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Abstract. We analyze the searching strategies of a forager diffusing in the whole space via an
equation of fractional type. Specifically, the diffusion of the forager is regulated by a Lévy flight
whose exponent can be chosen in order to optimize a suitable foraging efficiency functional. Here, the
dimension of the space is arbitrary.

On the one hand, we show that the exponent s = 0 corresponding to the limit case of heavy-tailed
Lévy flights is a pessimizer for the efficiency functional.

On the other hand, we prove that, in situations of biological interest, one finds the most rewarding
strategies arbitrarily close to s = 0.

The combination of these results give that the most rewarding searching option may turn out to
be unfeasible, or at least unreliable, in practice, since small perturbations of the optimal searching
exponent lead to pessimal patterns.

The cases analyzed specifically are those of a target located in the proximity of the forager and
that of sparse prey modeled by a target infinitely far from the initial position of the seeker.

The efficiency functionals taken into account are either of pointwise type (in which the predator
and the prey are modeled by moving points) and of set-dependent type (in which the predator and
the prey correspond to regions of space with uniform density, thus modeling also the case of a sight
range of the biological individuals involved).

To implement our analysis, we also provide a number of structural results about finiteness, conti-
nuity and asymptotic behaviors of the efficiency functionals.

It is suggestive to relate the adoption of the most rewarding searching pattern close to pessimizers
to a “high-risk/high-gain” strategy, in which the forager aims at high-energy content prey to mitigate
the risk of failure.

This setting is also connected to foraging modes of “ambush” type.

1. Introduction

The Lévy flight foraging hypothesis conjectures that search efficiency can be optimized by a ran-
dom relocation induced by a distribution with a fat tail. In this, the theory of Lévy flights challenged
the previous paradigm which used Brownian motion as a default template for describing ecolog-
ical movements. Experimental evidence and empirical results supporting animal diffusion related
to Lévy flights have been repeatedly put forth, see e.g. [VAB+96, ARMA02, RFMM+04, SWR+06,
SSH+08, HQD+10, HWQ+12, RJB+15]. In several occasions, the Lévy flights observed in concrete
situations appeared to be independent of the specific distribution of resource [dJBK+14] and it has
been conjectured that they are a consequence of an adaptive process [VAB+96].

A large collection of Lévy flights has been observed also at a microscopical level, in collective
movements, in trace fossils, etc., see for instance Table 1 in [Rey18] for an interesting list of ubiquitous
evidence of Lévy flights, as well as an account on the known generative mechanisms and selection
criteria.
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As every topic of real scientific interest, the Lévy flight foraging hypothesis is also subject to
debate and controversy. Typically, issues can arise about the statistical methods used in some of
these studies (see e.g. [EPW+07]) and on the mathematical framework developed and utilized (see
e.g. [LTBV20,BRB+21,LTBV21]). Therefore, when dealing with the Lévy flight foraging hypothesis,
a very careful, and even pedantic, mathematical setting is absolutely necessary in order to specify ex-
actly the assumptions taken and the models used, and give precise meaning, and possibly limitations,
to the results obtained.

In this paper, we consider a forager diffusing in Rn according to the fractional heat equation. The
fractional parameter characterizing this diffusion is denoted by s ∈ (0, 1]. The example of fractional
diffusion in the whole space was already considered in a previous work [DGV] when n = 1 and here
we address the higher dimensional situation (the case in which the anomalous diffusion is confined in
a bounded region will be considered in the forthcoming paper [DGV22b]). For completeness, we do
not even limit ourselves to the cases n = 2 and n = 3, and instead we comprise all dimensions n ∈ N.
We recall that the analysis of animal foraging in dimension higher than 1 is not only important for
biological purposes, but it also entails a delicate, and possibly controversial, mathematical scrutiny,
see e.g. [LTBV20,BRB+21,LTBV21].

We will consider an efficiency functional accounting for the success of the search strategy. This
efficiency functional is directly proportional to the number of random encounters between predators
and targets and inversely proportional to the time of the search process (differently from most of the
existing literature, we will look at time averages of successes, rather than at situations at a frozen
instant of time).

The results that we provide are both in terms of most rewarding strategy and of pessimal searching
patterns.

The main results related to most rewarding strategies (see Theorems 2.2, 2.4, 2.10 and 2.11) are
of asymptotic type and establish that if either the target position converges to the forager initial
position, or the target position diverges towards infinity, then the most rewarding search strategy
approaches s = 0. Note that these two cases correspond, respectively, to the biological scenarios of
targets adjacent to the seeker and of sparse targets.

The results concerning pessimal seeking options (see Theorems 2.1 and 2.9) are of universal type
and prove that, in our framework, the search strategy given by s = 0 is always a pessimizer.

The combination of these types of main results reveals that these most rewarding strategies are
somewhat unsafe, in the sense that small perturbations of the optimal fractional parameter may
produce pessimal searching patterns.

The main results are complemented by several foundational results, that will be precisely stated
in Appendix B, establishing the finiteness and continuity of the efficiency functionals that we take
into account (see Propositions B.1, B.2 and B.3).

As a technical remark, we observe that the model presented here deals with a linear diffusive
equation governed by the fractional Laplacian, in which individuals have no preexisting knowledge of
the environment and no memory of previous events (from the biological point of view, this situation
occurs e.g. when targets are mobile, thus providing no useful reference for subsequent foraging
patterns).

The scenario considered is that of a non-destructive foraging in which exploited targets are replaced
at once. No biological competition is taken into account, nor changes in the numerousness and
behaviors of individuals (roughly speaking, this corresponds to the very common biological setting
in which the logistic terms play a role only on a significantly longer time scale than the foraging
process).

The environment and the time are modeled as continua (see below for a precise mathematical
set-up).
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The rest of this paper is organized as follows. Section 2 presents the mathematical set-up in which
we work and showcases our main results. The proofs of the main results are given in Section 3. The
appendices collect some ancillary results needed for the proofs of the main results. The conclusions
of this article are summarized in the last section.

2. Mathematical setting and main results

In this section, we describe the mathematical framework used in this paper and we state our main
results.

2.1. Set-up for fractional diffusion and efficiency functionals. To start with, one needs to
model the distribution of predators and targets at a given instant of time t. For this, we let p(t, x)
be the target distribution in (0,+∞)× Rn.

As for the forager, the anomalous diffusion considered here is that modeled by the fractional heat
equation

(2.1)

{
∂tu(t, x) = −(−∆)su(t, x) for all (t, x) ∈ (0,+∞)× Rn,

u(0, x) = δy(x).

When s = 1, the operator −(−∆)s reduces to the standard Laplacian (i.e., the sum of pure second
derivatives). Instead, when s ∈ (0, 1) the fractional Laplacian is defined as

−(−∆)su(x) :=

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy,

up to a normalizing constant that we disregard for simplicity (see e.g. [AV19] and the references
therein for the basics of the fractional Laplace operator1 and [Law21] for further connection between
this operator, the notion of random walks and its link to Lévy flights in biology).

We assume that the forager may tune the fractional parameter s ∈ (0, 1] in order to maximize
the convenience of the corresponding hunting strategy. In this context, we recall that s = 1 in (2.1)
corresponds to the classical diffusion pattern induced by the Brownian motion, while s ∈ (0, 1) is
related to an anomalous diffusion produced by the corresponding Lévy flight, see e.g. Section 4
in [AV19] and the references therein.

We denote by Gs(t, x, y) the solution to (2.1). In our model, Gs(t, x, y) describes the forager’s
distribution at time t ∈ (0,+∞) with respect to the spatial position x ∈ Rn. The point y ∈ Rn

identifies the initial position of the forager (indeed, as customary, the notation δy in (2.1) represents
the Dirac delta distribution).

Hence, the expected value of encounters between the forager and the target in the time span (0, T )
is proportional to the quantity

(2.2)

∫ T

0

∫
Rn

Gs(t, ξ, y)p(t, ξ) dξ dt.

This can be considered as a first approximation of a foraging success functional (based on the ansatz
that the higher the number of encounters between predators and targets, the more rewarding the
hunting for the predator).

1In the literature, in the one-dimensional case, the fractional Laplacian is sometimes called the fractional Riesz
derivative, or the fractional Riesz-Weil derivative, see e.g. [DGNBD17]. The name of derivative can however be
confusing, since the fractional Laplacian is invariant under reflections, while usually derivatives are not.

See also [MPV13, SV17, DV21] and the references therein for several applications of the fractional Laplacian to
problems of biology and ethology.
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In particular, if the target is stationary, i.e. it remains at a given point x ∈ Rn for all times, we
have that p(t, ξ) = δx(ξ) and the foraging success functional in (2.2) reduces to

(2.3) Ψx,y(s, T ) :=

∫ T

0

Gs(t, x, y) dt.

From this, we introduce an efficiency functional to be defined as the ratio between the foraging
success functional and the time employed for the search (based on the ansatz that for a searching
strategy to be efficient, it is important not only to ensure a foraging success for the predator, but
also to do so as quickly as possible). These considerations lead us to the definition

(2.4) Ex,y(s, T ) :=
Ψx,y(s, T )

T
=

1

T

∫ T

0

Gs(t, x, y) dt.

This type of efficiency functional was introduced in the one-dimensional framework in [DGV].
Furthermore, we will also consider the scenario in which the precise locations of the seeker and

the prey are replaced by uniform distributions in subregions of Rn (this setting is also biologically
relevant, since it replaces the exact location of individuals with regions of interests of individuals,
e.g. accounting for visual interactions with the environment).

More precisely, given some measurable and bounded sets Ω1,Ω2 ⊂ Rn, we will consider the set-
dependent efficiency functional

(2.5) ẼΩ1,Ω2(s, T ) :=
1

|Ω1||Ω2|

∫
Ω1×Ω2

Ex,y(s, T ) dx dy =
1

T |Ω1||Ω2|

∫ T

0

∫
Ω1×Ω2

Gs(t, x, y) dx dy dt.

As customary, here above we have denoted by |Ω1| and |Ω2| the Lebesgue measures of the sets Ω1

and Ω2 (we have included these quantities in (2.5) for normalizing purposes).
We stress that this set-dependent approach to foraging, which is new in the literature, can serve as

a useful technical simplification of the notion of “direct vision” which was often utilized to account
for the predator directly reaching the target when it lies within a given distance.

Indeed, with this set-dependent approach one still identifies foragers and targets with regions of
space, rather than points, but maintaining the advantage of working always with the same diffusion
equation, holding at every spatial scale, without the necessity of truncating the Lévy distribution near
its singularity, and without introducing an additional parameter in many steps of the intermediate
calculations.

2.2. Main results. To study the efficiency functionals introduced in Section 2.1, one needs firstly
to understand their basic mathematical properties in terms of finiteness and continuity with respect
to the fractional parameter s (we stress that our goal is to pick s in order to optimize the foraging
strategy, hence these properties are indispensable for any further analysis).

In this spirit, we observe that the efficiency functional in (2.4) is finite for x = y only if n = 1
and s ∈

(
1
2
, 1
]
, as stated in Proposition B.1 in Appendix B.

Since our goal here is to focus on higher dimensional phenomena (i.e., on the case n ⩾ 2, being
the case n = 1 contained in [DGV]), from now on we will consider the case x ̸= y in (2.4). In this
setting, in Proposition B.2 we show that Ex,y(·, T ) ∈ C((0, 1]) and also that Ex,y(·, T ) ∈ (0,+∞).
Now we turn our attention to the detection of the most and least rewarding searching strategies. We

establish that independently from the starting position of the forager y ∈ Rn, of the prey location x ∈
Rn (as far as x ̸= y) and of the time span T ∈ (0,+∞), the strategy s = 0 is a global minimizer
for E . That is, s = 0 is a pessimizer for the foraging strategy, as stated in the following result:

Theorem 2.1. Let (x, y, T ) ∈ Rn × Rn × (0,+∞) such that x ̸= y.
Then,

(2.6) inf
s∈(0,1)

Ex,y(s, T ) = lim
s↘0

Ex,y(s, T ) = 0.
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In view of Theorem 2.1 and Proposition B.2, we evince that we can extend by continuity the
functional Ex,y(·, T ) to the compact interval [0, 1]. From now on we will adopt the notation

(2.7) Ex,y(0, T ) := lim
s↘0

Ex,y(s, T ) = 0,

for all (x, y, T ) ∈ Rn × Rn × (0,+∞) with x ̸= y.

Since Theorem 2.1 addressed the case of the least rewarding strategy, we now focus on finding
the optimal pattern. While one can imagine that the best strategy may depend on the specific
configuration of targets, some general results can be obtained in terms of asymptotic analysis.

One case of interest is the one in which the prey is located close to the initial position of the
forager. In this situation we show that the most rewarding strategy corresponds to values of the
fractional parameter close to s = 0. More specifically, we show that as the prey location gets closer
and closer to the initial position of the forager the fractional parameter maximizing the efficiency
functional approaches the value s = 0. The precise statement goes as follows:

Theorem 2.2. Let T ∈ (0,+∞).
Then, for each ε ∈ (0, 1) there exists r = rε,n,T ∈ (0,+∞) such that for each x, y ∈ Rn satisfy-

ing |x− y| ∈ (0, r) it holds that

(2.8) sup
s∈(0,1)

Ex,y(s, T ) = Ex,y (sx,y,T , T ) with sx,y,T ∈ (0, ε).

Remark 2.3. In Figure 1 we provide some plots of Ex,y for smaller and smaller values of |x − y|:
we see that the maximizer approaches the value s = 0, as stated in Theorem 2.2. Notice also that
the case s = 0 is however a minimizer, as pointed out in Theorem 2.1. This situation clearly shows
that in cases of biological interest the most rewarding strategy (i.e. the one maximizing an efficiency
functional) can result to be unsafe (because dangerously close to strategies that instead pessimize
the efficiency functional). From the mathematical viewpoint, this phenomenon is described by an
efficiency functional which develops a global maximizer in a small neighborhood of a global minimizer.

Figure 1. Plots of
(
0, 1

2

)
∋ s 7→ Ex,y(s, 1) for (x, y) ∈ {(1, 1.01), (1, 1.001), (1, 1.0001), (1, 1.00001)}

and n = 1.
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A natural question in this setting is thereby whether or not this phenomenon of finding optimizers
and pessimizers of efficiency functionals arbitrary close to each other is induced by the targets being
located “too close” to the initial location of the predator. We will see below that this phenomenon
is indeed persistent and remains true also for the case of sparse targets.

Indeed, while Theorem 2.2 dealt with targets located close to the forager, we now focus our
attention on the case of sparse targets. From the point of view of asymptotic analysis, it is customary
(see e.g. [VBH+99]) to model sparse prey with a target located arbitrarily far away from the forager
initial position. We show that when the target diverges towards infinity, the most rewarding strategy
converges to the value s = 0. More precisely:

Theorem 2.4. Let T ∈ (0,+∞).
Then, for each ε ∈ (0, 1) there exists R = Rε,n,T ∈ (0,+∞) such that for each x, y ∈ Rn satisfy-

ing |x− y| > R it holds that

(2.9) sup
s∈(0,1)

Ex,y(s, T ) = Ex,y (sx,y,T , T ) with sx,y,T ∈ (0, ε).

Remark 2.5. Once again, we can compare Theorem 2.4 with Theorem 2.1: while the latter states
that s = 0 is a pessimizer for the efficiency functional, from Theorem 2.4 we have that the most
rewarding strategy is also arbitrarily close to s = 0 as the target diverges from the predator.

In this sense, the phenomenon described in Remark 2.3 for which optimizers and pessimizers of
an efficiency functional can get arbitrarily close to each other, making the most rewarding searching
strategy somewhat unsafe, persists also in the case of sparse targets.

Remark 2.6. From the mathematical point of view, the diffusion models related to s = 0 are related
to the new, but rapidly growing, field of integral equations with zero order kernels, see [CW19,
KM17,CLS22]. In terms of applications, these equations arise in several fields of science, including
probability [ŠSV06,Beg14], relativistic Schrödinger operators [Feu21], and reconstruction of blurred
images from the Hubble space telescope [Car09].

Remark 2.7. From the biological point of view, the diffusion models related to s = 0 have often
appeared in both theoretical analyses2 and experimental data.

In terms of theoretical deductions, it was already observed in [VBH+99,VRdL08] that the strat-
egy s = 0 is optimal in one-dimensional environments when the location of targets, once visited,
become depleted and are no longer targets for future searches (this case being named “destructive
search”; see also [SRVdL04] for an interpolation of targets that regenerate arbitrarily quickly and
those vanishing after a single visit). We point out that the setting considered here is structurally
different from that in [VBH+99, SRVdL04,VRdL08]. Indeed, the framework here is that of a “non-
destructive search” in which the previously-visited sites can be revisited infinitely often and the
consumed targets get replaced instantaneously.

Moreover, in [VBH+99, SRVdL04,VRdL08] the analysis relied on the notion of a “direct vision”,
i.e. an additional distance parameter below which the forager moves on a straight line to the nearest
target site (instead, we do not distinguish between small and large scale motions, considering the
diffusive pattern as produced by the full fractional Laplacian, not a modified operator3 that avoids
singularities).

2As a notational remark, the literature often denotes by µ ∈ [1, 3] the exponent of the fat tail of a Lévy distribution.
In our notation, µ = 1 + 2s, hence the setting s = 0 corresponds to µ = 1. The notation is anyway not uniform over
the literature, for instance such µ corresponds to a in [RFMM+04], to 2α + 1 in [DGNBD17], to β in [BRFM+06],
to β + 1 in [PBMP], to γ in [BR13], to u in [CSS22], etc. Also, the specific details of each article may be structurally
different, therefore comparisons between different works have to be taken with a pinch of salt.

The situation s = 0 is also referred with the name of “ballistic”. See also [ZDK15] for a thorough discussion of this
case and several applications to physics.

3The specific assumptions on the singularity of the diffusive operator taken into account are important, though
sometimes overlooked or not explicitly stressed in the literature, see e.g. [PV21].



THE LÉVY FLIGHT FORAGING HYPOTHESIS IN Rn 7

In addition, the optimality condition in [VBH+99,SRVdL04,VRdL08] had a “monotonic” behavior
and no issue of reliability of the most rewarding strategy appeared in that context (compare instead
with Remarks 2.3 and 2.5 here).

Furthermore, our efficiency functional considers averages in time over the time span of the search
process, rather than single situations at a frozen instant of time.

Besides, our mathematical analysis here is not confined to the one-dimensional case and holds true
in every dimension.

The calculation in [VBH+99] has also been retaken in [JPE11], where it was shown that the
exponent s = 0 attains optimality when foragers and targets are located far apart (this is in agreement
with our result in Theorem 2.4, though, once again, our setting differs from that in [JPE11] for the
reasons explained above).

In terms of experimental evidence, several cases have been recorded of Lévy flights with exponent
close to s = 0. For instance, just to name a few, black-browed albatrosses and wandering albatrosses
(see [HWQ+12]) have exhibited a Lévy distribution with s = 0.135 and s = 0.095, respectively, male
spider monkeys exhibit s = 0.235 (see [RFMM+04]), seals ranged between s = 0.06 and s = 0.15
(see [ABM04]), etc.

In some cases, the empirical exponents measured corresponded to values of s which are so small
that a reanalysis with different plotting methods led to a value of s below zero (not corresponding to
a properly defined probability distribution), see e.g. Figure 4c in [SRP07], relating to the value s =
−0.1. Similarly, when dealing with fruit flies, exponents such as s = 0.15 and s = −0.11 have been
obtained in Figures 3B.1 and 3B.2 of [MHSB07].

In a slightly different setting related to waiting times, it has been suggested in [WMH+14] that
the case s = 0 is closely related to “ambush” strategies by predators and to a high energy content
of the targets, as indicated also by the patterns shown by anglers and blonde skates, which present
a Lévy exponent very close to the value s = 0 and largely specializing on high-energy content prey.

It is quite suggestive to relate this high-energy content of the targets and the high-risk strategy
related to s = 0: in a sense, one can imagine that a forager may not be discouraged by the fact that
the most rewarding strategy can be dangerously close to the pessimizer (as pointed out in Remarks 2.3
and 2.5) precisely when the target is also highly rewarding. The adoption of an optimal strategy
close to s = 0 would then correspond to a high-risk/high-gain situation, in which the expectation of
the forager is that the hunt’s gain will be so high to compensate for the risk of failure.

In human cognition, power law behaviors with exponents as low as s = 0.185 have been detected
in [BR13]. See also [CSS22] for numerical experiments related to the Lévy exponent s = 0.

Remark 2.8. Regarding [DGNBD17], it is also interesting to relate the case s = 0 to an “ambush”
strategy of the forager. Namely, for small values of s, on the one hand, the fat tail of the Lévy
distribution “tends to dislocate mass towards infinity”; on the other hand, the diminished regularity
effect of the diffusive equation also “leaves more mass near the origin” (see Figure 2 for a sketch
of this phenomenon). That is, roughly speaking, a strategy close to s = 0 allows the predator to
switch rather abruptly from the initial location to a remote region (which, in a sense, provides a good
mathematical description of an ambush).

Now we consider the set-dependent efficiency functional introduced in (2.5). As done in Propo-
sitions B.1 and B.2, the first step towards the understanding of this situation deals with detect-
ing finiteness and continuity results. To this end, in Proposition B.3 in Appendix B we prove

that if Ω1,Ω2 ⊂ Rn are bounded and measurable, then ẼΩ1,Ω2(s, T ) ∈ (0,+∞) for all s ∈ (0, 1]

and ẼΩ1,Ω2(·, T ) ∈ C((0, 1]).
We stress that in Proposition B.3 the sets Ω1 and Ω2 are not necessarily disjoint: this detail was

perhaps not obvious to start with since, in view of Proposition B.1, the corresponding pointwise
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Figure 2. Plots of the fractional heat kernel when s = 0.99 (in blue) and when s = 0.2 (in yellow).
Note the displacement of mass both near the origin and at infinity for small values of s (“ambush”
foraging mode).

efficiency functional Ex,y fails to be finite when x = y (except in the special case in which n = 1
and s ∈

(
1
2
, 1
]
). The finiteness of the set-dependent efficiency functional is a consequence of the

measure theoretic properties of the Dirac delta distribution (whose singularity produces a finite
outcome after integration).

In the case where Ω1 and Ω2 are disjoint and regular enough, we observe that a result analogous

to the one given in Theorem 2.1 holds true. Namely, we can show that the infimum for ẼΩ1,Ω2 is
attained at s = 0.

Theorem 2.9. Let Ω1,Ω2 ⊂ Rn be bounded, smooth and disjoint.
Then, for each T ∈ (0,+∞) it holds that

(2.10) inf
s∈(0,1)

ẼΩ1,Ω2(s, T ) = lim
s↘0

ẼΩ1,Ω2(s, T ) = 0.

From Theorem 2.9 and Proposition B.3 we deduce that we can extend by continuity ẼΩ1,Ω2(·, T )
in [0, 1]. Hence, we will adopt the notation

ẼΩ1,Ω2(0, T ) := lim
s↘0

ẼΩ1,Ω2(s, T ),

for all T ∈ (0,+∞) and Ω1,Ω2 ⊂ Rn bounded, smooth and disjoint.

Now we address the results related to the optimization of the set-dependent efficiency functional.
Specifically, we establish results in line with Theorems 2.2 and 2.4 by replacing the pointwise func-
tional in (2.4) with the set-dependent functional defined in (2.5). More precisely, we show that

if Ω1,Ω2 ⊂ Rn are close enough, or sufficiently far away from each other, then the maximizer of ẼΩ1,Ω2

is in some small neighborhood of s = 0. The formal statements are the following ones:

Theorem 2.10. Let T ∈ (0,+∞).
Then, for each ε ∈ (0, 1) there exists r = rε,n,T ∈ (0,+∞) such that if Ω1,Ω2 ⊂ Rn are smooth,

disjoint and such that Ω1,Ω2 ⊂ Br(x0) for some x0 ∈ Rn, it holds that

(2.11) sup
s∈(0,1)

ẼΩ1,Ω2(s, T ) = ẼΩ1,Ω2 (sΩ1,Ω2,T , T ) with sΩ1,Ω2,T ∈ (0, ε).

Theorem 2.11. Let T ∈ (0,+∞).
Then, for each ε ∈ (0, 1) there exists R = Rε,n,T ∈ (0,+∞) such that if Ω1,Ω2 ⊂ Rn satisfy

inf
x∈Ω1
y∈Ω2

|x− y| ⩾ R,

then it holds that

(2.12) sup
s∈(0,1)

ẼΩ1,Ω2(s, T ) = ẼΩ1,Ω2 (sΩ1,Ω2,T , T ) with sΩ1,Ω2,T ∈ (0, ε).



THE LÉVY FLIGHT FORAGING HYPOTHESIS IN Rn 9

Remark 2.12. The situation described in Remarks 2.3 and 2.5 carries over for the case of set-
dependent efficiency functionals: namely, from Theorems 2.9, 2.10 and 2.11 we can evince that the

most rewarding strategy for ẼΩ1,Ω2 is unreliable, developing pessimizers and optimizers arbitrarily
close to each other, both when the average locations of predators and targets are close and when
they are far away.

3. Proofs of the main results

This section develops the necessary tools to prove the main results and completes the proofs of the
theorems.

Some of the intermediate results obtained may have independent interest. For instance, we provide
two-sided estimates for the efficiency functional Ψx,y(s, T ) in (2.3) under different environmental
scenarios. In particular, we establish a polynomial growth for Ψx,y when the forager starting position
and the target location are close enough. This is the content of Theorem 3.4 below.

Moreover, in Theorems 3.2 and 3.3 we prove some estimates for Ψx,y when the target is far away
from the forager starting point. These results on the behavior of Ψx,y under these two different
configurations will be pivotal in order to show the main results presented in Section 2.2.

3.1. Analysis of the efficiency functionals. In this section we study the efficiency functionals
given in (2.4) and (2.5). We will start the section by proving an identity regarding the fractional heat
kernel Gs(t, x, y), that is the unique solution to (2.1). We show that, for each m ∈ N, Gs(t, x, y) can
be written as the linear superposition over the time variable of the classical kernel of the m-order

heat equation and the density µ
s/m
t of the s/m-stable subordinator (see [DGV22a, Definition 2.4] and

the references in [DGV22a] for the basic properties of such a subordinator).
This result will be useful later in order to prove an upper bound for the foraging success func-

tional Ψx,y. The result goes as follows:

Proposition 3.1. Let s ∈ (0, 1) and m ∈ N. Let Gm(t, x, y) be the solution to the higher order
parabolic equation {

∂tu(t, x) = −(−∆)mu(t, x) in (0,+∞)× Rn,

u(0, x) = δy(x).

Then, it holds that

(3.1) Gs(t, x, y) =

∫ +∞

0

Gm(l, x, y)µ
s
m
t (l) dl for all (t, x, y) ∈ (0,+∞)× Rn × Rn.

Proof. Up to a translation we can assume that y = 0. Moreover, we denote by P s(t, x) the function
defined by

(3.2) P s(t, x) :=

∫ +∞

0

Gm(l, x)µ
s
m
t (l) dl with (t, x) ∈ (0,+∞)× Rn.

For m > 1, Gm(t, x) is not positive everywhere, see for instance [GP02] and references therein.
Nevertheless, if m > 1, we have the existence of two positive constants d,D, depending only on n
and m, such that

(3.3) |Gm(t, x)| ⩽ D

t
n
2m

exp

(
−d|x|α

t
α
2m

)
for all (t, x) ∈ (0,+∞)× Rn,

where we defined

α :=
2m

2m− 1
,
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see Proposition 2.1 and equation (2.8) in [GP02]. In particular, from the inequality in (3.3), we
obtain that

(3.4)
∣∣∣Gm(·, ·)µ

s
m
t (·)

∣∣∣ ∈ L1((0,+∞)× Rn).

Indeed, using (3.3), we can compute∫ +∞

0

∫
Rn

|Gm(l, x)µs
t(l)| dx dl ⩽

∫ +∞

0

Dµs
t(l)

l
n
2m

∫
Rn

exp

(
−d|x|α

l
α
2m

)
dx dl

=

∫ +∞

0

Dµs
t(l)

l
n
2m

∫ +∞

0

∫
∂Bρ

exp

(
−dρα

l
α
2m

)
dHn−1 dρ dl

=

∫ +∞

0

Dµs
t(l)

l
n
2m

∫ +∞

0

ωn−1ρ
n−1 exp

(
−dρα

l
α
2m

)
dρ dl

=

∫ +∞

0

ωn−1Dµs
t(l)

αd
n
α

∫ +∞

0

θ
n
α
−1e−θ dθ dl

=

∫ +∞

0

ωn−1Dµs
t(l)

αd
n
α

Γ
(n
α

)
dl

=
ωn−1D

αd
n
α

Γ
(n
α

)
where ωn−1 := Hn−1(∂B1), and between the third and fourth line we applied the change of vari-

able ρ = θ
1
α l

1
2m

d
1
α

. This proves (3.4).

Therefore, taking the Fourier transform in the space variable of both sides of (3.2), we obtain for
each ξ ∈ Rn that

F(P s(·, t))(ξ) = F
(∫ +∞

0

Gm(l, x)µ
s
m
t (l) dl

)
(ξ)

=

∫ +∞

0

F(Gm(l, ·))(ξ)µ
s
m
t (l) dl

=

∫ +∞

0

e−l(2π|ξ|)2mµ
s
m
t (l) dl

= e−(2π|ξ|)2st

where the second identity is due to equation (3.4) and Fubini’s Theorem.
As a consequence, F(P s(·, t))(ξ) is the unique solution to the problem{

∂tu(t, ξ) = −|2πξ|2su(t, ξ) in (0,+∞)× Rn,

u(ξ, 0) = 1.

Thus, taking the inverse of the Fourier’s transform of the last relation we obtain that P s(t, x) is the
unique solution to (2.1) with y = 0, see e.g. [AV19], and then it must coincide with Gs(t, x, 0), as
desired. □

It is well-known that the fractional heat kernel has the polynomial growth

(3.5) Gs(1, x, y) ⩽
Cn,s

1 + |x− y|n+2s
for all x, y ∈ Rn,

where Cn,s is a constant depending on n and s, see for instance [AV19] and the references therein.
By using the scaling property of Gs, see for instance [AV19], and integrating over t in the time
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interval (0, T ), one then obtains from (3.5) the inequality

Ψx,y(s, T ) ⩽
Cn,s,T

|x− y|n+2s
,

where Cn,s,T depends on n, s an T .
In the following theorem, using the identity proved in Proposition 3.1, we show that we can

choose Cn,s,T and some constant C̃n,T , such that

Cn,s,T ⩽ sC̃n,T ,

for each s ∈ (0, 1). This result will be employed in Section 3.2 in the proof of Theorem 2.4.

Theorem 3.2. Let s ∈ (0, 1) and (x, y, T ) ∈ Rn × Rn × (0,+∞) satisfying x ̸= y.

Then, there exists some constant C̃n,T ∈ (0,+∞) such that

(3.6) Ψx,y(s, T ) ⩽
sC̃n,T

|x− y|n+2s
.

Proof. Using Proposition 3.1 with m = 2, we can write for each s ∈ (0, 1) that

Gs(t, x, y) =

∫ +∞

0

G2(l, x, y)µ
s
2
t (l) dl for all (t, x, y) ∈ (0,+∞)× Rn × Rn,

where G2 is the kernel of the biharmonic heat equation. Thus, using the inequality in (3.3) with m =
2, we obtain that

(3.7) G2(t, x, y) ⩽
D2

t
n
4

exp

(
−d2|x− y| 43

t
1
3

)
for all (t, x, y) ∈ (0,+∞)× Rn × Rn,

where d2 and D2 depend only on n.
We now set s0 := s/2 and we recall that

µs0
t (l) ⩽

s0 tΓ(1 + s0)

l1+s0
for all l ∈ (0,+∞),

thanks to Theorem 2.3 in [DGV22b].
Accordingly, using this and (3.7) we deduce that

Gs(t, x, y)

s
=

1

2s0

∫ +∞

0

G2(l, x, y)µs0
t (l) dl

⩽
1

2s0

∫ +∞

0

D2

l
n
4

exp

(
−d2|x− y| 43

l
1
3

)
µs0
t (l) dl

⩽
tΓ(1 + s0)

2

∫ +∞

0

D2

l
n
4
+1+s0

exp

(
−d2|x− y| 43

l
1
3

)
dl

=
3D2tΓ(1 + s0)

2d
3n
4
+3s0

2

|x− y|−n−4s0

∫ +∞

0

a
3n
4
+3s0−1e−a da

=
3D2tΓ(1 + s0)

2d
3n
4
+3s0

2

Γ
(
3n
4
+ 3s0

)
|x− y|n+4s0

⩽
2 C̃nt

|x− y|n+2s
,

(3.8)
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where we applied the change of variable a = d2|x−y|
4
3

l
1
3

and denoted

(3.9) C̃n :=
1

4
sup

s0∈(0, 12)

3D2Γ(1 + s0)

2d
3n
4
+3s0

2

Γ

(
3n

4
+ 3s0

)
.

Integrating both sides in (3.8) with respect to t in the interval (0, T ) and defining

(3.10) C̃n,T := C̃nT
2,

we obtain the desired result. □

With the following theorem we establish a lower bound for Ψx,y(s, T ) when s ∈
(
0, 1

2

)
. This result

shows that the functional can be bounded by below by a function with the same polynomial growth
at infinity as the one in the right-hand side of (3.6).

Moreover, this result, together with Theorem 3.2, will be necessary in order to prove Theorem 2.4
on the optimality of a highly nonlocal search strategy when the forager is far enough from the prey.

Theorem 3.3. Let s ∈
(
0, 1

2

)
and T ∈ (0,+∞).

Then, for each δ ∈ (0,+∞) there exists a constant Cδ,T ∈ (0,+∞), depending only on δ and T ,
such that for all x, y ∈ Rn satisfying |x− y| > δ it holds that

(3.11) Ψx,y(s, T ) ⩾
sCδ,T

|x− y|n+2s
.

Proof. We recall that, if s ∈
(
0, 1

2

)
and t ∈ (0, 1),

µs
t(l) ⩾

s tC1

πl1+s
for all l ∈

(
t
1
s ,+∞

)
,

for some C1 ∈ (0,+∞), independent of s and l, see Theorem 2.3 in [DGV22b].
Using this and (3.1), for each s ∈

(
0, 1

2

)
and t ∈ (0, 1) we have that

Gs(t, x, y) =

∫ +∞

0

1

(4πl)
n
2

exp

(
−|x− y|2

4l

)
µs
t(l) dl

⩾
∫ +∞

t
1
s

1

(4πl)
n
2

exp

(
−|x− y|2

4l

)
µs
t(l) dl

⩾
∫ +∞

t
1
s

1

(4πl)
n
2

exp

(
−|x− y|2

4l

)
stC1

πl1+s
dl

=
stC1

4
n
2 π

n
2
+1

∫ +∞

t
1
s

1

l
n
2
+s+1

exp

(
−|x− y|2

4l

)
dl

=
stC1

41−sπ
n
2
+1

∫ |x−y|2

4t
1
s

0

a
n
2
+s−1

|x− y|n+2s
e−a da

⩾
stC1

41−sπ
n
2
+1

∫ δ2

4

0

a
n
2
+s−1

|x− y|n+2s
e−a da

⩾
2Cδst

|x− y|n+2s
,

(3.12)

where we defined

(3.13) Cδ :=
1

2
inf

s∈(0,1)

C1

41−sπ
n
2
+1

∫ δ2

4

0

a
n
2
+s−1e−a da.
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If T ∈ (0, 1], integrating both sides of (3.12) with respect to t in the interval (0, T ), we obtain (3.11)
with

(3.14) Cδ,T := CδT
2

If instead T ∈ (1,+∞), it is enough to observe that

Ψx,y(s, T ) ⩾ Ψx,y(s, 1) ⩾
sCδ

|x− y|n+2s
. □

Now, we focus our attention to the main tools that we will use in order to prove Theorem 2.2. For
this, for every n ∈ N and s ∈ (0, 1), we define

(3.15) An,s :=
(
0, 1 +

n

2
− s
)
∩
[n
2
− s, 1 +

n

2
− s
)

and we establish the following asymptotic behavior:

Theorem 3.4. Let (z, T ) ∈ Rn × (0,+∞).
Then, for all n ⩽ 2, s ∈ (0, 1) and µ ∈ An,s, where An,s is given in (3.15), there exists a constant

Cµ,T,B1(z) ∈ (0,+∞) such that

(3.16) Ψx,y(s, T ) ⩽
Cµ,T,B1(z)

|x− y|2µ
,

for all x, y ∈ B1(z) with x ̸= y.
Also, if n ⩾ 3 it holds that

(3.17) Ψx,y(s, T ) ⩽
Cn

Γ(s)

1

|x− y|n−2s
,

for all x, y ∈ Rn satisfying x ̸= y, where Cn is defined as

(3.18) Cn := sup
s∈(0,1)

4−s

π
n
2Γ(s)

Γ
(n
2
− s
)
.

Proof. Up to a translation we can assume that z = 0 and we consider the classical Dirichlet heat
kernel pB2

D (t, x, y) in the ball B2. Thanks to Lemma 2.1 in [Zha02], we have the existence of two
constants c1, c2 and a time span TB1,B2 ∈ (0,+∞), depending on B1 and B2, such that

pB2
D (t, x, y) ⩾

c1

t
n
2

exp

(
−c2|x− y|2

t

)
for all (t, x, y) ∈ (0, TB1,B2 ]×B1 ×B1.

Now, we fix two constants c0, η0 ∈ (0,+∞) such that

c0c1 ⩾
1

(4π)
n
2

and η20c2 ⩽
1

4

and we obtain that, for each η ∈ (0, η0) and (t, x, y) ∈ (0, TB1,B2 ]×B1 ×B1,

c0p
B2
D (t, ηx, ηy)−G(t, x, y) ⩾

c0c1

t
n
2

exp

(
−c2|ηx− ηy|2

t

)
− 1

(4πt)
n
2

exp

(
−|x− y|2

4t

)

=
exp

(
− |x−y|2

4t

)
(4πt)

n
2

(
c0c1(4π)

n
2 exp

((
1
4
− c2η

2
)
|x− y|2

t

)
− 1

)
⩾ 0.

(3.19)

Let us now prove (3.16). To do so, assume that n ⩽ 2, s ∈ (0, 1) and µ ∈ An,s, where the set An,s

is given in (3.15).
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Then, if x, y ∈ B1, thanks to (3.19) here, (2.54) in [DGV22b] and Proposition 3.1 with m = 1, for
all η ∈ (0, η0) we have that

Ψx,y(s, T ) =

∫ T

0

∫ +∞

0

G(l, x, y)µs
t(l) dl dt

=

∫ T

0

∫ TB1,B2

0

G(l, x, y)µs
t(l) dl dt+

∫ T

0

∫ +∞

TB1,B2

G(l, x, y)µs
t(l) dl dt

⩽
∫ T

0

∫ TB1,B2

0

c0p
B2
D (l, ηx, ηy)µs

t(l) dl dt+

∫ T

0

∫ +∞

TB1,B2

G(l, x, y)µs
t(l) dl dt

⩽ Cµ,B1,B2

η−2µ

|x− y|2µ
+ CB1,B2T,

(3.20)

where we defined

(3.21) CB1,B2 := max
l∈(TB1,B2

,+∞)
G(l, x, x) and Cµ,B1,B2 := CD,µc0,

being CD,µ given in formula (2.55) in [DGV22b].
Accordingly, if we take η1 ∈ (0, η0) such that

η1 ⩽

(
Cµ,B1,B2

CB1,B2T

)−2µ

,

depending on B1, B2, µ and T , then we obtain from (3.20) that, for all s ∈ (0, 1) and x, y ∈ B1,

Ψx,y(s, T ) ⩽
Cµ,T,B1

|x− y|2µ
.

The constant Cµ,T,B1 is defined as

Cµ,T,B1 := 2Cµ,B1,B2η
−2µ
1 .

This concludes the proof of (3.16).
Let us now show (3.17). To do so, if x, y ∈ Rn satisfy x ̸= y, we consider the following identity for

the Green function of the fractional Laplacian∫ +∞

0

Gs(t, x, y) dt =
1

Γ(s)

∫ +∞

0

G(t, x, y)ts−1 dt,

which for the convenience of the reader is proved in Proposition A.1.

We also point out that, using the change of variable a = |x−y|2
4t

,∫ +∞

0

G(t, x, y)ts−1 dt =

∫ +∞

0

ts−1

(4πt)
n
2

exp

(
−|x− y|2

4t

)
dt

=
4−s

π
n
2

1

|x− y|n−2s

∫ +∞

0

a
n
2
−1−se−a da

=
4−s

π
n
2

Γ
(
n
2
− s
)

|x− y|n−2s
.

(3.22)
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Accordingly, we obtain that

Ψx,y(s, T ) :=

∫ T

0

Gs(t, x, y) dt

⩽
∫ +∞

0

Gs(t, x, y) dt

=
1

Γ(s)

∫ +∞

0

G(t, x, y)ts−1 dt

=
1

Γ(s)

∫ +∞

0

ts−1

(4πt)
n
2

exp

(
−|x− y|2

4t

)
dt

⩽
Cn

Γ(s)

1

|x− y|n−2s
,

where Cn is given in (3.18). □

If Ω ⊂ Rn is some smooth, bounded and connected domain, then thanks to the Weak Maximum
Principle, one has that

(3.23) pΩD(t, x, y) ⩽
1

(4πt)
n
2

exp

(
−|x− y|2

4t

)
for all (t, x, y) ∈ (0,+∞)× Ω× Ω.

In what follows we will denote by rsD the Dirichlet spectral fractional heat kernel in Ω, see for
instance [DGV22b]. Also, adopting the same notation of [DGV22b], the success functional associated
to rsD is denoted by ΦD, which is defined as

Φx,y
D (s, T ) =

∫ T

0

rsD(t, x, y) dt,

see equation (1.5) in [DGV22b].
As a direct consequence of the identity in (3.1) and the estimate in (3.23) we have the following

corollary. From this result we can infer a lower bound for Ψx,y analogous to the one in equation (2.26)
of Lemma 2.7 for Φx,y

D .
Such a lower bound will be employed in order to prove Theorem 2.2.

Corollary 3.5. Let s ∈ (0, 1) and Ω ⊂ Rn be a bounded, smooth and connected domain.
Then, it holds that

(3.24) rsD(t, x, y) ⩽ Gs(t, x, y) for all (t, x, y) ∈ (0,+∞)× Ω× Ω.

3.2. Completion of the proof of the main results. This section is devoted to the proofs of all
the main results contained in Section 2.

Proof of Theorem 2.1. Let x, y ∈ Rn such that x ̸= y and T ∈ (0,+∞). Then, thanks to equa-
tion (3.6) in Theorem 3.2, we have that

(3.25) lim
s↘0

Ex,y(s, T ) ⩽ lim
s↘0

sC̃n,T

T |x− y|n+2s
= 0,

where C̃n,T is given in (3.10). This limit and equation (B.2) lead to (2.6). □

Proof of Theorem 2.2. Let T ∈ (0,+∞). From Theorem 2.1 we have that, that for all x, y ∈ Rn such
that x ̸= y,

(3.26) sup
s∈(0,1)

Ex,y(s, T ) = Ex,y (sx,y,T , T ) with sx,y,T ∈ (0, 1].

We will first prove Theorem 2.2 for n ⩽ 2. Let z ∈ Rn and let rsD be the Dirichlet spectral fractional
heat kernel in B1(z). Then, thanks to Lemma 2.7 in [DGV22b], applied to the functional ΦD in B1(z),
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and thanks to Corollary 3.5 here, we have that for each s0 ∈
(
0, 1

2

)
there exists some δ̂ = δ̂s0,z,T,B1(z),

given by Lemma 2.7 in [DGV22b] (defined explicitly in formula (2.27) of [DGV22b]), such that

(3.27) Ψx,y(s0, T ) ⩾
Cs0,z,B1(z)

|x− y|n−2s0
,

for all x, y ∈ Bδ̂(z) with x ̸= y, where Cs0,z,B1(z) is some positive constant, given by formula (2.34)
of [DGV22b].

We also recall that in Theorem 3.4 we showed that for all s1 ∈ (0, 1) and µ ∈ An,s1 , where An,s1 is
the set provided in equation (3.15), there exists some constant Cµ,T,B1 such that

(3.28) Ψx,y(s1, T ) ⩽
Cµ,T,B1(z)

|x− y|2µ
,

for all x, y ∈ B1(z) such that x ̸= y. Therefore, using (3.27) and (3.28), for all s0 ∈
(
0, 1

2

)
, s1 ∈ (s0, 1)

and µ ∈ An,s1 , one obtains that

(3.29)
Ex,y(s0, T )

Ex,y(s1, T )
=

Ψx,y(s0, T )

Ψx,y(s1, T )
⩾

Cµ,s0,z,T,B1(z)

|x− y|n−2s0−2µ

for all x, y ∈ Bδ̂(z) such that x ̸= y, where we denoted

Cµ,s0,z,T,B1(z) :=
Cs0,z,B1(z)

Cµ,T,B1(z)

.

Therefore, for each ε ∈ (0, 1), by choosing s0 := ε
4
, s1 ∈ (ε, 1) and µ := (n − ε)/2 in (3.29),

and using also (3.26), we obtain that there exists some r = rε,n,T such that, for all x, y ∈ Rn

satisfying |x− y| ∈ (0, r),

sup
s∈(0,1)

Ex,y(s, T ) = Ex,y (sx,y,T , T ) with sx,y,T ∈ (0, ε).

This concludes the proof of (2.8) when n ⩽ 2.
In order to complete the proof of Theorem 2.2, it is only left to show (2.8) when n ⩾ 3. In this case,

we just have to replace the inequality in (3.28) with the one in (3.17). By doing so, equation (3.29)
becomes

(3.30)
Ex,y(s0, T )

Ex,y(s1, T )
⩾

C̃s0,z,T,B1(z)

|x− y|2(s1−s0)
,

for all s0 ∈
(
0, 1

2

)
, s1 ∈ (s0, 1) and x, y ∈ Bδ̂(z) with x ̸= y, where we defined the constant

C̃s0,z,T,B1(z) := inf
s1∈(s0,1)

Γ(s1)
Cs0,z,B1(z)

Cn

.

The constant Cn is given in (3.18). Therefore, if for each ε ∈ (0, 1) we choose s0 :=
ε
2
and s1 ∈ (ε, 1)

in (3.30), we can easily show (2.8). □

Proof of Theorem 2.4. Let T ∈ (0,+∞). Thanks to equations (3.6) and (3.11) we have that for
all δ > 0 and x, y ∈ Rn such that |x− y| > δ, and for all s0 ∈

(
0, 1

2

)
and s1 ∈ (s0, 1),

(3.31)
Ex,y(s0, T )

Ex,y(s1, T )
=

Ψx,y(s0, T )

Ψx,y(s1, T )
⩾ s0Cδ,n,T |x− y|2(s1−s0),

where we set

Cδ,n,T :=
Cδ,T

C̃n,T

.

The constant Cδ,T is given in (3.13) and (3.14) (for T ∈ (1,+∞) and T ∈ (0, 1] respectively),

while C̃n,T is provided in (3.10).
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As a consequence, by choosing s0 := ε
2
and s1 ∈ (ε, 1) in (3.31), and making use of (3.26), we

obtain the existence of some R = Rn,ε,T such that, for all x, y ∈ Rn satisfying |x− y| > R,

sup
s∈(0,1)

Ex,y(s, T ) = Ex,y (sx,y,T , T ) with sx,y,T ∈ (0, ε). □

Proof of Theorem 2.9. Let T ∈ (0,+∞) and Ω1,Ω2 ⊂ Rn be bounded, smooth and disjoint.
We recall that

(3.32) µs
t(l) =

1

π

∫ +∞

0

e−lu−tus cos(πs) sin(tus sin(πs)) du for all (l, s) ∈ (0,+∞)× (0, 1),

see Proposition 3.1 in [KV18].
Therefore, if s ∈

(
0, 1

2

)
, using also (3.1) with m = 1, we obtain that

Ψx,y(s, T ) =

∫ T

0

Gs(t, x, y) dt

=

∫ T

0

∫ +∞

0

G(l, x, y)µs
t(l) dl dt

⩽ 2

∫ T

0

∫ +∞

0

G(l, x, y)

∫ +∞

0

e−lu du dl dt

= (4π)−
n
2

∫ T

0

∫ +∞

0

1

l
n
2
+1

exp

(
−|x− y|2

4l

)
dl dt

= π−n
2 |x− y|−n

∫ T

0

∫ +∞

0

a
n
2
−1e−a da dt

= Tπ−n
2Γ
(n
2

)
|x− y|−n

=: h(x, y),

(3.33)

for all (x, y) ∈ Ω1 × Ω2. Note that since Ω1,Ω2 are bounded, smooth and disjoint, one has that h ∈
L1(Ω1 × Ω2). Therefore, recalling (3.25), we obtain that

(3.34) lim
s↘0

ẼΩ1,Ω2(s, T ) = 0.

Proposition B.3, together with the limit in (3.34), gives the identities in (2.10), thus completing the
proof of Theorem 2.9. □

Proof of Theorem 2.10. Let T ∈ (0,+∞) and ε ∈ (0, 1). We will begin by proving the result when n ⩽
2. To do so, we consider equation (3.29) with s0 := ε

4
, s1 ∈ (ε, 1) and µ := (n − ε)/2. Then, we

obtain the existence of some r = rε,n,T such that, for all x, y ∈ Rn satisfying |x− y| ∈ (0, r),

(3.35) Ex,y
(ε
4
, T
)
⩾ Ex,y(s, T ),

if s ∈ (ε, 1).
Therefore, if for some x0 ∈ Rn we have that Ω1,Ω2 ⊂ B r

2
(x0), then integrating both sides of (3.35)

in Ω1 × Ω2 we obtain that

ẼΩ1,Ω2

(ε
4
, T
)
⩾ ẼΩ1,Ω2 (s, T ) ,

for all s ∈ (ε, 1). The latter inequality, together with Theorem 2.9, gives (2.11), which concludes the
proof of Theorem 2.10 when n ⩽ 2.

In order to deal with the case n ⩾ 3, it is enough to repeat the above reasoning, using equa-
tion (3.30) instead of (3.29), with s0 :=

ε
2
and s1 ∈ (ε, 1). □
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Proof of Theorem 2.11. Let T ∈ (0,+∞) and ε ∈ (0, 1). We begin by taking into account equa-
tion (3.31) with s0 := ε

2
and s1 ∈ (ε, 1). Then, we obtain that there exists some R = Rn,ε,T such

that, for all x, y ∈ Rn satisfying |x− y| ∈ (R,+∞),

(3.36) Ex,y
(ε
2
, T
)
⩾ Ex,y(s, T ),

for all s ∈ (ε, 1). Therefore, if Ω1,Ω2 ⊂ Rn are disjoint and satisfy

inf
x∈Ω1
y∈Ω2

|x− y| ⩾ R,

by integrating in Ω1 × Ω2 both sides of (3.36), we obtain that

ẼΩ1,Ω2

(ε
2
, T
)
⩾ ẼΩ1,Ω2(s, T ),

for all s ∈ (ε, 1). This latter inequality, together with Theorem 2.1, entails (2.12), which concludes
the proof of Theorem 2.11. □

Appendix A. Green function for the fractional Laplacian

This section is devoted to the proof of an identity for the Green function of the fractional Laplacian.
We recall that for all x, y ∈ Rn such that x ̸= y, the Green function Gs(x, y) for the fractional
Laplacian is given by

Gs(x, y) :=

∫ +∞

0

Gs(t, x, y) dt,

where Gs(t, x, y) is the kernel of the spectral fractional heat equation.

Proposition A.1. Let n ⩾ 2 and s ∈ (0, 1).
Then, for all x, y ∈ Rn satisfying x ̸= y it holds that4

(A.1)

∫ +∞

0

Gs(t, x, y) dt =
1

Γ(s)

∫ +∞

0

G(t, x, y)ts−1 dt.

Proof. Let us set the notation

I(x, y) :=
∫ +∞

0

Gs(t, x, y) dt

and J (x, y) :=
1

Γ(s)

∫ +∞

0

G(t, x, y)ts−1 dt,

for x, y ∈ Rn such that x ̸= y.
It is well-known that Gs(t, x, y), G(t, x, y) ∈ C((0,+∞)× Rn × Rn).
Furthermore, let

Rn := (Rn × Rn) \ {(x, x) s.t. x ∈ Rn} .
In this way, if {(xk, yk)}k ⊂ Rn is some sequence such that (xk, yk) → (x, y) ∈ Rn for k → +∞, then
using (3.1) with m = 2, one observes that

G(t, xk, yk)t
s−1 ⩽ sup

k∈N

ts−1

(4πt)
n
2

exp

(
−|xk − yk|2

4t

)
∈ L1(0,+∞)

and Gs(t, xk, yk) ⩽
∫ +∞

0

sup
k∈N

∣∣G2(l, xk, yk)
∣∣µ s

2
t (l) dl ∈ L1(0,+∞),

4As a side remark, we point out that, differently from the Green function for the Dirichlet spectral fractional
Laplacian (see e.g. Proposition A.1 in [DGV22b]), the identity in (A.1) holds true only for n ⩾ 2. This is due to the
fact that the heat kernel in this case decays polynomially with respect to the time, while the Dirichlet heat kernel
decays exponentially.
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for each s ∈ (0, 1) and n ⩾ 2. Indeed, if d = infk∈N |xk − yk| > 0, then using inequality (3.7) and
recalling (3.32), we obtain that

∫ +∞

0

∫ +∞

0

sup
k∈N

∣∣G2(l, xk, yk)
∣∣µs0

t (l) dl dt

⩽
∫ +∞

0

∫ +∞

0

D2

l
n
4

exp

(
−d2d

4
3

l
1
3

)
µs0
t (l) dl dt

=

∫ +∞

0

∫ +∞

0

D2

l
n
4

exp

(
−d2d

4
3

l
1
3

)
µs0
t (l) dt dl

=

∫ +∞

0

∫ +∞

0

D2

l
n
4

exp

(
−d2d

4
3

l
1
3

)(
1

π

∫ +∞

0

e−lu−tus0 cos(πs0) sin(tus0 sin(πs0)) du

)
dt dl,

(A.2)

where we denoted s0 := s/2,
Setting F (t) := e−tα sin(tβ), with α := us0 cos(πs0) and β := us0 sin(πs0), for each T ∈ (0,+∞)

we integrate by parts and see that

∫ T

0

F (t) dt = − 1

α
e−tα sin(tβ)

∣∣∣∣T
0

+
β

α

∫ T

0

e−tα cos(tβ) dt

= − 1

α
e−Tα sin(Tβ)− β

α2
e−tα cos(tβ)

∣∣∣∣T
0

− β2

α2

∫ T

0

e−tα sin(tβ) dt

= − 1

α
e−Tα sin(Tβ)− β

α2
e−Tα cos(Tβ) +

β

α2
− β2

α2

∫ T

0

F (t) dt.

Therefore, by replacing α and β with their corresponding values, one obtains that

∫ T

0

F (t) dt

=− cos(πs0)

us0
e−Tus0 cos(πs0) sin(Tus0 sin(πs0))−

sin(πs0)

us0
e−Tus0 cos(πs0) cos(Tus0 sin(πs0)) +

sin(πs0)

us0

=
1

us0

(
sin(πs0)− e−Tus0 cos(πs0) sin(Tus0 sin(πs0) + πs0)

)
.

(A.3)

Taking the limit as T → +∞ in (A.3) we thus obtain that

∫ +∞

0

F (t) dt =
sin(πs0)

us0
.
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Plugging this information into (A.2), we conclude that∫ +∞

0

∫ +∞

0

sup
k∈N

∣∣G2(l, xk, yk)
∣∣µs0

t (l) dl dt

⩽
∫ +∞

0

D2

πl
n
4

exp

(
−d2d

4
3

l
1
3

)∫ +∞

0

e−luu−s0 sin(πs0) du dl

=
D2Γ(1− s0) sin(πs0)

π

∫ +∞

0

1

l
n
4
+1−s0

exp

(
−d2d

4
3

l
1
3

)
dl

=
3D2Γ(1− s0) sin(πs0)

π
d
− 3n

4
+3s0

2 d−n+4s0

∫ +∞

0

a
3n
4
−3s0−1e−a da

=
3D2Γ(1− s0) sin(πs0)

π
d
− 3n

4
+3s0

2 d−n+4s0Γ

(
3n

4
− 3s0

)
,

where we have applied the change of variable a := d2d
4
3

l
1
3
.

Therefore, by the Dominated Convergence Theorem we obtain that I,J ∈ C(Rn).
Now let f ∈ C∞

c (Rn) such that f ⩾ 0. Using the Fourier transform, for each x ∈ Rn we compute∫
Rn

I(x, y)f(y) dy =

∫
Rn

∫ +∞

0

Gs(t, x, y)f(y) dt dy

=

∫ +∞

0

∫
Rn

Gs(t, x, y)f(y) dy dt

=

∫ +∞

0

∫
Rn

Ĝs(t, x, ξ)f̂(ξ) dξ dt

=

∫ +∞

0

∫
Rn

e−2πix·ξe−(2π|ξ|)2stf̂(ξ) dξ dt

=

∫
Rn

∫ +∞

0

e−2πix·ξe−(2π|ξ|)2stf̂(ξ) dt dξ

=

∫
Rn

e−2πix·ξ f̂(ξ)

(2π|ξ|)2s
dξ,

(A.4)

where we denoted by f̂(ξ) the complex conjugate of f̂(ξ).
Notice that between the fourth and fifth line we change the order of integration since

e−2πix·ξe−(2π|ξ|)2stf̂(ξ) ∈ L1((0,+∞)× Rn).

Indeed, we have that∫ +∞

0

∫
Rn

∣∣∣e−2πix·ξe−(2π|ξ|)2stf̂(ξ)
∣∣∣ dξ dt = ∫ +∞

0

∫
Rn

e−(2π|ξ|)2st
∣∣∣f̂(ξ)∣∣∣ dξ dt

=

∫
Rn

∣∣∣f̂(ξ)∣∣∣
(2π|ξ|)2s

dξ,

and the last integral is finite since n ⩾ 2 and f̂ is a Schwarz function.
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Using the Fourier transform, we obtain also that∫
Rn

J (x, y)f(y) dy =
1

Γ(s)

∫
Rn

∫ +∞

0

G(t, x, y)ts−1f(y) dt dy

=
1

Γ(s)

∫ +∞

0

∫
Rn

Ĝ(t, x, ξ)f̂(ξ)ts−1 dξ dt

=
1

Γ(s)

∫ +∞

0

∫
Rn

e−2πix·ξe−(2π|ξ|)2tf̂(ξ)ts−1 dξ dt

=
1

Γ(s)

∫
Rn

∫ +∞

0

e−2πix·ξe−(2π|ξ|)2tf̂(ξ)ts−1 dξ dt

=

∫
Rn

e−2πix·ξ f̂(ξ)

(2π|ξ|)2s
dξ.

(A.5)

Therefore, thanks to (A.4) and (A.5) we conclude that, for each f ∈ C∞
c (Rn) and x ∈ Rn,∫

Rn

(I(x, y)− J (x, y))f(y) dy = 0.

In light of this latter identity and the fact that J , I ∈ C(Rn) we conclude the proof of (A.1). □

As a consequence of (A.1), we also obtain the following integral identity:

(A.6) t

∫ +∞

0

s

ls
µs
t(l) dl =

1

Γ(s)
for all (s, t) ∈ (0, 1)× (0,+∞).

To establish (A.6) we argue as follows. Using the change of variable θ = − |x−y|2
4t

, it is not hard to
show that the left-hand side of (A.1) satisfies

(A.7)
1

Γ(s)

∫ +∞

0

G(t, x, y)ts−1 dt = 4−sπ−n
2Γ
(n
2
− s
) 1

Γ(s)
|x− y|2s−n,

see e.g. equation (3.22).
On the other hand, thanks to scaling property of µs

t , we have that

(A.8) µs
t(l) =

1

t
1
s

µs
1

(
l

t
1
s

)
,

see e.g. Lemma 2.1 in [DGV22b]. Therefore, using this and the identity (3.1) with m = 1, we obtain
that ∫ +∞

0

Gs(t, x, y) dt =

∫ +∞

0

∫ +∞

0

1

(4πl)
n
2

exp

(
−|x− y|2

4l

)
µs
t(l) dl dt

=

∫ +∞

0

∫ +∞

0

1

(4πl)
n
2

exp

(
−|x− y|2

4l

)
1

t
1
s

µs
1

(
l

t
1
s

)
dl dt

=

∫ +∞

0

∫ +∞

0

1

(4πℓt
1
s )

n
2

exp

(
−|x− y|2

4ℓt
1
s

)
µs
1(ℓ) dt dℓ

= 4−sπ−n
2 |x− y|2s−nΓ

(n
2
− s
)∫ +∞

0

s

ls
µs
1(l) dl

(A.9)

where we have also used the change of variables ℓ = l/t1/s and θ = − |x−y|
4lt

1
s

in t.

Accordingly, recalling (A.1), using (A.7) and (A.9) and exploiting again the scaling property
in (A.8), we get (A.6), as desired.
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Appendix B. Some continuity results

Proposition B.1. Let (x, T ) ∈ Rn × (0,+∞).
Then, if n = 1 and s ∈

(
1
2
, 1
]
we have that

Ex,x(s, T ) ∈ (0,+∞),

while if either n ⩾ 2 or n = 1 and s ∈
(
0, 1

2

]
it holds that

Ex,x(s, T ) = +∞.

Proof. Let (x, T ) ∈ Rn × (0,+∞). Then, if n = 1 and s ∈
(
1
2
, 1
]
, from the first equation in (15)

of [DGV], we deduce that Ex,x(s, T ) ∈ (0,+∞).
If either n ⩾ 2 or n = 1 and s ∈

(
0, 1

2

]
, as a consequence of Theorem 2.8 in [DGV22b] and

Corollary 3.5 here, we obtain that Ex,x(s, T ) = +∞. □

Proposition B.2. Let (x, y, T ) ∈ Rn × Rn × (0,+∞) such that x ̸= y.
Then, it holds that Ex,y(s, T ) ∈ (0,+∞) for all s ∈ (0, 1] and Ex,y(·, T ) ∈ C((0, 1]).

Proof. Let (x, y, T ) ∈ Rn × Rn × (0,+∞) with x ̸= y. Using equation (3.1) with m = 1, we see that

Gs(t, x, y) =

∫ +∞

0

1

(4πl)
n
2

exp

(
−|x− y|2

4l

)
µs
t(l) dl

⩽ sup
l∈(0,+∞)

1

(4πl)
n
2

exp

(
−|x− y|2

4l

)
=: Cx,y,

(B.1)

where Cx,y does not depend on t. Thus, by equation (2.4) and the Maximum Principle for the
fractional heat equation, we obtain that

(B.2) Ex,y(s, T ) ∈ (0,+∞),

for all s ∈ (0, 1].
Taking the Fourier Transform of the system of equations (2.1) we obtain that

(B.3) Gs(t, x, y) =

∫
Rn

e−|2πξ|2ste2πiξ·(x−y) dξ,

and we observe that ∫
Rn

∣∣∣e−(2π|ξ|)2ste2πiξ·(x−y)
∣∣∣ dξ =

∫
Rn

e−(2π|ξ|)2st dξ

=

∫ +∞

0

∫
∂Bρ

e−(2πρ)2s dHn−1 dρ

=

∫ +∞

0

ωn−1ρ
n−1e−(2πρ)2s dρ

=
ωn−1t

− n
2s

2s(2π)n

∫ +∞

0

θ
n
2s

−1e−θ dθ,

=
ωn−1t

− n
2s

2s(2π)n
Γ
( n

2s

)
.

Thus, for each ε ∈ (0, 1) and t ∈ (0,+∞), the last term is uniformly bounded in s ∈ (ε, 1]. Ap-
plying the Dominated Convergence Theorem, we obtain the continuity of Gs(t, x, y) in s ∈ (0, 1].
Finally, from this and equation (B.1), we can apply the Dominated Convergence Theorem to prove
that Ex,y(·, T ) ∈ C((0, 1]). □
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Proposition B.3. Let T ∈ (0,+∞) and Ω1,Ω2 ⊂ Rn be measurable and bounded.

Then, ẼΩ1,Ω2(s, T ) ∈ (0,+∞) for all s ∈ (0, 1] and ẼΩ1,Ω2(·, T ) ∈ C((0, 1]).

Proof. For each (s, t) ∈ (0, 1)× (0,+∞) we define the function

(B.4) f(s, t) :=

∫
Ω1×Ω2

Gs(t, x, y) dx dy.

Then, using (3.1) with m = 1 and the well-known identity for the solution of the classical heat
equation ∫

Rn

G(t, x, y) dx = 1 for all (t, y) ∈ (0,+∞)× Rn,

we obtain that

(B.5) |f(s, t)| ⩽ |Ω2| for all (s, t) ∈ (0, 1]× (0,+∞).

Thus, as a consequence we obtain that

ẼΩ1,Ω2(s, T ) =
1

|Ω1||Ω2|

∫
Ω1×Ω2

Ex,y(s, T ) dx dy

=
1

T |Ω1||Ω2|

∫
Ω1×Ω2

∫ T

0

Gs(t, x, y) dt dx dy

=
1

T |Ω1||Ω2|

∫ T

0

f(s, t) dt

⩽
1

|Ω1|
.

(B.6)

Also, using the positivity of Ex,y(s, T ), see Proposition B.2, we obtain that, for all measurable and
bounded sets Ω1,Ω2 ⊂ Rn and T ∈ (0,+∞),

ẼΩ1,Ω2(s, T ) ∈ (0,+∞).

We already proved in Proposition B.2 that Gs(t, x, y) is continuous in s ∈ (0, 1] for all (t, x, y) ∈
(0,+∞)×Rn×Rn. Moreover, in view of equation (B.3) we have that Gs(t, x, y) is uniformly bounded
in (s, x, y) ∈ (s0, 1] × Rn × Rn for all s0 ∈ (0, 1) and t ∈ (0,+∞). Thus, thanks to the Dominated
Convergence Theorem we obtain that f(·, t) ∈ C((s0, 1]) for all (s0, t) ∈ (0, 1)× (0,+∞).
Finally, using the bound in (B.5) and the continuity of f(s, t) we can conclude by means of the

Dominated Convergence Theorem that ẼΩ1,Ω2(·, T ) ∈ C((0, 1]) for all T ∈ (0,+∞) and all measurable
and bounded sets Ω1,Ω2 ⊂ Rn. □

Conclusions

In this paper we investigated the Lévy flight foraging hypothesis in view of a fractional diffusive
equation in Rn, without any restriction on the number n of dimensions of the ambient space. The
anomalous diffusion is regulated by a parameter s ∈ (0, 1), which the forager can tune in order to
maximize the success of its search.

The parameter s = 0 corresponds to ballistic motions (i.e., to the limit case of heavy-tailed Lévy
flights), while the parameter s = 1 corresponds to the classical Brownian motion.

The biological scenarios of a target located in proximity of the forager and of a target arbitrarily
far away have been considered in detail. We have also taken into account the case in which predators
and targets are distributed uniformly in some regions.

We showed that the exponent s = 0 is a pessimizer for the efficiency functional. However, the most
rewarding strategy for the forager may also lie arbitrarily close to s = 0.
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As a result, the most rewarding searching option may turn out to be unreliable, since small per-
turbations of the optimal searching exponent lead to pessimal patterns.

It is thereby suggestive to link the adoption of the most rewarding strategy, even when close to
pessimizers, to a high-risk/high-gain program, in which the forager aims at high-energy content prey
to mitigate the risk of failure of the search (known experimental evidence on anglers and blonde skates
having already related ballistic motions of the forager with the predation of targets with high-energy
content).

This foraging mode can also be considered of “ambush” type, due to the tendency of Lévy distri-
butions with fat tails to displace mass both close to the origin and at infinity.
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foraging hypothesis, J. Math. Biol. ↑2, 4, 22

[DGV22a] , Diffusive processes modeled on the spectral fractional Laplacian with Dirichlet and Neumann
boundary conditions, Preprint (2022), available at web.ma.utexas.edu/mp_arc-bin/mpa?yn=22-12. ↑9
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nian motion, Preprint (2021). ↑3

[LTBV20] Nicolas Levernier, Johannes Textor, Olivier Bénichou, and Raphaël Voituriez, Inverse square Lévy walks
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flight search patterns of wandering albatrosses, Nature 381 (1996), 413–415, DOI 10.1038/381413a0. ↑1

[VBH+99] Gandimohan M. Viswanathan, Sergey V. Buldyrev, Shlomo Havlin, M. G. E. Da Luz, E. P. Raposo, and
H. Eugene Stanley, Optimizing the success of random searches, Nature 401 (1999), no. 6756, 911–914.
↑6, 7

[VRdL08] G. M. Viswanathan, E. P. Raposo, and M. G. E. da Luz, Lévy flights and superdiffusion in the context
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