriate discrete Schrödinger operator as
the intermediate object and use the recent result by two of the present authors [12]
on its continuum limit, cf. also [6] and [10] for fresh related results. Let us first
recall the basic notions. The Hilbert space of functions on the vertices,

H2 = ℓ2(V) = ℓ2(ℓZν),

is equipped with the norm

∥u∥2H2
= ℓν

∑
j∈V

|uj |2, where u = (uj) ∈ H2.
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Let the potential V = V (x) be as before. We denote again Vj = V (j) for j ∈ V and
define a discrete Schrödinger operator H2 on H2 by

(H2φ)j = −△dφj + Vjφj , △dφj =
1

ℓ2

∑
n∈V(j)

(φn − φj)

for φ = (φj) ∈ H2; it is easy to check that H2 is a self-adjoint operator with its
domain D(H2) =

{
u = (uj) ∈ H2

∣∣ (Vjuj) ∈ H2

}
.

The following result was proved in [12]:

Theorem 3.1 (Nakamura-Tadano). Let z ∈ C \R and adopt Assumption A. Then
there is a bounded operator Φ : H2 → L2(Rν) such that in the limit ℓ→ 0 we have∥∥(H − z)−1 − Φ(H2 − z)−1Φ∗∥∥

B(L2)
→ 0,∥∥(H2 − z)−1 − Φ∗(H − z)−1Φ

∥∥
B(H2)

→ 0.

The identification operator Φ here is constructed using an orthonormal basis in
L2(Rν), and it is an isometry from H2 into L2(Rν), see [12] for details. Thus we
know that H is approximated by the indicated discrete Schrödinger operator, and
it will be sufficient to show that that the latter is in turn approximated by the
quantum graph Hamiltonian, and vice versa.

4. Approximation of the quantum graph Hamiltonian by the discrete
Schrödinger operator

Our aim is to show that νH1 and H2 are close to each other with an appropriate
identification map when the spacing ℓ is small. Throughout this section, we suppose
that V is bounded from below.

4.1. Identification operators. Let I : H2 → H1 be the embedding by linear
interpolation, namely φ = (φj) ∈ H1 7→ Iφ = (φjn) ∈ H2 defined by

φjn(x(t)) = (1− t)φj + tφn, where x(t) = (1− t)j + tn ∈ [j, n].

We note I is bounded from H2 into H1.
Furthermore, we define the trace operator K : H1(Γ) → H2 by

K : φ = (φjn) ∈ H1(Γ) 7→ (Kφ)j = φjn(j) (∀n ∈ V(j)).

4.2. Preliminary estimates.

Lemma 4.1. For any ℓ > 0 we have

∥IK − 1∥B(H1(Γ),H1) ≤ ℓ.

Proof. Given φ = (φjn) ∈ C1(Γ), we write φj = φjn(j), ∀n ∈ V(j). Let φ̃ = IKφ,
in other words

φ̃jn(x(t)) = (1− t)φj + tφn, where x(t) = (1− t)j + tn, 0 ≤ t ≤ 1.

We identify Ljn
∼= [0, ℓ] for the moment. Then for t ∈ [0, ℓ] we have

φjn(t)− φ̃jn(t) =

∫ t

0
φ′
jn(s) ds−

t

ℓ

∫ ℓ

0
φ′
jn(s) ds,

since

φ̃jn(t) = φjn(j) +
t

ℓ

∫ ℓ

0
φ′
jn(s) ds, t ∈ [0, ℓ].
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From here we infer that∣∣φjn(t)− φ̃jn(t)
∣∣ ≤ ∫ ℓ

0
|φ′

jn(s)|ds ≤
√
ℓ

(∫ ℓ

0
|φ′

jn(s)|2 ds
)1/2

using the Schwarz inequality, and consequently, we have∫
Ljn

∣∣φjn(t)− φ̃jn(t)
∣∣2 dt ≤ ℓ2

∫
Ljn

|φ′
jn(t)|2 dt

Summing up this over the edges Ljn, we find

∥φ− φ̃∥H1 ≤ ℓ∥φ′∥H1 ≤ ℓ∥φ∥H1(Γ),

and by the density argument, we get the estimate for any φ ∈ H1(Γ). �

Lemma 4.2. For any ℓ > 0 we have

∥I∗ −K∥B(H1(Γ),H2) ≤
ℓ√
5
.

Proof. A simple computation yields for φ ∈ C1(Γ) the relation

(I∗φ)j =
1

νℓ

∑
n∈V(j)

∫ ℓ

0

(
1− t

ℓ

)
φjn(t) dt

=
1

2ν

∑
n∈V(j)

{[
−
(
1− t

ℓ

)2

φjn(t)

]ℓ
0

+

∫ ℓ

0

(
1− t

ℓ

)2

φ′
jn(t) dt

}

=φj +
1

2ν

∑
n∈V(j)

∫ ℓ

0

(
1− t

ℓ

)2

φ′
jn(t) dt.

This further implies

∥I∗φ−Kφ∥2H2
=

ℓν

4ν2

∑
j∈V

∣∣∣∣∣ ∑
n∈V(j)

∫ ℓ

0

(
1− t

ℓ

)2

φ′
jn(t) dt

∣∣∣∣∣
2

≤ ℓν

2ν

∑
j∈V

∑
n∈V(j)

∫ ℓ

0

(
1− t

ℓ

)4

dt

∫ ℓ

0
|φ′

jn(t)|2 dt

=
ℓ2

5
∥φ′∥2H1

≤ ℓ2

5
∥φ∥2H1(Γ),

which also holds for any φ ∈ H1(Γ) proving thus the claim. �

Since I is bounded, Lemmata 4.1 and 4.2 in combination with the triangle in-
equality give the following result:

Corollary 4.3. There is a C > 0 such that for all ℓ > 0 we have

∥II∗ − 1∥B(H1(Γ),H1) ≤ Cℓ.
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4.3. Explicit formula for K(νH1− z)−1I. Now we are going to derive an explicit
expression for the sandwiched resolvent of the operator νH1 which will play the key
role in the proof of our main theorem. Following the standard convention, we write
points of the resolvent set as z = k2.

Lemma 4.4. Let ψ = (ψjn) ∈
(⊕

jnH
2(Ljn)

)
∩H1(Γ), φ ∈ H2, and k

2 /∈ R. Then

there are operators M1,M2 ∈ B(H2) such that

(4.1) (νH1 − k2)ψ = Iφ

holds if and only if

(4.2) −νψ′′
jn − k2ψjn = (Iφ)jn on Ljn,

and

(4.3) (H2 − k2 +M1)Kψ = (1 +M2)φ.

Moreover, M1 and M2 satisfy ∥(H2−k2)−1M1∥ = O(ℓ) and ∥(H2−k2)−1M2∥ = O(ℓ)
as ℓ→ 0.

Proof. We note (4.1) implies (4.2) by the definition of H1. We denote φjn = (Iφ)jn
and recall that

φjn(x) =

(
1− x

ℓ

)
φj +

x

ℓ
φn = φj +

x

ℓ
(φn − φj), x ∈ [0, ℓ] ∼= Ljn.

Given the boundary values ψj = ψjn(0) and ψn = ψjn(ℓ), we can solve the equation
(4.2) explicitly using the standard ODE method, obtaining thus the expression

ψjn(x) =
sin(k′x)

sin(k′ℓ)
ψn +

sin(k′(ℓ− x))

sin(k′ℓ)
ψj

+
1

k′2

(
sin(k′x)

sin(k′ℓ)
− x

ℓ

)
φn

ν
+

1

k′2

(
sin(k′(ℓ− x))

sin(k′ℓ)
− 1 +

x

ℓ

)
φj

ν
,

where k′ = k/
√
ν. In particular, this yields

ψ′
jn(j) = ψ′

jn(0) =
k′

sin(k′ℓ)
(ψn − ψj) +

k′(1− cos(k′ℓ))

sin(k′ℓ)
ψj

+
1

k′2

(
k′

sin(k′ℓ)
− 1

ℓ

)
φn − φj

ν
+

1− cos(k′ℓ)

k′ sin(k′ℓ)

φj

ν
.

Substituting this into the boundary condition in the definition of H1,∑
n∈V(j)

ψ′
jn(j) = αjψj ,

we get the relation

k′

sin(k′ℓ)

∑
n∈Vj

(ψn − ψj) +
k′(1− cos(k′ℓ))

sin(k′ℓ)
|Vj |ψj

+
1

k′2

(
k′

sin(k′ℓ)
− 1

ℓ

) ∑
n∈Vj

φn − φj

ν
+

1− cos(k′ℓ)

k′ sin(k′ℓ)
|Vj |

φj

ν
= αjψj
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for each j ∈ V. Recalling that αj = ℓVj and |Vj | = 2ν, we can rewrite it as

− 1

ℓ2

∑
n∈Vj

(ψn − ψj) +

(
sin(k′ℓ)

k′ℓ

)
Vjψj − k2

(
1− cos(k′ℓ)

(k′ℓ)2/2

)
ψj

= −
(
sin(k′ℓ)− k′ℓ

(k′ℓ)3

) ∑
n∈Vj

φn − φj

ν
+

(
1− cos(k′ℓ)

(k′ℓ)2/2

)
φj .

Next we note that by the Taylor series expansion we have

sin(k′ℓ)

k′ℓ
= 1 + O(ℓ2),

1− cos(k′ℓ)

(k′ℓ)2/2
= 1 + O(ℓ2),

sin(k′ℓ)− k′ℓ

(k′ℓ)3
= O(1)

as ℓ→ 0, hence setting

(M1ψ)j :=

(
sin(k′ℓ)

k′ℓ
− 1

)
Vjψj − k2

(
1− cos(k′ℓ)

(k′ℓ)2/2
− 1

)
ψj ,

(M2φ)j := −1

ν

(
sin(k′ℓ)− k′ℓ

(k′ℓ)3

) ∑
n∈Vj

(φn − φj) +

(
1− cos(k′ℓ)

(k′ℓ)2/2
− 1

)
φj ,

we can rewrite the above relation in the form(4.3),

(H2 − k2 +M1)Kψ = (1 +M2)φ.

Finally, we use the following claim to conclude the proof.

Lemma 4.5. Suppose V is bounded from below. Then for each z ∈ C \ R, there is
a C > 0 such that

∥△d(H2 − z)−1∥B(H2) ≤ Cℓ−1, ∥V (H2 − z)−1∥B(H2) ≤ Cℓ−1 for 0 < ℓ ≤ 1.

Using this result in combination with the above explicit expressions of M1 and
M2 we get the estimates

∥∥(H2 − z)−1M1

∥∥ = O(ℓ) and
∥∥(H2 − z)−1M2

∥∥ = O(ℓ) as
ℓ→ 0 for any z ∈ C \ R. �

Proof of Lemma 4.5. Since V is by assumption bounded from below, △d and V are
relatively form bounded with respect to H2 = −△d + V . On the other hand, we
note that ∥△d∥B(H2) = 2νℓ−2, and therefore

∥△d(H2 − z)−1∥ ≤ ∥|△d|1/2∥ · ∥|△d|1/2(H2 − z)−1∥ ≤ Cℓ−1.

Then we also have

∥V (H2 − z)−1∥ = ∥(H2 +△d)(H2 − z)−1∥ ≤ ∥H2(H2 − z)−1∥+ Cℓ−1,

and this completes the proof. �

4.4. Approximation theorem. Now we are in position to compare the resolvents
of the operators νH1 and H2 using the identification map I.

Theorem 4.6. Let z ∈ C \ R, then there is a C > 0 such that∥∥(H2 − z)−1 − I∗(νH1 − z)−1I
∥∥
B(H2)

≤ Cℓ,∥∥(νH1 − z)−1 − I(H2 − z)−1I∗
∥∥
B(H1)

≤ Cℓ.
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Proof. We recall that z = k2 ∈ C \ R. By Lemma 4.4, we have

(4.4) (H2 − z +M1)K(νH1 − z)−1I = 1 +M2

on H2. We use the identity

H2 − z +M1 = (H2 − z)
(
1 + (H2 − z)−1M1

)
which implies

(H2 − z +M1)
−1 =

(
1 + (H2 − z)−1M1

)−1
(H2 − z)−1

as long as ℓ is sufficiently small so that the first factor on the right-hand side makes
sense. Combining this with (4.4), we get

K(νH1 − z)−1I =
(
1 + (H2 − z)−1M1

)−1
(H2 − z)−1(1 +M2),

and therefore

K(νH1 − z)−1I − (H2 − z)−1

= −
(
1 + (H2 − z)−1M1

)−1(
(H2 − z)−1M1(H2 − z)−1 − (H2 − z)−1M2

)
.

This implies, again by virtue of Lemma 4.4,∥∥(H2 − z)−1 −K(νH1 − z)−1I
∥∥
B(H2)

= O(ℓ) as ℓ→ 0.

Now we use Lemma 4.2 and the triangle inequality to conclude that∥∥(H2 − z)−1 − I∗(νH1 − z)−1I
∥∥
B(H2)

= O(ℓ) as ℓ→ 0,

since (νH1 − z)−1 is bounded as a map from H1 to H1(Γ). In a similar way, we use
Lemma 4.1 and Corollary 4.3 to get the other estimate,∥∥I(H2 − z)−1I∗ − (νH1 − z)−1

∥∥
B(H1)

= O(ℓ)

as ℓ→ 0. This completes the proof. �

5. Proof of Theorem 2.1

To finish the task, it is now sufficient to combine Theorem 4.6 with Theorem 3.1.
We define the identification operator by

Ψ := ΦI∗.

Using the fact that Φ is bounded, in fact an isometry, we then have∥∥(H − z)−1 −Ψ(νH1 − z)−1Ψ∗∥∥
≤

∥∥(H − z)−1 − Φ(H2 − z)−1Φ∗∥∥+
∥∥Φ(H2 − z)−1Φ∗ −Ψ(νH1 − z)−1Ψ∗∥∥

=
∥∥(H − z)−1 − Φ(H2 − z)−1Φ∗∥∥+

∥∥Φ((H2 − z)−1 − I∗(νH1 − z)−1I
)
Φ∗∥∥

≤
∥∥(H − z)−1 − Φ(H2 − z)−1Φ∗∥∥+

∥∥(H2 − z)−1 − I∗(νH1 − z)−1I
∥∥

→ 0 as ℓ→ 0.

The proof of the other estimate is almost identical, so we omit the computation; by
that the proof of Theorem 2.1 is finished. �
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