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1. Introduction

Let us consider the problem

(−∆+ V (x))u− au = f, (1.1)

with u ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant andV (x) is a
function tending to0 at infinity. If a ≥ 0, then the essential spectrum of the operator
A : E → F , which corresponds to the left side of equation (1.1) contains the origin.
Consequently, such operator does not satisfy the Fredholm property. Its image is
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not closed, ford > 1 the dimension of its kernel and the codimension of its image
are not finite. The present work is devoted to the studies of the certain properties
of the logarithms of the operators of this kind. We recall that elliptic problems with
non-Fredholm operators were treated extensively in recentyears (see [14], [15],
[16], [17], [18], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [42],
also [6]) along with their potential applications to the theory of reaction-diffusion
problems (see [9], [10]). Fredholm structures, topological invariants and their ap-
plication were discussed in [11]. The work [12] deals with the finite and infinite di-
mensional attractors for the evolution equations of mathematical physics. The large
time behavior of the solutions of a class of fourth-order parabolic equations defined
on unbounded domains using the Kolmogorovε-entropy as a measure was treated
in [13]. The attractor for a nonlinear reaction-diffusion system in an unbounded
domain in the space of three dimensions was considered in [19]. The articles [20]
and [28] are devoted to the understanding of the Fredholm andproperness proper-
ties of the quasilinear elliptic systems of the second orderand of the operators of
this kind onRN . The exponential decay and Fredholm properties in the second-
order quasilinear elliptic systems of equations were considered in [21]. The article
[37] is dedicated to the studies of the Laplace operator withdrift from the point of
view of the non-Fredholm operators. The linearized Cahn-Hilliard equations were
covered in [33] and [38]. Standing lattice solitons in the discrete NLS equation
with saturation were discussed in [1]. In the particular case whena is trivial, our
operatorA mentioned above satisfies the Fredholm property in some properly cho-
sen weighted spaces (see [2], [3], [4], [5], [6]). But the situation whena 6= 0 is
significantly different and the method developed in these articles cannot be used.
One of the important questions concerning the equations with non-Fredholm opera-
tors is their solvability. We address it in the following setting. Letfn be a sequence
of functions in the image of the operatorA, so thatfn → f in L2(Rd) asn → ∞.
We denote byun a sequence of functions fromH2(Rd), so that

Aun = fn, n ∈ N.

Because the operatorA does not satisfy the Fredholm property, the sequenceun

may not be convergent. We call a sequenceun such thatAun → f a solution in
the sense of sequences of problemAu = f (see [31]). If such sequence converges
to a functionu0 in the norm of the spaceE, thenu0 is a solution of this equation.
The solution in the sense of sequences is equivalent in this sense to the usual so-
lution. However, in the case of the non-Fredholm operators,this convergence may
not hold or it can occur in some weaker sense. In such case, thesolution in the
sense of sequences may not imply the existence of the usual solution. In the present
article we will find sufficient conditions of equivalence of solutions in the sense of
sequences and the usual solutions. In the other words, we will determine the condi-
tions on the sequencesfn under which the corresponding sequencesun are strongly
convergent. The solvability in the sense of sequences for the problems involving the
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Schrödinger type non-Fredholm operators was considered in [15], [17], [34], [40],
[41], [42]. The current work is our attempt to generalize these results by dealing
with the solvability of the linear equations involving in their left sides the logarithm
of such second order differential operators without the Fredholm property, which
can be defined using the spectral calculus.
Let us first consider the equation

[1
2

ln(−∆)
]
u− au = f(x), x ∈ R

d, d ∈ N, a ∈ R (1.2)

with a square integrable right side. The logarithmic Laplacian ln(−∆) is the op-
erator with Fourier symbol2ln|p|. It arises as formal derivative∂s|s=0(−∆)s of
fractional Laplacians ats = 0. The operator(−∆)s is actively used, for example in
the studies of the anomalous diffusion problems (see e.g. [42] and the references
therein). Spectral properties of the logarithmic Laplacian in an open set of finite
measure with Dirichlet boundary conditions were discussedin [26] (see also [7]).
The studies of ln(−∆) are relevant for the understanding of the asymptotic spectral
properties of the family of fractional Laplacians in the limit s → 0+. In [23] it has
been shown that this operator enables to characterize thes-dependence of solution
to fractional Poisson problems for the full range of exponentss ∈ (0, 1). The prob-
lem analogical to (1.2) but with the standard Laplace operator in the context of the
solvability in the sense of sequences was discussed in [34].The operator in the left
side of our equation (1.2) is given by

la :=
1

2
ln(−∆)− a, a ∈ R (1.3)

and is considered onL2(Rd), d ∈ N. By means of the standard Fourier transform,
it can be easily derived that the essential spectrum of (1.3)is given by

λa(p) = ln|p| − a, a ∈ R. (1.4)

Note that as distinct from the preceding works dealing with the non-Fredholm op-
erators mentioned above, (1.4) fills not a semi-axis but the whole real line. Thus,
the inverse of (1.3) is not bounded.
Let us write down the corresponding sequence of the approximate equations with
n ∈ N as [1

2
ln(−∆)

]
un − aun = fn(x), x ∈ R

d, d ∈ N. (1.5)

The right sides of (1.5) are assumed to be square integrable and converging to the
right side of (1.2) inL2(Rd) asn → ∞. The inner product of two functions is
defined as

(f(x), g(x))L2(Rd) :=

∫

Rd

f(x)ḡ(x)dx, d ∈ N, (1.6)

with a slight abuse of notations when these functions do not belong toL2(Rd). In-
deed, iff(x) ∈ L1(Rd) andg(x) is bounded, then it is clear that the integral in the
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right side of (1.6) makes sense, like for instance in the cases of the functions in-
volved in the orthogonality relations of our theorems below. Throughout the article,
the sphere of radiusr > 0 in R

d centered at the origin will be denoted asSd
r . Let us

first state the solvability relations for problem (1.2).

Theorem 1.1.Letf(x) ∈ L2(Rd), xf(x) ∈ L1(Rd), whered ∈ N anda ∈ R.

a) If d = 1 then equation (1.2) admits a unique solutionu(x) ∈ L2(R) if and only
if the orthogonality conditions

(
f(x),

e±ieax

√
2π

)
L2(R)

= 0 (1.7)

hold.

b) If d ≥ 2 then problem (1.2) possesses a unique solutionu(x) ∈ L2(Rd) if and
only if the orthogonality relations

(
f(x),

eipx

(2π)
d

2

)
L2(Rd)

= 0, p ∈ Sd
ea (1.8)

are valid.

Our second main proposition deals with the issue of the solvability in the sense of
sequences for our problem.

Theorem 1.2. Let n ∈ N, d ∈ N, fn(x) ∈ L2(Rd), xfn(x) ∈ L1(Rd), so that
fn(x) → f(x) in L2(Rd) andxfn(x) → xf(x) in L1(Rd) asn → ∞.

a) If d = 1, let the orthogonality conditions

(
fn(x),

e±ieax

√
2π

)
L2(R)

= 0 (1.9)

hold for all n ∈ N. Then equations (1.2) and (1.5) have unique solutionsu(x) ∈
L2(R) andun(x) ∈ L2(R) respectively, so thatun(x) → u(x) in L2(R) asn → ∞.

b) If d ≥ 2, let the orthogonality relations

(
fn(x),

eipx

(2π)
d

2

)
L2(Rd)

= 0, p ∈ Sd
ea (1.10)

hold for all n ∈ N. Then problems (1.2) and (1.5) admit unique solutionsu(x) ∈
L2(Rd) andun(x) ∈ L2(Rd) respectively, such thatun(x) → u(x) in L2(Rd) as
n → ∞. Let us demonstrate that the limiting orthogonality conditions

Throughout the article we use the hat symbol to designate thestandard Fourier
transform

f̂(p) :=
1

(2π)
d

2

∫

Rd

f(x)e−ipxdx, p ∈ R
d, d ∈ N. (1.11)
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The second part of our work deals with the studies of the problem
[1
2

ln(−∆+ V (x))
]
u− au = f(x), x ∈ R

3, a ∈ R (1.12)

with a square integrable right side as before. The corresponding sequence of ap-
proximate equations forn ∈ N is given by

[1
2

ln(−∆+ V (x))
]
un − aun = fn(x), x ∈ R

3. (1.13)

The square integrable right sides in (1.13) tend to the rightside of (1.12) inL2(R3)
asn → ∞. Let us make the following technical assumptions on the scalar potential
contained in the problems above. Note that the conditions onV (x), which is shallow
and short-range will be analogical to those given in Assumption 1.1 of [36] (see
also [35], [37]). The essential spectrum of such a Schrödinger operator−∆+V (x)
fills the nonnegative semi-axis (see e.g. [24]).

Assumption 1.3.The potential functionV (x) : R3 → R satisfies the bound

|V (x)| ≤ C

1 + |x|3.5+δ

with someδ > 0 andx = (x1, x2, x3) ∈ R
3 a.e. and it is such that

4
1

9

9

8
(4π)−

2

3‖V ‖
1

9

L∞(R3)‖V ‖
8

9

L
4
3 (R3)

< 1 and
√
cHLS‖V ‖

L
3
2 (R3)

< 4π. (1.14)

Here and belowC stands for a finite positive constant andcHLS given on p.98 of
[27] is the constant in the Hardy-Littlewood-Sobolev inequality

∣∣∣
∫

R3

∫

R3

f1(x)f1(y)

|x− y|2 dxdy
∣∣∣ ≤ cHLS‖f1‖2

L
3
2 (R3)

, f1 ∈ L
3

2 (R3).

By virtue of Lemma 2.3 of [36], under Assumption 1.3 above on the scal potential,
the operator−∆ + V (x) onL2(R3) is self-adjoint and unitarily equivalent to−∆
via the wave operators (see [25], [30])

Ω± := s− limt→∓∞eit(−∆+V )eit∆,

where the limit is understood in the strongL2 sense (see e.g. [29] p.34, [8] p.90).
Thus, the operator

La :=
1

2
ln(−∆+ V (x))− a, a ∈ R (1.15)

involved in the left sides of problems (1.12) and (1.13) considered onL2(R3) and
defined via the spectral calculus has only the essential spectrum

λ̃a(k) = ln|k| − a, a ∈ R (1.16)
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and no nontrivialL2(R3) eigenfunctions. Note that (1.16) fills the whole real line
similarly to the no potential case. By means of the spectral theorem, the functions
of the continuous spectrum of (1.15) satisfy

Laϕk(x) = (ln|k| − a)ϕk(x), k ∈ R
3, a ∈ R (1.17)

in the integral formulation the Lippmann-Schwinger equation for the perturbed
plane waves (see e.g. [29] p.98)

ϕk(x) =
eikx

(2π)
3

2

− 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕk)(y)dy (1.18)

and the orthogonality relations

(ϕk(x), ϕq(x))L2(R3) = δ(k − q), k, q ∈ R
3. (1.19)

Particularly, when the vectork = 0, we haveϕ0(x). Let us designate the generalized
Fourier transform with respect to these functions using thetilde symbol as

f̃(k) := (f(x), ϕk(x))L2(R3), k ∈ R
3. (1.20)

(1.20) is a unitary transform onL2(R3). The integral operator contained in (1.18) is
being denoted as

(Qϕ)(x) := − 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕ)(y)dy, ϕ ∈ L∞(R3).

Let us considerQ : L∞(R3) → L∞(R3). Under Assumption 1.3, via Lemma 2.1
of [36] the operator norm‖Q‖∞ is bounded above by the expressionI(V ), which
is the left side of the first inequality in (1.14), such thatI(V ) < 1. Corollary 2.2 of
[36] under our conditions gives us the estimate

|f̃(k)| ≤ 1

(2π)
3

2

1

1− I(V )
‖f(x)‖L1(R3). (1.21)

Our statement on the solvability of equation (1.12) is as follows.

Theorem 1.4. Let Assumption 1.3 hold,f(x) ∈ L2(R3) and xf(x) ∈ L1(R3).
Then equation (1.12) admits a unique solutionu(x) ∈ L2(R3) if and only if the
orthogonality conditions

(f(x), ϕk(x))L2(R3) = 0, k ∈ S3
ea (1.22)

are valid.

The final main proposition of our work deals with the solvability in the sense of
sequences for problem (1.12).
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Theorem 1.5. Let Assumption 1.3 hold,n ∈ N, fn(x) ∈ L2(R3), xfn(x) ∈
L1(R3), so thatfn(x) → f(x) in L2(R3) and xfn(x) → xf(x) in L1(R3) as
n → ∞. Let in addition

(fn(x), ϕk(x))L2(R3) = 0, k ∈ S3
ea (1.23)

hold for all n ∈ N. Then problems (1.12) and (1.13) possess unique solutions
u(x) ∈ L2(R3) andun(x) ∈ L2(R3) respectively, so thatun(x) → u(x) in L2(R3)
asn → ∞.

Let us note that (1.22) and (1.23) are the orthogonality relations to the function
of the continuous spectrum of our Schrödinger type operator, as distinct from the
Limiting Absorption Principle in which one needs to orthogonalize to the standard
Fourier harmonics (see e.g. Lemma 2.3 and Proposition 2.4 of[22]).

2. Solvability in the sense of sequences in the no potential case

Proof of Theorem 1.1.To demonstrate the uniqueness of solutions for our equation,
we suppose that (1.2) has two solutionsu1(x), u2(x) ∈ L2(Rd), d ∈ N. Clearly,
their differencew(x) := u1(x) − u2(x) ∈ L2(Rd) as well and it solves the homo-
geneous problem [1

2
ln(−∆)

]
w − aw = 0.

Since the operatorla onL2(Rd) given by (1.3) has only the essential spectrum and
no nontrivial zero modes,w(x) vanishes inRd.
We apply the standard Fourier transform (1.11) to both sidesof problem (1.2) and
arrive at

û(p) =
f̂(p)

ln
(

|p|
ea

) . (2.1)

Let us first consider the case b) of our theorem when the dimension of the problem
d ≥ 2. For the technical purposes we introduce the spherical layer

Aδ := {p ∈ R
d | ea(1− δ) ≤ |p| ≤ ea(1 + δ)}, 0 < δ < 1, d ≥ 2, (2.2)

so that

û(p) =
f̂(p)

ln
(

|p|
ea

)χAδ
+

f̂(p)

ln
(

|p|
ea

)χAc

δ
. (2.3)

Here and further downAc will stand for the complement of a setA ⊆ R
d. The

characteristic function of a setA is being denoted asχA and|A| will designate the
Lebesgue measure of a setA. We will use the sets

Ac+
δ := {p ∈ R

d | |p| > ea(1 + δ)}, (2.4)

7



Ac−
δ := {p ∈ R

d | |p| < ea(1− δ)}, (2.5)

such that
Ac

δ = Ac+
δ ∪Ac−

δ .

Obviously, the second term in the right side of (2.3) can be expressed as

f̂(p)

ln
(

|p|
ea

)χAc+

δ

+
f̂(p)

ln
(

|p|
ea

)χAc−

δ

. (2.6)

We have the trivial upper bounds

|f̂(p)|∣∣∣ln
(

|p|
ea

)∣∣∣
χAc+

δ

≤ |f̂(p)|
ln(1 + δ)

∈ L2(Rd),

|f̂(p)|∣∣∣ln
(

|p|
ea

)∣∣∣
χAc−

δ

≤ |f̂(p)|
−ln(1− δ)

∈ L2(Rd),

as assumed. Let us write

f̂(p) = f̂(ea, σ) +

∫ |p|

ea

∂f̂ (s, σ)

∂s
ds.

Here and belowσ will stand for the angle variables on the sphere. This enables us
to express the first term in the right side of (2.3) as

f̂(ea, σ)

ln
(

|p|
ea

) χAδ
+

∫ |p|

ea
∂f̂(s,σ)

∂s
ds

ln
(

|p|
ea

) χAδ
. (2.7)

By means of the definition of the standard Fourier transform (1.11), we easily obtain
that ∣∣∣∣∣

∂f̂ (p)

∂|p|

∣∣∣∣∣ ≤
1

(2π)
d

2

‖xf(x)‖L1(Rd), p ∈ R
d, d ≥ 2. (2.8)

Thus, the second term in (2.7) can be bounded from above in theabsolute value by

1

(2π)
d

2

‖xf(x)‖L1(Rd)

∣∣∣∣∣
|p| − ea

ln
(

|p|
ea

)
∣∣∣∣∣χAδ

≤ C‖xf(x)‖L1(Rd)χAδ
∈ L2(Rd).

Hence, it remains to analyze the term

f̂(ea, σ)

ln
(

|p|
ea

) χAδ
. (2.9)
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It can be easily verified that (2.9) is square integrable if and only if f̂(ea, σ) is trivial.
This is equivalent to orthogonality conditions (1.8).
Let us complete the proof of our theorem by treating the case a) when the dimension
of the problemd = 1. We define the intervals on the real line

I+δ := [ea(1− δ), ea(1 + δ)], I−δ := [−ea(1 + δ), −ea(1− δ)], (2.10)

where0 < δ < 1, so that
Iδ := I+δ ∪ I−δ .

Moreover,
Ic+δ := (−∞, −ea(1 + δ)) ∪ (ea(1 + δ), +∞), (2.11)

Ic−δ := (−ea(1− δ), ea(1− δ)), (2.12)

such that
Icδ = Ic+δ ∪ Ic−δ .

Let us express

û(p) =
f̂(p)

ln
(

|p|
ea

)χI+
δ

+
f̂(p)

ln
(

|p|
ea

)χIc+
δ

+
f̂(p)

ln
(

|p|
ea

)χI−
δ

+
f̂(p)

ln
(

|p|
ea

)χIc−
δ

. (2.13)

Clearly, the second term in the right side of (2.13) can be estimated in the absolute
value as

|f̂(p)|∣∣∣∣∣ln
(

|p|
ea

)∣∣∣∣∣

χIc+
δ

≤ |f̂(p)|
ln(1 + δ)

∈ L2(R)

as assumed. Similarly, for the fourth term in the right side of (2.13) we have

|f̂(p)|∣∣∣∣∣ln
(

|p|
ea

)∣∣∣∣∣

χIc−
δ

≤ |f̂(p)|
−ln(1− δ)

∈ L2(R)

as well. Obviously,

f̂(p) = f̂(ea) +

∫ p

ea

df̂(s)

ds
ds,

which enables us to write the first term in the right side of (2.13) as

f̂(ea)

ln
(

|p|
ea

)χI+
δ

+

∫ p

ea
df̂(s)
ds

ds

ln
(

|p|
ea

) χI+
δ

. (2.14)
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By virtue of the definition of the standard Fourier transform(1.11), we have

∣∣∣df̂(p)
dp

∣∣∣ ≤ 1√
2π

‖xf(x)‖L1(R). (2.15)

This is the analog of formula (2.8) in one dimension. The second term in (2.14) can
be bounded from above in the absolute value by

1√
2π

‖xf(x)‖L1(R)

∣∣∣∣∣
p− ea

ln
(

|p|
ea

)
∣∣∣∣∣χI+

δ

≤ C‖xf(x)‖L1(R)χI+
δ

,

which is square integrable on the real line. Let us consider the first term in (2.14).
It can be trivially checked that

f̂(ea)

ln
(

|p|
ea

)χI+
δ

∈ L2(R)

if and only if f̂(ea) vanishes. This is equivalent to the orthogonality relation
(
f(x),

eie
ax

√
2π

)

L2(R)

= 0.

Clearly,

f̂(p) = f̂(−ea) +

∫ p

−ea

df̂(s)

ds
ds,

which allows us to express the third term in the right side of (2.13) as

f̂(−ea)

ln
(

|p|
ea

)χI−
δ

+

∫ p

−ea
df̂(s)
ds

ds

ln
(

|p|
ea

) χI−
δ

. (2.16)

The second term in (2.16) can be estimated from above in the absolutely value by

1√
2π

‖xf(x)‖L1(R)

∣∣∣∣∣
p+ ea

ln
(

−p

ea

)
∣∣∣∣∣χI−

δ

≤ C‖xf(x)‖L1(R)χI−
δ

,

which belongs toL2(R). Finally, we analyze the first term in (2.16). It can be easily
verified that

f̂(−ea)

ln
(

|p|
ea

)χI−
δ

∈ L2(R)
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if and only if f̂(−ea) = 0. This is equivalent to the orthogonality condition
(
f(x),

e−ieax

√
2π

)

L2(R)

= 0,

which completes the proof of our theorem.

Let us proceed to establishing the solvability in the sense of sequences for our equa-
tion in the no potential case.

Proof of Theorem 1.2.We recall the result of Lemma 4.1 of [42]. Under the stated
assumptions, we havefn(x) ∈ L1(Rd), n ∈ N, d ∈ N, so that

fn(x) → f(x) in L1(Rd) as n → ∞. (2.17)

Let us first treat the case b) of the theorem when the dimensionof the problem
d ≥ 2. By means of Theorem 1.1, each equation (1.5) admits a uniquesolution
un(x) ∈ L2(Rd), n ∈ N. We demonstrate that the limiting orthogonality conditions

(
f(x),

eipx

(2π)
d

2

)
L2(Rd)

= 0, p ∈ Sd
ea (2.18)

are valid. Using (1.10) along with (2.17), we easily obtain that forp ∈ Sd
ea

∣∣∣
(
f(x),

eipx

(2π)
d

2

)
L2(Rd)

∣∣∣ =
∣∣∣
(
f(x)− fn(x),

eipx

(2π)
d

2

)
L2(Rd)

∣∣∣ ≤

≤ 1

(2π)
d

2

‖fn(x)− f(x)‖L1(Rd) → 0, n → ∞.

Therefore, by virtue of Theorem 1.1 equation (1.2) possesses a unique solution
u(x) ∈ L2(Rd), d ≥ 2. Let us apply the standard Fourier transform (1.11) to both
sides of problems (1.5). This yields

ûn(p) =
f̂n(p)

ln
(

|p|
ea

) , n ∈ N, (2.19)

such that

ûn(p)− û(p) =
f̂n(p)− f̂(p)

ln
(

|p|
ea

) χAδ
+

f̂n(p)− f̂(p)

ln
(

|p|
ea

) χAc

δ
. (2.20)

Evidently, the second term in the right side of (2.20) can be written as

f̂n(p)− f̂(p)

ln
(

|p|
ea

) χAc+

δ

+
f̂n(p)− f̂(p)

ln
(

|p|
ea

) χAc−

δ

. (2.21)
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The first term in (2.21) can be easily bounded from above in theabsolutely value by
|f̂n(p)− f̂(p)|

ln(1 + δ)
, such that

∥∥∥ f̂n(p)− f̂(p)

ln
(

|p|
ea

) χAc+

δ

∥∥∥
L2(Rd)

≤ 1

ln(1 + δ)
‖fn(x)− f(x)‖L2(Rd) → 0

asn → ∞ as assumed. Similarly, the second term in (2.21) can be trivially esti-

mated from above in the absolutely value by
|f̂n(p)− f̂(p)|
−ln(1− δ)

, so that

∥∥∥ f̂n(p)− f̂(p)

ln
(

|p|
ea

) χAc−

δ

∥∥∥
L2(Rd)

≤ 1

−ln(1− δ)
‖fn(x)− f(x)‖L2(Rd) → 0

asn → ∞ as well. Let us recall our orthogonality conditions (2.18) and (1.10).
They give us that

f̂(ea, σ) = 0, f̂n(e
a, σ) = 0, n ∈ N.

Then

f̂(p) =

∫ |p|

ea

∂f̂ (s, σ)

∂s
ds, f̂n(p) =

∫ |p|

ea

∂f̂n(s, σ)

∂s
ds, n ∈ N,

which enables us to express the first term in the right side of (2.20) as

∫ |p|

ea

[
∂f̂n(s,σ)

∂s
− ∂f̂(s,σ)

∂s

]
ds

ln
(

|p|
ea

) χAδ
. (2.22)

From the definition of the standard Fourier transform (1.11)we easily derive that

∣∣∣∂f̂n(p)
∂|p| − ∂f̂ (p)

∂|p|
∣∣∣ ≤ 1

(2π)
d

2

‖xfn(x)− xf(x)‖L1(Rd), d ≥ 2. (2.23)

Hence, expression (2.22) can be bounded from above in the absolute value by

1

(2π)
d

2

‖xfn(x)− xf(x)‖L1(Rd)

∣∣∣∣∣
|p| − ea

ln
(

|p|
ea

)
∣∣∣∣∣χAδ

≤ C‖xfn(x)− xf(x)‖L1(Rd)χAδ
,

such that for the norm we have
∥∥∥∥∥

∫ |p|

ea

[
∂f̂n(s,σ)

∂s
− ∂f̂(s,σ)

∂s

]
ds

ln
(

|p|
ea

) χAδ

∥∥∥∥∥
L2(Rd)

≤ C‖xfn(x)− xf(x)‖L1(Rd)|Aδ|
1

2 → 0

12



asn → ∞ due to the one of our assumptions. Therefore,

un(x) → u(x) in L2(Rd), n → ∞, d ≥ 2

in the situation b) of our theorem. We conclude the proof by considering the case
a) when the dimension of the problemd = 1. By virtue of the result of Theorem
1.1, each equation (1.5) possesses a unique solutionun(x) ∈ L2(R), n ∈ N. Let us
establish that the limiting orthogonality relations

(
f(x),

e±ieax

√
2π

)
L2(R)

= 0 (2.24)

hold. We use (1.9) along with (2.17) to obtain that

∣∣∣
(
f(x),

e±ieax

√
2π

)
L2(R)

∣∣∣ =
∣∣∣
(
f(x)− fn(x),

e±ieax

√
2π

)
L2(R)

∣∣∣ ≤

≤ 1√
2π

‖fn(x)− f(x)‖L1(R) → 0, n → ∞.

Thus, by means of Theorem 1.1 above, problem (1.2) admits a unique solution
u(x) ∈ L2(R). By applying the standard Fourier transform (1.11) to both sides of
equations (1.5), we obtain the analog of formula (2.19) in one dimension, so that

ûn(p)− û(p) =
f̂n(p)− f̂(p)

ln
(

|p|
ea

) χI+
δ

+
f̂n(p)− f̂(p)

ln
(

|p|
ea

) χIc+
δ

+

+
f̂n(p)− f̂(p)

ln
(

|p|
ea

) χI−
δ

+
f̂n(p)− f̂(p)

ln
(

|p|
ea

) χIc−
δ

. (2.25)

The second term in the right side of (2.25) can be bounded fromabove in the abso-

lute value by
|f̂n(p)− f̂(p)|

ln(1 + δ)
, such that

∥∥∥∥∥
f̂n(p)− f̂(p)

ln
(

|p|
ea

) χIc+
δ

∥∥∥∥∥
L2(R)

≤ 1

ln(1 + δ)
‖fn(x)− f(x)‖L2(R) → 0, n → ∞

as assumed. The fourth term in the right side of (2.25) can be estimated from above

in the absolute value by
|f̂n(p)− f̂(p)|
−ln(1− δ)

, so that

∥∥∥∥∥
f̂n(p)− f̂(p)

ln
(

|p|
ea

) χIc−
δ

∥∥∥∥∥
L2(R)

≤ 1

−ln(1− δ)
‖fn(x)− f(x)‖L2(R) → 0, n → ∞

13



as well. Let us recall orthogonality conditions (2.24) and (1.9). They imply that

f̂(ea) = 0, f̂n(e
a) = 0, n ∈ N,

such that

f̂(p) =

∫ p

ea

df̂(s)

ds
ds, f̂n(p) =

∫ p

ea

df̂n(s)

ds
ds, n ∈ N.

Thus, the first term in the right side of (2.25) can be written as

∫ p

ea

[
df̂n(s)
ds

− df̂(s)
ds

]
ds

ln
(

|p|
ea

) χI+
δ

. (2.26)

By virtue of the definition of the standard Fourier transform(1.11), we easily obtain
that ∣∣∣df̂n(p)

dp
− df̂(p)

dp

∣∣∣ ≤ 1√
2π

‖xfn(x)− xf(x)‖L1(R). (2.27)

Clearly, formula (2.27) is the one dimensional analog of (2.23). Hence, expression
(2.26) can be bounded from above in the absolute value by

1√
2π

‖xfn(x)− xf(x)‖L1(R)

∣∣∣∣∣
p− ea

ln
(

|p|
ea

)
∣∣∣∣∣χI+

δ

≤ C‖xfn(x)− xf(x)‖L1(R)χI+
δ

,

so that for the norm we have

∥∥∥∥∥

∫ p

ea

[
df̂n(s)
ds

− df̂(s)
ds

]
ds

ln
(

|p|
ea

) χI+
δ

∥∥∥∥∥
L2(R)

≤ C
√
2δea‖xfn(x)− xf(x)‖L1(R) → 0

asn → ∞ due to the one of our assumptions. Orthogonality relations (2.24) and
(1.9) give us that

f̂(−ea) = 0, f̂n(−ea) = 0, n ∈ N.

Hence,

f̂(p) =

∫ p

−ea

df̂(s)

ds
ds, f̂n(p) =

∫ p

−ea

df̂n(s)

ds
ds, n ∈ N,

such that the third term in the right side of (2.25) can be expressed as

∫ p

−ea

[
df̂n(s)
ds

− df̂(s)
ds

]
ds

ln
(

|p|
ea

) χI−
δ

. (2.28)
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Using formula (2.27), we estimate (2.28) from above in the absolute value by

1√
2π

‖xfn(x)− xf(x)‖L1(R)

∣∣∣∣∣
p+ ea

ln
(

−p

ea

)
∣∣∣∣∣χI−

δ

≤ C‖xfn(x)− xf(x)‖L1(R)χI−
δ

.

Then for the norm we have

∥∥∥∥∥

∫ p

−ea

[
df̂n(s)
ds

− df̂(s)
ds

]
ds

ln
(

|p|
ea

) χI−
δ

∥∥∥∥∥
L2(R)

≤ C
√
2δea‖xfn(x)− xf(x)‖L1(R) → 0

asn → ∞ as assumed. Therefore,

un(x) → u(x) in L2(R), n → ∞

in the situation a) of our theorem as well.

3. Solvability in the sense of sequences with a scalar potential

Proof of Theorem 1.4.Let us first establish the uniqueness of solutions for our
problem. We suppose that there existu1(x), u2(x) ∈ L2(R3) satisfying (1.12). Then
their square integrable differencew(x) := u1(x) − u2(x) solves the homogeneous
equation

Law = 0.

Since the operatorLa defined in (1.15) has no nontrivial zero modes belonging to
L2(R3) as discussed above,w(x) vanishes identically inR3.
For the technical purposes we introduce the spherical layerin our space of three
dimensions as

Bδ := {k ∈ R
3 | ea(1− δ) ≤ |k| ≤ ea(1 + δ)}, 0 < δ < 1. (3.1)

|Bδ| will stand for its Lebesgue measure. Let us apply the generalized Fourier
transform (1.20) with the functions of the continuous spectrum of our Schrödinger
operator to both sides of problem (1.12). This yields

ũ(k) =
f̃(k)

ln
(

|k|
ea

)χBδ
+

f̃(k)

ln
(

|k|
ea

)χBc

δ
. (3.2)

We define the sets
Bc+

δ := {k ∈ R
3 | |k| > ea(1 + δ)}, (3.3)

Bc−
δ := {k ∈ R

3 | |k| < ea(1− δ)}, (3.4)

so that
Bc

δ = Bc+
δ ∪ Bc−

δ .
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The second term in the right side of (3.2) can be easily written as

f̃(k)

ln
(

|k|
ea

)χBc+

δ

+
f̃(k)

ln
(

|k|
ea

)χBc−

δ

(3.5)

Evidently, we have the upper bound

|f̃(k)|∣∣∣ln
(

|k|
ea

)∣∣∣
χBc+

δ

≤ |f̃(k)|
ln(1 + δ)

∈ L2(R3)

via the one of our assumptions. Similarly,

|f̃(k)|∣∣∣ln
(

|k|
ea

)∣∣∣
χBc−

δ

≤ |f̃(k)|
−ln(1− δ)

∈ L2(R3).

Clearly, we can write

f̃(k) = f̃(ea, σ) +

∫ |k|

ea

∂f̃(s, σ)

∂s
ds. (3.6)

This enables us to express the first term in the right side of (3.2) as

f̃(ea, σ)

ln
(

|k|
ea

) χBδ
+

∫ |k|

ea
∂f̃(s,σ)

∂s
ds

ln
(

|k|
ea

) χBδ
. (3.7)

Let us recall Lemma 2.4 of [36]. Hence, under the given conditions we have
∇qf̃(q) ∈ L∞(R3). We estimate the second term in sum (3.7) in the absolute
value as

∣∣∣∣∣

∫ |k|

ea
∂f̃(s,σ)

∂s
ds

ln
(

|k|
ea

) χBδ

∣∣∣∣∣ ≤ ‖∇qf̃(q)‖L∞(R3)

∣∣∣|k| − ealn
( |k|
ea

)∣∣∣χBδ
≤

≤ C‖∇qf̃(q)‖L∞(R3)χBδ
∈ L2(R3).

Therefore, it remains to analyze the term

f̃(ea, σ)

ln
(

|k|
ea

) χBδ
. (3.8)

It can trivially checked that (3.8) is square integrable if and only if f̃(ea, σ) vanishes.
This is equivalent to orthogonality relations (1.22).
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We turn our attention to the demonstration of the validity ofthe result of our final
main proposition, which deals with the solvability in the sense of sequences.

Proof of Theorem 1.5.Clearly, each equation (1.13) has a unique solutionun(x) ∈
L2(R3), n ∈ N by means of the result of Theorem 1.4 above. It can be easily
verified that the limiting orthogonality relations

(f(x), ϕk(x))L2(R3) = 0, k ∈ S3
ea (3.9)

hold. Let us recall the result of Lemma 4.1 of [42]. Under the given conditions,
we havefn(x) ∈ L1(R3), n ∈ N, so thatfn(x) → f(x) in L1(R3) asn → ∞. By
virtue of (1.23) along with upper bound (1.21)

|(f(x), ϕk(x))L2(R3)| = |(f(x)− fn(x), ϕk(x))L2(R3)| ≤

≤ 1

(2π)
3

2

1

1− I(V )
‖fn(x)− f(x)‖L1(R3) → 0, n → ∞

with k ∈ S3
ea. Therefore, limiting equation (1.12) possesses a unique solution

u(x) ∈ L2(R3) via the result of Theorem 1.4. Let us apply the generalized Fourier
transform (1.20) to both sides of problem (1.13). This givesus

ũn(k) =
f̃n(k)

ln
(

|k|
ea

) , n ∈ N,

so that

ũn(k)− ũ(k) =
f̃n(k)− f̃(k)

ln
(

|k|
ea

) χBδ
+

f̃n(k)− f̃(k)

ln
(

|k|
ea

) χBc

δ
. (3.10)

Obviously, the second term in the right side of (3.10) can be trivially written as

f̃n(k)− f̃(k)

ln
(

|k|
ea

) χBc+

δ

+
f̃n(k)− f̃(k)

ln
(

|k|
ea

) χBc−

δ

. (3.11)

Evidently, the first term in (3.11) can be easily estimated from above in the absolute

value by
|f̃n(k)− f̃(k)|

ln(1 + δ)
. Hence,

∥∥∥∥∥
f̃n(k)− f̃(k)

ln
(

|k|
ea

) χBc+

δ

∥∥∥∥∥
L2(R3)

≤ 1

ln(1 + δ)
‖fn(x)− f(x)‖L2(R3) → 0, n → ∞

as assumed. Analogously, the second term in (3.11) can be bounded from above in

the absolute value by
|f̃n(k)− f̃(k)|
−ln(1− δ)

, so that

∥∥∥∥∥
f̃n(k)− f̃(k)

ln
(

|k|
ea

) χBc−

δ

∥∥∥∥∥
L2(R3)

≤ 1

−ln(1− δ)
‖fn(x)− f(x)‖L2(R3) → 0, n → ∞
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via the one of our assumptions. By virtue of the orthogonality relations (3.9) and
(1.23), we have

f̃(ea, σ) = 0, f̃n(e
a, σ) = 0, n ∈ N,

such that

f̃(k) =

∫ |k|

ea

∂f̃ (s, σ)

∂s
ds, f̃n(k) =

∫ |k|

ea

∂f̃n(s, σ)

∂s
ds, n ∈ N.

This enables us to express the first term in the right side of (3.10) as

∫ |k|

ea

[
∂f̃n(s,σ)

∂s
− ∂f̃(s,σ)

∂s

]
ds

ln
(

|k|
ea

) χBδ
,

which can be trivially estimated from above in the absolute value by

‖∇q[f̃n(q)− f̃(q)]‖L∞(R3)

∣∣∣∣∣
|k| − ea

ln
(

|k|
ea

)
∣∣∣∣∣χBδ

≤ C‖∇q[f̃n(q)− f̃(q)]‖L∞(R3)χBδ
.

Thus,
∥∥∥∥∥
f̃n(k)− f̃(k)

ln
(

|k|
ea

) χBδ

∥∥∥∥∥
L2(R3)

≤ C‖∇q[f̃n(q)− f̃(q)]‖L∞(R3)

√
|Bδ|.

Let us recall the result of Lemma 3.4 of [34]. Under the given conditions, we have

‖∇q[f̃n(q)− f̃(q)]‖L∞(R3) → 0, n → ∞.

Therefore,
un(x) → u(x) in L2(R3), n → ∞

which completes the proof of our theorem.
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