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Abstract: We study the solvability of certain linear nonhomogeneagsagions
containing the logarithm of the sum of the two Schrodingperators in higher
dimensions and demonstrate that under the reasonabledalchasumptions the
convergence i?(R%) of the right sides yields the existence and the convergence
in L*(R?) of the solutions. The equations involve the operators withioe Fred-
holm property and we use the methods of the spectral andesoattheory for the
Schrodinger type operators to generalize the resultsigfi@ceding work [19]. As
distinct from the many previous articles on the subjecttifi@roperators contained
in our equations the essential spectra fill the whole real lin
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1. Introduction

Consider the equation
—Au+V(x)u —au = f, (1.1)

whereu € E = H*(RY) andf € F = L?(R%), d € N, ais a constant and the scalar
potential functionV/ (z) tends to0 at infinity. Fora > 0, the essential spectrum of
the operatod : £ — F, corresponding to the left side of problem (1.1) contains
the origin. As a consequence, such operator does not stitesiredholm property.
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Its image is not closed, fat > 1 the dimension of its kernel and the codimension
of its image are not finite. The present article is devotetiéostudies of the certain
properties of the operators of this kind. We recall thatetveas a significant amount
of work accomplished on the elliptic equations containimgnon-Fredholm opera-
torsin recent years (see [14], [15], [16], [17], [18], [3QB1], [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41], also [4]) along wit their potential appli-
cations to the theory of the reaction-diffusion problenee(49], [10]). Fredholm
structures, topological invariants and their applicatiarere covered in [11]. The
article [12] is devoted to the finite and infinite dimensioattactors for the evo-
lution equations of mathematical physics. The large tinteal®r of the solutions
of a class of fourth-order parabolic equations defined orountded domains using
the Kolmogorow-entropy as a measure was considered in [13]. The attramter f
nonlinear reaction- diffusion system in an unbounded darrathe space of three
dimensions was studied in [20]. The works [21] and [27] areontant for the
understanding of the Fredholm and properness propertige ajuasilinear elliptic
systems of the second order and of the operators of this kifk*o The exponen-
tial decay and Fredholm properties in the second-orderilquesr elliptic systems
of equations were discussed in [22]. The articles [32] an@] {&al with the
solvability conditions for the linearized Cahn-Hilliard@ations. The work [37] is
devoted to the studies of the Laplacian with transport froengoint of view of the
non-Fredholm operators. Standing lattice solitons in teerdte NLS equation with
saturation were covered in [1]. Particularly, when the tanis: = 0, our operator
A satisfies the Fredholm property in certain properly choseighted spaces (see
[2], [3], [4], [5], [6]). However, the situation of nontrivial is significantly different
and the approach developed in these articles cannot be used.

One of the important issues concerning the problems withFredholm operators
is their solvability. Let us address it in the following setf. Let f,, be a sequence
of functions in the image of the operatdr so thatf,, — f in L?(R?) asn — oc.
We designate by, a sequence of functions frofi?(R?), so that

Au, = fn, n € N.

Since the operatoA fails to satisfy the Fredholm property, the sequenganay
not be convergent. Let us call a sequengeso thatdAu,, — f a solution in the
sense of sequences of equatibm = f (see [30]). If this sequence converges to a
functionug in the norm of the spacg, thenu, is a solution of this equation. The
solution in the sense of sequences is equivalent in thissdenthe usual solution.
However, in the case of the non-Fredholm operators, thigergence may not hold
or it can occur in some weaker sense. In this situation, thaiso in the sense of
sequences may not imply the existence of the usual soluliotine present article
we will find the sufficient conditions of equivalence of théugmns in the sense of
sequences and the usual solutions. In the other words, Wwingithe conditions on
the sequences, under which the corresponding sequencgsare strongly conver-
gent. Solvability in the sense of sequences for a linear amagyeneous equation
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involving the logarithmic Laplacian with and without a dloal, short-range scalar
potential was covered in [19]. The present work is our modgstnpt to generalize
these results. In the first part of the article we study theaggn

1
§In{—Am +V(z)—A,+ U(y)}]u —au = f(x,y), z,y€R® acR (1.2
with a square integrable right side. The operator in theslete of problem (1.2)
1
Hy v = §In{—Am +V(z)—Ay+U(y)}—a (1.3)

is defined by means of the spectral calculus. Here and fuditven the Laplace op-
eratorsA, andA, are acting on the andy variables respectively. The sum of the
two Schrodinger type operators contained in the right efdé.3) has the physical
meaning of the cumulative hamiltonian of the two non intérarthree dimen-
sional quantum particles in external potentials. The libganic Laplacian Ifi—A)

is the operator with the Fourier symb®ih|p|. It arises as the formal derivative
Os|s=0(—A)® of the fractional Laplacians at= 0. The operatof—A)° is exten-
sively used, for instance in the studies of the anomalodigsidn problems (see e.g.
[41] and the references therein). Spectral propertieseofdarithmic Laplacian in
an open set of finite measure with Dirichlet boundary condgiwere discussed in
[25] (see also [7]). The studies of(lrA) are important for the understanding of
the asymptotic spectral properties of the family of the ticaal Laplacians in the
limit s — 0™. In [23] it was demonstrated that such operator allows toadtarize
the s-dependence of solution to fractional Poisson equationghi full range of
exponents € (0, 1). The scalar potential functions involved in operatfy  are
assumed to be shallow and short-range, satisfying the gdsns analogous to the
ones of [34] and [35].

Assumption 1.1. The potential function¥ (z), U(y) : R®* — R satisfy the esti-
mates
C C

1% < U < —
V(z)] < 1+ |z[35+e U(y)| < 1+ |y[35+e

with a certaine > 0 andx, y € R? a.e. so that

B 2um) Ve VI, <1 (1.4)
8 Lo (R3) L3 (R3) ’

19 2 1 8

43 24m) U e U1, <1 (1.5)

and

\/CHLS”V”L%(RS) < 4, \/CHLSHUHL%(RS) < A4r.



Here and below” will stand for a finite positive constant amg s given on p.98
of [26] is the constant in the Hardy-Littlewood-Sobolevauality

/ fl(x)fl(y)dl‘dy

< 2 L% R?) ]
|z — y|? <cursl|fill7 5 fi € L2(R”)

L2 (R3)’

The norm of a functiorf; € LP(R%), 1 < p < oo, d € Nis denoted a§ || 1»ra)-
By virtue of Lemma 2.3 of [35], under Assumption 1.1 above loa $calar poten-
tials, the operator

A, +V(x) - A, +Uly)

on L*(R%) is self-adjoint and is unitarily equivalent teA, — A, via the product
of the wave operators (see [24], [29])

+ . i it(—Ag+V(2)) LitAg + . ; it(—Ay+U itA
QV =S — I|mt*>$ooe ( ( ))6 , QU =S — llmt%Iooe ( Yy (y))e y’

where the limits are understood in the strdifgsense (see e.g. [28] p.34, [8] p.90).
Therefore, operator (1.3) has only the essential spectmceh fills the whole real
line and no nontrivial.?(R®) eigenfunctions. Thus, operator (1.3) fails to satisfy the
Fredholm property. Note, that in most of the works dealinthwhe non-Fredholm
operators mentioned above except [19] the essential spit#d only semi-axes.
The functions of the continuos spectrum of the first diffél@mperator involved in
(1.3) are the solutions to the Schrodinger equation

[~As + V(@)|pi(a) = Kei(x), kR,
in the integral form the Lippmann-Schwinger equation (sge §8] p.98)

eikx 1 ei\k||a:—y|
R R I L 16)

and the orthogonality relations

(r(@), o, (@) 123y = O(k — k1), K, k1 € R®
hold. The integral operator contained in (1.6)

1 etlkllz—yl
(Qp)(z) = (Ve)(y)dy, ¢l(x) € L=(R?).
We consider : L>*(R?) — L*(R?®) and its norm||Q|l» < 1 under our As-
sumption 1.1 via Lemma 2.1 of [35]. Note that this norm is bideshabove by the
k-independent quantity(1"), which is the left side of inequality (1.4). By virtue of
Corollary 2.2 of [35] (see also [34]), under the given coiudis fork ¢ R? we
havep,(z) € L>(R3), so that

R s |2 =yl

1 1

% ()] oo (r3y < (1.7)
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Similarly, for the second differential operator contaimedl.3) the functions of its
continuous spectrum solve

[_Ay + U(y)]nq(?/) = Qan(y)a qc jo

in the integral formulation

ety 1 etlally—=|
wo) = oy = g L e e (18)

such that the orthogonality conditions

(0¥, 10, (W) 2@y = 6 — @1), ¢, @ €R’
are valid. The integral operator involved in (1.8) is

1 etlally—=

(Pn)(y) = (Un)(z)dz, n(y) € L™(R?).

dr rs |y — 2|
For P : L>*(R?) — L*(R?) its norm|| P||., < 1 under Assumption 1.1 by means
of Lemma 2.1 of [35]. As above, this norm can be bounded froovalby the
g-independent quantity(U), which is the left side of (1.5). Far € R?3, we have
1,(y) € L>(R?) and

1 1

174 () || Lo (r3) < (1.9)

By means of the spectral theorem,

Hy, vor(2)n,(y) = [IN(v/k2 + ¢2) — alor(x)ng(y).

We designate by the double tilde sign the generalized Fotraasform with the
product of these functions of the continuous spectrum

Flk,q) == (f(z, ), r()ng () L2ms)y,  k,q € R, (1.10)

(1.10) is a unitary transform oh?(R®). The inner product of two functions is
denoted as

(f(2), 9(x)) L2(ray = » f(x)g(x)de, deN, (1.11)

with a slight abuse of notations when the functions involve(d..11) are not square
integrable. Indeed, iff(z) € L'(R?) andg(x) € L*°(R%), then the integral in
the right side of formula (1.11) makes sense. Let us recallRact 2 of [34].
Clearly, under the conditions of Theorem 1.2 below, we hale y) € L'(R°).
The functions of the continuous spectra of our Schrodirayeratorsy, (=) and
n,(y) are bounded by virtue of the Corollary 2.2 of [35]. Therefdhe left side of
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formula (1.12) below is well defined. The sphere of radius R?, d € N centered
at the origin is being designated & Our first main proposition is as follows.

Theorem 1.2.Let Assumption 1.1 hold, for the function
flx,y) € LA(RY), |a|f(z,y) € L'(R®), |ylf(z,y) € L'(R®).

Then problem (1.2) possesses a unique solutiany) € L?(R%) if and only if the
orthogonality relations

(f (@, ), or(@)1y(Y)) 12@sy =0 for (k,q) € S (1.12)
are valid.

Let us turn our attention to the issue of the solvability ia gense of sequences for
our problem. The corresponding sequence of approximatatieqs withn € N is
given by

%In{—Aw +V(z)— A, + U(y)}] Uy — att, = fo(z,y), =, yecR® (1.13)

with « € R. The square integrable right sides of (1.13) are convergiribe right
side of (1.2) inL?(R%) asn — oo. Our second main result is as follows.

Theorem 1.3.Let Assumption 1.1 hold, € N, for the functions
falz,y) € L2R®), o fu(z,y) € LYR®), |yl fulz,y) € L'(R®),
we have
falz,y) = flzy) in LAR%),  |o|fulz.y) — |2]f(z,y) in L'(R%)

and
Wyl fulz,y) = lylf(z,y) in LY(R®)
asn — oo. Moreover, the orthogonality conditions

(fa(z, ), eu(@)nq(y))12wsy = 0 for  (k,q) € See (1.14)

hold for alln € N. Then equations (1.2) and (1.13) have unique solutidnsy) €
L*(R®) andu,(z,y) € L*(R%) respectively, so that,(z,y) — u(z,y) in L*(R)
asn — oo.

The second part of the work deals with the studies of the emjuat
1
SIn{=2, =4, + U(y)}]u —au=¢(zx,y), xR yeR  (1.15)
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with d € N, a € R. The scalar potential function contained in (1.15) is sivall
and short-range under our Assumption 1.1 and the right didé&.d5) is square
integrable. The operator

Ly = %ln{_Ax A+ U) —a (1.16)

here is defined by virtue of the spectral calculus. The sunmhefftee negative
Laplacian and the Schrodinger type operator involvedaritht side of (1.16) has
the physical meaning of the cumulative hamiltonian of a tfe@nensional particle
and a three dimensional particle in an external potentidles€ particles do not
interact. As above, the operator

on L?*(R%+3) is self-adjoint and is unitarily equivalent teA, — A,. Thus, operator
(1.16) has only the essential spectrum, which fills the whedéline similarly to the
two potential case and no nontrviaf(R?+3) eigenfunctions. Therefore, operator
(1.16) does not satisfy the Fredholm property. By virtuehef$pectral theorem, we
have

ikx ikx

Lymnq(y) = [In(vVk* +¢*) - a]mnq(y)-

We consider another useful generalized Fourier transfoitinttve standard Fourier
harmonics and the perturbed plane waves, namely

<Z:>(k,<J) = (é(x,y), gnq(y)> , keRY qeR’. (1.17)
LQ(]Rd-H’))

(1.17) is a unitary transform oh?(R4*3). We have the following proposition.

Theorem 1.4. Let the potential functiod/(y) satisfy Assumption 1.14 € N, for
the function

¢(x.y) € LAR?),  |alg(w,y) € L'(R™),  |yl¢(z,y) € L'(RT).

Then equation (1.15) admits a unique solutidn, y) € L*(R?+3) if and only if the
orthogonality conditions

eikx
(gb(x,y), im(y)) =0 for (k,q)ec S84 (1.18)
2 L2(Rd+3)

are valid.



The final statement of the work is devoted to the issue of tiheabdity in the
sense of sequences for problem (1.15). The correspondijugsee of approximate
equations witm € N, z ¢ R4, d € N, y € R3, a € R is given by

%In{—Aw — Ay + U@}t — attn = 60l ). (1.19)

The right sides of (1.19) are square integrable. They terldeoight side of (1.15)
in L2(R4T3) asn — oc.

Theorem 1.5.Let the potential functio®/(y) satisfy Assumption 1.1, € N, d €
N, for the functions

On(z,y) € L*R™?),  |z|pn(z,y) € L'(R™?),  |ylpn(z,y) € L'(RT?),
we have
On(x,y) = d(x,y) in LARD?), |z]du(z,y) = |z|o(z,y) in L'R?)

and
Y|on(z,y) = lylé(z.y) in LYRT)
asn — oo. Furthermore, the orthogonality relations

eilm

(2)3

(ebn(x,y), ﬁq(y)> =0 for (k,q) €S (1.20)
L2(Rd+3)

hold for all n € N. Then problems (1.15) and (1.19) possess unique solutions
u(r,y) € L*(R¥3) andu,(z,y) € L*(R3) respectively, so that,(z,y) —
u(z,y)in L2(R¥3) asn — oc.

Let us proceed to the proofs of our propositions.
2. Solvability in the sense of sequences with two scalar paotteals

Proof of Theorem 1.Z-irst we demonstrate the uniqueness of solutions for pnoble
(1.2). Suppose it has two solutions(z, y), us(z,y) € L*(R%). Then their differ-
encew(z,y) := ui(z,y) — us(z,y) € L*(R®) satisfies the homogeneous equation

HU, yvw = 0.

Because operator (1.3) has no nontrivial square integeastemodes in the whole
space as mentioned abovwez, y) = 0 in RS.

We apply the generalized Fourier transform (1.10) to badlesiof equation (1.2)
and obtain

k, q € R, (2.1)




For the technical purposes we introduce the spherical layer

As={(kq) € B (1= 8) < VR + @ <" (140)), 0<6<1, (22)

which enables us to express

f(k,q) f(k,q)
In(é) e In(é) s #2)

et et

u(k,q) =

Here and belowi® will denote the complement of a sétC R¢. The characteristic
function of a setA is being designated ag, and|A| will stand for the Lebesgue
measure ofd. Let us define the sets

AST = {(k,q) €R® | /K2 + ¢2 > e*(1 + )}, (2.4)
AS = {(k,q) €ERO | VK2 + 2 < e*(1—0)}, (2.5)

so that
A = A§+ U A,

Clearly, the second term in the right side of (2.3) can betemias

f(k,q) ke
T R

ea

We have the elementary upper bounds

TG [N F{20) [y
. <\/k—>’ Sinfito) < LED
£k, q) LR -

mm = Zin(l — o)

ea

via the one of our assumptions. Obviously, we can write

f /m 25 (s %) 4s 2.7)

f<k7Q):f(eava>+ . Os

Here and further down will denote the angle variables on the sphere. Hence, we
can express the first term in the right side of (2.3) as

f(e“,a) XA+f\/maf(M i
In<m> 6 In<m> 6

(2.8)

ea



Let us recall the result of Lemma 11 of [34]. Thus, under tlaest assumptions

we have(V;, + V,) f(k,q) € L=(R®). We estimate the second term in sum (2.8)
from above in the absolute value as

fe\a/k2+q2 aféz,o)ds <Vt ¥ )f(k i \/m _ o0 _
In(\/kjaqu) XAs| = k q , q L>°(RS) |n(\/k?e2aTq2) XAy =
< C|[(Vi + Vo) f(k, @) || o) xa, € L*(RE).
Therefore, it remains to consider the term
f(e, )
_ ) 2.9
|n<\/k;62aTq2> XA(S ( )

It can be easily verified that (2.9) belongs/t&R®) if and only if f(e“, o) is trivial.
This is equivalent to orthogonality conditions (1.12). [ |

We turn our attention to the establishing of the solvabihtyhe sense of sequences
for our problem in the situation with two scalar potentials.

Proof of Theorem 1.3 Evidently, each equation (1.13) admits a unique solution
un(z,y) € L*(R%), n € N by means of the result of Theorem 1.2 above. Let us
verify that the limiting orthogonality conditions

(f (@, ), ou(@)1g(y)) 12@sy =0 for (k,q) € Sga (2.10)

are valid. Recall the Fact 2 of [34] and the proof of Theorenf 740]. Hence,
under the stated assumptions we hver, y) € L'(R%), n € N, so that

fulz,y) = flx,y) in LYR®) as n — oo. (2.11)
Using (1.14), (1.7), (1.9) and (2.11), we derive férq) € S, that

|(f (2, 9), ou(2)ng(y)) Loy | = [(f (2, 9) — falz,9), or(2)04(y)) L2 ey <

1 1 1
< P T I T 1@ @) — @ p)llnes =0, n— oo,

such that formula (2.10) holds. By virtue of the result of dfem 1.2, equation
(1.2) has a unique solutian(z, y) € L*(R®).

Let us apply the generalized Fourier transform (1.10) tblsates of problems (1.2)
and (1.13). This gives us

A S . B W )
(k. q) In( k;+q2)’ (k,q) In<\/k;Tq2>



with &, ¢ € R* andn € N. Hence, (k, q) — u(k, ) can be expressed as

Fulkoa) ~ F(hq) L Fulhia) ~

() T (o

ea

(k, g
XA;. (2.12)
?)

Obviously, the second term in (2.12) is given by

Full.q) = f(k,q) fulk,q) — f(k,q)
X o+ + X Ac—- (213)
|n(7v’“2+q2) o |n( k2+q2> 45

ea

We have the trivial estimates from above

ulhd) — FOsa)l - alk0) = F )]
in(Vemty R T i)
fulba) — FOa)l _ Vulk ) = 7 0)
’In( k;aJqu)’ A5 = —In(1 —9) '
so that
fulk, ) = [k, 1fnl,9) = Fl@,9) 2oy
( ) XAC+ R6)§ In(1 +0) — 0, n— o0,

| Fulhoa) ~ Flha)
In(@) -

as assumed. Let us recall orthogonality conditions (2.0d)(@.14). They yield
that

< ||fn(x7y) - f(xay)HLQ(RG)

. - —In(1 —9)

—0, n—o0

fle®,0) =0, fu(e®,0) =0, neN,
such that

- VR 9F(s. o . VISR 5F (s o
f(kaQ):/ L(as’ ) (k,q)z/ Onls.o)

ds, fa 95 ds, neN.

a

Then the first term in (2.12) can be written as

f\/k2+q [afn (,0) 8f(s,o)} ds

Js

n(EE)

e(l

(2.14)
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Clearly, (2.14) can be bounded from above in the absolutesvay

\//€27+q2 —e”
In(@)

ea

(Vi + Vo)l @) — F (k. )]l oo oy

Xa; <

< CN(Vi+ V)l falk, @) = F(k, )]l o o) X,
Note that under the given conditions, by means of Lemma 113#], fwe have
(Vi + Vo) fulk,q), (Vi + V) f(k,q) € L®(RS). By virtue of Lemma 5 of [40],

1(Fi+ Vo) [Fulk 0) = F(k, )] mqesy 0, 11— oo, (2.15)

Evidently, we have the estimate for the norm

< ON(Vi + V)l fuk, @) = Flk, @)l neqesy | As]? = 0, 1 — o0

due to (2.15). Thereforey,(x,y) — u(z,y) in L*(R%) asn — oo, which com-
pletes the proof of the theorem. [ |

Vi [0fu(si0)  9f(s.0)
fea Os Os dS
In ( V. k2+q2> s

ea

L2(RS)

In the final section of our article we consider the case ofalgatithmic Schrodinger
operator involving the free Laplacian added to the threeedisional Schrodinger
operator.

3. Solvability in the sense of sequences with Laplacian andsangle potential

Proof of Theorem 1.4To establish the uniqueness of solutions for our problem, we
suppose that (1.15) possesses two solutigiis, y), us(z,y) € L?(R%*3). Then
their differencev(x, y) := ui(z, y) —us(z,y) € L*(R%3) solves the homogeneous
equation

LUU) =0.

Since operator (1.16) considered in the whole space doelsavetany nontrivial
square integrable zero modes as stated aboie,y) = 0 in R4*3,

Let us apply the generalized Fourier transform (1.17) tdhistles of problem
(1.15). This gives us

keRY ¢eR3. (3.1)




We use the spherical layer

By ={(k,q) €ER™3 (1 -08) < VE2+ g2 <e’(1+0)}, 0<d<1.

This allows us to write

Let us introduce the sets
Bt = {(k,q) € R™ | VB + ¢ > (1 + )}
BS = {(k,q) € R | \/k2 4+ ¢ < e*(1 - §)}

B = BSTUBS.

such that

Obviously, the second term in the right side of (3.3) can essed as

oha) k)
In(@)XB‘s JrIn( k2+q2> '

et

We have the trivial estimates from above

(() |% o ¢ pgen

ea

due to the one of our assumptions. Evidently, we have thedtarm

X b \/ k2 +q?
oka) = ot o) + | 50.0)

Thus, the first term in the right side of (3.3) can be written as
x VE* 4 9d(s.0

RGN O S e
() ()

XBs-

e® e®
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(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

3.7)

(3.8)



We recall the result of Lemma 12 of [34]. Hence, under themivenditions we

have(V + V,)é(k, q) € L=(R%+3). Let us obtain the upper bound in the absolute
value on the second term in sum (3.8) as

fe\a/ k2+q2 %ds ~ /k2 _'_ q2 _ ea
o x| < (Vi + Vq)</>(k7Q)HL°°(Rd+3) XBs <
|n< k2+q2> In( /k2+q2>
< Oll(Vi + V)b (k, @) oo mars) x5, € L*(RT?),
so that it remains to analyze the term
o(e,0)

() ¢9
n s

It can be trivially checked that (3.9) is contained/ityR¢+3) if and only if(%(e“, o)
vanishes. This is equivalent to orthogonality relation4g). [ |

Let us conclude the article with demonstrating the solvgbih the sense of se-
guences for our equation containing the logarithmic Sdimger operator when the
free Laplacian is added to a three dimensional Schrodiogerator.

Proof of Theorem 1.5.Each equation (1.19) has a unique solutiofiz,y) €
L*(R%3), n € N due to the result of Theorem 1.4 above. Let us demonstrate
that the limiting orthogonality relations

ikx
((Z)(:U,y), ¢ dm(y)) =0 for (k,q) € Sjj?’ (3.10)
(277-)E L2(Rd+3)

hold. By means of Fact 2 of [34], under the given conditionshaeeg,,(z,y) €
LY(R¥*3), n € N. We recall the argument of the proof of Theorem 3 of [40].
Hence,

bz, y) = O(x,y) in L' R, n— oco. (3.11)

Let us use formulas (1.20), (1.9), (3.11) to obtain(forg) € 5% that

eilm
‘ <¢(:c,y), (%)gnq(y))mwg)

- 1 1

= on S 1 1(0)
so that (3.10) is valid. By virtue of Theorem 1.4 above, peot1.15) possesses a
unique solution(z, y) € L?(R4+3).

ik

= ‘ <¢(5C7 y)=on(@.y), (27T)g T)q(y)> L2(Rd+3)

|6 (2, y) = o2, Y) |1 rassy = 0, 1 — o0,

<
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We apply the generalized Fourier transform (1.17) to balbsbf equations (1.15)
and (1.19) and obtain that

X Q:S(k:7Q) X Q:S )
u(k,q) = —————, n(k,q) =
(k. q) ln(m) ( kz+q )
with & € R?, ¢ € R® andn € N. Clearly,u,(k, ¢) — u(k, ¢) can be written as
Wk, q) — ok, (k) — ok,
dulk,q) — ¢ ) ¢> (k,q) - cbg Q)XBg- (3.12)
n(~=%) (=)
Evidently, the second term in (3.12) equals to
:n ka - ) ka 5 ka - ) ka
On(k, ) - cbg Q)XB§+ L Oulk.q) - cbg Q)XBg_' (3.13)
In( ea+q ) In( ea+q )
Obviously, the inequalities
n(YERsy T T )

n(TE)| =

hold. Hence, by means of the one of our assumptions

Q:sn(k%Q) - Q:S(k:aCJ)X ”(bn(l’ y) ¢($ y)|]L2(Rd+3) =0
/1212 BSt s
In(%) LQ(R‘HS) In (1 + 5)
édhw—é%q& Ién(,9) = 6, P lzsrs)
2 B~ = — —
In(’/ke +q2 ) LRI In(1—19)

asn — oo. Let us use orthogonality relations (3.10) and (1.20). Thus

H(e",0) =0, ou(e®0) =0, neN,

so that

ds, ) 9 ds, n € N.

a

x VK tg? (’Bgz:ﬁ(s, o) x VK2 +g? 8gz:5n(s, o)
¢(k7Q) - /; T ¢n(k7Q) - /e o,
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Then the first term in (3.12) is given by

f\/k2+q2 [&Z"(s,a) B qub(s,a):|d8
et Js

Js

In<@>

XB; - (3.14)

Clearly, (3.14) can be estimated from above in the absohites\by

\/m—e“
In<m>

ea

(Vi + Vo) [k, 0) — 6k, )]l o e

XB; <

~

< CN(Vi + Vo) [n(k, a) = bk, @)][| o oe) X5,
Let us recall Lemma 12 of [34]. Hence, under the stated assongp we have

(Vi 4+ Vo)on(k,q), (Vi + V)o(k,q) € L®(R*3). According to Lemma 5 of
[40],

~

1(Vi + V) 6ulk.0) = 6k, )l zmuars) = 0, n—c0.  (3.15)

Obviously, we have the upper bound for the norm

< C|[(Vi + V) [on(k, q) — Sk, @)]|| oo gassy| Bs|? = 0, 1 — o0

via (3.15). This implies that,(z,y) — u(x,y) in L*(R*3) asn — oo, which
completes the proof of the theorem. [ |

v k2 +q? qubn(s,a) . 8(2(5,0)
fe“ Os 0s ds
In( V k2+q2> B

L2 (Rd+3)

e(l
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