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Abstract: We study the solvability of certain linear nonhomogeneous equations
containing the logarithm of the sum of the two Schrödinger operators in higher
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in L2(Rd) of the solutions. The equations involve the operators without the Fred-
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Schrödinger type operators to generalize the results of our preceding work [19]. As
distinct from the many previous articles on the subject, forthe operators contained
in our equations the essential spectra fill the whole real line.
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1. Introduction

Consider the equation
−∆u + V (x)u− au = f, (1.1)

whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant and the scalar
potential functionV (x) tends to0 at infinity. Fora ≥ 0, the essential spectrum of
the operatorA : E → F , corresponding to the left side of problem (1.1) contains
the origin. As a consequence, such operator does not satisfythe Fredholm property.
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Its image is not closed, ford > 1 the dimension of its kernel and the codimension
of its image are not finite. The present article is devoted to the studies of the certain
properties of the operators of this kind. We recall that there was a significant amount
of work accomplished on the elliptic equations containing the non-Fredholm opera-
tors in recent years (see [14], [15], [16], [17], [18], [30],[31], [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41], also [4]) along with their potential appli-
cations to the theory of the reaction-diffusion problems (see [9], [10]). Fredholm
structures, topological invariants and their applications were covered in [11]. The
article [12] is devoted to the finite and infinite dimensionalattractors for the evo-
lution equations of mathematical physics. The large time behavior of the solutions
of a class of fourth-order parabolic equations defined on unbounded domains using
the Kolmogorovε-entropy as a measure was considered in [13]. The attractor for a
nonlinear reaction- diffusion system in an unbounded domain in the space of three
dimensions was studied in [20]. The works [21] and [27] are important for the
understanding of the Fredholm and properness properties ofthe quasilinear elliptic
systems of the second order and of the operators of this kind on R

N . The exponen-
tial decay and Fredholm properties in the second-order quasilinear elliptic systems
of equations were discussed in [22]. The articles [32] and [38] deal with the
solvability conditions for the linearized Cahn-Hilliard equations. The work [37] is
devoted to the studies of the Laplacian with transport from the point of view of the
non-Fredholm operators. Standing lattice solitons in the discrete NLS equation with
saturation were covered in [1]. Particularly, when the constanta = 0, our operator
A satisfies the Fredholm property in certain properly chosen weighted spaces (see
[2], [3], [4], [5], [6]). However, the situation ofa nontrivial is significantly different
and the approach developed in these articles cannot be used.
One of the important issues concerning the problems with non-Fredholm operators
is their solvability. Let us address it in the following setting. Letfn be a sequence
of functions in the image of the operatorA, so thatfn → f in L2(Rd) asn → ∞.
We designate byun a sequence of functions fromH2(Rd), so that

Aun = fn, n ∈ N.

Since the operatorA fails to satisfy the Fredholm property, the sequenceun may
not be convergent. Let us call a sequenceun, so thatAun → f a solution in the
sense of sequences of equationAu = f (see [30]). If this sequence converges to a
functionu0 in the norm of the spaceE, thenu0 is a solution of this equation. The
solution in the sense of sequences is equivalent in this sense to the usual solution.
However, in the case of the non-Fredholm operators, this convergence may not hold
or it can occur in some weaker sense. In this situation, the solution in the sense of
sequences may not imply the existence of the usual solution.In the present article
we will find the sufficient conditions of equivalence of the solutions in the sense of
sequences and the usual solutions. In the other words, we will find the conditions on
the sequencesfn under which the corresponding sequencesun are strongly conver-
gent. Solvability in the sense of sequences for a linear nonhomogeneous equation
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involving the logarithmic Laplacian with and without a shallow, short-range scalar
potential was covered in [19]. The present work is our modestattempt to generalize
these results. In the first part of the article we study the equation

[1

2
ln{−∆x + V (x)−∆y +U(y)}

]

u− au = f(x, y), x, y ∈ R
3, a ∈ R (1.2)

with a square integrable right side. The operator in the leftside of problem (1.2)

HU, V :=
1

2
ln{−∆x + V (x)−∆y + U(y)} − a (1.3)

is defined by means of the spectral calculus. Here and furtherdown the Laplace op-
erators∆x and∆y are acting on thex andy variables respectively. The sum of the
two Schrödinger type operators contained in the right sideof (1.3) has the physical
meaning of the cumulative hamiltonian of the two non interacting three dimen-
sional quantum particles in external potentials. The logarithmic Laplacian ln(−∆)
is the operator with the Fourier symbol2ln|p|. It arises as the formal derivative
∂s|s=0(−∆)s of the fractional Laplacians ats = 0. The operator(−∆)s is exten-
sively used, for instance in the studies of the anomalous diffusion problems (see e.g.
[41] and the references therein). Spectral properties of the logarithmic Laplacian in
an open set of finite measure with Dirichlet boundary conditions were discussed in
[25] (see also [7]). The studies of ln(−∆) are important for the understanding of
the asymptotic spectral properties of the family of the fractional Laplacians in the
limit s → 0+. In [23] it was demonstrated that such operator allows to characterize
the s-dependence of solution to fractional Poisson equations for the full range of
exponentss ∈ (0, 1). The scalar potential functions involved in operatorHU, V are
assumed to be shallow and short-range, satisfying the assumptions analogous to the
ones of [34] and [35].

Assumption 1.1. The potential functionsV (x), U(y) : R3 → R satisfy the esti-
mates

|V (x)| ≤ C

1 + |x|3.5+ε
, |U(y)| ≤ C

1 + |y|3.5+ε

with a certainε > 0 andx, y ∈ R
3 a.e. so that

4
1

9

9

8
(4π)−

2

3‖V ‖
1

9

L∞(R3)‖V ‖
8

9

L
4
3 (R3)

< 1, (1.4)

4
1

9

9

8
(4π)−

2

3‖U‖
1

9

L∞(R3)‖U‖
8

9

L
4
3 (R3)

< 1 (1.5)

and

√
cHLS‖V ‖

L
3
2 (R3)

< 4π,
√
cHLS‖U‖

L
3
2 (R3)

< 4π.
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Here and belowC will stand for a finite positive constant andcHLS given on p.98
of [26] is the constant in the Hardy-Littlewood-Sobolev inequality

∣

∣

∣

∣

∣

∫

R3

∫

R3

f1(x)f1(y)

|x− y|2 dxdy

∣

∣

∣

∣

∣

≤ cHLS‖f1‖2
L

3
2 (R3)

, f1 ∈ L
3

2 (R3).

The norm of a functionf1 ∈ Lp(Rd), 1 ≤ p ≤ ∞, d ∈ N is denoted as‖f1‖Lp(Rd).
By virtue of Lemma 2.3 of [35], under Assumption 1.1 above on the scalar poten-
tials, the operator

−∆x + V (x)−∆y + U(y)

onL2(R6) is self-adjoint and is unitarily equivalent to−∆x − ∆y via the product
of the wave operators (see [24], [29])

Ω±
V := s− limt→∓∞eit(−∆x+V (x))eit∆x , Ω±

U := s− limt→∓∞eit(−∆y+U(y))eit∆y ,

where the limits are understood in the strongL2 sense (see e.g. [28] p.34, [8] p.90).
Therefore, operator (1.3) has only the essential spectrum,which fills the whole real
line and no nontrivialL2(R6) eigenfunctions. Thus, operator (1.3) fails to satisfy the
Fredholm property. Note, that in most of the works dealing with the non-Fredholm
operators mentioned above except [19] the essential spectra filled only semi-axes.
The functions of the continuos spectrum of the first differential operator involved in
(1.3) are the solutions to the Schrödinger equation

[−∆x + V (x)]ϕk(x) = k2ϕk(x), k ∈ R
3,

in the integral form the Lippmann-Schwinger equation (see e.g. [28] p.98)

ϕk(x) =
eikx

(2π)
3

2

− 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕk)(y)dy (1.6)

and the orthogonality relations

(ϕk(x), ϕk1(x))L2(R3) = δ(k − k1), k, k1 ∈ R
3

hold. The integral operator contained in (1.6)

(Qϕ)(x) := − 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕ)(y)dy, ϕ(x) ∈ L∞(R3).

We considerQ : L∞(R3) → L∞(R3) and its norm‖Q‖∞ < 1 under our As-
sumption 1.1 via Lemma 2.1 of [35]. Note that this norm is bounded above by the
k-independent quantityI(V ), which is the left side of inequality (1.4). By virtue of
Corollary 2.2 of [35] (see also [34]), under the given conditions fork ∈ R

3 we
haveϕk(x) ∈ L∞(R3), so that

‖ϕk(x)‖L∞(R3) ≤
1

1− I(V )

1

(2π)
3

2

. (1.7)
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Similarly, for the second differential operator containedin (1.3) the functions of its
continuous spectrum solve

[−∆y + U(y)]ηq(y) = q2ηq(y), q ∈ R
3,

in the integral formulation

ηq(y) =
eiqy

(2π)
3

2

− 1

4π

∫

R3

ei|q||y−z|

|y − z| (Uηq)(z)dz, (1.8)

such that the orthogonality conditions

(ηq(y), ηq1(y))L2(R3) = δ(q − q1), q, q1 ∈ R
3

are valid. The integral operator involved in (1.8) is

(Pη)(y) := − 1

4π

∫

R3

ei|q||y−z|

|y − z| (Uη)(z)dz, η(y) ∈ L∞(R3).

ForP : L∞(R3) → L∞(R3) its norm‖P‖∞ < 1 under Assumption 1.1 by means
of Lemma 2.1 of [35]. As above, this norm can be bounded from above by the
q-independent quantityI(U), which is the left side of (1.5). Forq ∈ R

3, we have
ηq(y) ∈ L∞(R3) and

‖ηq(y)‖L∞(R3) ≤
1

1− I(U)

1

(2π)
3

2

. (1.9)

By means of the spectral theorem,

HU, V ϕk(x)ηq(y) = [ln(
√

k2 + q2)− a]ϕk(x)ηq(y).

We designate by the double tilde sign the generalized Fourier transform with the
product of these functions of the continuous spectrum

˜̃
f(k, q) := (f(x, y), ϕk(x)ηq(y))L2(R6), k, q ∈ R

3. (1.10)

(1.10) is a unitary transform onL2(R6). The inner product of two functions is
denoted as

(f(x), g(x))L2(Rd) :=

∫

Rd

f(x)ḡ(x)dx, d ∈ N, (1.11)

with a slight abuse of notations when the functions involvedin (1.11) are not square
integrable. Indeed, iff(x) ∈ L1(Rd) and g(x) ∈ L∞(Rd), then the integral in
the right side of formula (1.11) makes sense. Let us recall the Fact 2 of [34].
Clearly, under the conditions of Theorem 1.2 below, we havef(x, y) ∈ L1(R6).
The functions of the continuous spectra of our Schrödingeroperatorsϕk(x) and
ηq(y) are bounded by virtue of the Corollary 2.2 of [35]. Therefore, the left side of
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formula (1.12) below is well defined. The sphere of radiusr in R
d, d ∈ N centered

at the origin is being designated asSd
r . Our first main proposition is as follows.

Theorem 1.2.Let Assumption 1.1 hold, for the function

f(x, y) ∈ L2(R6), |x|f(x, y) ∈ L1(R6), |y|f(x, y) ∈ L1(R6).

Then problem (1.2) possesses a unique solutionu(x, y) ∈ L2(R6) if and only if the
orthogonality relations

(f(x, y), ϕk(x)ηq(y))L2(R6) = 0 for (k, q) ∈ S6
ea (1.12)

are valid.

Let us turn our attention to the issue of the solvability in the sense of sequences for
our problem. The corresponding sequence of approximate equations withn ∈ N is
given by

[1

2
ln{−∆x + V (x)−∆y + U(y)}

]

un − aun = fn(x, y), x, y ∈ R
3 (1.13)

with a ∈ R. The square integrable right sides of (1.13) are convergingto the right
side of (1.2) inL2(R6) asn → ∞. Our second main result is as follows.

Theorem 1.3.Let Assumption 1.1 hold,n ∈ N, for the functions

fn(x, y) ∈ L2(R6), |x|fn(x, y) ∈ L1(R6), |y|fn(x, y) ∈ L1(R6),

we have

fn(x, y) → f(x, y) in L2(R6), |x|fn(x, y) → |x|f(x, y) in L1(R6)

and
|y|fn(x, y) → |y|f(x, y) in L1(R6)

asn → ∞. Moreover, the orthogonality conditions

(fn(x, y), ϕk(x)ηq(y))L2(R6) = 0 for (k, q) ∈ S6
ea (1.14)

hold for alln ∈ N. Then equations (1.2) and (1.13) have unique solutionsu(x, y) ∈
L2(R6) andun(x, y) ∈ L2(R6) respectively, so thatun(x, y) → u(x, y) in L2(R6)
asn → ∞.

The second part of the work deals with the studies of the equation

[1

2
ln{−∆x −∆y + U(y)}

]

u− au = φ(x, y), x ∈ R
d, y ∈ R

3 (1.15)
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with d ∈ N, a ∈ R. The scalar potential function contained in (1.15) is shallow
and short-range under our Assumption 1.1 and the right side of (1.15) is square
integrable. The operator

LU :=
1

2
ln{−∆x −∆y + U(y)} − a (1.16)

here is defined by virtue of the spectral calculus. The sum of the free negative
Laplacian and the Schrödinger type operator involved in the right side of (1.16) has
the physical meaning of the cumulative hamiltonian of a freed dimensional particle
and a three dimensional particle in an external potential. These particles do not
interact. As above, the operator

−∆x −∆y + U(y)

onL2(Rd+3) is self-adjoint and is unitarily equivalent to−∆x−∆y. Thus, operator
(1.16) has only the essential spectrum, which fills the wholereal line similarly to the
two potential case and no nontrvialL2(Rd+3) eigenfunctions. Therefore, operator
(1.16) does not satisfy the Fredholm property. By virtue of the spectral theorem, we
have

LU

eikx

(2π)
d
2

ηq(y) = [ln(
√

k2 + q2)− a]
eikx

(2π)
d
2

ηq(y).

We consider another useful generalized Fourier transform with the standard Fourier
harmonics and the perturbed plane waves, namely

˜̂
φ(k, q) :=

(

φ(x, y),
eikx

(2π)
d
2

ηq(y)

)

L2(Rd+3)

, k ∈ R
d, q ∈ R

3. (1.17)

(1.17) is a unitary transform onL2(Rd+3). We have the following proposition.

Theorem 1.4. Let the potential functionU(y) satisfy Assumption 1.1,d ∈ N, for
the function

φ(x, y) ∈ L2(Rd+3), |x|φ(x, y) ∈ L1(Rd+3), |y|φ(x, y) ∈ L1(Rd+3).

Then equation (1.15) admits a unique solutionu(x, y) ∈ L2(Rd+3) if and only if the
orthogonality conditions

(

φ(x, y),
eikx

(2π)
d
2

ηq(y)

)

L2(Rd+3)

= 0 for (k, q) ∈ Sd+3
ea (1.18)

are valid.
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The final statement of the work is devoted to the issue of the solvability in the
sense of sequences for problem (1.15). The corresponding sequence of approximate
equations withn ∈ N, x ∈ R

d, d ∈ N, y ∈ R
3, a ∈ R is given by

[1

2
ln{−∆x −∆y + U(y)}

]

un − aun = φn(x, y). (1.19)

The right sides of (1.19) are square integrable. They tend tothe right side of (1.15)
in L2(Rd+3) asn → ∞.

Theorem 1.5.Let the potential functionU(y) satisfy Assumption 1.1,n ∈ N, d ∈
N, for the functions

φn(x, y) ∈ L2(Rd+3), |x|φn(x, y) ∈ L1(Rd+3), |y|φn(x, y) ∈ L1(Rd+3),

we have

φn(x, y) → φ(x, y) in L2(Rd+3), |x|φn(x, y) → |x|φ(x, y) in L1(Rd+3)

and
|y|φn(x, y) → |y|φ(x, y) in L1(Rd+3)

asn → ∞. Furthermore, the orthogonality relations
(

φn(x, y),
eikx

(2π)
d
2

ηq(y)

)

L2(Rd+3)

= 0 for (k, q) ∈ Sd+3
ea (1.20)

hold for all n ∈ N. Then problems (1.15) and (1.19) possess unique solutions
u(x, y) ∈ L2(Rd+3) and un(x, y) ∈ L2(Rd+3) respectively, so thatun(x, y) →
u(x, y) in L2(Rd+3) asn → ∞.

Let us proceed to the proofs of our propositions.

2. Solvability in the sense of sequences with two scalar potentials

Proof of Theorem 1.2.First we demonstrate the uniqueness of solutions for problem
(1.2). Suppose it has two solutionsu1(x, y), u2(x, y) ∈ L2(R6). Then their differ-
encew(x, y) := u1(x, y)− u2(x, y) ∈ L2(R6) satisfies the homogeneous equation

HU, Vw = 0.

Because operator (1.3) has no nontrivial square integrablezero modes in the whole
space as mentioned above,w(x, y) ≡ 0 in R

6.
We apply the generalized Fourier transform (1.10) to both sides of equation (1.2)
and obtain

˜̃u(k, q) =
˜̃
f(k, q)

ln
(

√
k2+q2

ea

)

, k, q ∈ R
3. (2.1)
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For the technical purposes we introduce the spherical layer

Aδ := {(k, q) ∈ R
6 | ea(1− δ) ≤

√

k2 + q2 ≤ ea(1 + δ)}, 0 < δ < 1, (2.2)

which enables us to express

˜̃u(k, q) =
˜̃
f(k, q)

ln
(

√
k2+q2

ea

)

χAδ
+

˜̃
f(k, q)

ln
(

√
k2+q2

ea

)

χAc
δ
. (2.3)

Here and belowAc will denote the complement of a setA ⊆ R
d. The characteristic

function of a setA is being designated asχA and |A| will stand for the Lebesgue
measure ofA. Let us define the sets

Ac+
δ := {(k, q) ∈ R

6 |
√

k2 + q2 > ea(1 + δ)}, (2.4)

Ac−
δ := {(k, q) ∈ R

6 |
√

k2 + q2 < ea(1− δ)}, (2.5)

so that
Ac

δ = Ac+
δ ∪Ac−

δ .

Clearly, the second term in the right side of (2.3) can be written as

˜̃
f(k, q)

ln
(

√
k2+q2

ea

)

χAc+
δ

+
˜̃
f(k, q)

ln
(

√
k2+q2

ea

)

χAc−
δ
. (2.6)

We have the elementary upper bounds

| ˜̃f(k, q)|
∣

∣

∣
ln
(

√
k2+q2

ea

)
∣

∣

∣

χAc+
δ

≤ | ˜̃f(k, q)|
ln(1 + δ)

∈ L2(R6),

| ˜̃f(k, q)|
∣

∣

∣
ln
(

√
k2+q2

ea

)
∣

∣

∣

χAc−
δ

≤ | ˜̃f(k, q)|
−ln(1− δ)

∈ L2(R6)

via the one of our assumptions. Obviously, we can write

˜̃
f(k, q) = ˜̃

f(ea, σ) +

∫

√
k2+q2

ea

∂
˜̃
f(s, σ)

∂s
ds. (2.7)

Here and further downσ will denote the angle variables on the sphere. Hence, we
can express the first term in the right side of (2.3) as

˜̃
f(ea, σ)

ln
(

√
k2+q2

ea

)

χAδ
+

∫

√
k2+q2

ea
∂
˜̃
f(s,σ)
∂s

ds

ln
(

√
k2+q2

ea

)

χAδ
. (2.8)
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Let us recall the result of Lemma 11 of [34]. Thus, under the stated assumptions

we have(∇k + ∇q)
˜̃
f(k, q) ∈ L∞(R6). We estimate the second term in sum (2.8)

from above in the absolute value as
∣

∣

∣

∣

∣

∫

√
k2+q2

ea
∂
˜̃
f(s,σ)
∂s

ds

ln
(

√
k2+q2

ea

)

χAδ

∣

∣

∣

∣

∣

≤ ‖(∇k +∇q)
˜̃
f(k, q)‖L∞(R6)

∣

∣

∣

∣

∣

√

k2 + q2 − ea

ln
(

√
k2+q2

ea

)

∣

∣

∣

∣

∣

χAδ
≤

≤ C‖(∇k +∇q)
˜̃
f(k, q)‖L∞(R6)χAδ

∈ L2(R6).

Therefore, it remains to consider the term

˜̃
f(ea, σ)

ln
(

√
k2+q2

ea

)

χAδ
. (2.9)

It can be easily verified that (2.9) belongs toL2(R6) if and only if ˜̃f(ea, σ) is trivial.
This is equivalent to orthogonality conditions (1.12).

We turn our attention to the establishing of the solvabilityin the sense of sequences
for our problem in the situation with two scalar potentials.

Proof of Theorem 1.3.Evidently, each equation (1.13) admits a unique solution
un(x, y) ∈ L2(R6), n ∈ N by means of the result of Theorem 1.2 above. Let us
verify that the limiting orthogonality conditions

(f(x, y), ϕk(x)ηq(y))L2(R6) = 0 for (k, q) ∈ S6
ea (2.10)

are valid. Recall the Fact 2 of [34] and the proof of Theorem 2 of [40]. Hence,
under the stated assumptions we havefn(x, y) ∈ L1(R6), n ∈ N, so that

fn(x, y) → f(x, y) in L1(R6) as n → ∞. (2.11)

Using (1.14), (1.7), (1.9) and (2.11), we derive for(k, q) ∈ S6
ea that

|(f(x, y), ϕk(x)ηq(y))L2(R6)| = |(f(x, y)− fn(x, y), ϕk(x)ηq(y))L2(R6)| ≤

≤ 1

(2π)3
1

1− I(V )

1

1− I(U)
‖fn(x, y)− f(x, y)‖L1(R6) → 0, n → ∞,

such that formula (2.10) holds. By virtue of the result of Theorem 1.2, equation
(1.2) has a unique solutionu(x, y) ∈ L2(R6).
Let us apply the generalized Fourier transform (1.10) to both sides of problems (1.2)
and (1.13). This gives us

˜̃u(k, q) =
˜̃
f(k, q)

ln
(

√
k2+q2

ea

)

, ˜̃un(k, q) =
˜̃
fn(k, q)

ln
(

√
k2+q2

ea

)
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with k, q ∈ R
3 andn ∈ N. Hence,̃̃un(k, q)− ˜̃u(k, q) can be expressed as

˜̃
fn(k, q)− ˜̃

f(k, q)

ln
(

√
k2+q2

ea

)

χAδ
+

˜̃
fn(k, q)− ˜̃

f(k, q)

ln
(

√
k2+q2

ea

)

χAc
δ
. (2.12)

Obviously, the second term in (2.12) is given by

˜̃
fn(k, q)− ˜̃

f(k, q)

ln
(

√
k2+q2

ea

)

χAc+
δ

+
˜̃
fn(k, q)− ˜̃

f(k, q)

ln
(

√
k2+q2

ea

)

χAc−
δ
. (2.13)

We have the trivial estimates from above

| ˜̃fn(k, q)− ˜̃
f(k, q)|

∣

∣

∣
ln
(

√
k2+q2

ea

)
∣

∣

∣

χAc+
δ

≤ | ˜̃fn(k, q)− ˜̃
f(k, q)|

ln(1 + δ)
,

| ˜̃fn(k, q)− ˜̃
f(k, q)|

∣

∣

∣
ln
(

√
k2+q2

ea

)
∣

∣

∣

χAc−
δ

≤ | ˜̃fn(k, q)− ˜̃
f(k, q)|

−ln(1− δ)
,

so that
∥

∥

∥

∥

∥

˜̃
fn(k, q)− ˜̃

f(k, q)

ln
(

√
k2+q2

ea

)

χAc+
δ

∥

∥

∥

∥

∥

L2(R6)

≤ ‖fn(x, y)− f(x, y)‖L2(R6)

ln(1 + δ)
→ 0, n → ∞,

∥

∥

∥

∥

∥

˜̃
fn(k, q)− ˜̃

f(k, q)

ln
(

√
k2+q2

ea

)

χAc−
δ

∥

∥

∥

∥

∥

L2(R6)

≤ ‖fn(x, y)− f(x, y)‖L2(R6)

−ln(1− δ)
→ 0, n → ∞

as assumed. Let us recall orthogonality conditions (2.10) and (1.14). They yield
that

˜̃
f(ea, σ) = 0,

˜̃
fn(e

a, σ) = 0, n ∈ N,

such that

˜̃
f(k, q) =

∫

√
k2+q2

ea

∂
˜̃
f(s, σ)

∂s
ds,

˜̃
fn(k, q) =

∫

√
k2+q2

ea

∂
˜̃
fn(s, σ)

∂s
ds, n ∈ N.

Then the first term in (2.12) can be written as

∫

√
k2+q2

ea

[

∂
˜̃
fn(s,σ)
∂s

− ∂
˜̃
f(s,σ)
∂s

]

ds

ln
(

√
k2+q2

ea

)

χAδ
. (2.14)

11



Clearly, (2.14) can be bounded from above in the absolute value by

‖(∇k +∇q)[
˜̃
fn(k, q)− ˜̃

f(k, q)]‖L∞(R6)

∣

∣

∣

∣

∣

√

k2 + q2 − ea

ln
(

√
k2+q2

ea

)

∣

∣

∣

∣

∣

χAδ
≤

≤ C‖(∇k +∇q)[
˜̃
fn(k, q)− ˜̃

f(k, q)]‖L∞(R6)χAδ
.

Note that under the given conditions, by means of Lemma 11 of [34], we have

(∇k +∇q)
˜̃
fn(k, q), (∇k +∇q)

˜̃
f(k, q) ∈ L∞(R6). By virtue of Lemma 5 of [40],

‖(∇k +∇q)[
˜̃
fn(k, q)− ˜̃

f(k, q)]‖L∞(R6) → 0, n → ∞. (2.15)

Evidently, we have the estimate for the norm

∥

∥

∥

∥

∥

∫

√
k2+q2

ea

[

∂
˜̃
fn(s,σ)
∂s

− ∂
˜̃
f(s,σ)
∂s

]

ds

ln
(

√
k2+q2

ea

)

χAδ

∥

∥

∥

∥

∥

L2(R6)

≤

≤ C‖(∇k +∇q)[
˜̃
fn(k, q)− ˜̃

f(k, q)]‖L∞(R6)|Aδ|
1

2 → 0, n → ∞
due to (2.15). Therefore,un(x, y) → u(x, y) in L2(R6) asn → ∞, which com-
pletes the proof of the theorem.

In the final section of our article we consider the case of the logarithmic Schrödinger
operator involving the free Laplacian added to the three dimensional Schrödinger
operator.

3. Solvability in the sense of sequences with Laplacian and asingle potential

Proof of Theorem 1.4.To establish the uniqueness of solutions for our problem, we
suppose that (1.15) possesses two solutionsu1(x, y), u2(x, y) ∈ L2(Rd+3). Then
their differencew(x, y) := u1(x, y)−u2(x, y) ∈ L2(Rd+3) solves the homogeneous
equation

LUw = 0.

Since operator (1.16) considered in the whole space does nothave any nontrivial
square integrable zero modes as stated above,w(x, y) ≡ 0 in R

d+3.
Let us apply the generalized Fourier transform (1.17) to both sides of problem
(1.15). This gives us

˜̂u(k, q) =
˜̂
φ(k, q)

ln
(

√
k2+q2

ea

)

, k ∈ R
d, q ∈ R

3. (3.1)

12



We use the spherical layer

Bδ := {(k, q) ∈ R
d+3 | ea(1− δ) ≤

√

k2 + q2 ≤ ea(1 + δ)}, 0 < δ < 1. (3.2)

This allows us to write

˜̂u(k, q) =
˜̂
φ(k, q)

ln
(

√
k2+q2

ea

)

χBδ
+

˜̂
φ(k, q)

ln
(

√
k2+q2

ea

)

χBc
δ
. (3.3)

Let us introduce the sets

Bc+
δ := {(k, q) ∈ R

d+3 |
√

k2 + q2 > ea(1 + δ)}, (3.4)

Bc−
δ := {(k, q) ∈ R

d+3 |
√

k2 + q2 < ea(1− δ)}, (3.5)

such that
Bc

δ = Bc+
δ ∪ Bc−

δ .

Obviously, the second term in the right side of (3.3) can be expressed as

˜̂
φ(k, q)

ln
(

√
k2+q2

ea

)

χBc+
δ

+
˜̂
φ(k, q)

ln
(

√
k2+q2

ea

)

χBc−
δ
. (3.6)

We have the trivial estimates from above

| ˜̂φ(k, q)|
∣

∣

∣
ln
(

√
k2+q2

ea

)
∣

∣

∣

χBc+
δ

≤ | ˜̂φ(k, q)|
ln(1 + δ)

∈ L2(Rd+3),

| ˜̂φ(k, q)|
∣

∣

∣
ln
(

√
k2+q2

ea

)
∣

∣

∣

χBc−
δ

≤ | ˜̂φ(k, q)|
−ln(1− δ)

∈ L2(Rd+3)

due to the one of our assumptions. Evidently, we have the formula

˜̂
φ(k, q) =

˜̂
φ(ea, σ) +

∫

√
k2+q2

ea

∂
˜̂
φ(s, σ)

∂s
ds (3.7)

Thus, the first term in the right side of (3.3) can be written as

˜̂
φ(ea, σ)

ln
(

√
k2+q2

ea

)

χBδ
+

∫

√
k2+q2

ea
∂
˜̂
φ(s,σ)
∂s

ds

ln
(

√
k2+q2

ea

)

χBδ
. (3.8)
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We recall the result of Lemma 12 of [34]. Hence, under the given conditions we

have(∇k +∇q)
˜̂
φ(k, q) ∈ L∞(Rd+3). Let us obtain the upper bound in the absolute

value on the second term in sum (3.8) as

∣

∣

∣

∣

∣

∫

√
k2+q2

ea
∂
˜̂
φ(s,σ)
∂s

ds

ln
(

√
k2+q2

ea

)

χBδ

∣

∣

∣

∣

∣

≤ ‖(∇k +∇q)
˜̂
φ(k, q)‖L∞(Rd+3)

∣

∣

∣

∣

∣

√

k2 + q2 − ea

ln
(

√
k2+q2

ea

)

∣

∣

∣

∣

∣

χBδ
≤

≤ C‖(∇k +∇q)
˜̂
φ(k, q)‖L∞(Rd+3)χBδ

∈ L2(Rd+3),

so that it remains to analyze the term

˜̂
φ(ea, σ)

ln
(

√
k2+q2

ea

)

χBδ
. (3.9)

It can be trivially checked that (3.9) is contained inL2(Rd+3) if and only if ˜̂φ(ea, σ)
vanishes. This is equivalent to orthogonality relations (1.18).

Let us conclude the article with demonstrating the solvability in the sense of se-
quences for our equation containing the logarithmic Schrödinger operator when the
free Laplacian is added to a three dimensional Schrödingeroperator.

Proof of Theorem 1.5.Each equation (1.19) has a unique solutionun(x, y) ∈
L2(Rd+3), n ∈ N due to the result of Theorem 1.4 above. Let us demonstrate
that the limiting orthogonality relations

(

φ(x, y),
eikx

(2π)
d
2

ηq(y)

)

L2(Rd+3)

= 0 for (k, q) ∈ Sd+3
ea (3.10)

hold. By means of Fact 2 of [34], under the given conditions wehaveφn(x, y) ∈
L1(Rd+3), n ∈ N. We recall the argument of the proof of Theorem 3 of [40].
Hence,

φn(x, y) → φ(x, y) in L1(Rd+3), n → ∞. (3.11)

Let us use formulas (1.20), (1.9), (3.11) to obtain for(k, q) ∈ Sd+3
ea that

∣

∣

∣

∣

∣

(

φ(x, y),
eikx

(2π)
d
2

ηq(y)

)

L2(Rd+3)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

φ(x, y)−φn(x, y),
eikx

(2π)
d
2

ηq(y)

)

L2(Rd+3)

∣

∣

∣

∣

∣

≤

≤ 1

(2π)
d+3

2

1

1− I(U)
‖φn(x, y)− φ(x, y)‖L1(Rd+3) → 0, n → ∞,

so that (3.10) is valid. By virtue of Theorem 1.4 above, problem (1.15) possesses a
unique solutionu(x, y) ∈ L2(Rd+3).
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We apply the generalized Fourier transform (1.17) to both sides of equations (1.15)
and (1.19) and obtain that

˜̂u(k, q) =
˜̂
φ(k, q)

ln
(

√
k2+q2

ea

)

, ˜̂un(k, q) =
˜̂
φn(k, q)

ln
(

√
k2+q2

ea

)

with k ∈ R
d, q ∈ R

3 andn ∈ N. Clearly, ˜̂un(k, q)− ˜̂u(k, q) can be written as

˜̂
φn(k, q)− ˜̂

φ(k, q)

ln
(

√
k2+q2

ea

)

χBδ
+

˜̂
φn(k, q)− ˜̂

φ(k, q)

ln
(

√
k2+q2

ea

)

χBc
δ
. (3.12)

Evidently, the second term in (3.12) equals to

˜̂
φn(k, q)− ˜̂

φ(k, q)

ln
(

√
k2+q2

ea

)

χBc+
δ

+
˜̂
φn(k, q)− ˜̂

φ(k, q)

ln
(

√
k2+q2

ea

)

χBc−
δ
. (3.13)

Obviously, the inequalities

| ˜̂φn(k, q)− ˜̂
φ(k, q)|

∣

∣

∣
ln
(

√
k2+q2

ea

)
∣

∣

∣

χBc+
δ

≤ | ˜̂φn(k, q)− ˜̂
φ(k, q)|

ln(1 + δ)
,

| ˜̂φn(k, q)− ˜̂
φ(k, q)|

∣

∣

∣
ln
(

√
k2+q2

ea

)
∣

∣

∣

χBc−
δ

≤ | ˜̂φn(k, q)− ˜̂
φ(k, q)|

−ln(1− δ)

hold. Hence, by means of the one of our assumptions
∥

∥

∥

∥

∥

˜̂
φn(k, q)− ˜̂

φ(k, q)

ln
(

√
k2+q2

ea

)

χBc+
δ

∥

∥

∥

∥

∥

L2(Rd+3)

≤ ‖φn(x, y)− φ(x, y)‖L2(Rd+3)

ln(1 + δ)
→ 0,

∥

∥

∥

∥

∥

˜̂
φn(k, q)− ˜̂

φ(k, q)

ln
(

√
k2+q2

ea

)

χBc−
δ

∥

∥

∥

∥

∥

L2(Rd+3)

≤
‖φn(x, y)− φ(x, y)‖L2(Rd+3)

−ln(1− δ)
→ 0

asn → ∞. Let us use orthogonality relations (3.10) and (1.20). Thus,

˜̂
φ(ea, σ) = 0,

˜̂
φn(e

a, σ) = 0, n ∈ N,

so that

˜̂
φ(k, q) =

∫

√
k2+q2

ea

∂
˜̂
φ(s, σ)

∂s
ds,

˜̂
φn(k, q) =

∫

√
k2+q2

ea

∂
˜̂
φn(s, σ)

∂s
ds, n ∈ N.
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Then the first term in (3.12) is given by

∫

√
k2+q2

ea

[

∂
˜̂
φn(s,σ)
∂s

− ∂
˜̂
φ(s,σ)
∂s

]

ds

ln
(

√
k2+q2

ea

)

χBδ
. (3.14)

Clearly, (3.14) can be estimated from above in the absolute value by

‖(∇k +∇q)[
˜̂
φn(k, q)− ˜̂

φ(k, q)]‖L∞(Rd+3)

∣

∣

∣

∣

∣

√

k2 + q2 − ea

ln
(

√
k2+q2

ea

)

∣

∣

∣

∣

∣

χBδ
≤

≤ C‖(∇k +∇q)[
˜̂
φn(k, q)− ˜̂

φ(k, q)]‖L∞(Rd+3)χBδ
.

Let us recall Lemma 12 of [34]. Hence, under the stated assumptions, we have

(∇k + ∇q)
˜̂
φn(k, q), (∇k + ∇q)

˜̂
φ(k, q) ∈ L∞(Rd+3). According to Lemma 5 of

[40],

‖(∇k +∇q)[
˜̂
φn(k, q)− ˜̂

φ(k, q)]‖L∞(Rd+3) → 0, n → ∞. (3.15)

Obviously, we have the upper bound for the norm

∥

∥

∥

∥

∫

√
k2+q2

ea

[

∂
˜̂
φn(s,σ)
∂s

− ∂
˜̂
φ(s,σ)
∂s

]

ds

ln
(

√
k2+q2

ea

)

χBδ

∥

∥

∥

∥

∥

L2(Rd+3)

≤

≤ C‖(∇k +∇q)[
˜̂
φn(k, q)− ˜̂

φ(k, q)]‖L∞(Rd+3)|Bδ|
1

2 → 0, n → ∞
via (3.15). This implies thatun(x, y) → u(x, y) in L2(Rd+3) asn → ∞, which
completes the proof of the theorem.
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