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Abstract. We consider the inverse scattering problems for two types of Schrödinger

operators on locally perturbed periodic lattices. For the discrete Hamiltonian,

the knowledge of the S-matrix for all energies determines the graph structure
and the coefficients of the Hamiltonian. For locally perturbed equilateral met-

ric graphs, the knowledge of the S-matrix for all energies determines the graph

structure.

1. Introduction

1.1. The goal of this work. There are two basic models for describing the motion

of quantum mechanical particles on a periodic lattice. In the first model, the

configuration space consists of graph vertices only and the Hamiltonian is written

as a difference operator which is determined by the adjacency matrix. We refer

to this operator as the discrete Schrödinger operator in this paper. In the other

model, the wave functions are supported on the graph edges and the Hamiltonian is

a differential operator on the edges. This model is called the quantum (or metric)

graph.

The aim of this paper is twofold. The first topic concerns a locally perturbed

periodic lattice. We analyze the discrete Schrödinger operator having the form

(1.1) ĤG : û→ 1

deg v

∑
w∼v,w∈G

gvwû(w) + q(v)û(v), v ∈ G,

on a finite part of the graph G and prove the following result (Theorem 5.10):

• Given a locally perturbed periodic lattice of a certain class and the associ-

ated discrete Hamiltonian ĤG, we can determine the graph structure, gvw

and q(v) from the knowledge of the S-matrix for all energies.

Here, a local perturbation of lattice means replacing a finite number of edges and

vertices by a finite number of other edges and vertices and changing the weights

gvw and the potentials q(v) on finite number of edges and vertices, respectively.

The other topic of this paper concerns the Schrödinger operator on a metric

graph Γ = {V, E}, with vertex set V and edge set E , and the topology determined

by an appropriate adjacency matrix. The metric character of the graph means that

each edge is identified with a line segment, in our case finite, and parametrized by
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its arclength. This makes it possible to endow Γ naturally with the metric defined

as the length of the shortest path between two points. We do not fix the orientation

of a given edge e, that is, the graph is undirected. We assume that for v, v′ ∈ V,

there exists at most one edge with end points v, v′, and that Γ has no loops. This

can be assumed without loss of generality, since otherwise one can insert a ‘dummy’

vertex of degree 2 to any ‘superfluous’ edge. With each edge e ∈ E , we associate a

one-dimensional Schrödinger operator

(1.2) he := − d2

dz2
+ Ve(z), z ∈ [0, `e] =: Ie,

where the length `e of the edge e is a positive constant. To convert the collection of

operators (1.2) into a self-adjoint Schrödinger operator on the whole graph, one has

to impose conditions matching the functions at the vertices. In general, self-adjoint

operators referring to the differential expression in question are parametrized by

deg v × deg v unitary matrices, cf. [23] or [4], Theorem 1.4.4. If we require con-

tinuity of the functions at the vertices, however, this multitude is reduced to a

one-parameter family, which we adopt in our case. To be concrete, for f̂ ∈ H2
loc(E),

we impose the generalized Kirchhoff condition, otherwise known as δ-coupling: if

f̂ = {f̂e}e∈E such that f̂ ∈ C(Γ) and f̂e ∈ C1(Ie), it holds that

(1.3)
∑
e∼v

f̂ ′e(v) = Cv f̂(v), v ∈ V,

where f ′e(v) is given by (2.2) and e ∼ v means that v is an endpoint of the edge e,

Cv is a real constant, f̂(v) = f̂e(0) if e(0) = v. Note that such a Hamiltonian can

be defined as the norm-resolvent limit as κ→∞ of the following operators,

h̃e,κ = − d2

dz2
+ Ve(z) + κWe(κz),

with the usual Kirchhoff condition
∑
e∼v f̂

′
e(v) = 0 for any v ∈ V, where Cv :=∑

e∼v
∫
e
We(z) dz and We ∈ L1(e) is a fixed function, cf. [10]. Note also that the

singular vertex couplings with functions discontinuous at the vertex also allow for

an interpretation, but the corresponding approximation procedure is considerably

more complicated, see [9].

We develop an inverse spectral and scattering theory associated with such quan-

tum graphs which would facilitate a recovery of the graph structure, potentials

Ve(z), and constants Cv. Roughly speaking, we consider a locally perturbed peri-

odic graph, and prove the following result (Theorem 7.2):

• Consider an infinite quantum graph Γ = {V, E} on which all `e, Ve(z)

coincide for all e ∈ E , and Cv/deg v coincide for all v ∈ V. If Γ is a local

perturbation of a periodic lattice of a certain class, then we can determine

the graph structure of Γ from the S-matrix for all energies.

Here a local perturbation of lattice means replacing a finite number of edges and

vertices by a finite number of other edges and vertices.
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The proof will be done by showing the equivalence of the S-matrix and the

Dirichlet-to-Neumann (D-N) map in a bounded domain, and by reducing the prob-

lem to inverse problems for discrete Schrödinger operators of the type (1.1).

1.2. Plan of the work. We proceed in the following steps.

(1) Preliminaries on metric graphs (§2).

(2) Inverse boundary value problem with the D-N map for a finite graph (§3):

Use the results from [5] to determine the structure of finite discrete graphs

and quantum graphs from the knowledge of the corresponding D-N map.

(3) Inverse scattering for discrete Hamiltonians (§5): Show that the S-matrix

and the D-N map are equivalent and thus reduce the inverse scattering

problem to the inverse boundary value problem.

(4) Inverse scattering for quantum graphs (§6, §7): Develop the spectral and

scattering theory for locally perturbed periodic graph Laplacians, show that

the S-matrix and the D-N map are equivalent, and recover the perturbations

from the D-N map.

We end this section by the lists of assumptions and notations used in this paper

except standard ones.

Assumptions
(M-1) - (M-5) §2 (A-1) - (A-4) §2.3 in [3]
(B-1) - (B-3) §2.3 in [3] (C-1), (C-2), (C-1)’ §3.1, §3.2
(D-1) - (D-4) §5.1 (E-1) §5.4

Notations
he (1.2) Cv (1.3) dv (2.1) φe0(z, λ) (2.5) φe1(z, λ) (2.6)

re(λ) (2.7) ∆̂V,λ (2.10) Q̂V,λ (2.11) T̂V,λ (2.12) ΛV(λ) (3.5)

ΛE(λ) (3.3) `E , VE(z) (4.1) κV (4.2) UV (5.3) ∆̂Γ0 (5.4)

T1 (D-1) T0 (D-2) P̂ext (5.9) ' (5.15) Σ (5.34)

E(λ) (6.4) σ(0)(h(0)) (6.6) σ(0)(−∆̂V) (6.7) σ
(0)
T (6.8) T (6.9)

The work of P.E. was supported by the Czech Science Foundation within the

project 21-07129S and by the EU project CZ.02.1.01/0.0/0.0/16 019/0000778. H.I.

is supported by Grant-in-Aid for Scientific Research (C) 20K03667 Japan Society

for the Promotion of Science. They are indebted to these supports.

2. Metric graph and the associated discrete operator

Rephrasing the treatment of a Schrödinger operator, with or without a potential,

on a metric graph to the analogous problem on a combinatorial (or discrete) graph

is a well-known procedure that has been discussed in many papers, e.g. [7, 8, 11, 24].

We repeat it here mainly to fix notations. Let Γ = {V, E} be a metric graph with

the vertex set V and edge set E . Note that for the metric graph, an edge e ∈ E is

a segment between two vertices while for the discrete graph, an edge is a pair of

vertices. To avoid the complexity of notation, we use the same symbol evw for an
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edge with endpoints v, w for both graphs, often omitting v, w. However, we will

make a distinction between them in the arguments in §2 following Definition 2.1

and those in §3.1. For v, w ∈ V, we say that v and w are adjacent, denoted by

v ∼ w, if there exists an edge having v and w as its endpoints. For a subset A ∈ V
or E , v ∼ A and A ∼ v mean that v is adjacent to some w ∈ A ∩ V. In particluar,

for an edge e ∈ E and v ∈ V, e ∼ v means that v is an end point of e. The degree

of a vertex v ∈ V is defined as

(2.1) dv := deg v = ]{e ∈ E ; e ∼ v}.

Recall that for adjacent v, v′ ∈ V, the edge joining v and v′ is unique by assumption.

For a function f̂ = {f̂e}e∈E on Γ, with f̂e : Ie → C, and e ∈ E with e ∼ v, we define

(2.2)
df̂

dνe
(v) := f̂ ′e(v).

When computing the right-hand side, we parametrize e as e(z), z ∈ [0, `e] with

e(0) = v, and the boundary derivative is taken in the outward direction with respect

to v, see [4, Sec. I.4]. Equivalently, the boundary derivatives can be written as

df̂

dνe
(e(0)) = f̂ ′e(0),

df̂

dνe
(e(`e)) = −f̂ ′e(`e),

where `e is the length of the edge e. For the sake of brevity, we use the following

shorthand notation: ∫
e

û =

∫ `e

0

û(z)dz.

Then the following Green’s formula holds:

−
∫
e

(û′)′ŵ =
dû

dνe
ŵ
∣∣∣
e(0)

+
dû

dνe
ŵ
∣∣∣
e(`e)

+

∫
e

û′ŵ′.

For an edge e ∈ E , let L2(e) be the set of all L2-functions on e, conventionally

understood as equivalence classes of functions coinciding a.e., and put

L2(E) =
⊕

e∈E
L2(e).

For û = {ûe}e∈E and ŵ ∈ {ŵe}e∈E , let (û, ŵ)E be the inner product:

(û, ŵ)E =
∑
e∈E

(ûe, ŵe)e =
∑
e∈E

∫
e

ûeŵe.

The Sobolev spaces are defined by

Hm(E) =
⊕

e∈E
Hm(e).

Note that different conventions are used and sometimes the definition may involve

the continuity at the vertices, see [4, Def. I.3.6].

Given a real-valued function Ve ∈ L1(e) on each e ∈ E , we define a multiplication

operator V by (
V û
)
e
(z) = Ve(z)ûe(z).

Let Cv be a real-valued function on V. Throughout the paper we impose the

following requirements:



INVERSE PROBLEMS FOR LOCALLY PERTURBED LATTICES 5

(M-1) 0 < infe `e ≤ supe `e <∞,

(M-2) supv∈V dv <∞,

(M-3) supe∈E ‖Ve‖L1(e) <∞,

(M-4) Ve(z) = Ve(`e − z),

(M-5) supv∈V |Cv| <∞.

Naturally all of these requirements except the symmetry condition (M-4) are satis-

fied automatically if the graph Γ is finite. We define the operator ĤE by

(2.3)
(
ĤE û

)
e
(z) = −û′′e (z) + Ve(z)ûe(z)

acting on Ie, with the domain consisting of functions

(2.4) û ∈ D(ĤE)⇐⇒


û ∈ H2(E), û ∈ C(Γ),∑
e∼v

û′e(v) = Cvû(v), v ∈ V.

Here in the first line of the right-hand side, û ∈ C(Γ) means that ûe(v) = ûe′(v)

if v ∼ e, v ∼ e′ and that û, thus defined globally on E , is continuous on the whole

graph Γ. It is straightforward to check that ĤE is self-adjoint.

Let λ ∈ C \R. For any edge e ∈ E , let φe0(z, λ) and φe1(z, λ) be the solutions of

−φ′′ + Veφ = λφ on Ie satisfying the boundary conditions

φe0(0, λ) = 0, φ′e0(0, λ) = 1,(2.5)

φe1(`e, λ) = 0, φ′e1(`e, λ) = −1.(2.6)

Note that φe1(z, λ) = φe0(`e − z, λ) by the symmetry condition (M-4). Let re(λ)

be the Green operator of −d2/dz2 + Ve(z) − λ on e with the Dirichlet boundary

condition:

re(λ)f̂e =
(
− d2

dz2
+ Ve(z)− λ

)−1

f̂e =

∫
Ie

re(z, z
′, λ)f̂e(z

′)dz′,(2.7)

where the integral kernel is given by

re(z, z
′, λ) =− 1

We(z′, λ)

{
φe0(z, λ)φe1(z′, λ), 0 < z < z′,
φe1(z, λ)φe0(z′, λ), 0 < z′ < z,

We(z, λ) = φe0(z, λ)φ′e1(z, λ)− φ′e0(z, λ)φe1(z, λ).

Let û = (ĤE −λ)−1f̂ . Then on each edge e, the function ûe(z, λ) can be written as

(2.8) ûe(z, λ) = ce(`e, λ)
φe0(z, λ)

φe0(`e, λ)
+ ce(0, λ)

φe1(z, λ)

φe1(0, λ)
+ re(λ)f̂e,

where the constants ce(`e, λ), ce(0, λ) are determined by the δ-coupling condition

(1.3). Since φ′e0(0, λ) = 1 and φ′e1(0, λ) = −φ′e0(`e, λ), we infer that

d

dz
re(λ)f̂e

∣∣∣
z=0

= −
∫
Ie

φe1(z′, λ)

We(z′, λ)
f̂e(z

′) dz′,
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and consequently we have

û′e(0, λ) =
1

φe0(`e, λ)

(
ce(`e, λ)− φ′e0(`e, λ)ce(0, λ)

)
−
∫
Ie

φe1(z′, λ)

We(z′, λ)
f̂e(z

′) dz′.

Since ûe(0, λ) = ce(0, λ), the δ-coupling condition (1.3) can be rewritten as∑
e(0)=v

(
1

φe0(`e, λ)

(
ce(`e, λ)− φ′e0(`e, λ)ce(0, λ)

)
− Cv
dv
ce(0, λ)

)

=
∑
e(0)=v

∫
Ie

φe1(z′, λ)

We(z′, λ)
f̂e(z

′) dz′.

(2.9)

To make the dependence on the edge parametrization more visible, we alternatively

write f̂e(e(z)) instead of a function f̂e(z) on Ie.

From here until the end of §3.1, we distinguish the edges in the metric graph and

those of the discrete graph, denoting the edges and the functions on the former by

e, û, ûe, and those for the discrete graph by e, û and ûe.

Definition 2.1. The weighted discrete graph Laplacian ∆̂V,λ : `2(V) → `2(V),

where `2(V) = C]V , on V, associated with the Schrödinger operator on Γ specified

by (1.2) and (1.3), acts on a function û(v) on V as(
∆̂V,λû

)
(v) =

1

dv

∑
e(0)=v, e∈E

1

φe0(`e, λ)
û(e(`e))

=
1

dv

∑
w∼v, w∈V

1

φe0(w, λ)
û(w).

(2.10)

We introduce the discrete scalar potential Q̂V,λ = {Q̂v,λ}v∈V by

(2.11) Q̂v,λ =
1

dv

∑
e∼v, e∈E

φ′e0(`e, λ)

φe0(`e, λ)
+
Cv
dv
.

Note that e(0) = v and e(`e) = w hold in the definitions (2.10) and (2.11).

Furthermore, defining

(2.12)
(
T̂V,λf̂

)
(v) :=

1

dv

∑
e(0)=v

∫
Ie

φe0(z, λ)

φe0(`e, λ)
f̂
e
(z) dz,

we can rewrite the coupling condition (2.9) in the following way.

Lemma 2.2. The δ-coupling condition (1.3) can be expressed as

(2.13)
(
−∆̂V,λ + Q̂V,λ

)
û(v) = T̂V,λf̂(v), v ∈ V.

Assuming that the equation (2.13) is solvable, we write û = {ûe}e∈E in the form

of (2.8) with ce(0, λ), ce(`e, λ) being the vertex values of û(v) at v = e(0) and

v = e(`e), respectively. Then we have

û
∣∣
V =

(
− ∆̂V,λ + Q̂V,λ

)−1
T̂V,λf̂ .
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Note further that the adjoint operator (T̂V,λ)∗ acts as

(
(T̂V,λ)∗ ĝ

)
e
(z) =

∑
v=e(0)

1

dv

φe0(z, λ)

φe0(`e, λ)
ĝ(v)

=
1

de(0)

φe0(z, λ)

φe0(`e, λ)
ĝ(e(0)) +

1

de(`e)

φe1(z, λ)

φe1(0, λ)
ĝ(e(`e)),

(2.14)

where in the first line we consider both orientations of the edge e, while in the

second line we fix one orientation. Now we define the operator rE(λ) on E by

rE(λ)f̂ = re(λ)f̂
e

on e,

and we arrive at the following Krein-type formula expressing the resolvent through

its comparison to that of the Dirichlet-decoupled graph.

Lemma 2.3. The resolvent R̂E(λ) = (ĤE − λ)−1 is expressed as

R̂E(λ) = (T̂V,λ)∗
(
− ∆̂V,λ + Q̂V,λ

)−1
T̂V,λ + rE(λ).

Let us note here that for λ /∈ R, the coefficients of ∆̂V,λ and Q̂V,λ are not real and

hence the existence of the inverse (−∆̂V,λ + Q̂V,λ)−1 is not obvious. We postpone

its justification until §6, and admit Lemma 2.3 as a formal formula for the moment.

3. Inverse boundary value problem for a finite graph

3.1. The D-N maps. In this section, we consider a finite graph Γ = {V, E} with

boundary ∂V and assume that

(C-1) Γ consists of two parts called boundary ∂V and interior Vo whose vertex

sets are disjoint; each boundary vertex is connected to only one interior vertex.

Note that, topologically speaking, the notion of the graph boundary is not trivial;

here we use the freedom to determine it ad hoc to suit our purposes.

Let ĤE be the quantum graph Schrödinger operator on the finite graph Γ as in

the previous section with Dirichlet boundary condition on the boundary ∂V. We

put

(3.1) σ′ :=
( ⋃
e∈E

σ(he)
)
∪
{
λ ∈ C ; det(−∆̂V,λ + Q̂V,λ) = 0

}
,

which is discrete in C, as Γ is a finite graph. Note σ(ĤE) ⊂ σ′. Let he be the

differential operator on e as in (1.2). Then for any λ 6∈ σ(ĤE) and given boundary

data f̂ , there is a unique solution û = {ûe}e∈E to the equation

(3.2)


(he − λ)ûe = 0 on ∀e ∈ E ,

û = f̂ on ∂V,
δ-coupling condition (1.3).
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Here, as in (2.4), û is assumed to be in C(Γ). Using the solution û, we define the

D-N map ΛE(λ) : Cm → Cm, m = ]∂V, by

(3.3) ΛE(λ) : f̂ → û′e(v), e(0) = v ∈ ∂V.

Note that û = {ûe}e∈E is the solution to the edge Schrödinger equation (3.2) if and

only if û
∣∣
V is the solution to the vertex Schrödinger equation (3.4) ( cf. [11]).

Under the Dirichlet boundary condition on the boundary e(0) and e(`e), he has

discrete spectrum, and for any λ 6∈ ∪e∈Eσ(he), we have φe0(`e, λ) 6= 0. Hence the

weighted discrete Laplacian (2.10) is well defined. We consider the boundary value

problem for the corresponding Schrödinger-type operator ĤV,λ =: −∆̂V,λ + Q̂V,λ

on the vertex set V with the boundary value f̂ on ∂V, namely

(3.4)


(
−∆̂V,λ + Q̂V,λ

)
û(v) = 0, v ∈ Vo = V \ ∂V,

û(v) = f̂(v), v ∈ ∂V.

Using the solution ûV , which depends also on λ and is denoted by ûV(v, λ), we next

define the D-N map for ĤV,λ : Cm → Cm by

(3.5) ΛV(λ) : f̂ → 1

φe0(w, λ)
ûV(w, λ), w = e(`e), v = e(0) ∈ ∂V.

Therefore, ΛE(λ) and ΛV(λ) are meromorphic functions of λ with poles in the

discrete set Σ. Recall that given a subset A ⊂ V and an edge e ∈ E (or e), we say

that e is adjacent to A, denoted as e ∼ A or A ∼ e, if e(0) ∈ A and e(`e) 6∈ A.

Lemma 3.1. Assuming that we know `e and Ve(z) for all e adjacent to ∂V, then

ΛE(λ) and ΛV(λ) determine each other for any λ 6∈ σ′.

Proof. Given the solution û to (3.2), the corresponding û
∣∣
V solves (3.4). Conversely,

given the solution ûV of (3.4), we define û by

ûe(z) = ce(`e, λ)
φe0(z, λ)

φe0(`e, λ)
+ ce(0, λ)

φe1(z, λ)

φe1(0, λ)
,

where on the edge with the initial vertex v = e(0) ∈ ∂V, we put

ce(0, λ) = f̂(v).

The function û defined in this way solves (3.2). The D-N map for ĤE is

ΛE(λ) : f̂ → ce(`e, λ)
1

φe0(`e, λ)
+ f̂(v)

φ′e1(0, λ)

φe1(0, λ)
, v = e(0) ∈ ∂V.

The D-N map for ĤV,λ is, by (3.5), taking w = e(`e),

(3.6) ΛV(λ) : f̂ → 1

φe0(`e, λ)

(
ce(`e, λ) +

f̂(v)

φe1(0, λ)

)
.

Since we know φe0(z, λ), φe1(z, λ) for edges e adjacent to ∂V, the knowledge of

the D-N maps for both the ĤE and ĤV,λ is thus equivalent to that of the initial

value problem or the two-point boundary value problem for he − λ on each edge e.

Consequently, the two D-N maps are equivalent. �
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3.2. A reminder: inverse problem for the discrete graph Laplacian. To

make this paper self-contained, let us recall a result obtained in [5] as follows.

We say that the collection G = {G, ∂G,E, µ, g} is a weighted discrete graph with

boundary, if it satisfies the following conditions.

• {G ∪ ∂G,E} is an undirected simple discrete graph, where G ∪ ∂G is the

set of vertices and E is the set of edges. Assume that G∩ ∂G = ∅. We call

G the interior of the graph, and call ∂G the boundary of the graph.

• µ : G ∪ ∂G→ R+ is a weight function on vertices.

• g : E → R+ is a weight function on edges.

We say G is finite (resp. connected) if {G ∪ ∂G,E} is finite (resp. connected).

When the weights µ, g are not relevant in a specific context, we write {G, ∂G,E}
for short. In §3.2 and §5.4, we use x, y, z to refer to vertices in G.

Given a subset S ⊂ G, we say that x0 ∈ S is an extreme point of S with respect

to ∂G if

∃z ∈ ∂G such that d(x0, z) < d(x, z), ∀x ∈ S, x 6= x0,

where d(x, y) is the distance of x, y ∈ G ∪ ∂G understood as the minimum number

of edges forming a path connecting the two points x, y. The following Two-Points

Condition for {G, ∂G,E} is imposed:

(C-2) For any subset S ⊂ G with ]S ≥ 2, there exist at least two extreme points of

S with respect to ∂G.

We consider the set of points adjacent to the boundary defined as

N(∂G) = {x ∈ G ; ∃z ∈ ∂G, such that x ∼ z} ∪ ∂G.

We say that two weighted graphs with boundary G, G′ are boundary isomorphic if

there exists a bijection Φ0 : N(∂G)→ N(∂G′) with the following properties.

(i) Φ0

∣∣
∂G

: ∂G→ ∂G′ is bijective.

(ii) For any z ∈ ∂G, y ∈ N(∂G) the equivalence y ∼ z ⇐⇒ Φ0(y) ∼′ Φ0(z)

holds.

The graph Laplacian ∆G is defined by

(∆Gu) (x) =
1

µx

∑
y∼x,y∈G∪∂G

gxy
(
u(y)− u(x)

)
, x ∈ G,

and the Neumann derivative at the boundary is defined by

(3.7) (∂νu) (z) =
1

µz

∑
x∼z,x∈G

gxz
(
u(x)− u(z)

)
, z ∈ ∂G.

Moreover, adding a potential function q on G to ∆G, we can define the D-N map

in the same way as in the previous section.

The following result is valid, cf. Theorems 1 and 2 in [5].
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Theorem 3.2. Let G = {G, ∂G,E, µ, g} and G′ = {G′, ∂G′, E′, µ′, g′} be two

finite weighted graphs with boundary satisfying (C-1), (C-2), and let q, q′ be real-

valued potential functions on G,G′. Suppose G and G′ are boundary isomorphic

via Φ0, and their D-N maps coincide for all energies. Then, there exists a bijection

Φ : G ∪ ∂G→ G′ ∪ ∂G′ such that

(1) Φ
∣∣
∂G

= Φ0

∣∣
∂G

.

(2) x ∼ y ⇐⇒ Φ(x) ∼′ Φ(y), ∀x, y ∈ G ∪ ∂G,

where x′ ∼′ y′ means that x′, y′ are adjacent in G′ ∪ ∂G′.

Identifying vertices of G with those of G′ by this bijection, assume furthermore

that µz = µ′z, gxz = g′xz for all z ∈ ∂G, x ∈ G. Then we have

(3) If µ = µ′, then g = g′, q = q′.

(4) If q = q′ = 0, then µ = µ′ and g = g′.

In particular, if µ(v) = deg v and µ′(v′) = deg v′ holds for all v ∈ G and v′ ∈ G′,
respectively, then g = g′, q = q′.

Remark 3.3. Let us add three remarks.

(1) The theorems in [5] that we refer to were formulated in terms of Neumann

boundary spectral data; however, the claims hold for the Dirichlet boundary spec-

tral data as well with a minor modification of the proof.

(2) Under the conditions (C-1), (C-2), the Neumann boundary spectral data deter-

mine the N-D maps for all energies, that is, the N-D map of −∆G−λ for all λ, and

vice versa, see Lemma 5.7 below. In the same way, the Dirichlet boundary spectral

data and the D-N maps for all energies determine each other.

(3) We can replace the assumption (C-1) by

(C-1)’ For any z ∈ ∂G and any x, y ∈ G, if x ∼ z, y ∼ z, then x ∼ y.

cf. [5]. Inspecting Figures 1 – 4 in §5 below, we see that (C-1) is satisfied for the

hexagonal lattice, but not, e.g., for the triangular lattice. The latter, however, is

covered by (C-1)’. All the arguments below work under the assumption (C-1)’ with

minor modification. For the sake of simplicity, we adopt (C-1) in this paper.

4. Equilateral graphs

Suppose we are given a finite quantum graph Γ = {V, E} satisfying (C-1), (C-2).

We further assume that there exist a number `E and a function VE(z) such that

(4.1) `e = `E , Ve(z) = VE(z), ∀e ∈ E .

Moreover, assume that

(4.2) kV :=
Cv
dv

is independent of v ∈ V.
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Let φ0(z, λ) and φ1(z, λ) be φe0(z, λ), φe1(z, λ) in §2. By (2.10) and (2.11), the

discrete graph Laplacian ∆̂V,λ and the vertex potential Q̂V,λ can be rewritten as

(4.3)
(
∆̂V,λû

)
(v) =

1

dv

1

φ0(`E , λ)

∑
w∼v

û(w), v ∈ V,

(4.4) Q̂V,λ =
1

φ0(`E , λ)
EE(λ), EE(λ) = φ′0(`E , λ) + kVφ0(`E , λ).

Thus (4.3) and (4.4) differ by a multiplicative constant φ0(`E , λ) from the discrete

operator with the graph Laplacian (∆̂V û)(v) := 1
dv

∑
w∼v û(w) and potential EE(λ).

This amounts to considering a graph Γ̃ with the same edge set E and the vertex

set V as our original Γ, and µv = dv, gvw = 1. We let λ vary and use analytic

continuation: if we are given the D-N map for the original quantum graph Γ for

all energies, we can obtain the D-N map of the above discrete operator ∆̂V for all

energies, and, mutatis mutandis, the Dirichlet boundary spectral data for ∆̂V under

the conditions (C-1), (C-2). Note that the D-N map for the operator ∆̂V acts as

û(v) 7→û(w), w ∼ v ∈ ∂V, w ∈ V; by (3.6) it can be computed from the D-N map

of ∆̂V,λ if we know φ0(z, λ), i.e. `E and VE(z).

Suppose now that we are given two such graphs Γ̃ = {V, E} and Γ̃′ = {V ′, E ′}.
Applying then Theorem 3.2 with µx = dx, gxy = 1, we infer that there is a bijection

Φ : Γ̃→ Γ̃′

preserving the graph structure. Setting v′ = Φ(v), we conclude that

dv = dv′ , ∀v ∈ V,

and consequently

Cv = C ′v′ , ∀v ∈ V.

In this way, we have proven the following theorem:

Theorem 4.1. Let Γ = {V, E} and Γ′ = {V ′, E ′} be two finite quantum graphs

satisfying assumptions (C-1), (C-2), (4.1), (4.2) and `E = `E′ , VE(z) = VE′(z),

kV = kV′ . Suppose that the D-N maps for the Schrödinger operator for the two

quantum graphs coincide for all energies. Then there is a bijection Φ : Γ → Γ′

preserving the graph structure, and dv = dv′ , Cv = C ′v′ hold for all v ∈ V and

v′ = Φ(v).

5. Inverse scattering for the discrete Hamiltonian

It is known that the potential of the discrete Schrödinger operator on periodic

square or hexagonal lattices can be uniquely recovered from the knowledge of the

scattering matrix of all energies, see [1, 17]. Furthermore, the forward and inverse

scattering problems have been considered for infinite graphs that are local pertur-

bations of periodic lattices in [2, 3]. For several standard types of lattices, it was

shown in [3] that the scattering matrix for the discrete Schrödinger operator on
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locally perturbed lattices determines the Dirichlet-to-Neumann map for the dis-

crete Schrödinger equation on the perturbed subgraph. In this section, we apply

Theorem 3.2 to recover the potential on locally perturbed lattices, as well as to

recover the structure of the perturbed subgraph (see Theorem 5.10). This result

may be applied, in particular, to probe graphene defects from the knowledge of the

scattering matrix, see Figures 1 and 2.

Figure 1. Periodic hexagonal lattice. The white vertices are con-
sidered to be the boundary vertices for the subgraph of the blue
(interior) vertices.

Figure 2. A hexagonal lattice of Figure 1 with one blue edge
removed. By Theorem 5.10, the exact structure of such graphs
and the potential can be uniquely recovered from the scattering
matrix.

5.1. Periodic lattices and local perturbations. To begin with, we review a

framework of the scattering theory on perturbed periodic lattices used in [2, 3]. A

periodic graph in Rd is a triple Γ0 = {L0,V0, E0}, where E0 is the edge set, and L0

is a lattice of rank d in Rd with a basis vj , j = 1, · · · , d, in other words

(5.1) L0 =
{
v(n) : n ∈ Zd

}
, v(n) =

d∑
j=1

njvj , n = (n1, · · · , nd) ∈ Zd.
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Figure 3. A triangular lattice satisfying (C-1)’.

Figure 4. A triangular lattice satisfying (C-1)’ of Figure 3 with
one blue edge removed. By Theorem 5.10, the exact structure of
such graphs and the potential can be uniquely recovered from the
scattering matrix.

The vertex set V0 is defined by

(5.2) V0 =

s⋃
j=1

(
pj + L0

)
,

where pj , j = 1, · · · , s, are points in Rd satisfying pi − pj 6∈ L0 if i 6= j. We

assume that the degree of vertices are equal for all vertices v ∈ V0 and denote

it by degV0 . From (5.2), we know that any function f̂ on V0 can be written as

f̂(n) = (f̂1(n), · · · , f̂s(n)), n ∈ Zd, where f̂j(n) is a function on pj + L0. Hence

the associated Hilbert space is `2(V0) = `2(Zd)s, and it is unitarily equivalent to

L2(Td)s, where Td is the flat torus Rd/(2πZ)d, by means of the discrete Fourier

transformation

(5.3) (UV f̂)(x) =
√

degV0 (2π)−d/2
∑
n∈Zd

f̂(n) ein·x, x ∈ Td,
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The Laplacian ∆̂Γ0
on the lattice Γ0 is defined by

(5.4)
(
∆̂Γ0u

)
(v) =

1

degV0

∑
w∈V0,evw∈E0

u(w), v ∈ V0,

where, evw denotes an edge ∈ E0 with end points v, w ∈ V0, and we will use the

symbol Ĥ0 = −∆̂Γ0
.

On the torus Td = Rd/(2πZ)d, the Floquet image of the Laplacian Ĥ0 is an s×s
matrix operator H0(x), where x ∈ Td is the quasimomentum variable. We denote

the matrix by H0; its entries are trigonometric functions. Let λ1(x) ≤ · · · ≤ λs(x)

be the eigenvalues of H0(x). We put

p(x, λ) := det(H0(x)− λ), Mλ := {x ∈ Td : p(x, λ) = 0},

Mλ,j := {x ∈ Td : λj(x) = λ}, MC
λ := {z ∈ Cd/(2πZ)d : p(z, λ) = 0},

MC
λ,reg := {z ∈MC

λ : ∇zp(z, λ) 6= 0}, MC
λ,sng := {z ∈MC

λ : ∇zp(z, λ) = 0}.

In the spirit of §3.1, we define

(5.5) ∂Γ0
Ω :=

{
v ∈ V0 \ Ω

∣∣ evw ∈ E0 for some w ∈ Ω
}
.

We impose the following assumptions on the periodic lattice Γ0.

(D-1) There exists a subset T1 ⊂ σ(H0) such that for λ ∈ σ(H0)\T1, MC
λ,sng is dis-

crete, and each connected component of MC
λ,reg intersects with Td, the intersection

being a (d− 1)-dimensional real analytic submanifold of Td.

(D-2) There exists a finite set T0 ⊂ σ(H0) such that

Mλ,i ∩Mλ,j = ∅ if i 6= j and λ ∈ σ(H0) \ T0.

(D-3) ∇xp(x, λ) 6= 0 holds on Mλ for λ ∈ σ(H0) \ T0.

(D-4) The last assumption consists of two requirements: (i) On the unperturbed lat-

tice Γ0, there exist finite connected subsets {Ωk}∞k=1 of V0 such that Ωk ⊂ Ωk+1, V0 =

∪∞k=1Ωk, and the triple (Ωk, ∂Γ0Ωk, E0) satisfies assumptions (C-1), (C-2) for all k,

and (ii) the unique continuation from infinity holds on Ωextk := V0 \ Ωk for all k.

Assumption (D-4) requires a little explanation. For a subset U ⊂ V0 satisfying

](V0\U) <∞, by the unique continuation from infinity on U , we mean the following

claim. If û satisfies (−∆̂Γ0 −λ)û = 0 on U for some λ and û = 0 near infinity, then

û vanishes on whole U . Namely, if û satisfies (−∆̂Γ0
− λ)û = 0 on U and û = 0 on

|v| > R for some R > 0, then û = 0 on U .

On the other hand, the unique continuation from the boundary in the finite

domain Ωi follows from the first part of (D-4). Namely, if (−∆̂Γ0
− λ)û = 0 in Ωi

and û = ∂ν û = 0 on ∂Γ0
Ωi, then û = 0 in Ωi. This claim also holds for −∆̂Γ0

+q(v)

with any potential q, see Lemma 3.5 in [5] or Lemma 2.4 in [6].

In particular, part (i) of (D-4) implies the unique continuation property on V0

from infinity.
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Lemma 5.1. If part (i) of (D-4) is satisfied for Γ0, then the unique continuation

from infinity holds for the unperturbed equation (−∆̂Γ0
− λ)û = 0 on Γ0.

Proof. If a solution û is finitely supported in V0, we can find Ωk such that supp (û) ⊂
Ωk by assumption (i) of (D-4). Then û vanishes outside Ωk on the unperturbed

lattice Γ0 for some k. By definition (5.4), we know for any z ∈ ∂Γ0
Ωk,∑

x∼z,x∈Ωi

(
û(x)− û(z)

)
=

∑
x∼z,x∈V0

(
û(x)− û(z)

)
= degE0(z) ∆̂Γ0

û(z) = −degE0(z)λû(z) = 0.

This indicates that û is a solution of the equation (5.37) on
(
Ωk, ∂Γ0Ωk, E0

)
satisfy-

ing simultaneously the Dirichlet and Neumann boundary conditions. Hence û van-

ishes everywhere by Lemma 2.4 in [6], provided that the subgraph
(
Ωk, ∂Γ0

Ωk, E0
)

satisfies the assumptions (C-1) and (C-2). �

The assumption (D-2) implies that the eigenvalues λj(x) are simple for λ 6∈ T0.

For λ 6∈ T1, (D-1) guarantees the Rellich type theorem (cf. Theorems 5.1 and 5.7 in

[2]). Therefore, (D-1) and (D-4) yield the non-existence of embedded eigenvalues

for H0(x) and its perturbation for the energy λ 6∈ T0 ∪ T1.

For the square, triangular, hexagonal, Kagome, and diamond lattices, as well as

for subdivisions of square lattices, the subset T1 is finite. On the other hand, for

the ladder and ‘layered’ graphite lattices, T1 fills closed intervals, cf. §5 in [2].

By virtue of Proposition 1.10 in [5], our result applies to several standard types

of lattices and their perturbations. As for examples illustrating (i) of (D-4), see

Example 5.11 of the present paper. The unique continuation from infinity on Ωexti

is seen to be satisfied for e.g. the square, hexagonal, triangular lattices by directly

examining the figures.

Referring to the papers [2], [3], we note that their authors employed four as-

sumptions, (A-1)–(A-4), of which the first three coincided with (D-1)–(D-3) above.

The fourth assumption there, (A-4), follows from part (i) of (D-4) by Lemma 5.1.

Now let us consider an infinite connected graph Γ = {V, E}, which is a local

(meaning compactly supported) perturbation of the periodic lattice Γ0 = {L0,V0, E0}
satisfying the assumptions (D-1)–(D-4) above. We assume that the lattice Γ0 is per-

turbed only in a finite subset Ω ⊂ V0 and the potential function is also supported

in Ω. Later we will further assume (C-1) and (C-2) for the perturbed part in Ω.

Lemma 5.1 then holds also for the perturbed system by the same proof, see Lemma

5.9.

Let {G,Epert} be a finite connected graph which is a perturbation of the sub-

graph
{

Ω,
{
evw ∈ E0 : v, w ∈ Ω

}}
of Γ0. Without loss of generality, we may

assume Ω is chosen sufficiently large so that the perturbation does not remove the

vertices (of Ω) which are connected to the subgraph boundary ∂Γ0
Ω. We add an

unperturbed layer of edges to Epert defining

(5.6) E := Epert ∪
{
evw ∈ E0

∣∣ v ∈ Ω, w ∈ ∂Γ0
Ω
}
.
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Then the weighted graph

(5.7) GΓ := {G, ∂Γ0
Ω, E, µ, g},

where µ = {µv ; v ∈ G}, g = {gvw ; v, w ∈ G, v ∼ w} are the vertex weight and

edge weight, fits into our setting for finite graphs studied in [5]. For the scattering

problem in this section, we set

∂G = ∂Γ0Ω.

Observe that the edges connecting ∂G and G are known, and that by construction

there are no edges between vertices in ∂G.

In particular, we can simply choose the perturbed vertex set Ω to be Ωk for some

k as assumed in part (i) of (D-4). We define the following sets:

Vint := G ∪ ∂G, V◦int := G, ∂Vint := ∂G;

Vext := V \G, V◦ext := (V \G) \ ∂G, ∂Vext := ∂G.(5.8)

Then the unique continuation from infinity holds on Vext due to part (ii) of (D-4).

Hence Vint and Vext satisfy assumptions (B-1)–(B-3) imposed in [3], and conse-

quently, the Hilbert space `2(V) admits an orthogonal decomposition

`2(V) = `2(V◦ext)⊕ `2(Vint).

Denote by P̂ext the orthogonal projection:

P̂ext : `2(V)→ `2(V◦ext).

The Laplacian ∆̂Γ on the graph Γ is defined in analogy with (5.4), replacing V0, E0
by V, E . Adding then a bounded self-adjoint perturbation of V̂ , which is assumed

to vanish on Vext, we consider Hamiltonian Ĥ of the form

Ĥ = −∆̂Γ + V̂ : `2(V)→ `2(V).

Note that in the forward scattering problem, following the arguments of [2] and

those from §2–§5 of [3], one can allow arbitrary structure modification on the finite

part of the graph.

5.2. Spectral representation and the S-matrix. Let us keep reviewing the

needed results from [2] and [3]. In general, scattering is a time-dependent phenom-

enon, and the S-matrix is defined through the wave operators. However, it has

the stationary counterpart which we employ here. Let us recall how it looks for

a Schrödinger operator in Rn. We introduce a Banach space B(Rn)∗ consisting of

L2
loc(Rn) functions f(x) such that

(5.9) ‖f‖2B(Rn)∗ := sup
R>1

1

R

∫
|x|<R

|f(x)|2dx <∞,

which is the dual space of the Banach space B(Rn) defined as follows,

(5.10) ‖f‖B(Rn) =

∞∑
j=0

Rj

(∫
Ωj

|f(x)|2dx

)1/2

<∞,
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where Rj = 2j and Ωj = {x ∈ Rd ; Rj−1 ≤ |x| < Rj}; for j = 0 we put R−1 := 0.

These spaces give rise to a rigged structure of L2(Rn), namely

B ⊂ L2(Rn) ⊂ B∗

with continuous inclusions. Given u, v ∈ B(Rn)∗, we define

(5.11) u ' v ⇐⇒ lim
R→∞

1

R

∫
|x|<R

|u(x)− v(x)|2dx = 0.

We consider the Helmholtz equation

(5.12) (−∆ + V (x)− λ)u = 0 in Rn,

where λ > 0 and V (x) is a real function decaying sufficiently rapidly at infinity.

Then, for any φin ∈ L2(Sn−1), there exist a unique u ∈ B(Rn)∗ satisfying (5.12)

and φout ∈ L2(Sn−1) such that

(5.13) u ' ei
√
λr

r(n−1)/2
φout − e−i

√
λr

r(n−1)/2
φin.

The operator

S(λ) : L2(Sn−1) 3 φin → φout ∈ L2(Sn−1)

is unitary and can be identified, up to a unitary operator, with the on-shell S-matrix

obtained by the direct-integral decomposition of the scattering operator defined in

the time-dependent theory.

As for scattering on perturbed periodic lattices, in some cases one can argue in

the same way as above, e.g., when a square lattice is concerned [20]. However, to

deal with general lattices, it is more convenient to pass the problem on the torus

by the discrete Fourier transform and to observe the singularities of solutions to

the Helmholtz equation.

On the torus Td, the counterpart of the above space B(Rn)∗ is defined as follows.

Let φ be a distribution on Td. Multiplying it by a smooth cut-off function, passing

to the Fourier transform in the appropriate local chart, and denoting the resulting

function by φ̃, we define B(Td)∗ to be the set of distributions such that

(5.14) sup
R>1

1

R

∫
|ξ|<R

|φ̃(ξ)|2dξ <∞ ;

for two distributions φ, ψ on Td, φ ' ψ means

(5.15)
1

R

∫
|ξ|<R

|φ̃(ξ)− ψ̃(ξ)|2dξ → 0 as R→∞.

We also define the space B(Td) similarly to (5.10). See §4 of [2] and §2.4 of [3].

Assume that the unperturbed periodic lattice Γ0 satisfies the above assumptions

(D-1)–(D-4). The spectral representation of H0 is nothing but the diagonalization

of H0(x). Let Pj(x) be the eigenprojection associated with the eigenvalue λj(x).

Let Ij = {λj(x) ; x ∈ Td} \ T0, and

(5.16) Mλ,j =

{
{x ∈ Td ; λj(x) = λ}, λ ∈ Ij ,
∅, λ 6∈ Ij .
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For λ ∈ σ(H0) \ T0, we have Mλ,i ∩Mλ,j = ∅ if i 6= j, hence each of them is a

C∞-submanifold of Td. We define the Hilbert spaces hλ,j equipped with the inner

product

(ψ, φ)L2(Mλ,j) =

∫
Mλ,j

Pj(x)ψ(x) · φ(x)
dMλ,j

|∇λj(x)|
,

and put

(5.17) hλ = hλ,1 ⊕ · · · ⊕ hλ,s.

For f ∈ B(Td), we define

(5.18) F0,j(λ)f = Pj(x)f(x)
∣∣
Mλ,j

and

(5.19) F0(λ)f = (F0,1(λ)f, . . . ,F0,s(λ)f);

in the spirit of the above orthogonal sum, we often write the right-hand side as∑s
j=1 F0,j(λ)f . Then the operators

(5.20) F0(λ) ∈ B(B(Td) ; hλ)

provide us with a spectral representation (or a generalized Fourier transformation)

associated with H0. It is related to the resolvent of H0 in the following way,

(5.21) (H0 − λ∓ i0)−1f '
s∑
j=1

F0,j(λ)f

λj(x)− λ∓ i0
, f ∈ B(Td),

where the relation ' is defined by (5.15). This shows that the generalized Fourier

transform can be associated with the singular part of the resolvent of H0 on the

torus, which in turn describes the behavior at infinity of the resolvent of Ĥ0 in the

lattice space. Compared with the case of Rn, the lattice and the torus here can be

matched off against the position space and the momentum space, respectively.

The same fact holds for the perturbed operator Ĥ = −∆̂Γ+V̂ on `2(V). One can

easily check that σe(Ĥ) = σ(Ĥ0) = σ(H0), and furthermore, that σp(Ĥ)∩σe(Ĥ) is

discrete in σe(H0)\T0 with possible accumulation points in T0 only [2, Lemma 7.5].

In the following we consider λ ∈ σ(H0) \ (T0 ∪ σp(Ĥ)). Define B = B(V) and

B∗ = B(V)∗ as direct sums,

(5.22) B(V) = B(Vext)⊕ `2(V◦int), B(V)∗ = B(Vext)∗ ⊕ `2(V◦int),

where the spaces B(Vext) and B(Vext)∗ are defined on the torus in the way described

above1. Denoting R̂(z) := (Ĥ − z)−1 and assuming λ ∈ σe(Ĥ) \ (T0 ∪ σp(Ĥ)), we

have

(5.23) R̂(λ± i0) ∈ B(B ; B∗).

1More explicitly, the norm of B(V0)∗ is defined by ‖û‖2B(V0)∗ = supR>1
1
R

∑
|n|<R |û(n)|2,

while in the case of Vext, the sum ranges over vertices of the set Vext only.
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The generalized Fourier transformation F±(λ) associated with Ĥ is given by2

(5.24) F±(λ) = F0(λ)UVQ̂1(λ± i0)U∗V ,

where

(5.25) Q̂1(z) = P̂ext + K̂1R̂(z), K̂1 = Ĥ0P̂ext − P̂extĤ.

It is related to the resolvent in the following way, see Theorems 7.7 and 7.15 in [2]:

Theorem 5.2. Let λ ∈ σe(Ĥ) \
(
T0 ∪ σp(Ĥ)

)
. For f ∈ B we have the relation

(5.26) UV P̂extR̂(λ± i0)f '
s∑
j=1

F±,j(λ)f

λj(x)− λ∓ i0
.

As in the case of Rn, the S-matrix is defined by means of the Helmholtz equation.

Theorem 5.3. (1) For any solution û ∈ B̂ to the equation

(5.27) (Ĥ − λ)û = 0,

there exist unique pair of vectors φin, φout ∈ hλ such that

(5.28) UV P̂extû '
s∑
j=1

1

2πi

(
φoutj

λj(x)− λ− i0
−

φinj
λj(x)− λ+ i0

)
.

Moreover, the operator S(λ) ∈ B(hλ ; hλ) defined by

(5.29) S(λ) = 1− 2πiA(λ),

where

(5.30) A(λ) := F+(λ)UVK̂2 U∗VF0(λ)∗, K̂2 := ĤP̂ext − P̂extĤ0,

is unitary on hλ, and satisfies

(5.31) φout = S(λ)φin.

(2) For any φin ∈ hλ, there is a unique û ∈ B̂ and φout ∈ hλ such that

(5.32) (Ĥ − λ)û = 0,

and relations (5.28), (5.31) are satisfied.

The operator S(λ) is the S-matrix for our perturbed lattice, in the physics liter-

ature usually referred to as the on-shell S-matrix.

2To get (5.24), we employ the resolvent equation, cf. the argument preceding Theorem 6.11 in
§6.6, in particular, the formula (6.43).
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5.3. The S-matrix and Dirichlet-to-Neumann map. Now we consider eigen-

value equations separately on Vext and Vint, assuming that (B-1)–(B-3) of [3] are

satisfied. Suppose that there is no perturbation outside Vint and that the potential

is also supported in Vint only. For λ ∈ σe(Ĥext) \ (T0 ∪ T1), there exists a unique

solution û
(±)
ext ∈ B̂∗ to the following equation,{

(−∆̂Γ0 − λ)û
(±)
ext = 0 in V◦ext,

û
(±)
ext = f̂ on ∂Vext,

satisfying the radiation condition3 (outgoing for û
(+)
ext and incoming for û

(−)
ext ). We

define the exterior D-N map Λ
(±)
ext (λ) by

Λ
(±)
ext (λ)f̂ = −∂Vextν û

(±)
ext

∣∣∣
∂Vext

,

where the normal derivative of a function u at z ∈ ∂Vext in V◦ext is defined by(
∂Vextν u

)
(z) := − 1

degextE (z)

∑
x∈V◦ext,{x,z}∈E

u(x) ,

degextE (z) := ]{x ∈ V◦ext : {x, z} ∈ E}.
(5.33)

On the other hand, for λ 6∈ σ(Ĥint), where Ĥint is −∆̂Γ + V̂ in Vint with Dirichlet

boundary condition, there exists a unique solution ûint to the following equation,{
(−∆̂Γ + V̂ − λ)ûint = 0 in V◦int,

ûint = f̂ on ∂Vint.

The interior D-N map Λint(λ) is defined by

Λint(λ)f̂ = ∂Vintν ûint

∣∣∣
∂Vint

,

where the normal derivative at ∂Vint in V◦int is defined in the analogous way, re-

placing all the exterior sets in (5.33) with the respective interior ones.

We denote

(5.34) Σ = ∂Vint = ∂Vext

and define the operator

(5.35) B
(±)
Σ (λ) :=MintΛint(λ)−MextΛ

(±)
ext (λ)− ŜΣ − λχΣ,

where the operators Mint, Mext, ŜΣ, χΣ in (5.35) contain only information refer-

ring to Σ; for their definitions we refer to relations (3.30)-(3.33) in [3].

Next, letting

û(±) = χV◦int ûint + χV◦ext ûext + χΣf̂

where, as above, the operators χV◦int and χV◦ext contain only information referring

to V◦int and V◦ext, we define another operator, Î(±)(λ) : `2(Σ)→ hλ, by (see (4.7) in

[3]),

Î(±)(λ)f̂ := F0(λ)U(Ĥ0 − λ)P̂extû
(±);

3We speak here of the discrete analogue of the usual radiation condition, see Section 2.6 in [3].
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the right-hand side of this relation shows that the action of I(±)(λ) depends neither

on Vint nor on V̂ , in other words, it is independent of the perturbation.

Here, an important role is played by a Rellich-type result, Theorem 5.1 in [2],

and the following unique continuation property: if a solution of (−∆̂Γ0 − λ)û = 0

on V0 vanishes except for a finite number of vertices for λ ∈ C, then this solution

vanishes identically on V0. This is what was assumed as (A-4) in [2, 3]. The said

Rellich-type theorem, together with the unique continuation property in the exterior

domain Vext (which follows from the assumption (D-4)), implies the following claim,

cf. Lemma 4.3 in [3].

Lemma 5.4. Let λ ∈ σe(Ĥ) \
(
T0 ∪ T1 ∪ σp(Ĥ) ∪ σ(Ĥint)

)
. Then

(1) the map Î(±)(λ) : `2(Σ)→ hλ is injective,

(2) its adjoint Î(±)(λ)∗ : hλ → `2(Σ) is surjective.

The scattering amplitude A(λ) is defined by (5.30). In a similar way one can

define the scattering amplitude in the exterior domain which we denote as Aext(λ).

These scattering amplitudes satisfy the following relation, cf. Theorem 4.5 in [3].

Theorem 5.5. Let λ ∈ σe(Ĥ) \ (T0 ∪ T1 ∪ σp(Ĥ) ∪ σ(Ĥint)). Then we have

(5.36) Aext(λ)−A(λ) = Î(+)(λ)
(
B

(+)
Σ (λ)

)−1
Î(−)(λ)∗.

By assumption, the exterior domain is free of perturbations, therefore Λ
(±)
ext (λ)

and Aext(λ) are known. By virtue of (5.29), (5.35) and Theorem 5.5, the S-matrix

S(λ) and the D-N map Λint(λ) determine each other on some interval in the spec-

trum, and the same is true for the N-D map. Since the S-matrix, the D-N map and

the N-D map are all complex analytic, this mutual determination extends from the

said interval to the whole spectrum. Thus we arrive at the following claim.

Theorem 5.6. For any λ ∈ σe(Ĥ)\ (T0∪T1∪σp(Ĥ)∪σ(Ĥint)), the S-matrix S(λ)

and the D-N map Λint(λ) determine each other.

Let us remark that the definition of the normal derivative used in [3] differs from

the present one given by (3.7), adopted from [5], by a constant only. Hence the

corresponding Neumann-to-Dirichlet maps determine each other.

Note further that the formula (5.36) is a discrete analogue of the one derived

by Isakov and Nachman in [15] for the Schrödinger operator in Rn. For the dis-

crete problem, it provides us with a constructive route from the S-matrix to the

corresponding D-N map.

5.4. The inverse scattering problem. The aim of this subsection is to show that

the graph structure and the potential can be uniquely recovered from the knowledge

of the scattering matrix at all energies for the discrete Schrödinger operator.

First of all, let us recall the definition of the Neumann-to-Dirichlet (N-D) map for

a finite weighted graph with boundary, G = {G, ∂G,E, µ, g}. Let q be a real-valued

potential function on G, and denote by {λk}Nk=1 the Neumann eigenvalues, with the
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multiplicity taken into account, of the discrete Schrödinger operator −∆G+q, where

N = ]G. We consider the following equation:

(5.37)

{
(−∆G + q − λ)u(x) = 0, x ∈ G, λ ∈ C,

∂νu
∣∣
∂G

= f,

where the Neumann boundary value ∂νu was defined in (3.7). For λ /∈ {λk}Nk=1,

denote by ufλ the unique solution of the equation (5.37) with the Neumann boundary

value equal to f . The Neumann-to-Dirichlet map Λλ (at a fixed energy λ) for the

equation (5.37) is defined as Λλ : f 7→ ufλ
∣∣
∂G

.

Lemma 5.7. Let G be a finite connected weighted graph with boundary satisfying

the assumptions (C-1) and (C-2) in §3. Suppose the weights4 µ|∂G, g|∂G×G are

given. Then knowing the Neumann-to-Dirichlet map at all energies for the equation

(5.37) on G is equivalent to the knowledge the Neumann boundary spectral data for

the discrete Schrödinger operator on G.

Proof. The proof for the manifold case can be found in [22] or Section 4.1 of [21].

The proof in our case, for finite graphs, is simpler. Let {φk}Nk=1 be a family of

orthonormalized Neumann eigenfunctions of the discrete Schrödinger operator cor-

responding to eigenvalues {λk}. Recall from [5] that the L2(G)-inner product is

defined by

〈u1, u2〉L2(G) =
∑
x∈G

µxu1(x)u2(x).

By Green’s formula [5, Lemma 2.1], we infer that〈
(−∆G + q)ufλ, φk

〉
L2(G)

=
〈
ufλ, (−∆G + q)φk

〉
L2(G)

−
∑
z∈∂G

µzφk(z)(∂νu
f
λ)(z)

= λk〈ufλ, φk〉L2(G) −
∑
z∈∂G

µzφk(z)f(z),

which yields

(λ− λk)〈ufλ, φk〉L2(G) = −
∑
z∈∂G

µzφk(z)f(z).

Now take an arbitrary real-valued function wf on G ∪ ∂G satisfying ∂νw
f |∂G = f .

Then the difference ufλ − wf lies in the domain of the Neumann graph Laplacian

and we have

ufλ − w
f =

N∑
k=1

〈ufλ − w
f , φk〉L2(G)φk

= −
N∑
k=1

1

λ− λk

( ∑
z∈∂G

µzφk(z)f(z)
)
φk −

N∑
k=1

〈wf , φk〉L2(G)φk.(5.38)

This shows that Λλ is a meromorphic operator-valued function of λ with simple

poles at λ = λk only, and this in turn means that {Λλ} determines the set of

4We abuse the notation here writing g|∂G×G to indicate the weights of the edges connecting

the boundary vertices with the interior vertices.
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eigenvalues {λk}. Moreover, the residue of Λλ at λ = λk is known as a finite-

dimensional linear operator. In particular, since µ|∂G is known, the data {Λλ}
determine

Qk(z1, z2) =
∑
l∈Lk

φl(z1)φl(z2), ∀ z1, z2 ∈ ∂G,

where Lk = {pk + 1, · · · , pk + ]Lk}, pk ∈ N, denotes the set of integers l satisfying

λl = λk. This function Qk(·, ·) can be viewed as an m ×m matrix Qk defined by

(Qk)ij = Qk(zi, zj), where m = ]∂G, or in the matrix form

Qk =
(
φpk+1, · · · , φpk+]Lk

)
m×]Lk

(
φpk+1, · · · , φpk+]Lk

)T
m×]Lk

.

By Lemma 2.4 of [6], the eigenfunctions {φl|∂G}l∈Lk are linearly independent on

∂G, hence the rank of Qk is simply ]Lk.

When the eigenvalue λk is simple, the matrix Qk determines φk|∂G up to the sign.

In general, since Qk is symmetric and positive semi-definite, it can be decomposed

into Qk = BBT , where B is an m × ]Lk matrix of rank ]Lk. Moreover, the

decomposition is unique up to an ]Lk × ]Lk orthogonal matrix. Thus we take

the column vectors of B, and they are the boundary values of orthonormalized

eigenfunctions found by applying the orthogonal matrix to {φl}l∈Lk . This shows

Qk determines the boundary values of the orthonormalized eigenfunctions (referring

to the choice of {φk}Nk=1 we made).

To check the converse: the Neumann boundary spectral data determine the N-D

map in accordance with the formula (5.38). We choose wf such that wf |G = 0

and ∂νw
f |∂G = f so that the last term in (5.38) vanishes. Since g|∂G×G is known,

thus wf |∂G is uniquely determined by f , and consequently, the N-D map can be

determined from the Neumann boundary spectral data. �

Without loss of generality, we assume that the perturbed vertex set Ω = Ωk0
for some k0 as assumed in part (i) of (D-4), cf. §5.1. With our choice (5.8) of the

domains, Theorem 5.5 and Lemma 5.1 yield the following statement.

Corollary 5.8. Let Γ0 be an infinite periodic lattice satisfying assumptions (D-1)–

(D-4). Let q be a finitely supported potential on Γ, and GΓ be the perturbed finite

subgraph given by (5.7). Then the knowledge of the scattering matrix of the discrete

Schrödinger operator on Γ at an arbitrarily fixed energy determines the Neumann-

to-Dirichlet map of the equation (5.37) on GΓ with µ = degE , g ≡ 1 for the same

energy.

Now we impose the following assumption on the locally perturbed lattice Γ.

(E-1) With the perturbed vertex set Ω = Ωk0 for some k0 as in part (i) of (D-4),

the perturbed finite subgraph GΓ given by (5.7) is connected and satisfies (C-1),

(C-2).

The assumption (E-1), together with part (ii) of (D-4), implies the unique con-

tinuation from infinity for the perturbed system.
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Lemma 5.9. Assume (E-1) and part (ii) of (D-4) are satisfied. Then the unique

continuation from infinity holds for the perturbed equation (−∆̂Γ − λ)û = 0 on Γ.

Proof. By assumption (E-1), the system is unperturbed outside of Ωk0 . If û vanishes

near infinity, then û vanishes on V0 \Ωk0 due to part (ii) of (D-4). Then the lemma

follows from the same argument as Lemma 5.1. �

Our main result of this section is stated as follows.

Theorem 5.10. Consider a periodic lattice satisfying assumptions (D-1)–(D-4),

and suppose that Γ is an infinite graph obtained by a local perturbation of this lattice.

Let the potential q be finitely supported on Γ, and GΓ be the perturbed finite subgraph

given by (5.7) with µ = degE , g ≡ 1. Assume that GΓ satisfies (E-1). Then GΓ

and q can be uniquely recovered from the knowledge of the scattering matrix for the

discrete Schrödinger operator on Γ for all energies.

Proof. From our construction of GΓ in §5.1, the edges connecting ∂G and G are

known, and hence the weight µ = degE on ∂G is known. The theorem then follows

from Corollary 5.8 and Theorem 3.2. �

Example 5.11. Finite square, hexagonal (see Figure 1), triangular, graphite and

square ladder lattices all satisfy the Two-Points Condition (C-2) with the set of

boundary vertices being the domain boundary. Moreover, any horizontal edges in

these lattices can be removed and the obtained graphs still satisfy the Two-Points

Condition, see Figure 2; the term “horizontal edges” here refers to the edges in the

non-gradient directions with respect to the function h in Proposition 1.8 in [5].

6. Spectral theory for periodic quantum graph

In this and the next sections, we study the spectral theory for the Schrödinger

operator on a quantum (metric) graph. Let Γ0 = {L0,V0, E0} be a periodic lattice

introduced in §5, and let assumptions (D-1)–(D-4) be imposed. As in §5.1, we

consider a local perturbation Γ = {V, E} of Γ0. On each edge e ∈ E , we are

given a one-dimensional Schrödinger operator he = −d2/dz2 + Ve(z) satisfying the

δ-coupling condition (1.3) together with the assumptions (M-1)–(M-5) in §2. We

assume that Ve(z) is equal to a fixed potential V0(z) except for a finite number

of edges e. For the sake of (mainly notational) simplicity, we further assume that

V0(z) = 0 and `e = 1 for all edges e. The arguments below also works for the general

case by replacing φ
(0)
e0 (z, λ), φ

(0)
e1 (z, λ) and σ(0)(h(0)) by those associated with V0(z).

Let ĤE be the resulting self-adjoint operator in L2(E). In the unperturbed case,

when Ve = 0 holds for each e ∈ E0 and Cv/dv is equal to a fixed constant κV , that

is,

(6.1)
Cv
dv

= κV , ∀v ∈ V0,

the operator ĤE shall be denoted by Ĥ
(0)
E . In what follows, we call ĤE the ‘edge’

Schrödinger operator, and −∆̂V,λ the ‘vertex’ Schrödinger operator.
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6.1. Spectrum of ĤE . Let us begin with the unperturbed operator Ĥ
(0)
E . Amend-

ing all the symbols introduced in §2 with the superscript (0), we have φ
(0)
e0 (z, λ) =

sin(
√
λz)√
λ

and φ
(0)
e1 (z, λ) = sin(

√
λ(1−z))√
λ

, hence

(6.2)
(
∆̂

(0)
V,λû

)
(v) =

√
λ

sin
√
λ

1

dv

∑
w∼v

û(w) =

√
λ

sin
√
λ

(
∆̂V û

)
(v),

with ∆̂V being the vertex Laplacian on V0, and

(6.3) Q̂
(0)
V,λ =

√
λ

sin
√
λ

cos
√
λ+ κV .

We put

(6.4) E(λ) = − cos
√
λ− κV

sin
√
λ√

λ
,

and then the resolvent R
(0)
E (λ) = (H

(0)
E − λ)−1 can be, in view of Lemma 2.3,

rewritten as

(6.5) R
(0)
E (λ) =

(
T̂

(0)

V,λ

)∗ sin
√
λ√

λ

(
− ∆̂V − E(λ)

)−1

T̂
(0)

V,λ + r
(0)
E (λ).

Furthermore, we put

(6.6) σ(0)(h(0)) = {(πj)2 ; j = 1, 2, . . . },

(6.7) σ(0)(−∆̂V) = {λ ; E(λ) ∈ σ(−∆̂V)},

(6.8) σ
(0)
T = {λ ∈ Int (σe(Ĥ

(0)
E )); E(λ) ∈ T },

where Int I for a subset I ⊂ R means the interior of I, and

(6.9) T = T0 ∪ T1.

Relation (6.5) allows us to write the spectrum in the following way:

Lemma 6.1. σ(Ĥ
(0)
E ) = σ(0)(−∆̂V) ∪ σ(0)(h(0)).

For example, in the Kirchhoff coupling case, κV = 0, we have σ(Ĥ
(0)
E ) = [0,∞)

for square and hexagonal lattices. Note that σ(0)(h(0)) is the set of eigenvalues of

infinite multiplicities embedded in σ(Ĥ
(0)
E ).

6.2. Function spaces. For an edge e ∈ E0 with the endpoints v, w ∈ V0, we define

(6.10) |ec| =
1

2
|v + w|,

i.e. the distance of its midpoint from the origin, where for x = (x1, . . . , xd) ∈ V0 ⊂
Rd we denote |x| =

√
x2

1 + · · ·+ x2
d. It will serve as a radius-like variable allowing

to define the needed function spaces. Recall that our graph Γ = (V, E) is a local

perturbation of a periodic lattice Γ0 = (L0,V0, E0), which means that Γ and Γ0

coincide in the exterior domain

(6.11) Eext,R 3 e⇐⇒ |ec| > R,
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provided R is chosen sufficiently large; without loss of generality we may suppose

that R > 1. The interior domain

(6.12) Eint,R = E \ Eext,R

in which all the perturbations are located is finite and the ‘radius’ plays no role

there. Hence we keep the definition (6.10) in the exterior domain, and for the

interior domain Eint,R we put instead

(6.13) |ec| = 1 if e ∈ Eint,R.

With this proviso we introduce the function spaces on E : we put rj = 2j and define

(6.14) L̂2,s(E) 3 f̂ ⇐⇒
∑
e∈E
|ec|2s‖f̂e‖2L2(e) <∞,

(6.15) B̂(E) 3 f̂ ⇐⇒
∑
e∈E

r
1/2
j

( ∑
rj−1≤|ec|<rj

‖f̂e‖2L2(e)

)1/2

<∞,

(6.16) B̂∗(E) 3 f̂ ⇐⇒ sup
R>1

1

R

∑
|ec|<R

‖f̂e‖2L2(e) <∞,

equipped with their obvious norms. As the notation suggests, B̂∗(E) can be identi-

fied with the dual space of B̂(E), and the following inclusions hold for s > 1/2:

(6.17) L̂2,s(E) ⊂ B̂(E) ⊂ L̂2,1/2(E) ⊂ L̂2(E) ⊂ L̂2,−1/2(E) ⊂ B̂∗(E) ⊂ L̂2,−s(E),

where L̂2(E) = L̂2,0(E). Moreover, B̂∗0(E) is a closed subspace of B̂∗(E) defined by

(6.18) B̂∗0(E) 3 f̂ ⇐⇒ lim
R→∞

1

R

∑
|ec|<R

‖f̂e‖2L2(e) = 0.

Let us further note that for the ‘vertex’ Laplacian, the spaces L̂2,s(V), B̂(V),

B̂∗(V), B̂∗0(V) are defined in the same way as above with the norms ‖f̂e‖L2(e) at the

right-hand sides of (6.14)–(6.16) replaced by |f̂(v)|. This is one more manifestation

of the parallelism between the discrete graph and the quantum graph. In the

former, we consider C-valued functions on the discrete set V, while in the latter,

we deal with L2((0, 1))-valued functions on the discrete set {ec ; e ∈ Eext,R}. This

correspondence is inherited, in particular, in the resolvent estimates.

6.3. Rellich-type theorem.

Theorem 6.2. Let λ ∈
(
Intσe(Ĥ

(0)
E )
)
\ σ(0)
T , and suppose that û ∈ B̂∗0(E) satisfies

Ĥ
(0)
E û = λû and the δ-coupling condition in Eext,R for some R > 1. Then û = 0

holds in Eext,R1
for some R1 ≥ R.

Proof. Since R is chosen large enough so that all the perturbations are inside of

Eint,R, on each edge e ∈ Eext,R, the solution û can be written as

ûe(z) = ûe(1)
sin
√
λz√
λ

+ ûe(0)
sin
√
λ(1− z)√
λ

.
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As the functions sin
√
λ(1−z)√
λ

and sin
√
λz√
λ

are linearly independent for such a λ, there

exists a constant Cλ > 0 such that

(6.19) C−1
λ (|ûe(0)|+ |ûe(1)|) ≤ ‖ûe‖L2(e) ≤ Cλ (|ûe(0)|+ |ûe(1)|)

for all e ∈ Eext,R. We put ŵ = û
∣∣
V , then in view of Lemma 2.2, we have(

− ∆̂V − E(λ)
)
ŵ = 0, on V ∩ Eext,R.

Since û ∈ B̂∗0(E) holds by assumption, the inequality (6.19) implies ŵ ∈ B̂∗0(V). By

the Rellich-type theorem for vertex Schrödinger operators [2, Theorem 5.1], we have

ŵ(v) = 0 for |v| > R′ with a sufficiently large R′. This proves the theorem. �

Definition 6.3. We say that the operator ĤE − λ has the unique continuation

property if the following assertion holds: If û satisfies (ĤE − λ)û = 0 on E , and

û = 0 on Eext,R for a positive R, then û = 0 holds on E .

For the unperturbed system, by assumption (D-4) in §5 (essentially coinciding

with (C-2) in §3), Ĥ
(0)
E − λ has the unique continuation property for all λ. Adding

a potential, it is also true for the unperturbed operator ĤE .

Lemma 6.4. Under the assumptions (D-1)–(D-4), we have

σp(Ĥ
(0)
E ) ∩ σe(Ĥ(0)

E ) ⊂ σ(0)
T .

Proof. Any eigenvector of ĤE is in L̂2(V) ⊂ B̂∗0(E), and therefore it vanishes ‘at

infinity’ by Theorem 6.2. By the unique continuation property, it vanishes every-

where. �

As can be checked easily, the square and hexagonal lattices satisfy the unique

continuation property.

6.4. Radiation condition. For systems having Rd as the configuration space,

the radiation condition is introduced either by observing the asymptotic behavior

at infinity, or, what is equivalent, from the singularities of the Fourier image of

solutions to the Schrödinger equation. Dealing with lattice Schrödinger operators,

we adopt the latter approach.

Definition 6.5. Given a distribution u ∈ D′(Td), its wave front set WF ∗(u) is

defined as follows: a point (x0, ω) ∈ Rd × Sd−1 does not belong to WF ∗(u) if and

only if there exist 0 < δ < 1 and χ(x) ∈ C∞0 (Rd) such that χ(x0) = 1 and

(6.20) lim
R→∞

1

R

∫
|ξ|<R

|Cω,δ(ξ)(χ̃u)(ξ)|2dξ = 0,

where χ̃u is the Fourier transform of χu and Cω,δ(ξ) is the characteristic function

of the cone {ξ ∈ Rd ; ω · ξ > δ|ξ|}.
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Let λj(x), j = 1, 2, . . . , s, be the eigenvalues of H0(x) and Pj(x) the associ-

ated eigenprojections, and let H0 be the operator of multiplication by H0(x) on(
L2(Td)

)s
. In [2, Lemma 4.7], it was proven that the operator

B(Td) 3 f → f(x)

λj(x)− ρ∓ i0
∈ B∗(Td)

is bounded if ρ 6∈
(
Intσ(H0)

)
\ T . Furthermore in [2, Theorem 6.1] it was shown

that for any f ∈ B(Td), 1 ≤ j ≤ s and ρ ∈ σ(H0) \ T , it holds that

(RC)+ : WF ∗
( Pjf

λj(x)− ρ− i0
)
⊂ {(x, ωx) ; x ∈Mρ,j},

(RC)− : WF ∗
( Pjf

λj(x)− ρ+ i0

)
⊂ {(x,−ωx) ; x ∈Mρ,j},

where ωx ∈ Sd−1∩Tx(Mλ,j)
⊥ and ω(x) ·∇λj(x) < 0. Moreover, for any f ∈ B(Td),

the function u = (H0(x) − λ ∓ i0)−1f ∈ B∗(Td) is the unique solution to the

equation (H0(x)− ρ)u = f satisfying (RC)+ or (RC)−, respectively. These claims

also extend to the case with compactly supported perturbations.

We put

(6.21) sgn(λ) =

{
1 for λ > 0, sin

√
λ > 0,

− 1 for λ > 0, sin
√
λ < 0,

and then we can write

(6.22) cos
√
λ± i0 = cos

√
λ∓ i 0 sgn (λ), λ > 0.

We recall the discrete Fourier transform UV defined by (5.3). Let P̂ext,R be the

orthogonal projection : L2(E)→ L2(Eext,R). Taking (6.22) into account, we define

the radiation condition as follows.

Definition 6.6. A solution û ∈ B̂∗(E) of the equation (−∆̂E +V −λ)û = f̂ is said

to satisfy the outgoing radiation condition if either

(i) sin
√
λ > 0, and w = U P̂ext,Rû

∣∣
V satisfies (RC)+ with ρ = E(λ),

or

(ii) sin
√
λ < 0, and u = U P̂ext,Rû

∣∣
V satisfies (RC)− with ρ = E(λ),

holds. Similarly, we define the incoming radiation condition with (RC)± replaced

by (RC)∓. If û satisfies either the outgoing radiation condition or the incoming

one, we simply say that û satisfies the radiation condition.

In [2], the radiation condition was also introduced for the vertex Laplacian,

see Lemmata 4.8 and 6.2 there. Let f̂ ∈ B(E). Given a solution û to the edge

Schrödinger equation (−∆̂E + V − λ)û = f̂ , denote by û
∣∣
V its restriction to V.

Then û
∣∣
V satisfies the vertex Schrödinger equation

(6.23)
(
− ∆̂V − E(λ)

)
û = ĝ,

where ĝ ∈ B(V). Comparing these two definitions of the radiation condition, one

can make the following claim:
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Lemma 6.7. A solution û of the edge Schrödinger equation satisfies the radiation

condition if and only if the solution û
∣∣
V of the vertex Schrödinger equation satisfies

the radiation condition.

Lemma 6.8. Let λ ∈
(
Intσe(ĤE)

)
\ σ(0)
T . Then the solution û ∈ B̂∗(E) of the

equation (−∆̂E + V − λ)û = f̂ satisfying the radiation condition is unique.

Proof. For the vertex Schrödinger operator, such a result was proven in Lemma 7.6

of [2]; in combination with Lemma 6.7, it yields the claim for the edge Schrödinger

operator. �

6.5. Limiting absorption principle. Let us first investigate the existence of the

limits (−∆̂V,λ±i0 + Q̂V,λ±i0)−1.

Lemma 6.9. If E(λ) ∈ σe(−∆̂V) \ T , there exists a limit

(−∆̂V,λ±i0 + Q̂V,λ±i0)−1 ∈ B(B(V);B
(
V)∗
)
.

Proof. We use the limiting absorption principle for the vertex Schrödinger operator

proved in [2]. Taking into account (6.2) and (6.3), we define ŴV,λ by

(6.24) −∆̂V,λ + Q̂V,λ =

√
λ

sin
√
λ

(
−∆̂V − E(λ) + ŴV,λ

)
,

where ŴV,λ is a self-adjoint, bounded, and compactly supported perturbation of

−∆̂V . Then, regarding E(λ) as the energy for −∆̂V , and arguing in the same way

as in [2], we can prove the existence of the limit

(−∆̂V + ŴV,λ − E(λ± i0))−1.

Using the identity

− ∆̂V + ŴV,λ±iε − E(λ± iε)

= −∆̂V + ŴV,λ − E(λ± iε) + (WV,λ±iε −WV,λ),
(6.25)

together with the fact that WV,λ±iε −WV,λ → 0 as ε → 0, we can construct the

inverse of the right-hand side by the Neumann series. This proves the lemma. �

For λ 6∈ ∪e∈Eσp(−(d/dz)2
D +Ve(z)), where −(d/dz)2

D denotes −(d/dz)2 in L2(e)

with Dirichlet boundary condition, the functions φe0(z, λ) and φe1(z, λ) are linearly

independent, hence by (2.14) there is a constant Cλ > 0 such that

(6.26) C−1
λ (|ĝ(e(0))|+ |ĝ(e(1))|) ≤ ‖(T̂V,λ)∗ĝe‖L2(e) ≤ Cλ (|ĝ(e(0))|+ |ĝ(e(1))|)

holds for all e ∈ E . This implies

(6.27) (T̂V,λ)∗ ∈ B
(
B(V)∗ ; B∗(E)

)
,

and

(6.28) T̂V,λ ∈ B
(
B(E) ; B(V)

)
.

Combining Lemma 2.3 with (6.27), (6.28), we arrive at the following result.
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Theorem 6.10. Let I be a compact interval in
(
Intσe(ĤE)

)
\ σ(0)
T .

(1) There exists a constant C > 0 such that

(6.29) ‖(ĤE − λ∓ iε)−1‖B(B̂(E);B̂∗(E)) ≤ C

holds for any λ ∈ I and ε > 0.

(2) For any λ ∈ I and s > 1/2, there exist strong limits

(6.30) s− lim
ε↓0

(ĤE − λ∓ iε)−1 =: (ĤE − λ∓ i0)−1 ∈ B
(
L̂2,s(E); L̂2,−s(E)

)
.

(3) For any f̂ ∈ L̂2,s(E), (ĤE−λ∓i0)−1f̂ is an L̂2,−s(E)-valued strongly continuous

function of λ ∈ I.

(4) For any f̂ , ĝ ∈ B̂(E), there exist limits

(6.31) lim
ε↓0

(
(ĤE − λ∓ iε)−1f̂ , ĝ

)
=:
(
(ĤE − λ∓ i0)−1f̂ , ĝ

)
,

and
(
(ĤE − λ∓ i0)−1f̂ , ĝ

)
is a continuous function of λ ∈ I.

(5) For any f̂ ∈ B̂(E), (ĤE − λ− i0)−1f̂ satisfies the outgoing radiation condition,

and (ĤE − λ+ i0)−1f̂ satisfies the incoming radiation condition.

6.6. Spectral representation. As we have noted in the paragraph following eq. (5.2),

there are unitary equivalences

`2(V0) ∼= (`2(Zd))s ∼= (L2(Td))s,

by means of the decomposition (5.2) and the discrete Fourier trandformation (5.3)

with deg E0(x) = dV0 . In the following, we freely make use of the identification

(6.32) `2(V0) 3
(
f̂(v)

)
v∈V0

←→ f̂(n) = (f̂1(n), . . . , f̂s(n)) ∈ (`2(Zd))s

and we put5

(6.33) Φ(0)(λ) = UV T̂ (0)
V,λ,

where T̂
(0)
V,λ is the unperturbed T̂V,λ defined by (2.12). Let PV,j(x) be the eigen-

projection associated with the eigenvalue λj(x) of H0(x), and denote

D(0)(λ± i0) =
sin
√
λ√

λ
UV(−∆̂V − E(λ± i0))−1U∗V

=
sin
√
λ√

λ

s∑
j=1

1

λj(x)− E(λ± i0)
PV,j(x).

(6.34)

By (6.5), the following formula holds:

R̂
(0)
E (λ± i0) = Φ(0)(λ)∗D(0)(λ± i0)Φ(0)(λ) + r

(0)
E (λ).(6.35)

To construct a spectral representation of Ĥ
(0)
E , we put

ME,λ,j = {x ∈ Td ; λj(x)− E(λ) = 0},

5To be more precise, one should insert the operator of identification J : `2(V0) → (`2(Zd))s

defined by (6.32) in front of T̂
(0)
V,λ. We omit it, however, for the sake of simplicity.
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(6.36) (ϕ,ψ)λ,j =

∫
ME,λ,j

PV,j(x)ϕ(x) · ψ(x) dSj ,

dSj =
| sin
√
λ|√

λ

dME,λ,j
|∇xλj(x)|

.

Combining (6.35) with the formula(
R̂

(0)
V (− cos

√
λ+ i0)f̂ − R̂(0)

V (− cos
√
λ− i0)f̂ , ĝ

)
= 2πi

∑
j

∫
ME,λ,j

PV,j f̂ · PV,j ĝ
dME,λ,j
|∇λj(x)|

,

valid for λ ∈
(
Intσe(Ĥ

(0)
E )
)
\ σ(0)
T , for which we refer to eq. (6.7) of [2], we obtain

the relation

1

2πi

((
R̂

(0)
E (λ+ i0)− R̂(0)

E (λ− i0)
)
f̂ , ĝ
)

=

s∑
j=1

(
PV,jΦ

(0)(λ)f̂ , PV,jΦ
(0)(λ)ĝ

)
λ,j
.

(6.37)

Furthermore, we put

(6.38) F̂ (0)
j (λ)f̂ =

(
PV,jΦ

(0)(λ)f̂
) ∣∣∣

ME,λ,j
,

in other words, the restriction to ME,λ,j with the components

F̂ (0)(λ) =
(
F̂ (0)

1 (λ), · · · , F̂ (0)
s (λ)

)
,

(6.39) hλ =
s
⊕
j=1

PV,j

∣∣∣
ME,λ,j

L2
(
ME,λ,j ; dSj

)
,

H = L2
(
(0,∞),hλ; dλ

)
.

Then, by virtue of (6.37) we can write

1

2πi

((
R̂

(0)
E (λ+ i0)− R̂(0)

E (λ− i0)
)
f̂ , ĝ
)

= (F̂ (0)(λ)f̂ , F̂ (0)(λ)ĝ)hλ .

Let E(0)(λ) be the spectral measure for Ĥ
(0)
E . Integrating the last equality and

using Stone’s formula, we get

(E(0)(I)f̂ , ĝ) =

∫
I

(F̂ (0)(λ)f̂ , F̂ (0)(λ)ĝ)hλdλ,

for any interval I ⊂
(
Intσe(Ĥ

(0)
E )
)
\ σ(0)
T . Hence F̂ (0) extends uniquely to an

isometry from the subspace6 Hac(Ĥ(0)
E ) to H. Moreover, we define

F̂ (0) = 0, on Hp(Ĥ(0)
E ).

As one can see from (6.38), to obtain F̂ (0)(λ) one has in fact to diagonalize the

matrix H0(x).

6For a self-adjoint operator A, Hac(A) denotes conventionally its absolutely continuous sub-
space, while Hp(A) is the closure of the linear hull of eigenvectors of A.
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The spectral representation for ĤE is constructed by the perturbation method

well known in the stationary scattering theory. For the case of perturbation by a

potential, we make use of the resolvent equation

(6.40) R̂E(λ± i0) = R̂
(0)
E (λ± i0)

(
1− VER̂E(λ± i0)

)
.

Then, defining F̂ (±)(λ) by

(6.41) F̂ (±)(λ) = F̂ (0)(λ)
(
1− VER̂E(λ± i0)

)
∈ B(B̂(E) ; hλ),

and using the resolvent equation [2, Lemma 7.8], we have

1

2πi

((
R̂E(λ+ i0)− R̂E(λ− i0)

)
f̂ , ĝ
)

= (F̂ (±)(λ)f̂ , F̂ (±)(λ)ĝ)hλ .

We define an operator F̂ (±) by (F̂ (±)f̂)(λ) = F̂ (±)(λ)f̂ , and we also put

F̂ (±) = 0, on Hp(ĤE);

this yields the sought spectral representation of ĤE .

On the other hand, concerning the perturbation of the lattice structure, we

take a cut-off function χ0 whose support contains all the perturbation, and put

χ∞ = 1− χ0. In that case the equality

(6.42) χ∞R̂E(λ± i0) = R̂
(0)
E (λ± i0)

(
χ∞ + [H

(0)
E , χ∞]R̂E(λ± i0)

)
plays the role of the resolvent equation, and F̂ (±)(λ) is defined by

(6.43) F̂ (±)(λ) = F̂ (0)(λ)
(
χ∞ + [H

(0)
E , χ∞]R̂E(λ± i0)

)
.

Summarizing this discussion, we obtain the following result.

Theorem 6.11. (1) The operator F̂ (±) extends uniquely to a unitary operator from

Hac(ĤE) to H annihilating the subspace Hp(ĤE).
(2) The operator diagonalizes ĤE , namely(

F̂ (±)ĤE f̂
)
(λ) = λ

(
F̂ (±)f̂

)
(λ), ∀f̂ ∈ D(ĤE).

(3) The adjoint operator F̂ (±)(λ)∗ ∈ B(hλ;B∗(E)) satisfies the eigenequation

(ĤE − λ)F̂ (±)(λ)∗φ = 0, ∀φ ∈ hλ.

(4) For any f̂ ∈ Hac(ĤE), the inversion formula holds,

f̂ =

∫
σac(ĤE)

F̂ (±)(λ)∗
(
F̂ (±)f̂

)
(λ)dλ.

We omit the proof, as it is almost the same as that of Theorem 7.11 in [2].
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6.7. Resolvent expansion. We look at the behavior at infinity of R̂E(λ± i0)f̂ in

the sense of B̂∗(E), which is equivalent to observing the singularities of its Fourier

transform in the sense of B∗(E).

Lemma 6.12. For any compact interval I ⊂
(
Intσe(Ĥ

(0)
E )
)
\ σ(0)
T , there exists a

constant C > 0 such that

‖{r(0)
e (λ)f̂e}e∈E‖`2(E) ≤ C‖f̂‖`2(E)

holds for all λ ∈ I and e ∈ E.

Proof. Since I is in the resolvent set of −(d/dz)2
D + Ve, the claim follows. �

For a pair f̂ , ĝ ∈ B̂∗(E), we consider the following equivalence relation

f̂ ' ĝ ⇐⇒ f̂ − ĝ ∈ B̂∗0(E).

Lemma 6.13. For any λ ∈
(
Intσe(Ĥ

(0)
E )
)
\ σ(0)
T and f̂ ∈ B(E), we have

UER̂(0)
E (λ± i0)f̂ ' sin

√
λ

λ

s∑
j=1

F̂ (0)
j (λ)f̂

λj(x)− E(λ± i0)
.

Proof. Lemma 6.12 in combination with (6.35) implies

R̂
(0)
E (λ± i0)f̂ ' Φ(0)(λ)∗D(0)(λ± i0)Φ(0)(λ)f̂

=
sin
√
λ√

λ

s∑
j=1

1

λj(x)− E(λ± i0)
PV,j(x)(Φ(0)(λ)f̂)(x).

(6.44)

By virtue of eq. (4.34) of [2], we have, for g ∈ B(Td), the equivalence

1

λj(x)− µ∓ i0
g(x) ' 1

λj(x)− µ∓ i0
g
∣∣
M
,

where M = {x ∈ Td ; λj(x) = µ}. This proves the claim. �

Next, we extend this lemma to the perturbed case.

Theorem 6.14. For any λ ∈
(
Intσe(ĤE)

)
\ σ(0)
T and f̂ ∈ B(E), we have

UEχ∞R̂E(λ± i0)f̂ ' sin
√
λ√

λ

s∑
j=1

1

λj(x)− E(λ± i0)
F̂ (±)
j (λ)f̂ .

Proof. For the case of lattice structure perturbations, we use the resolvent equation

(6.13). By Lemma 6.13, the left-hand side is, modulo B∗0(Td), equal to

sin
√
λ√

λ

s∑
j=1

1

λj(x)− E(λ± i0)
F̂ (0)
j (λ)

(
χ∞ + [H

(0)
E , χ∞]R̂E(λ± i0)

)
f̂ ,

and thus the claim follows from (6.43). For the case of potential perturbations, we

note that

UEχ∞R̂(0)
E (λ± i0)f̂ ' UER̂(0)

E (λ± i0)f̂ ,

since passing to the Fourier series, we see that (1− χ∞)R̂
(0)
E (λ± i0)f̂ is a smooth

function on the torus Td. Then, using (6.41) and the resolvent equation (6.40), we

obtain the sought result. �
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6.8. Helmholtz equation and S-matrix. Now one can obtain the asymptotic

expansion of solutions to the Helmholtz equation and derive the S-matrix.

Theorem 6.15. (1) For any solution û ∈ B̂∗(E) of the equation

(ĤE − λ)û = 0,

there is an incoming datum and an outgoing datum φin, φout ∈ hλ satisfying

UEχ∞û '−
s∑
j=1

φinj
λj(x)− E(λ− i0)

+

s∑
j=1

φoutj

λj(x)− E(λ+ i0)
.(6.45)

(2) For any incoming datum φin = (φin1 , . . . , φ
in
s ) ∈ hλ, there exist a unique solution

û ∈ B̂∗(E) of the equation

(ĤE − λ)û = 0

and an outgoing datum φout = (φout1 , . . . , φous ) ∈ hλ satisfying the relation (6.45).

The operator S(λ) defined by

S(λ) : φin → φout

is unitary on hλ.

Proof. Let û ∈ B̂∗(E) be a solution to (ĤE − λ)û = 0 and put û
∣∣
V = ŵ. Then,

ŵ ∈ B̂∗(V) and satisfies (−∆̂V,λ + cos
√
λ)ŵ = 0. By virtue of Theorem 5.3(1), this

ŵ admits an asymptotic expansion7 (5.28). As û = T̂ ∗V,λŵ, the first claim follows.

The existence part of (2) can be proven by the same argument as above, reducing

it to the case of the vertex operator. To prove the uniqueness, we take φin = 0,

and consider the solution û ∈ B̂∗(E) of the equation (ĤE − λ)û = 0 such that

UEχ∞û '
s∑
j=1

φoutj

λj(x)− E(λ+ i0)
.(6.46)

Then û satisfies the outgoing radiation condition, and by Lemma 6.8, such a solution

vanishes identically. �

As this argument shows, the S-matrix for ĤE at the energy λ coincides with

the S-matrix for −∆̂V,λ at the energy
√
λ

sin
√
λ
E(λ), and hence the unitarity follows.

Stated more explicitly, we conclude:

Corollary 6.16. The S-matrix for ĤE at the energy λ coincides with the S-matrix

for −∆̂V,λ at the energy

√
λ

sin
√
λ
E(λ) = −

√
λ cot

√
λ− κV .

Remark 6.17. By checking the above proof, one can see that all the arguments in

this section remain valid in the situation when Cv/dv is a fixed constant except for

a finite number of vertices v ∈ V. Moreover, one can deal in the same way with the

case where the unperturbed operator h
(0)
e has the same potential V0(z) at all the

edges, that is, h
(0)
e = −(d2/dz2)D + V0(z), ∀e ∈ E .

7Note that we have to replace −∆̂Γ by −∆̂V,λ and the energy parameter λ by E(λ) in (5.28).
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7. Inverse scattering for quantum graph

Theorem 7.1. For the Schrödinger operator ĤE on a quantum graph of the con-

sidered class, the S-matrix S(λ) for the scattering problem and the D-N map ΛE(λ)

for the interior boundary value problem determine each other.

Proof. By Corollary 6.16, knowing the S-matrix S(λ) for ĤE is equivalent to know-

ing the S-matrix for −∆̂V,λ at the energy
√
λ

sin
√
λ
E(λ). By Theorem 5.5, this is

equivalent to knowing the D-N map for −∆̂V,λ at the energy
√
λ

sin
√
λ
E(λ). Finally

by Lemma 3.1, this is equivalent to knowing the D-N map for ĤE at the energy

λ. �

We have now arrived at our next main theorem.

Theorem 7.2. Let Γ = {V, E} and Γ′ = {V ′, E ′} be two infinite quantum graphs

as in §5 satisfying (4.1), (4.2), and (D-1)–(D-4), whose perturbed finite subgraphs

satisfy (C-1), (C-2). Assume further that `E = `E′ , VE(z) = VE′(z), kV = kV′ .

Suppose that the S-matrices for the Schrödinger operator for the two quantum graphs

coincide for all energies. Then there is a bijection Φ : Γ→ Γ′ preserving the graph

structure, and dv = dv′ , Cv = C ′v′ hold for all v ∈ V and v′ = Φ(v).

Proof. This is a direct consequence of Theorems 4.1 and 7.1. �
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