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Abstract. We investigate the problem of the Lévy flight foraging hypothesis in an ecological niche
described by a bounded region of space, with either absorbing or reflecting boundary conditions.

To this end, we consider a forager diffusing according to a fractional heat equation in a bounded
domain and we define several efficiency functionals whose optimality is discussed in relation to the
fractional exponent s ∈ (0, 1) of the diffusive equation.

Such equation is taken to be the spectral fractional heat equation (with Dirichlet or Neumann
boundary conditions).

We analyze the biological scenarios in which a target is close to the forager or far from it. In
particular, for all the efficiency functionals considered here, we show that if the target is close enough
to the forager, then the most rewarding search strategy will be in a small neighborhood of s = 0.

Interestingly, we show that s = 0 is a global pessimizer for some of the efficiency functionals. From
this, together with the aforementioned optimality results, we deduce that the most rewarding strategy
can be unsafe or unreliable in practice, given its proximity with the pessimizing exponent, thus the
forager may opt for a less performant, but safer, hunting method.

However, the biological literature has already collected several pieces of evidence of foragers diffusing
with very low Lévy exponents, often in relation with a high energetic content of the prey. It is thereby
suggestive to relate these patterns, which are induced by distributions with a very fat tail, with a high-
risk/high-gain strategy, in which the forager adopts a potentially very profitable, but also potentially
completely unrewarding, strategy due to the high value of the possible outcome.

Preamble

On the one hand, many popular adages share the idea that to achieve a prominent goal one
has to take risks (e.g., “no gain without pain”, “nothing ventured, nothing gained”, “no guts, no
glory”, just to name a few proverbs). On many occasions, the ambition to a high reward may lead
individuals to face potential dangers, and in some situations there is a full master plan centered
around a high-risk/high-gain plan: for instance, the blueprint of the European Research Council is
to fund high-risk/high-reward research, in which severe conceptual challenges (which, by definition,
are prone to scientific failure) are accepted downsides for a research project to be truly successful
and impactful.

On the other hand, there is nowadays a great interest in the investigation of optimal searching
strategies, e.g. in the study of animal behavior, and the research on this topic has necessarily to be
somewhat controversial, given the complexity of the phenomenon into consideration.

Our view on this point is that the difficulty of addressing the topic of optimal searching is not
only due to the enormous amount of parameters which should be accounted for (such as predators
and prey distributions, previous knowledge of the territory, interactions with the environment, social
factors, different reactions to adverse circumstances, competition phenomena, cooperative behaviors,
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etc.), and not only due to the difficulty of measuring many of these parameters via objective empirical
observations.
In fact, in our opinion, a core difficulty in this topic stems from the difficulty of assessing unam-

biguously and indisputably a suitable notion of “gain” which should be maximized by a searching
algorithm. This gain cannot be limited to the actual effectiveness of the procedure (i.e., whether or
not the predator captures the prey), but it has to take into account the cost of the procedure itself
(e.g., the time needed for the task, or the energy spent for it), and, at least on some occasions, the
possible value of the outcome of the search.

One of the findings of our research is indeed that the high-risk/high-reward situation may appear
naturally even in very simple situations, therefore the notion of “best strategy” requires a very careful
mathematical setting, in which an efficiency functional is chosen and maximized, and the location of
the maxima is confronted with that of the minima.

In doing so, one discovers immediately some interesting features. First of all, different efficiency
functionals can produce different results. This already highlights a structural complication towards
a full understanding of the notion of optimal searching strategy: for instance, in a biological study,
different species, or different individuals of the same species, may, implicitly or explicitly, address a
different type of efficiency functional.

In addition, in several concrete situations, the maximizers of some efficiency functional may end up
to be dangerously close to the minimizers: this is a clear case of high-risk/high-reward pattern and,
in this “unstable” situation, one should expect that the practical outcome of the optimal searching
pattern be influenced by intermediate strategies aiming at a balance between top performances and
conservative options (e.g., a risk assessment which compromises between the most rewarding and the
safest result). Quite likely, in these conditions, different biological species, or different members of
the same group, may end up adopting different search strategies.

Interestingly, in our setting, the situation in which the most rewarding strategy is arbitrarily
close to a complete failure of the searching pattern is related to Lévy distributions with a very low
exponent and a very fat tail. This pattern is known to be related to foraging modes of “ambush” type
(see [DGNBD17,DGV22b]). The literature has also collected experimental evidence of some species,
such as anglers and blonde skates, which do follow diffusive paths with very low Lévy exponent:
remarkably, a correlation has been found between this type of diffusion and the high content of
energy of the targets (see [DGNBD17]).

In our setting, this correlation is possibly motivated precisely by the fact that the most rewarding
Lévy exponent happens to be very close to the pessimizer. In a sense, it can be significant to imagine
that such a high-risk/high-gain strategy becomes particularly suitable when the possible outcome
is of exceptional value (in the case of a biological predator, a prey of exceptionally high energetic
content).

That is, in an implicit risk assessment, the value of the target may mitigate the prospect of an
unsuccessful search, thus favoring the emergence, in these specific situations, of high-risk/high-reward
diffusive patterns.

In this work, this general vision will be embodied into a precise mathematical study of the Lévy
flight foraging hypothesis, considering the possibility that processes with long jumps (instead of
standard Gaussian random movements) can optimize search efficiency by diminishing the repetitions
of visits to previously inspected sites. Different efficiency functionals will be taken into account, with
a thorough analysis of their optimizers and pessimizers. This phenomenon in which optimizers and
pessimizers cluster together will be also explicitly detected and discussed.

The Lévy flights will be modeled via a heat equation of fractional type in bounded domains. We
consider the case of a hostile environment (such as a “fence”, modeled by homogeneous Dirichlet
conditions which “annihilate” a biological species outside a confinement domain) as well as the case
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of reflecting boundaries (modeled by homogeneous Neumann conditions which maintain a biological
species within a niche without altering the number of individuals present in the region).

To implement these boundary conditions in the setting of the fractional heat equation, we will
make use of the spectral version of the fractional Laplacian.

In some of the efficiency functionals that we consider, predators and targets are modeled as points
in the space. In other cases instead we will model predators and targets as regions of space (assuming
e.g. that the biological individuals are uniformly distributed within these regions): this situation can
also be considered as a technical and conceptual simplification of the notion of “direct vision” which
was previously adopted in the literature, see e.g. [VBH+99]. That is, here we do not introduce an
additional parameter to truncate the Lévy distribution in the proximity of its singularity (which
entails in itself some delicate issues, see [PV21]) and we do not alter the diffusive equation to account
for foragers directly aiming at the prey when they lie at short mutual distance. Instead, the diffusive
equation is supposed to hold at every spatial scale and the role of a different region of influence (e.g.,
induced by uncertainties in the data or by a different hunting pattern at a small scale) is encoded
only in the efficiency functional.

Here, we do not restrict our analysis to the one-dimensional case; in fact, we deal with an arbitrary
large number n of dimensions. We note that the case of higher dimension is, in many instances, not
only a situation of utmost biological interest, but also a source of technical difficulties and scientific
controversies, see e.g. [LTBV20,BRB+21,LTBV21].

1. Introduction to the mathematical setting and main results

In the last decades, anomalous diffusion has been investigated as an appropriate substitute for
normal diffusion in several branches of science, such as biology and in particular the foraging the-
ory (see for instance [SK86,VAB+96, EPW+07,VBH+99,Rey18]). In this context a special case of
anomalous diffusion occurs when a forager in search of food, rather than diffusing according to the
classical Brownian motion, performs long-jump patterns characterized by a space and time steps
scale invariance, see e.g. [KS05] and the references therein.

This type of searches fits the model of the Lévy flight, according to the probabilistic description
given in Section 4.3 of [AV19]. In contrast to what happens with the classical random walk, the
forager performing these flights has less chances to revisit intensively the immediate surrounding
areas and then being confined in a narrow region. Therefore, in the biological framework, Lévy
flights seem to be a better search strategy when the source of food is scarce and sparsely distributed
and there is a large area to be covered in order to succeed in the hunt.

These kinds of foraging search strategies have been empirically observed in many ecological systems,
see e.g. [VAB+96,ARMA02,RFMM+04,EPW+07, SSH+08,HQD+10,HWQ+12,HWS13]. Moreover,
several studies have been made in order to validate the Lévy flight foraging hypothesis from a math-
ematical and statistical point of view [VBH+99,BCF+02,VAB+00,VBB+02].

In these models a number of assumptions are usually made on the environment, on targets and
foragers. For instance, a low prey density is often assumed and the targets are randomly distributed
in a wide area; the forager does not keep memory of previous encounters; the forager has scarce
information on the area to search and on the prey location. On the one hand, on some occasions,
these structural assumptions are introduced in order to simplify the problem, which otherwise would
be extremely challenging to be analyzed from a theoretical perspective; on the other hand, some of
these conditions can actually be structurally necessary for the convenience of the Lévy flight strategy
over more standard type of diffusive processes. In any case, the complexity of the raw problem
is a consequence of its dependence on a great number of environmental, evolutionary and biological
variables. Even though an oversimplification may lead to a less accurate model in some circumstances,
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we can evince from a simplified model some remarkable properties, advancing the knowledge on such
a complex topic.

In this paper we will investigate the Lévy flight foraging hypothesis relying on a fractional elliptic
operator. This is motivated by the fact that in the limit of the time step going to zero, the distribu-
tion of a seeker performing Lévy flights converges to the solution of a fractional heat equation, see
e.g. [Val09,BV16,AV19].

In order to test the Lévy flights foraging hypothesis, we consider some efficiency functionals,
accounting for the random encounter rate between the forager and the target. We maximize these
efficiency functionals with respect to the fractional exponent, with the aim of understanding which
flight was more advantageous for the forager. From a biological perspective, this optimization with
respect to the fractional exponent corresponds to the possibility of a forager to modify its searching
strategy by tuning e.g. the average length of a hunting path and the waiting times between different
paths.

We will assume that the forager is confined in some bounded region Ω ⊂ Rn, which plays the role
of an ecological niche. Both Dirichlet and Neumann boundary conditions will be taken into account
to describe absorbing and reflecting boundaries.

For us, the choice of a spectral fractional heat equation as a diffusion equation for the forager was
motivated by its stochastic interpretation as a subordinate Brownian motion in Ω, see [DGV22a].
See also [MPV13,CDV17, SV17,DV21,DPLV] and the references therein for several applications of
fractional elliptic equations to biological problems.

In this paper, we will test the Lévy flight foraging hypothesis by taking into account different
biological configurations, such as:

• the case in which the forager starting position and the target location coincide,
• the case in which the forager starting position is located in proximity of the target,
• the case in which the forager and the target, instead of being modeled as material points, are
uniformly distributed in some regions of space.

The situation in which the biological population is not confined into a bounded region of space and
can travel through the whole of Rn is technically different and has been treated in the papers [DGV,
DGV22b].

The paper is structured as follows. In Section 1.1, we define the efficiency functionals for the
spectral search in the bounded region Ω ⊂ Rn. They will be taken to be proportional to the
encounter rate between the forager and the target. Moreover, different “penalizations quantities”
will be considered, such as the average distance and the mean square displacement, in order to build
physically reliable efficiency functionals.

Sections 1.2 and 1.3 are devoted to the study of the maximizer for the aforementioned functionals.
These maximizers thus correspond to the most rewarding searching mode. In particular, in Section 1.2
we will assume that the forager starting position and the prey location coincide. This scenario, though
physically less relevant, will let us detect some monotonicity properties of one of the functionals, when
the domain satisfies suitable geometric properties, see Theorem 1.4 below. This result shows how the
search for a maximizer is related to the geometric structure of the play field.

In Section 1.3, as well as in Section 1.4 for the case of distributed foragers and targets, we analyze
the case in which the target is in some small neighborhood of the forager starting position. Here we
establish that if the target position converges to the initial location of the seeker, then the maximizer
of the efficiency functionals is located in a neighborhood of s = 0. This is the content of Theorems 1.7,
1.8, 1.15 and 1.16.

Furthermore, in Theorems 1.6 and 1.14 it will be proved that for some of these efficiency functionals
the strategy s = 0 is the unique global minimizer, thus corresponding to the unique pessimizer of
the searching mode. This minimality result, together with the convergence of the best strategy, will
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entail that, roughly speaking, the most rewarding strategy may end up being not reliable, presenting
arbitrarily close pessimizers, thus opening the dilemma of whether in practice one should follow the
most performant option, or the safest one, or, say, a balanced combination of the two (see Remark 1.9
below).

In Section 2 we collect the main analytical tools that will be employed in order to prove our main
results.

Finally in Section 3 we prove the results stated in Sections 1.2 and 1.3.

1.1. Efficiency Functionals. To measure the effectiveness of a foraging strategy, one can consider
different functionals which account for the rate of hunting “success” for the predator versus the
“effort” needed.

The possibility of accounting for different efficiency functionals plays, in our opinion, a crucial role
in biology and ethology, since, while the notion of “foraging success” may be somewhat objective (as
measured for instance by the amount of food eaten, or by the calories carried by such a food), the
notion of “cost spent to achieve the success” is intrinsically more ambiguous and different biological
theories may end up measuring this concept in different ways. As an example, we recall the debate
about the way honey bees assess how far they have flown (whether based on the energy expended
in flying or on the fatigue required by the action, as conjectured in former experiments, or on the
image motion of the surrounding landscape through visual perception, as pointed out in the “optic
flow hypothesis” and addressed in recent tests, see [SZATJ00]). Related to this, we also recall that
in some situations the measure of the distance traveled can be performed according to a number of
possible strategies (e.g., in the case of ants, which can use optic flow, pheromone and chemical trails,
as well as the “counting” of the number of steps, see [WWW06]). See also [Gad21] and the references
therein for further reading on how animals measure distances.

The mathematical setting that we consider here goes as follows. We model a forager moving
in some bounded region Ω ⊂ Rn through a spectral fractional diffusion with either Dirichlet or
Neumann homogeneous boundary conditions. The domain Ω where the diffusion occurs can be seen
as an ecological niche where the forager is confined (the Dirichlet condition corresponding to the case
in which the forager is killed at the boundary of the niche, and the Neumann datum corresponding
e.g. to fences that prevent the forager to exit the niche).

Specifically, the probability density u = u(t, x) of the forager satisfies the diffusive equation

(1.1) ∂tu(t, x) = −(−∆)su(t, x) for all (t, x) ∈ (0,+∞)× Ω,

with either Dirichlet or Neumann homogeneous boundary conditions.
Here above s is a fractional parameter in (0, 1) and the operator (−∆)s represents the spectral

fractional Laplacian, see e.g. Sections 2.3 and 4.3 in [AV19] for the basics of this operator. See
also [DGNBD17] for different approaches to the problem of Lévy flights in (one-dimensional) bounded
domains.

We also assume that the targets are scattered in Ω according to a distribution p(t, x), where (t, x) ∈
[0,+∞)× Ω.

We consider, as an initial measure of the success of the hunting strategy of the predator, a forag-
ing success functional which accounts for the random encounters between the forager following the
dispersive equation in (1.1) and the targets.

Specifically, in the situation considered here, given T ∈ (0,+∞) and y ∈ Ω, the foraging success
functional takes the form

(1.2)

∫ T

0

∫
Ω

rs(t, x, y) p(t, x) dx dt,
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where rs(t, x, y) represents either the Dirichlet or the Neumann spectral fractional heat kernel, for
some fractional parameter s ∈ (0, 1), see for instance [DGV22a] and the beginning of the forthcoming
Section 2 for definitions and basic properties of these kernels.

We notice indeed that the quantity in (1.2) is associated with the probability that a forager starting
at the position y ∈ Ω and following the diffusion process modeled by the fractional heat equation
with either Dirichlet or Neumann boundary condition hits a target distributed according to p(t, x)
in the time interval (0, T ).

To obtain an efficiency functional, we compare this quantity with some other quantities of physical
and biological significance that instead provide a penalization for the seeker. Here, we will consider
as penalization quantities the time T , the average distance traveled by the forager ly(s, T ) after a
time T and the mean square displacement Ay(s, T ) after a time T .
More explicitly, the average distance traveled by the forager at time T ∈ (0,+∞) is given by

(1.3) ly(s, T ) :=

∫ T

0

∫
Ω

|ζ − y| rs(t, ζ, y) dζ dt.

The probabilistic interpretation underpinning this definition consists in taking into account the ran-
dom process Yt starting at y corresponding to a subordinate Brownian motion which is either killed
or reflected at the boundary (the generator of such a process corresponding to the spectral fractional
Laplacian with either Dirichlet or Neumann datum).

In this framework, the quantity |Yt| represents the distance at time t for a single representation of
the process, whence it is natural to consider its expected value

Es
y[|Yt|] =

∫
Ω

|x− y| rs(t, x, y) dx

as the mean distance traveled at time t. The setting in (1.3) is thus the average over time t ∈ (0, T )
of this quantity.

Similarly, the mean square displacement is given by

(1.4) Ay(s, T ) :=

∫ T

0

∫
Ω

|ζ − y|2 rs(t, ζ, y) dζ dt

and represents the average over time t ∈ (0, T ) of the expected value of the squared distance

Es
y[|Yt|2] =

∫
Ω

|x− y|2 rs(t, x, y) dx.

Interestingly, subordinators related to waiting times may have an intimate connection to biology,
since spontaneous patterns of waiting times are known to occur in nature, and they can be species-
specific, depend on body size, foraging modes, prey preference, etc., see [WMH+14].
While the notations in (1.3) and (1.4) are the same for the Dirichlet and the Neumann cases (the

difference being only in the fractional heat kernel, which is sensitive to the boundary conditions), it
is convenient to distinguish explicitly between the two types of boundary data and for this we add
the subscript D or N to the notation, namely we write lyD(s, T ), l

y
N(s, T ), A

y
D(s, T ) and Ay

N(s, T )
to emphasize the dependence of the average distance traveled and of the mean square displacement
with respect to the Dirichlet or the Neumann boundary condition.

As a special case of target distribution p(t, ξ), we consider the situation in which there is only one
target located at x ∈ Ω. In this case, the distribution p(t, ξ) reduces to the Dirac’s delta δx(ξ) and
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the foraging success functional in (1.2) will be denoted (depending on the boundary condition) by

Φx,y
D (s, T ) =

∫ T

0

∫
Ω

rsD(t, ζ, y)δx(ζ) dζ dt =

∫ T

0

rsD(t, x, y) dt

or Φx,y
N (s, T ) =

∫ T

0

∫
Ω

rsN(t, ζ, y)δx(ζ) dζ dt =

∫ T

0

rsN(t, x, y) dt.

(1.5)

In this paper we focus on the optimal foraging strategy according to the following efficiency func-
tionals:

Ex,y
1,D(s, T ) :=

Φx,y
D (s, T )

T
,

Ex,y
2,D(s, T ) :=

Φx,y
D (s, T )

lyD(s, T )
,

Ex,y
3,D(s, T ) :=

Φx,y
D (s, T )

Ay
D(s, T )

Ex,y
1,N(s, T ) :=

Φx,y
N (s, T )

T
,

Ex,y
2,N(s, T ) :=

Φx,y
N (s, T )

lyN(s, T )
,

and Ex,y
3,N(s, T ) :=

Φx,y
N (s, T )

Ay
N(s, T )

.

(1.6)

In addition to the functionals in (1.6), we consider the following set-dependent functionals. Here,
the exact initial positions of target and forager are replaced by uniform densities in two subregions
of Ω. Namely, we assume that the targets are distributed in Ω according to

p(t, x) :=
χΩ1(x)

|Ω1|
,

for some measurable set Ω1 ⊂ Ω, where χΩ1 is the characteristic function of Ω1 and |Ω1| denotes the
Lebesgue measure of Ω1.

The forager diffusing via the spectral fractional heat equation is initially uniformly distributed in
some measurable set Ω2 ⊂ Ω and therefore, dropping for the moment the subscript D and N , its
density in (t, x) ∈ (0,+∞)× Ω is given by

f s(t, x) :=
1

|Ω2|

∫
Ω2

rs(t, x, y) dy,

see e.g. Lemmas 2.14 and 3.11 in [DGV22a].
With this notation, the set-dependent forager success functional takes the form

Φ̃Ω1,Ω2(s, T ) :=

∫ T

0

∫
Ω

f s(t, x)p(t, x) dx dt

=
1

|Ω1||Ω2|

∫ T

0

∫
Ω1×Ω2

rs(t, x, y) dx dy dt.

(1.7)

Furthermore, in this framework, the average distance traveled by the forager and the mean square
displacement are given by

l̃Ω2(s, T ) :=

∫ T

0

∫
Ω

|ξ − y|f s(t, ξ) dξ dt

=
1

|Ω2|

∫ T

0

∫
Ω×Ω2

|ξ − y|rs(t, ξ, y) dξ dy dt

and ÃΩ2(s, T ) :=

∫ T

0

∫
Ω

|ξ − y|2f s(t, ξ) dξ dt

=
1

|Ω2|

∫ T

0

∫
Ω×Ω2

|ξ − y|2rs(t, ξ, y) dξ dy dt.

(1.8)
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Therefore, with these set-dependent foraging success functional and penalization quantities, we define
the set-dependent efficiency functionals as

ẼΩ1,Ω2

1,D (s, T ) :=
Φ̃Ω1,Ω2

D (s, T )

T
,

ẼΩ1,Ω2

2,D (s, T ) :=
Φ̃Ω1,Ω2

D (s, T )

l̃Ω2
D (s, T )

,

ẼΩ1,Ω2

3,D (s, T ) :=
Φ̃Ω1,Ω2

D (s, T )

ÃΩ2
D (s, T )

ẼΩ1,Ω2

1,N (s, T ) :=
Φ̃Ω1,Ω2

N (s, T )

T
,

ẼΩ1,Ω2

2,N (s, T ) :=
Φ̃Ω1,Ω2

N (s, T )

l̃Ω2
N (s, T )

,

and ẼΩ1,Ω2

3,N (s, T ) :=
Φ̃Ω1,Ω2

N (s, T )

ÃΩ2
N (s, T )

.

(1.9)

1.2. Prey at forager starting position and change of monotonicity. In this section we will
assume that the forager starts its search from the prey location. In this case, all the efficiency
functionals in (1.6) diverge if n ⩾ 2 or n = 1 and s ∈

(
0, 1

2

]
, as better specified in the following

proposition. For this reason, in this scenario where the forager starting position coincides with the
target location, we will only work in one dimension.

Proposition 1.1. Let Ω ⊂ Rn be bounded, smooth and connected, x ∈ Ω and E be any of the
efficiency functionals in (1.6) with x = y.

Then, for each T ∈ (0,+∞), if either n ⩾ 2 or n = 1 and s ∈
(
0, 1

2

]
it holds that E(s, T ) = +∞.

In the one-dimensional framework, the connectedness hypothesis on Ω forces the domain to be an
interval. Thus, up to a translation, we can suppose that Ω = (0, a) for some a ∈ (0,+∞). In this
case, several results can be obtained at the same time for all the efficiency functionals in (1.6).

In the following proposition we establish that the range of the fractional exponent in which these
functionals achieve a finite value coincides with

(
1
2
, 1
]
, and that in this interval they are continuous

in s.

Proposition 1.2. Let a ∈ (0,+∞), Ω = (0, a), x ∈ Ω, T ∈ (0,+∞) and E be any of the efficiency
functionals in (1.6) with x = y.
Then, E(s, T ) ∈ (0,+∞) for all s ∈

(
1
2
, 1
]
and E(·, T ) ∈ C

((
1
2
, 1
])
.

In terms of detecting the most rewarding foraging strategy with respect to the Lévy exponent s,
we show that if the initial position of the forager coincides with the location of the target then s = 1/2
is the optimizer for all the efficiency functionals in (1.6):

Theorem 1.3. Let a ∈ (0,+∞), Ω = (0, a), x ∈ Ω and E be any of the efficiency functionals in (1.6)
with x = y.

Then, for all T ∈ (0,+∞), the supremum over s ∈
(
1
2
, 1
]
of E is attained at s = 1

2
, with

(1.10) lim
s↘ 1

2

E(s, T ) = +∞.

Even though the environmental scenario of a forager starting its search precisely from the target
location is physically less relevant than the other cases, it can serve as an example of the complexity of
the optimization problem and its dependence on external factors, such as the geometrical properties
of the domain.

In what follows, we provide an example of change of monotonicity for the functionals in equa-
tion (1.5). Specifically, we show that if the interval in which we consider the motion is small enough,
then the functionals are strictly decreasing in s. On the other hand, we prove that if the interval
is large enough, then there is a region of this interval such that if the search starts there, then the
monotonicity property is violated in a neighborhood of the Brownian strategy s = 1, see Figure 1.

Theorem 1.4. Let a ∈ (0,+∞), Ω = (0, a), T ∈ (0,+∞) and x ∈ Ω. Let Φ be any of the foraging
success functional in (1.5) with x = y.
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Then, if a ∈ (0, π], for every s0 ∈
(
1
2
, 1
]
and s1 ∈ (s0, 1], we have that

(1.11) Φ(s0, T ) > Φ(s1, T ).

Also, for every ν ∈
(
0, 1

2

)
there exists aν ∈ (π,+∞) such that if a ∈ (aν ,+∞) then, for every T ∈

[νa2s,+∞), x ∈ (νa, (1− ν)a), s0 ∈
(
1+ν
2
, 1
)
and s1 ∈ (s0, 1], it holds that

(1.12) Φx,x
D (s1, T ) > Φx,x

D (s0, T ).

Furthermore, for every ν ∈
(
0, 1

2

)
there exists aν ∈ (π,+∞) such that if a ∈ (aν ,+∞) then, for

every T ∈ [νa2s,+∞), x ∈
(
0, (1−ν)a

2

)
∪
(

(1+ν)a
2

, a
)
, s0 ∈

(
1+ν
2
, 1
)
and s1 ∈ (s0, 1], it holds that

(1.13) Φx,x
N (s1, T ) > Φx,x

N (s0, T ).

0.6 0.7 0.8 0.9 1.0

5.×10-22

1.×10-21

1.5×10-21

2.×10-21

2.5×10-21

0.6 0.7 0.8 0.9 1.0

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Figure 1. Plot of
(
1
2 , 1
)
∋ s 7→ Φx,x

D (s, T ) for Ω = (0, a) with x = 2.5, T = 100 and a ∈ {3, 10}.
We have approximated ΦD, as explicitly given in (3.5), by summing to the 5 × 105th term.

In [DGV22a] we studied the monotonicity properties of the fractional heat kernel rs(t, x, x) with
respect to the fractional parameter s and we showed that these properties depend on the geometry of
the domain. This dependence is expressed via the eigenvalues of either the Dirichlet or the Neumann
Laplacian, which are well-known to depend on geometric features of the domain, like its measure or
the Hausdorff measure of its boundary. For further details on this relation see the comments after
Theorems 1.11 and 1.23 in [DGV22a] and the references therein.

More precisely, in Theorem 1.10 of [DGV22a] we established that if the first eigenvalue of the
Dirichlet Laplacian is greater than 1, then the fractional heat kernel rsD(t, x, x) is strictly decreasing
in s. Analogously, in Theorem 1.22 in [DGV22a] we proved that if the first nonvanishing eigen-
value µk(x) of the Neumann Laplacian associated to a nonvanishing eigenfunction in x is greater
than 1, then rsN(t, x, x) is strictly decreasing in s. The monotonicity property given in (1.11) is thus
a consequence of Theorems 1.10 and 1.22 of [DGV22a] and the definitions in (1.5).

On the other hand, in Theorems 1.11 and 1.23 of [DGV22a] we proved that under some circum-
stances there is a change of monotonicity for rs(t, x, x). Indeed, we showed that if the first eigenvalue
of the Dirichlet Laplacian, or µk(x) as described above for the Neumann case, is smaller than 1, then for
every s0, s1 ∈ (0, 1) such that s0 < s1 there exists some T ∈ (0,+∞) such that rs0(t, x, x) < rs1(t, x, x)
for all t ∈ (T,+∞). This latter change of monotonicity in relation to the size of the eigenvalues in-
spired the search for a change of monotonicity also for the efficiency functionals Φx,x

D and Φx,x
N , which

is proved to be true, as expressed by equations (1.12) and (1.13) above.

1.3. Prey in proximity of the forager. We now turn our attention to the efficiency functionals
in (1.6) when the initial position of the forager y ∈ Ω is different from the target location x ∈ Ω. We
begin by stating the following continuity result with respect to the fractional exponent s.
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Proposition 1.5. Let Ω ⊂ Rn be bounded, smooth and connected. For every (x, y, T ) ∈ Ω × Ω ×
(0,+∞) such that x ̸= y, let us denote by Ex,y any of the efficiency functionals in (1.6).

Then, Ex,y(s, T ) ∈ (0,+∞) for all s ∈ (0, 1] and Ex,y(·, T ) ∈ C((0, 1]).

In the following result we establish that for each (x, y, T ) ∈ Ω × Ω × (0,+∞), satisfying x ̸= y,
the first Dirichlet functional Ex,y

1,D(s, T ) attains its infimum at s = 0. Moreover, we show that the
Dirichlet functionals in (1.6) admit a finite limit for s ↘ 0, as far as x ̸= y.

Theorem 1.6. Let Ω ⊂ Rn be bounded, smooth and connected.
Then, for every (x, y, T ) ∈ Ω× Ω× (0,+∞) with x ̸= y, it holds that

(1.14) inf
s∈(0,1)

Ex,y
1,D(s, T ) = lim

s↘0
Ex,y
1,D(s, T ) = 0.

Moreover, we have that

(1.15) lim
s↘0

Ex,y
2,D(s, T ) ∈ (0,+∞) and lim

s↘0
Ex,y
3,D(s, T ) ∈ (0,+∞).

From Theorem 1.6 we evince that we can extend by continuity the Dirichlet functionals in (1.6)
to the whole compact interval [0, 1]. Hence, from now on, we will adopt the notation

(1.16) Ex,y
j,D(0, T ) := lim

s↘0
Ex,y
j,D(s, T ),

for all (x, y, T ) ∈ Ω× Ω× (0,+∞), with x ̸= y and j ∈ {1, 2, 3}.
The following two theorems are the most important results of this section. We state that if the

forager starting position y ∈ Ω is close enough to the prey location x ∈ Ω, then the best search strategy
for the efficiency functionals in (1.6) will be in some small neighborhood of s = 0.

Theorem 1.7. Let Ω ⊂ Rn be bounded, smooth and connected and (y, T ) ∈ Ω× (0,+∞).
Then, for each ε ∈ (0, 1) there exists some δ = δε,y,T,Ω ∈ (0,+∞) such that for each x ∈ Bδ(y)\{y}

it holds that

(1.17) sup
s∈(0,1)

Ex,y
1,D(s, T ) = Ex,y

1,D

(
s
(1)
x,y,T , T

)
with s

(1)
x,y,T ∈ (0, ε).

Moreover, for each j ∈ {2, 3} it holds that

(1.18) Ex,y
j,D(0, T ) ⩾ sup

s∈(ε,1)
Ex,y
j,D(s, T ).

We stress that the situation x ̸= y treated in Theorem 1.7 is conceptually quite different from the
case x = y presented in Theorem 1.3: indeed, when the initial location of the predator is different
from the position of the target, the efficiency functionals are finite for all s ∈ (0, 1] independently
from the dimension, as stated in Proposition 1.5.

The result in Theorem 1.7 is general enough to include different Dirichlet efficiency functionals
and detects a somewhat “universal” qualitative behavior.
Moreover, an analogous situation holds true also for the Neumann functionals in (1.6):

Theorem 1.8. Let Ω ⊂ Rn be bounded, smooth and connected and (y, T ) ∈ Ω× (0,+∞).
Then, for each for each ε ∈ (0, 1) there exists some δ = δε,y,T,Ω ∈ (0,+∞) such that for each x ∈

Bδ(y) \ {y} and for all j ∈ {1, 2, 3} it holds that

(1.19) sup
s∈(0,1)

Ex,y
j,N(s, T ) = Ex,y

j,N

(
s
(j)
x,y,T , T

)
with s

(j)
x,y,T ∈ (0, ε).

Therefore, from Theorems 1.7 and 1.8 we deduce that if the initial position of the forager approaches
the position of the target, the fractional parameter s ∈ (0, 1) maximizing the functionals in (1.6)
converges to 0. Thus, in the regime of close proximity of seeker starting position and prey location,
the above functionals are maximized by a search strategy with a very fat tail.
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It is interesting to notice that the maximizer s
(1)
x,y,T of E1,D given by Theorem 1.7 may turn out

to be unreliable in practice, differently from the other two maximizers of the Dirichlet functionals,
according to the following remark.

Remark 1.9. On the one hand, Theorem 1.6 establishes that s = 0 is a global minimizer for E1,D.
On the other hand, if s

(1)
x,y,T is a maximizer of Ex,y

1,D(·, T ), then from Theorem 1.7 we evince that

lim
x→y

s
(1)
x,y,T = 0.

This means that as x approaches y, the maximizer of the functional Ex,y
1,D converges to s = 0, which

is a global minimizer. Therefore, a small perturbation of s
(1)
x,y,T can lead to very small values for E1,D,

making such choice of the most rewarding fractional exponent quite unreliable. Therefore, in an
environmental scenario where the forager starts its search in proximity of the target and the efficiency
functional modelling the energy to maximize is given by E1,D, the “most rewarding” search strategy
is to be considered “unreliable”.

Things turn out to be different for Ex,y
2,D and Ex,y

3,D. Indeed, if s
(j)
x,y,T is a maximizer of the func-

tional Ex,y
j,D(·, T ) with j ∈ {2, 3}, then, according to Theorem 1.7, one still has the limit

(1.20) lim
x→y

s
(j)
x,y,T = 0.

Nevertheless, in contrast with the case j = 1, now s = 0 is not necessarily a global minimum.
Actually, see equation (1.18), for each ε ∈ (0, 1), if x and y are close enough, then

Ex,y
j,D(0, T ) ⩾ sup

s∈(ε,1)
Ex,y
j,D(s, T ),

so that s = 0 in these two cases is “almost” a maximizer. Roughly speaking, we can say that the
functionals E2,D and E3,D present more reliable optimal configurations than E1,D, since the maximizing
fractional exponent is “separated” from the minimizers, whence the most rewarding strategy appears
to be safer.

Remark 1.10. It has been observed in [WMH+14] that the case s = 0 occurs when some marine
predators, such as anglers and blonde skates, specifically aim at a type of prey with a high energy
content. It is therefore natural to relate the high-energy content of the prey and the high-risk/high-
reward strategy related to s = 0: namely a high gain prospected by the energy content of the prey
may serve as a mitigation of the chance of failure entailed by searching mode selected and as an
indirect encouragement towards a potentially very beneficial, but intrinsically very risky, strategy.

Remark 1.11. One may wonder whether the unreliability of the most rewarding strategies and the
corresponding high-risk/high-reward searching mode are specific of the situation considered in this
paper, i.e. of a forager confined in a bounded region and a nearby prey. This is not the case, in
fact in the paper [DGV22b] we will show that the same pattern persists, for instance, for a predator
diffusing in the whole space and also for a prey located arbitrarily far from the predator.

The case that will be addressed in [DGV22b] is technically different from the one here, since the
spectral analysis cannot be performed in unbounded domains and we will have to rely on singular
integral calculations instead.

In what follows we observe a phenomenon which arises in the one-dimensional framework as a
consequence of Theorem 1.4. In particular, under the same geometric assumptions of Theorem 1.4
on the domain Ω, we show that if the target location x ∈ Ω is sufficiently close to the forager initial
position y ∈ Ω, then there exists a local maximizer s∗x,y,T for Ex,y

1,D and Ex,y
1,N in a neighborhood of the

Brownian strategy s = 1.
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Corollary 1.12. Let a ∈ (0,+∞), Ω = (0, a) and T ∈ (0,+∞).
Then, for every ν ∈

(
0, 1

2

)
and ε ∈ (0, 1) there exists aν ∈ (π,+∞) such that if a ∈ (aν ,+∞) then,

for every T ∈ [νa2s,+∞) and y ∈ (νa, (1− ν)a), there exists some δ = δν,ε,y,T,Ω ∈ (0,+∞) such that
if x ∈ Bδ(y) \ {y} then

(1.21) sup
s∈( 1+ν

2
,1)

Ex,y
1,D(s, T ) = Ex,y

1,D

(
s∗x,y,T , T

)
with s∗x,y,T ∈ (1− ε, 1].

Also, for every ν ∈
(
0, 1

2

)
and ε ∈ (0, 1) there exists aν ∈ (π,+∞) such that if a ∈ (aν ,+∞) then,

for every T ∈ [νa2s,+∞) and y ∈
(
0, (1−ν)a

2

)
∪
(

(1+ν)a
2

, a
)
, there exists some δ = δν,ε,y,T,Ω ∈ (0,+∞)

such that if x ∈ Bδ(y) \ {y} then

(1.22) sup
s∈( 1+ν

2
,1)

Ex,y
1,N(s, T ) = Ex,y

1,N (ŝx,y,T , T ) with ŝx,y,T ∈ (1− ε, 1].

It is interesting to compare this result with Remark 1.9 on the unreliability of the most rewarding
search strategy for Ex,y

1,D. Indeed, as a consequence of Theorem 1.7 and Corollary 1.12, we have that

for each ν ∈
(
0, 1

2

)
and ε ∈ (0, 1) there exists some aν ∈ (π,+∞) such that for every a, T and y

given as in the statement of Corollary 1.12, there exists some δ∗ = δ∗ν,ε,y,T,Ω ∈ (0,+∞) such that, for
every x ∈ Bδ∗(y) \ {y},

sup
s∈(0,1)

Ex,y
1,D(s, T ) = Ex,y

1,D

(
s
(1)
x,y,T , T

)
with s

(1)
x,y,T ∈ (0, ε)

and sup
s∈( 1+ν

2
,1)

Ex,y
1,D(s, T ) = Ex,y

1,D

(
s∗x,y,T , T

)
with s∗x,y,T ∈ (1− ε, 1].

From this, we deduce that in this framework there exist a global and a local maximizer. The global

maximizer s
(1)
x,y,T seems to be the most rewarding option for the forager performing the search. Nev-

ertheless, thanks to Remark 1.9, we also know that it is extremely unreliable for practical purposes.

Indeed, a small deviation from s
(1)
x,y,T can lead to the unique global minimizer s = 0, that makes the

functional vanish.
On the other hand, even though the local maximizer s∗x,y,T is not optimal, it could be a better

choice due to its stability. As a matter of fact, as stated in Proposition 1.5, the functional Ex,y
1,D

vanishes nowhere near the Brownian strategy s = 1. Therefore, by choosing s∗x,y,T , even under the
presence of a positive error in the choice of the strategy, the outcome would not be heavily affected,

as it could be for the most rewarding, but unreliable, strategy s
(1)
x,y,T .

This observation highlights how the definition of “best search strategy” is arguable, and how in
some contexts it could not coincide with the classical notion of maximizer of a given energy: after
all, what does “best” mean, is it “most rewarding” or “safest”? Thus, it may be appropriate to
define new efficiency functionals that, rather than depending on an “exact choice” of the fractional
exponent s ∈ (0, 1), take into account a probability measure in (0, 1) that allows the existence of an
error range for the forager. This new approach will be investigated by the authors in a forthcoming
work.

1.4. Foragers and targets uniformly distributed in some regions. Now we focus our attention
to the study of the functionals in equation (1.9). In this case, the forager starting position and the
prey location are replaced by uniform densities in disjoint subsets Ω1,Ω2 ⊂ Ω. We begin by analyzing
the continuity of these functionals with respect to the fractional exponent s ∈ (0, 1].

Proposition 1.13. Let Ω ⊂ Rn be bounded, smooth and connected. For every T ∈ (0,+∞) and

measurable sets Ω1,Ω2 ⊂ Ω, let us denote by ẼΩ1,Ω2 any of the efficiency functionals in (1.9).

Then, ẼΩ1,Ω2(s, T ) ∈ (0,+∞) for all s ∈ (0, 1] and ẼΩ1,Ω2(·, T ) ∈ C((0, 1]).
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The following result can be considered as the set-dependent counterpart of Theorem 1.6.

Theorem 1.14. Let Ω ⊂ Rn be bounded, smooth and connected.
Then, for all T ∈ (0,+∞) and smooth and disjoint sets Ω1,Ω2 ⊂ Ω, it holds that

(1.23) inf
s∈(0,1)

ẼΩ1,Ω2

1,D (s, T ) = lim
s↘0

ẼΩ1,Ω2

1,D (s, T ) = 0.

Moreover, we have that

(1.24) lim
s↘0

ẼΩ1,Ω2

2,D (s, T ) ∈ (0,+∞) and lim
s↘0

ẼΩ1,Ω2

3,D (s, T ) ∈ (0,+∞).

From Theorem 1.14 we deduce that we can extend by continuity also the Dirichlet functionals
in (1.9) to the whole compact interval [0, 1]. From now on, for j ∈ {1, 2, 3}, we will adopt the
notation

(1.25) ẼΩ1,Ω2

j,D (0, T ) := lim
s↘0

ẼΩ1,Ω2

j,D (s, T ),

for all T ∈ (0,+∞) and Ω1,Ω2 ⊂ Ω satisfying the hypothesis of Theorem 1.14.

In Theorems 1.7 and 1.8 we have established that the Neumann and Dirichlet functionals in (1.6)
have a common feature. Indeed, if the prey location x ∈ Ω is in a sufficiently small neighborhood of
the forager starting position y ∈ Ω, then Ex,y

j,D and Ex,y
j,N attain their maximum for some value close

to s = 0.
This characteristic is somewhat preserved if we consider the set-dependent functionals in (1.9).

Indeed, we can show that if Ω1,Ω2 are close enough (in a sense that will be made precise later), then
also for the functionals in (1.9) a strongly nonlocal search strategy will be preferred.

Before stating the precise results we fix some notation. For each B ⊂ Rn, y ∈ Rn and r ∈ (0,+∞)
we denote

(1.26) ryB := {r(x− y) + y s.t. x ∈ B} .

Theorem 1.15. Let Ω ⊂ Rn be bounded, smooth and connected and (y, T ) ∈ Ω× (0,+∞).
Then, for each ε ∈ (0, 1) there exists some r = rε,y,T,Ω ∈ (0,+∞) such that for any smooth and

disjoint sets Ω1,Ω2 ⊂ Br(y) it holds that

(1.27) sup
s∈(0,1)

ẼΩ1,Ω2

1,D (s, T ) = ẼΩ1,Ω2

1,D

(
s
(1)
Ω1,Ω2,T

, T
)

with s
(1)
Ω1,Ω2,T

∈ (0, ε).

Moreover, let K ⋐ Ω be star-shaped with respect to some y ∈ K. Then, for all j ∈ {2, 3}
and ε ∈ (0, 1), there exists some r = rε,K,T,Ω such that if Ω1,Ω2 ⊂ ryK are smooth and disjoint it
holds that

(1.28) ẼΩ1,Ω2

j,D (0, T ) ⩾ sup
s∈(ε,1)

ẼΩ1,Ω2

j,D (s, T ).

As a consequence of Theorems 1.14 and 1.15 we can deduce that the most rewarding strategy may
not be the safest, similarly to what happens for the functional E1,D (recall Remark 1.9). Also, a
result analogous to Theorem 1.15 holds true when considering the Neumann functionals in (1.9).

Theorem 1.16. Let Ω ⊂ Rn be bounded, smooth and connected and (y, T ) ∈ Ω× (0,+∞).
Then, for each ε ∈ (0, 1) there exists some r = rε,y,T,Ω ∈ (0,+∞) such that for any smooth and

disjoint sets Ω1,Ω2 ⊂ Br(y) and for each j ∈ {1, 2, 3} it holds that

(1.29) sup
s∈(0,1)

ẼΩ1,Ω2

j,N (s, T ) = ẼΩ1,Ω2

j,N

(
s
(j)
Ω1,Ω2,T

, T
)

with s
(j)
Ω1,Ω2,T

∈ (0, ε).
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2. Mathematical framework for the efficiency functionals

In this section we establish some technical results regarding the efficiency functionals in (1.5), (1.6)
and (1.9). These are the main analytical tools that we will use to prove the results stated in the
introduction.

In Section 2.1 we provide some estimates for the functionals in (1.5) and (1.7). This is the content
of Lemma 2.7, Theorem 2.9 and Corollary 2.11. These results will be employed in Section 3.2 in
order to discuss the environmental scenario where the prey is in proximity of the forager starting
location, and thus to prove Theorems 1.7, 1.8, 1.15 and 1.16. Moreover, we establish the limits of
the Dirichlet functionals in (1.6) and (1.9) as s ↘ 0 as stated in Lemma 2.13. These asymptotics
will be used to prove Theorems 1.6, 1.14, 1.7 and 1.15.

To conclude, in Theorem 2.15 and Corollary 2.16 we show that the Neumann functionals in (1.3),
(1.4), (1.5), (1.7) and (1.8) do not vanish for s ↘ 0, and we provide upper and lower bounds for their
lim inf and lim sup. These results will be used in the proofs of Theorem 1.8 and 1.16.

To prove these results, it is useful to recall some properties regarding the fractional heat kernels rsD
and rsN . It is well-known that for each s ∈ (0, 1) these two kernels can be written for each (t, x, y) ∈
(0,+∞)× Ω× Ω as

(2.1) rsD(t, x, y) =

∫ +∞

0

pΩD(l, x, y)µ
s
t(l) dl and rsN(t, x, y) =

∫ +∞

0

pΩN(l, x, y)µ
s
t(l) dl,

where pΩD and pΩN are the classical Dirichlet and Neumann heat kernels in Ω, while µs
t is the density

of a s-stable subordinator in (0,+∞) (see e.g. Definition 2.4 in [DGV22a]). For a proof of this latter
fact see for instance Propositions 2.8 and 3.5 in [DGV22a].

If s = 1, the kernels r1N and r1D coincide respectively with the classical kernels pΩN and pΩD. Fur-
thermore, we also know that the density µs

t admits the explicit representation formula

(2.2) µs
t(l) =

1

π

∫ +∞

0

e−lu−tus cos(πs) sin(tus sin(πs)) du for all (l, s) ∈ (0,+∞)× (0, 1),

see Proposition 3.1 in [KV18].
Moreover, we also recall the following fact on the spectral representation of rsD and rsN . In what

follows we denote by {ζD,k}k and {ζN,k}k two orthonormal basis of L2(Ω) satisfying

(2.3)

{
−∆ζD,k = βD,kζD,k in Ω,

ζD,k ∈ H1
0 (Ω),

and


−∆ζN,k = βN,kζN,k in Ω,

∂ζN,k

∂ν
= 0 on ∂Ω,

where 0 < βD,1 < βD,2 . . . and 0 = βN,0 < βN,1 < . . . are respectively the eigenvalues of the Laplace
operator with homogeneous Dirichlet and homogeneous Neumann boundary conditions.

Thus, thanks to Theorems 1.8 and 1.20 in [DGV22a], we can rewrite the Dirichlet and Neumann
kernels rsD and rsN as

rsD(t, x, y) =
+∞∑
k=1

ζD,k(x)ζD,k(y) exp(−tβs
D,k)

and rsN(t, x, y) =
+∞∑
k=0

ζN,k(x)ζN,k(y) exp(−tβs
N,k),

(2.4)

for all s ∈ (0, 1] and (t, x, y) ∈ (0,+∞)× Ω× Ω.

Now, we establish some results on µs
t . In what follows we recall a scaling property for the density µs

t

of the s-stable subordinator. For the convenience of the reader the statement is proved.
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Lemma 2.1. Let l ∈ (0,+∞), t ∈ (0,+∞) and s ∈ (0, 1).
Then, we have that

(2.5) µs
t(l) =

1

t
1
s

µs
1

(
l

t
1
s

)
.

Proof. Let α := us cos(πs), β := us sin(πs) and

g(α, β) := e−tα sin(tβ).

With this notation, we integrate by parts the expression on the right-hand side of (2.2) and obtain
that

µs
t(l) = − 1

lπ
e−lug(α, β)

∣∣∣∣+∞

0

+
1

πl

∫ +∞

0

e−lu d

du
g(α, β) du

= 0 +
1

πl

∫ +∞

0

e−lue−tαstus−1(− cos(πs) sin(tβ) + sin(πs) cos(tβ)) du

=
s t

πl

∫ +∞

0

e−lue−tus cos(πs)us−1 sin(πs− tus sin(πs)) du.

(2.6)

We employ the change of variable v = ut
1
s and infer from the last identity that

µs
t(l) =

s

πl

∫ +∞

0

e
− l

t
1
s
v
e−vs cos(πs)vs−1 sin(πs− vs sin(πs)) dv

=
1

t
1
s

st
1
s

πl

∫ +∞

0

e
− l

t
1
s
v
e−vs cos(πs)vs−1 sin(πs− vs sin(πs)) dv

=
1

t
1
s

µs
1

(
l

t
1
s

)
. □

Now, we discuss some asymptotic estimates for the the density µs
t(l) in l. As it is recalled

in [BBK+09] by R. Song and proved by Skorohod in [Sko61], one has that

(2.7) µs
1(l) ∼ 2πΓ(1 + s) sin

(π s

2

) 1

l1+s
, for l → +∞.

Using this estimate and Lemma 2.1 on the time-scaling property of µs
t one obtains an interesting

asymptotic expansion in the forthcoming Lemma 2.2. As a side comment, we point out that the
asymptotic properties of this type of distributions are relevant to understand how the tail of µs

t

changes by varying the fractional parameter s, which in turn provides some important information
about the optimization problem that we analyze in this paper.

Lemma 2.2. Let s ∈ (0, 1) and t ∈ (0,+∞).
Then, we have that

(2.8) µs
t(t) ∼ 2πΓ(1 + s) sin

(π s

2

) t

l1+s
, for l → +∞.

Proof. Thanks to Lemma 2.1, we know that for each s ∈ (0, 1), l ∈ (0,+∞) and t ∈ (0,+∞) one has
that

µs
t(l) =

1

t
1
s

µs
1

(
l

t
1
s

)
.

Thus, using this identity and the estimate in (2.7) one readily obtains that

µs
t(l) ∼

1

t
1
s

2πΓ(1 + s) sin
(πs
2

) t
1+s
s

l1+s

= 2πΓ(1 + s) sin
(πs
2

) t

l1+s
,
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for l → +∞. □

The following theorem provides similar estimates to the one given in (2.8) in the range s ∈
(
0, 1

2

)
.

Here, the constants involved are less accurate than the one appearing in (2.8), but on the other
hand we gain some important information. In particular, while the estimate in (2.8) holds true for

l → +∞, the ones that we prove below are true for each l ∈ (t
1
s ,+∞). This additional information

will be used several times.

Theorem 2.3. Let s ∈
(
0, 1

2

)
and t ∈ (0,+∞).

Then, there exists some constant C1 ∈ (0,+∞), independent of s and l, such that

s tC1

πl1+s
⩽ µs

t(l) for all l ∈
(
t
1
s ,+∞

)
and µs

t(l) ⩽
s tΓ(1 + s)

l1+s
for all l ∈ (0,+∞).

(2.9)

Proof. Thanks to the scaling property proved in Lemma 2.1, it is enough to show the result for t = 1.
Indeed, if for t = 1 the inequalities in (2.9) hold true, then if t > 1 and l ⩾ t

1
s , we have in view

of (2.5) that

µs
t(l) =

1

t
1
s

µs
1

(
l

t
1
s

)
⩾

sC1t

πl1+s
.

The second inequality in (2.9) is proved similarly. For this reason, we focus our attention on the
case t = 1.
We will first prove the second inequality in (2.9). If s ∈

(
0, 1

2

)
, from (2.2) we notice that

µs
1(l) ⩽

sin(πs)

π

∫ +∞

0

e−lutus du ⩽
s

πl1+s
Γ(1 + s),

which conclude the proof of the second inequality in (2.9).
Now we focus on the proof of the first inequality. To do so, we observe that thanks to equation (2.6)

one has that

µs
1(l) =

s

πl

∫ +∞

0

e−lue−us cos(πs)us−1 sin(πs− us sin(πs)) du.

We perform the change of variable lu = θ and obtain that

µ1
s(l) =

s

πl1+s

∫ +∞

0

e−θe−
θs

ls
cos(πs)θs−1 sin

(
πs− θs

ls
sin(πs)

)
dθ

=:
s

πl1+s
f(s, l),

(2.10)

where by construction f(s, l) > 0 for each l ∈ (0,+∞) and s ∈ (0, 1).
Now we observe that, for each θ ⩾ 1 and s ∈

(
0, 1

2

]
,

(2.11)

∣∣∣∣e−θe−
θs

ls
cos(πs)θs−1 sin

(
πs− θs

ls
sin(πs)

)∣∣∣∣ ⩽ e−θ.

Thus, by the Dominated Convergence Theorem we obtain that

lim
s↘0

∫ +∞

1

e−θe−
θs

ls
cos(πs)θs−1 sin

(
πs− θs

ls
sin(πs)

)
dθ = 0.
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Also, by using the change of variable θs = lsz we deduce that∫ 1

0

e−θe−
θs

ls
cos(πs)θs−1 sin

(
πs− θs

ls
sin(πs)

)
dθ

=
ls

s

∫ 1
ls

0

e−lz
1
s e−z cos(πs) sin(πs− z sin(πs)) dz

=ls
∫ +∞

0

χ[0, l−s]e
−lz

1
s e−z cos(πs) sin(πs− z sin(πs))

s
dz.

If s ∈
(
0, 1

3

)
we also notice that∣∣∣∣χ[0, l−s]e

−lz
1
s e−z cos(πs) sin(πs− z sin(πs))

s

∣∣∣∣ ⩽ πe−
z
2 (1 + z),

and therefore, since l ⩾ 1, by the Dominated Convergence Theorem we obtain that

lim
s↘0

∫ 1

0

e−θe−
θs

ls
cos(πs)θs−1 sin

(
πs− θs

ls
sin(πs)

)
dθ = π

∫ 1

0

e−z(1− z) dz.

Consequently, for each l ⩾ 1

(2.12) lim
s↘0

f(s, l) = π

∫ 1

0

e−z(1− z) dz =
π

e
.

We also observe that, if s ∈
(
0, 1

2

]
,∣∣∣∣e−θe−

θs

ls
cos(πs)θs−1 sin

(
πs− θs

ls
sin(πs)

)∣∣∣∣ ⩽ e−θθs−1,

for all θ ∈ (0,+∞).
As a consequence, by the Dominated Convergence Theorem we evince that

(2.13) lim
l→+∞

f(s, l) = sin(πs)Γ(s) > 0,

for all s ∈
(
0, 1

2

]
.

Besides, by the definition of f(s, l), we have that f ∈ C
((
0, 1

2

)
× (1,+∞)

)
and

(2.14) f(s, l) > 0 for all (s, l) ∈
(
0,

1

2

]
× [1,+∞).

Therefore, using (2.12), (2.13) and (2.14) we deduce that there exists some C1 ∈ (0,+∞) such that

C1 ⩽ f(s, l) for all (s, l) ∈
(
0,

1

2

)
× [1,+∞).

In light of this observation and equation (2.10) we deduce that

C1s

πl1+s
⩽ µs

1(l). □

2.1. Structural results for the efficiency functionals. This section is devoted to the study of
the efficiency functionals in equations (1.5), (1.6) and (1.9). In particular, here we develop the main
technical tools that will be employed in the proofs of the results contained in Sections 1.2 and 1.3.

In what follows we adopt the subscript ∗ to refer to the fact that the functional considered can be
the one associated with both the Dirichlet and the Neumann case.
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We begin by recalling here the following estimates for the classical Dirichlet heat kernel in relation
to the classical heat kernel. Using the Weak Maximum Principle for the heat equation one can show
that

(2.15) pΩD(t, x, y) ⩽
1

(4πt)
n
2

exp

(
−|x− y|2

4t

)
for all (t, x, y) ∈ (0,+∞)× Ω× Ω.

On compact subsets of Ω and for finite time spans, one can prove the following lower bound
for pΩD(t, x, y).

Lemma 2.4 (See Lemma 2.1 in [Zha02]). Let Ω ⊂ Rn be bounded, smooth and connected.
Then, there exists a constant TΩ ∈ (0,+∞) such that for each K ⋐ Ω, if we define

(2.16) TK,Ω := min

{
TΩ, min

x∈K

d2(x, ∂Ω)

2

}
,

then there exist two constants c1, c2 ∈ (0,+∞), depending on K and Ω, such that

(2.17) pΩD(t, x, y) ⩾
c1

t
n
2

exp

(
−c2|x− y|2

t

)
for all (t, x, y) ∈ (0, TK,Ω]×K ×K.

Using the Weak Maximum Principle, it is also possible to compare the Neumann heat kernel with
the Dirichlet one, as better specified in the following result.

Theorem 2.5. Let Ω ⊂ Rn be bounded, smooth and connected and K ′ ⋐ Ω.
Then, for each s ∈ (0, 1] we have that

(2.18) rsD(t, x, y) ⩽ rsN(t, x, y) for all (t, x, y) ∈ (0,+∞)× Ω× Ω.

Furthermore, if K ⊆ K ′ ⋐ Ω is star-shaped with respect to some x0 ∈ K, there exist some
constants CK′,Ω, cK′,Ω ∈ (0,+∞) and ε0 ∈ (0, 1), depending on K ′ and Ω, such that

(2.19) rsN(t, x, y) ⩽ CK′,Ωr
s
D(t, xε, yε) + cK′,Ω for all (t, x, y) ∈ (0,+∞)×K ×K,

for each ε ∈ (0, ε0), where (xε, yε) := (εx+ (1− ε)x0, εy + (1− ε)x0).

Proof. We begin by proving the lower bound in (2.18). To do so, we observe that thanks to the
Maximum Principle for the heat equation, one has that

pΩD(t, x, y) ⩽ pΩN(t, x, y) for all (t, x, y) ∈ (0,+∞)× Ω× Ω.

Therefore, using (2.1) and the latter inequality, we obtain that

rsD(t, x, y) =

∫ +∞

0

pΩD(l, x, y)µ
s
t(l) dl ⩽

∫ +∞

0

pΩN(l, x, y)µ
s
t(l) dl = rsN(t, x, y),

for each (t, x, y) ∈ (0,+∞)× Ω× Ω. This concludes the proof of (2.18).
Now we show (2.19). Thanks to Theorem 3.2.9 in [Dav89], we have that there exists some con-

stant cΩ such that

(2.20) pΩN(t, x, y) ⩽ cΩ max

{
1,

1

t
n
2

}
exp

(
−|x− y|2

6t

)
for all (t, x, y) ∈ (0,+∞)× Ω× Ω.

Furthermore, if K ⊆ K ′ ⋐ Ω, thanks to Lemma 2.4 we obtain that

(2.21) pΩD(t, x, y) ⩾
c1

t
n
2

exp

(
−c2|x− y|2

t

)
for all (t, x, y) ∈ (0, TK′,Ω]×K ′ ×K ′,

where TK′,Ω is introduced in (2.16) and c1, c2 depends on K ′ and Ω.
Up to a translation we can assume that K is star-shaped with respect to x0 = 0. Now we observe

that there exists two constants CK′,Ω ∈ (0,+∞) and ε0 ∈ (0, 1), such that

CK′,Ωc1 ⩾ cΩ and c2ε
2 ⩽

1

6
for all ε ∈ (0, ε0).
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As a consequence, if for each ε ∈ (0, ε0) we call (xε, yε) = ε(x, y), then from (2.20) and (2.21) we
obtain that

CK′,Ωp
Ω
D(t, xε, yε)− pΩN(t, x, y) ⩾ CK′,Ω

c1

t
n
2

exp

(
−c2|xε − yε|2

t

)
− cΩ

t
n
2

exp

(
−|x− y|2

6t

)
=

cΩ

t
n
2

(
CK′,Ω

c1
cΩ

exp

(
−ε2c2

|x− y|2

t

)
− exp

(
−|x− y|2

6t

))
⩾

cΩ

t
n
2

exp

(
−|x− y|2

6t

)(
exp

(
−
(
ε2c2 −

1

6

)
|x− y|2

t

)
− 1

)
⩾ 0,

(2.22)

for each (t, x, y) ∈ (0, TK′,Ω]×K ×K.
Thus, using equation (2.1) and the relation in (2.22) we obtain that

rsN(t, x, y) =

∫ +∞

0

pΩN(l, x, y)µ
s
t(l) dl

=

∫ TK′,Ω

0

pΩN(l, x, y)µ
s
t(l) dl +

∫ +∞

TK′,Ω

pΩN(l, x, y)µ
s
t(l) dl

⩽ CK′,Ω

∫ TK′,Ω

0

pΩD(l, xε, yε)µ
s
t(l) dl + cΩ

∫ +∞

TK′,Ω

max

{
1,

1

l
n
2

}
exp

(
−|x− y|2

6l

)
µs
t(l) dl

⩽ CK′,Ω

∫ +∞

0

pΩD(l, xε, yε)µ
s
t(l) dl + cK′,Ω

= CK′,Ωr
s
D(t, xε, yε) + cK′,Ω,

for each (t, x, y) ∈ (0,+∞)×K ×K, where we defined

□(2.23) cK′,Ω := max
x,y∈K′

max
l∈[TK,Ω,+∞)

cΩmax

{
1,

1

l
n
2

}
exp

(
−|x− y|2

6l

)
.

As a useful consequence of Theorem 2.5, we obtain that it is possible to compare the Neumann
functional ΦN with the Dirichlet one ΦD. The result goes as follows:

Corollary 2.6. Let Ω ⊂ Rn be bounded, smooth and connected and K ′ ⋐ Ω.
Then, for each s ∈ (0, 1] and T ∈ (0,+∞) it holds that

(2.24) Φx,y
D (s, T ) ⩽ Φx,y

N (s, T ) for all (x, y) ∈ C,
where C has been given in (2.35).

Furthermore, for each K ⊆ K ′ ⋐ Ω star-shaped with respect to some x0 ∈ K, s ∈ (0, 1) and T ∈
(0,+∞), there exists some ε0 ∈ (0, 1) such that

(2.25) Φx,y
N (s, T ) ⩽ CK′,ΩΦxε,yε

D (s, T ) + cK′,Ω T for all (x, y) ∈ C ∩ (K ×K),

for each ε ∈ (0, ε0), where (xε, yε) := (εx+ (1− ε)x0, εy + (1− ε)x0) and CK′,Ω, cK′,Ω ∈ (0,+∞) are
given in Theorem 2.5.

Proof. Inequalities (2.24) and (2.25) are respectively obtained by integrating over the time t in (0, T )
both sides of (2.18) and (2.19). □

In Lemma 2.7 below we establish a lower bound for Φx,y
∗ (s, T ), for x ∈ Ω in a sufficiently small

neighborhood of y ∈ Ω.
This estimate is pivotal to determine the asymptotic behavior of the functionals in (1.6) when x

approaches y, providing some information on the best search strategy in the environmental scenario
addressed in Section 1.3, namely where the forager starts its search in proximity of the target.
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Lemma 2.7. Let Ω ⊂ Rn be bounded, smooth and connected. If (y, T ) ∈ Ω× (0,+∞) and s ∈ (0, 1),

then there exists some δ̂ = δ̂s,y,T,Ω ∈ (0,+∞) such that, for each x, z ∈ Bδ̂(y) satisfying x ̸= z,

(2.26) Φx,z
∗ (s, T ) ⩾

Cs,y,Ω

|x− z|n−2s
,

for some constant Cs,y,Ω ∈ (0,+∞).

Proof. In virtue of inequality (2.24) it is enough to show the result for ΦD.

Let y ∈ Ω and let us denote dy :=
d(y,∂Ω)

2
, where

d(y, ∂Ω) := inf
x∈∂Ω

|x− y|.

With this notation we set By := Bdy(y).
Now, by (2.16) and (2.17) (used here with K := By),

(2.27) pΩD(t, x, z) ⩾
c1

t
n
2

exp

(
−c2|x− z|2

t

)
for all (t, x, z) ∈ (0, TBy ,Ω]×By ×By.

We also observe that for each x, z ∈ Rn such that x ̸= z, the function

g(t) :=
c1

t
n
2

exp

(
−c2|x− z|2

t

)
has a maximum in εx,z :=

2c2
n
|x− z|2 and it is increasing in (0, εx,z) and decreasing in (εx,z,+∞).

We set

ls,y,T := min
{
TBy ,Ω, T

1
s

}
and we choose δ̂ = δ̂s,y,T,Ω such that

(2.28) δ̂s,y,T,Ω := min

{(
nls,y,T
2c2

) 1
2

, dy

}
.

It follows that if x, z ∈ Bδ̂(y) with x ̸= z, then εx,z ⩽ ls,y,T and x, z ∈ By.
To simplify the notation, we simply write ε = εx,z. In this way, by (2.1) and (2.27), if x, z ∈ Bδ̂(y)

and x ̸= z we have that

Φx,z
D (s, T ) =

∫ T

0

∫ +∞

0

pΩD(l, x, z)µ
s
t(l) dl dt

⩾
∫ εs

0

∫ ε

ε
2

pΩD(l, x, z)µ
s
t(l) dl dt

⩾
∫ εs

0

∫ ε

ε
2

c1

l
n
2

exp

(
−c2|x− z|2

l

)
µs
t(l) dl dt

⩾
C

ε
n
2

∫ εs

0

∫ ε

ε
2

µs
t(l) dl dt

(2.29)

where we set C := c12
n
2 e−n.

Now we substitute µs
t in (2.29) with the expression in (2.2) and obtain that

Φx,z
D (s, T ) ⩾

C

πε
n
2

∫ εs

0

∫ ε

ε
2

∫ +∞

0

e−lu−tus cos(πs) sin(tus sin(πs)) du dl dt

=
C

πε
n
2

∫ ε

ε
2

∫ +∞

0

∫ εs

0

e−lu−tus cos(πs) sin(tus sin(πs)) dt du dl.

=: L.

(2.30)
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Setting F (t) := e−tα sin(tβ), with α := us cos(πs) and β := us sin(πs), for each T ∈ (0,+∞) we
integrate by parts and see that∫ T

0

F (t) dt = − 1

α
e−tα sin(tβ)

∣∣∣∣T
0

+
β

α

∫ T

0

e−tα cos(tβ) dt

= − 1

α
e−Tα sin(Tβ)− β

α2
e−tα cos(tβ)

∣∣∣∣T
0

− β2

α2

∫ T

0

e−tα sin(tβ) dt

= − 1

α
e−Tα sin(Tβ)− β

α2
e−Tα cos(Tβ) +

β

α2
− β2

α2

∫ T

0

F (t) dt.

Therefore, by replacing α and β with their corresponding values, one obtains that∫ T

0

F (t) dt

=− cos(πs)

us
e−Tus cos(πs) sin(Tus sin(πs))− sin(πs)

us
e−Tus cos(πs) cos(Tus sin(πs)) +

sin(πs)

us

=
1

us

(
sin(πs)− e−Tus cos(πs) sin(Tus sin(πs) + πs)

)
.

(2.31)

By (2.30), (2.31) and the change of variables (U,L) =
(
uε, l

ε

)
one obtains that

L =
C

πε
n
2

∫ ε

ε
2

∫ +∞

0

e−lu

us

(
sin(πs)− e−εsus cos(πs) sin(πs+ εsus sin(πs))

)
du dl

=
C

πε
n
2
−s

∫ 1

1
2

∫ +∞

0

e−LU

U s

(
sin(πs)− e−Us cos(πs) sin(πs+ U s sin(πs))

)
dU dL

=:
C

πε
n
2
−s

Js,

(2.32)

where Js does not depend on ε and is defined by

(2.33) Js :=

∫ 1

1
2

∫ +∞

0

e−LU

U s

(
sin(πs)− e−Us cos(πs) sin(πs+ U s sin(πs))

)
dU dL.

Note also that by construction

Js =
1

εs

∫ ε

ε
2

∫ εs

0

µs
t(l) dt dl,

which means that Js ∈ (0,+∞), since µs
t(l) ∈ (0,+∞) for each s, t and l.

Accordingly, from (2.30) and (2.32),

Φx,z
D (s, T ) ⩾

Cπ−1

εn−2s
Js

=
2s e−n c1 n

n
2
−s

πc
n
2
−s

2 |x− z|n−2s
Js

⩾
Cy,Ω

|x− z|n−2s
Js

=
Cs,y,Ω

|x− z|n−2s
,

where we have defined

□(2.34) Cy,Ω := min
s∈(0,1)

2s e−n c1 n
n
2
−s

π c
n
2
−s

2

and Cs,y,Ω := Cy,ΩJs.



22 SERENA DIPIERRO, GIOVANNI GIACOMIN, AND ENRICO VALDINOCI

As a consequence of Lemma 2.7, we have that if x approaches y, then the functional Φx,y
∗ (s, T )

diverges to infinity as far as n > 2s.
In the following result we make this statement precise. In particular, we show that divergence

holds true as far as n ⩾ 2s.
Before stating the result, we define

(2.35) C := (Ω× Ω) \ {(p, p) s.t. p ∈ Ω} =
{
(p, q) ∈ Ω× Ω s.t. p ̸= q

}
.

Theorem 2.8. Let Ω ⊂ Rn be bounded, smooth and connected and T ∈ (0,+∞). If n ⩾ 2 or n = 1
and s ∈

(
0, 1

2

]
we have that

lim
(x,y)→(z,z)

Φx,y
∗ (s, T ) = +∞(2.36)

and Φz,z
∗ (s, T ) = +∞,(2.37)

for each z ∈ Ω.

Proof. We will prove only the Dirichlet case, since the Neumann one follows easily from the Dirichlet
one and (2.18).

We first focus on the proof of (2.37). Using the identity (2.1), equations (2.16) and (2.17) together
with the formula in (2.2) we deduce that if

δs,x,T := min
{
Tx,Ω, T

1
s

}
,

where Tx,Ω is given in (2.16), then for each δ ∈ (0, δs,x,T ) it holds that

Φx,x
D (s, T ) =

∫ T

0

∫ +∞

0

pΩD(l, x, x)µ
s
t(l) dl dt

=

∫ +∞

0

pΩD(l, x, x)

∫ T

0

µs
t(l) dt dl

⩾
∫ δ

0

c1

l
n
2

∫ δs

0

µs
t(l) dt dl

=
1

π

∫ δ

0

c1

l
n
2

∫ δs

0

∫ +∞

0

e−lu−tus cos(πs) sin (tus sin(πs)) du dt dl

⩾
c1

πδ
n
2

∫ δ

0

∫ +∞

0

∫ δs

0

e−lu−tus cos(πs) sin(tus sin(πs)) dt du dl,

(2.38)

where c1 is introduced in (2.17).
Now, equations (2.31) and (2.38) together with the change of variables (L,U) =

(
l
δ
, uδ
)
yield

Φx,x
D (s, T ) ⩾

c1

πδ
n
2

∫ δ

0

∫ +∞

0

∫ δs

0

e−lu−tus cos(πs) sin(tus sin(πs)) dt du dl

=
c1

πδ
n
2

∫ δ

0

∫ +∞

0

e−lu 1

us

(
sin(πs)− e−δsus cos(πs) sin(δsus sin(πs) + πs)

)
du dl

=
c1

πδ
n
2
−s

∫ 1

0

∫ +∞

0

e−LU 1

U s

(
sin(πs)− e−Us cos(πs) sin(U s sin(πs) + πs)

)
dU dL

=:
c1

πδ
n
2
−s

Gs.

(2.39)

We also observe that Gs does not depend on δ and by construction

Gs =
1

δs

∫ δ

0

∫ δs

0

µs
t(l) dt dl,
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which means that Gs ∈ (0,+∞), since µs
t(l) ∈ (0,+∞) for each s ∈ (0, 1), t ∈ (0,+∞) and l ∈

(0,+∞).
Therefore, recalling equation (2.39) we deduce that

Φx,x
D (s, T ) ⩾ lim

δ↘0

c1

πδ
n
2
−s

Gs = +∞.

if either n ⩾ 2 or n = 1 and s ∈
(
0, 1

2

)
.

Hence, to complete the proof of (2.37), it is left to consider the case n = 1 and s = 1
2
. When s = 1

2

equation (2.2) boils down to

(2.40) µ
1
2
t (l) =

1

π

∫ +∞

0

e−lu sin
(
tu

1
2

)
du.

Therefore, using the latter identity, (2.16) and (2.17) we obtain that there exists Tx,Ω ∈ (0,+∞) such
that if δ ∈ (0, Tx,Ω) then

Φx,x
D

(
1

2
, T

)
=

∫ T

0

∫ +∞

0

pΩD(l, x, x)µ
1
2
t (l) dl dt

⩾
∫ δ

0

∫ T

0

pΩD(l, x, x)µ
1
2
t (l) dt dl

⩾ c1

∫ δ

0

∫ T

0

1

l
1
2

µ
1
2
t (l) dt dl

=
c1
π

∫ δ

0

∫ T

0

∫ +∞

0

1

l
1
2

e−lu sin
(
tu

1
2

)
du dt dl

=
c1
π

∫ δ

0

∫ +∞

0

∫ T

0

1

l
1
2

e−lu sin
(
tu

1
2

)
dt du dl

=
c1
π

∫ δ

0

∫ +∞

0

1

l
1
2

e−lu
(
1− cos

(
Tu

1
2

)) 1

u
1
2

du dl,

where c1 ∈ (0,+∞) has been introduced in (2.17).
Furthermore, by making the change of variable lu = a in the l variable we deduce that

Φx,x
D

(
1

2
, T

)
⩾

c1
π

∫ +∞

0

∫ δu

0

e−a

a
1
2

(
1− cos

(
Tu

1
2

)) 1

u
da du

⩾
c1
π

∫ +∞

1
δ

∫ δu

0

e−a

a
1
2

(
1− cos

(
Tu

1
2

)) 1

u
da du

=: I.

(2.41)

We also observe that for each u ⩾ 1
δ
one has that

0 < c :=

∫ 1

0

e−a

a
1
2

da ⩽
∫ δu

0

e−a

a
1
2

da ⩽ Γ

(
1

2

)
.

Moreover, defining

k̃ := min

{
k ∈ N s.t. k ⩾ −1

4
+

T

2πδ
1
2

}
,
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we find that
(

π
2T

+ 2πk̃
T

)2
> 1

δ
, and thus we deduce from (2.41) that

I ⩾
cc1
π

∫ +∞

1
δ

1− cos
(
Tu

1
2

)
u

du

⩾
cc1
π

+∞∑
k=k̃

∫ ( 3π
2T

+ 2πk
T )

2

( π
2T

+ 2πk
T )

2

du

u

=
2cc1
π

+∞∑
k=k̃

ln

( 3π
2k

+ 2π
π
2k

+ 2π

)
=: II.

Therefore, using Taylor’s expansion we infer that there exists some K̃ ∈ N with K̃ ⩾ k̃ such that

(2.42) II ⩾
2cc1
π

+∞∑
k=K̃

1

2k
+ o

(
1

k2

)
= +∞.

This concludes to proof of (2.37).
Now we prove (2.36). If n > 2s, equation (2.36) is a direct consequence of inequality (2.26).

Therefore, to conclude the proof of (2.36) it is left to show the case n = 1 and s = 1
2
. In order to

achieve this, we observe that if Vx ⋐ Ω is some neighborhood of x in Ω, then there exists some k0 ∈ N
such that for each k ⩾ k0 it holds that (xk, yk) ∈ Vx × Vx.
Thus, if we define εk := |xk − yk|2, in view of (2.16) and (2.17), and recalling (2.40), we obtain

that, if k ⩾ k0,

Φxk,yk
D

(
1

2
, T

)
=

∫ T

0

∫ +∞

0

pΩD(l, xk, yk)µ
1
2
t (l) dl dt

=

∫ +∞

0

∫ T

0

pΩD(l, xk, yk)µ
1
2
t (l) dt dl

⩾
1

π

∫ TVx,Ω

0

∫ T

0

∫ +∞

0

c1

l
1
2

exp
(
−c2εk

l

)
e−lu sin

(
tu

1
2

)
du dt dl,

=
1

π

∫ TVx,Ω

0

∫ +∞

0

c1

l
1
2

exp
(
−c2εk

l

)
e−lu

(
1− cos

(
Tu

1
2

))
u

1
2

du dl

⩾
c1
π

∫ +∞

2
TVx,Ω

∫ 2
u

1
u

1

l
1
2

exp
(
−c2εk

l

)
e−lu

(
1− cos

(
Tu

1
2

))
u

1
2

dl du

(2.43)

where TVx,Ω ∈ (0,+∞) and c1, c2 ∈ (0,+∞) are given respectively in (2.16) and (2.17).

Now we choose j̃, j(εk) ∈ N such that

j̃ := min

{
j ∈ N s.t. j ⩾

T

2π

(
2

TVx,Ω

) 1
2

− 1

4

}

and j(εk) := max

{
j ∈ N s.t. j ⩽

T

2πε
1
2
k

− 3

4

}
.

Note that if εk is chosen small enough, then j̃ < j(εk).
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With this choices one has that

(2.44)

(
π

2T
+

2πj̃

T

)2

⩾
2

TVx,Ω

and

(
3π

2T
+

2πj(εk)

T

)2

⩽
1

εk
.

Therefore, with this latter notation we obtain from (2.43) that

Φxk,yk
D

(
1

2
, T

)
⩾

c1
π

j(εk)∑
j=j̃

∫ ( 3π
2T

+ 2πj
T )

2

( π
2T

+ 2πj
T )

2

∫ 2
u

1
u

1

l
1
2

exp
(
−c2εk

l

)
e−lu 1

u
1
2

dl du

⩾
c1
π

j(εk)∑
j=j̃

∫ ( 3π
2T

+ 2πj
T )

2

( π
2T

+ 2πj
T )

2

∫ 2
u

1
u

exp (−c2uεk) e
−2 dl du

=
c1e

−2

π

j(εk)∑
j=j̃

∫ ( 3π
2T

+ 2πj
T )

2

( π
2T

+ 2πj
T )

2

1

u
exp (−c2uεk) du.

Now, we deduce from (2.44) that since u ⩽
(

3π
2T

+ 2πj(εk)
T

)2
, then uεk ⩽ 1, and thus from the latter

computations we obtain that

Φxk,yk
D

(
1

2
, T

)
⩾

c1e
−c2

πe2

j(εk)∑
j=j̃

∫ ( 3π
2T

+ 2πj
T )

2

( π
2T

+ 2πj
T )

2

1

u
du

=
2c1e

−c2

πe2

j(εk)∑
j=j̃

ln

( 3π
2k

+ 2π
π
2k

+ 2π

)
.

(2.45)

As we observed in (2.42), one has that

+∞∑
k=1

ln

( 3π
2k

+ 2π
π
2k

+ 2π

)
= +∞.

With reference to that, from (2.45) and the latter observation we obtain that

lim
k→+∞

Φxk,yk
D

(
1

2
, T

)
⩾ lim

k→+∞

2c1e
−c2

πe2

j(εk)∑
j=j̃

ln

( 3π
2k

+ 2π
π
2k

+ 2π

)
=

2c1e
−c2

πe2

+∞∑
j=j̃

ln

( 3π
2k

+ 2π
π
2k

+ 2π

)
= +∞.

This completes the proof of (2.36). □

In the following result we give some upper bounds for the functional Φx,y
∗ (s, T ). These estimates,

together with the lower bound in (2.26), will turn out to be pivotal in order to determine the most
rewarding search strategy in a regime where the initial position of the forager is close to the one of
the prey, and thus prove Theorems 1.7 and 1.8.

In the Dirichlet framework, the behavior of the functional Φx,y
D (s, T ) for x approaching y could be

deduced from the already known estimates on the Green function GΩ
D(x, y) of the Dirichlet spectral

fractional Laplacian, see Theorem 5.4 in [SV03].
Indeed, the Green function is given by

GΩ
D(x, y) :=

∫ +∞

0

rsD(t, x, y) dt,

for x ̸= y, and therefore
Φx,y

D (s, T ) ⩽ GΩ
D(x, y),

for each (x, y, T ) ∈ Ω× Ω× (0,+∞) with x ̸= y and s ∈ (0, 1).
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Nevertheless, for our optimization purposes we need upper bounds where the dependence of the
constants on the fractional exponent s ∈ (0, 1) is known. In this sense, the inequalities provided in
the following result are more suitable in this context than the ones available in the literature for GΩ

D.
Before stating and proving the theorem, we fix the following notation. For each n ∈ N and s ∈ (0, 1)

we define the set

(2.46) An,s :=
(
0, 1 +

n

2
− s
)
∩
[n
2
− s, 1 +

n

2
− s
)
,

Theorem 2.9. Let Ω ⊂ Rn be bounded, smooth and connected. Moreover, let K ⋐ Ω be star-shaped
with respect to some x0 ∈ K.
Then, for each s ∈ (0, 1) and T ∈ (0,+∞), there exists some C∗,K,T,Ω ∈ (0,+∞) such that if n ⩾ 3

then

(2.47) Φx,y
∗ (s, T ) ⩽

C∗,K,T,Ω

|x− y|n−2s
for all (x, y) ∈ C ∩ (K ×K),

where C is given in (2.35).
Furthermore, if n ⩽ 2, s ∈ (0, 1) and µ ∈ An,s there exists some C∗,µ,K,T,Ω ∈ (0,+∞) such that

(2.48) Φx,y
∗ (s, T ) ⩽

C∗,µ,K,T,Ω

|x− y|2µ
for all (x, y) ∈ C ∩ (K ×K),

where An,s is defined (2.46).

Proof. We will first show the result for the Dirichlet case. To this aim, we recall the following identity

(2.49)

∫ +∞

0

rsD(t, x, y) dt =
1

Γ(s)

∫ +∞

0

pΩD(t, x, y)t
s−1 dt for all (x, y) ∈ C,

see for instance equation (2.4) in [SV03]. For the convenience of the reader we give a proof of it in
the appendix, see Proposition A.1.

We first prove (2.47). If ((x, y), T ) ∈ C × (0,+∞), thanks to the identity in (2.49) we have that

Φx,y
D (s, T ) =

∫ T

0

rsD(t, x, y) dt ⩽
∫ +∞

0

rsD(t, x, y) dt =
1

Γ(s)

∫ +∞

0

pΩD(t, x, y)t
s−1 dt.

Using inequality (2.15) and the change of variable a = |x−y|2
4t

we obtain that

Φx,y
D (s, T ) ⩽

1

Γ(s)

∫ +∞

0

ts−1

(4πt)
n
2

exp

(
−|x− y|2

4t

)
dt

=
4−s

π
n
2Γ(s)

1

|x− y|n−2s

∫ +∞

0

a
n
2
−1−se−a da

=
4−s

π
n
2Γ(s)

Γ
(
n
2
− s
)

|x− y|n−2s
.

(2.50)

Thus, by defining the constant

(2.51) CD := sup
s∈(0,1)

4−s

π
n
2Γ(s)

Γ
(n
2
− s
)
,

we conclude the proof of (2.47) for the Dirichlet case.
Now, we prove (2.48). To this end, we observe that there exists some constant c3 ∈ (0,+∞),

depending on Ω, such that for all γ ∈ [0, 1) it holds that

(2.52) pΩD(t, x, y) ⩽
c3

t
n
2
+γ

exp

(
−|x− y|2

6t

)
for all (t, x, y) ∈ (0,+∞)× Ω× Ω,

see for instance Theorem 4.6.9 in [Dav89].
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Accordingly, using the identity given in equation (2.49) and the inequality in equation (2.52), we
deduce that

Φx,y
D (s, T ) =

∫ T

0

rsD(t, x, y) dt

⩽
∫ +∞

0

rsD(t, x, y) dt

=
1

Γ(s)

∫ +∞

0

pΩD(t, x, y)t
s−1 dt

⩽
c3

Γ(s)

∫ +∞

0

1

t
n
2
+γ−s+1

exp

(
−|x− y|2

6t

)
dt

=
c3

Γ(s)

∫ +∞

0

(6θ)
n
2
+γ−s−1

|x− y|n−2(s−γ)
e−θ dθ

=
Cs,γ,n,Ω

Γ(s)

1

|x− y|n−2(s−γ)
,

(2.53)

where we applied the change of variable θ = |x−y|2
4t

and we defined

Cs,γ,n,Ω := c36
n
2
+γ−s−1Γ

(n
2
+ γ − s

)
,

for all γ ∈
(
s− n

2
, 1
)
∩ [0, 1).

Now, we observe that if we define µ := n
2
+ γ− s, then µ ∈

(
0, 1 + n

2
− s
)
∩
[
n
2
− s, 1 + n

2
− s
)
, and

equation (2.53) becomes

(2.54) Φx,y
D (s, T ) ⩽

c3
Γ(s)

6µ−1 Γ(µ)

|x− y|2µ
⩽

CD,µ

|x− y|2µ
,

where we defined

(2.55) CD,µ := sup
s∈(0,1)

c3
Γ(s)

6µ−1Γ(µ).

This concludes the proof of (2.48) for the Dirichlet case.
Employing the result in Corollary 2.6 we prove now (2.47) and (2.48) for the Neumann case.

Let K ⋐ Ω and, up to a translation, let us assume that it is star-shaped with respect to x0 = 0.
Then, if T ∈ (0,+∞), n ⩾ 3 and s ∈ (0, 1) using equations (2.50) and (2.25) with K ′ = K we

obtain the existence of some cK,Ω, CK,Ω ∈ (0,+∞) and ε0 ∈ (0, 1), depending on K and Ω, such that

Φx,y
N (s, T ) ⩽ CK,ΩΦ

xε,yε
D (s, T ) + cK,ΩT ⩽ CK,Ω

CDε
2s−n

|x− y|n−2s
+ cK,ΩT,

for all ε ∈ (0, ε0) and (x, y) ∈ C ∩ (K ×K).
Consequently, if in the last equation we choose ε1 ∈ (0, ε0) such that

(2.56) ε1 ⩽ inf
s∈(0,1)

(
CK,ΩCD

d2s−n
K

cK,ΩT

) 1
n−2s

,

which depends on K,Ω and T , we obtain that for all (x, y) ∈ C ∩ (K×K) and s ∈ (0, 1) it holds that

Φx,y
N (s, T ) ⩽

CK,T,Ω

|x− y|n−2s
,

with

(2.57) CK,T,Ω := 2 sup
s∈(0,1)

Cnε
2s−n
1 CK,Ω.
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Analogously, if n ⩽ 2, s ∈ (0, 1) and µ ∈ An,s, then one deduces from (2.54) and (2.25) that

Φx,y
N (s, T ) ⩽ CK,ΩΦ

xε,yε
D (s, T ) + cK,ΩT ⩽ CK,Ω

CD,µε
−2µ

|x− y|2µ
+ cK,ΩT,

for all ε ∈ (0, ε0) and (x, y) ∈ C ∩ (K ×K).
As a result, if we choose some ε2 ∈ (0, ε0) satisfying

(2.58) ε2µ2 ⩽ CK,ΩCD,µ
d−2µ
K

cK,ΩT
,

which depends on µ,K,Ω and T , we obtain that for all (x, y) ∈ K and s ∈ (0, 1) it holds that

Φx,y
N (s, T ) ⩽

Cµ,K,T,Ω

|x− y|2µ
,

where we set

□(2.59) Cµ,K,T,Ω := 2CK,ΩCµ,Ωε
−2µ
2 .

Remark 2.10. We note that for the Dirichlet case we obtained that the constants in equation (2.47)
and (2.48) can be chosen independently from K and T . In particular, we have proved that if n ⩾ 3,
then

(2.60) Φx,y
D (s, T ) ⩽

4−s

π
n
2

Γ
(
n
2
− s
)

|x− y|n−2s

for all (x, y) ∈ C. If n ⩽ 2 and µ ∈ An,s, where An,s is given in (2.46), then

(2.61) Φx,y
D (s, T ) ⩽

6µ−1c3
Γ(s)

Γ(µ)

|x− y|2µ
,

for all (x, y) ∈ C.

We now turn our attention to the functional Φ̃Ω1,Ω2
∗ defined in (1.7). For this, it is convenient, for

every bounded and measurable sets Ω1,Ω2 ⊂ Rn and each s ∈ (0, 1), to define

(2.62) FΩ1,Ω2(s) :=

∫
Ω1×Ω2

1

|x− y|n−2s
dx dy.

As a direct consequence of Lemma 2.7 and Theorem 2.9 we obtain the following upper and lower

bounds for Φ̃Ω1,Ω2
∗ . These bounds will play a crucial role in proving Theorems 1.15 and 1.16.

Corollary 2.11. Let Ω ⊂ Rn be bounded, smooth and connected, K ⋐ Ω be star-shaped with respect
to some x0 ∈ K and ε0 ∈ (0, 1) be given as in Theorem 2.6.
Then, for each s ∈ (0, 1) and T ∈ (0,+∞), if n ⩾ 3, we have that

(2.63) Φ̃Ω1,Ω2
∗ (s, T ) ⩽

C∗,K,T,Ω

|Ω1||Ω2|
FΩ1,Ω2(s) for all Ω1,Ω2 ⊂ K,

where FΩ1,Ω2 is given in (2.62).
Furthermore, if n ⩽ 2, s ∈ (0, 1) and µ ∈ An,s, where An,s is given in (2.46), one has that

(2.64) Φ̃Ω1,Ω2
∗ (s, T ) ⩽

C∗,µ,K,T,Ω

|Ω1||Ω2|
FΩ1,Ω2

(
n− 2µ

2

)
for all Ω1,Ω2 ⊂ K.

Moreover, for all s ∈ (0, 1] we have that

(2.65) Φ̃Ω1,Ω2
∗ (s, T ) ⩾

Cs,y,Ω

|Ω1||Ω2|
FΩ1,Ω2(s),

with Cs,y,Ω defined in (2.34).
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The following result is devoted to the proof of the continuity of the functionals Φ∗, l∗ and A∗ with
respect to the space, time and fractional variables. Also, we show that if n < 2s then the limit
in (2.36) is finite, and similarly Φz,z

∗ (s, T ) < +∞ for each z ∈ Ω.

Proposition 2.12. Let Ω ⊂ Rn be open, bounded, smooth and connected.
Then, Φx,y

∗ (s, T ) ∈ (0,+∞) for all (s, (x, y), T ) ∈ (0, 1]× C × (0,+∞) and Φx,y
∗ (s, T ) ∈ C((0, 1]×

C × (0,+∞)), where C is given in (2.35).
Also, if n = 1, then Φx,y

∗ (s, T ) ∈ C
((

1
2
, 1
]
× Ω× Ω× (0,+∞)

)
.

Moreover, for each T ∈ (0,+∞) there exists some M ∈ (0,+∞) such that lyN(s, T ), A
y
N(s, T ) ∈

(0,M) for all (s, y) ∈ (0, 1]× Ω and ly∗(s, T ), Ay
∗(s, T ) ∈ C ((0, 1]× Ω× (0,+∞)).

Furthermore, there exists some M ∈ (0,+∞) such that lyD(s, T ), A
y
D(s, T ) ∈ (0,M) for all (s, y, T ) ∈

(0, 1]× Ω× (0,+∞)

Proof. The positivity of the functionals follows from (1.3), (1.4) and the fact that rs∗(t, x, y) is strictly
positive for all (t, x, y) ∈ (0,+∞)× Ω× Ω, see for instance Corollaries 2.15 and 3.12 in [DGV22a].
Now we establish the continuity statement. Thanks to equation (2.4) we have that

rs∗(t, x, y) =
+∞∑
k=0

ζ∗,k(x)ζ∗,k(y) exp(−tβs
∗,k),

and each term of the series is continuous in (s, t, x, y) ∈ (0, 1]× (0,+∞)× Ω× Ω.
Furthermore, thanks to Proposition A.1 and Lemma A.2 in [DGV22a], we have the existence of

some M ∈ N such that for each ε ∈ (0, 1] and δ ∈ (0,+∞) it holds that

+∞∑
k=0

∥ζ∗,k(x)ζ∗,k(y) exp
(
−tβs

∗,k
)
∥C0(Ω×Ω×(ε,1)×(δ,+∞))

⩽
M∑
k=0

∥ζ∗,k(x)ζ∗,k(y) exp
(
−tβs

∗,k
)
∥C0(Ω×Ω×(ε,1)×(δ,+∞)) + C2

∗,m0,Ω,0

+∞∑
k=M

β
2α(m0)
∗,k exp

(
−δβε

∗,k
)

<+∞,

where C∗,m0,Ω,0 and α(m0) are positive constants given in Proposition A.1.
Consequently, rs∗(t, x, y) is continuous for all (s, t, x, y) ∈ (0, 1]× (0,+∞)× Ω× Ω.
Suppose now that (ξ, y) ∈ C, and that {(sk, Tk, yk)}k ⊂ (0, 1]× (0,+∞)×Ω satisfies (sk, Tk, yk) →

(s, T, y) ∈ (0, 1]× (0,+∞)×Ω. Then, since rs∗(t, ξ, y) is continuous for all (s, y) ∈ (0, 1]×Ω, we have
that

rsk∗ (t, ξ, yk)χ(0,Tk)(t) → rs∗(t, ξ, y)χ(0,T )(t),

for almost every t ∈ (0,+∞).

Moreover, if T̃ := supk∈N Tk, then using equations (2.1), (2.15) and (2.20) we obtain that

χTk
(t)rsk∗ (t, ξ, yk) ⩽ χT̃ (t)

∫ +∞

0

pΩ∗ (l, ξ, yk)µ
sk
t (l) dl

⩽ χT̃ (t)

∫ +∞

0

C∗,l exp

(
−|ξ − yk|2

4l

)
µsk
t (l) dl

⩽ χT̃ (t)M∗

∫ +∞

0

µsk
t (l) dl

= χT̃ (t)M∗,

(2.66)

where we defined

M∗ := sup
l∈(0,+∞)

sup
k∈N

C∗,l exp

(
−|ξ − yk|2

4l

)
.
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The last function in (2.66) is in L1((0,+∞)), and thus by the Dominated Convergence Theorem
we obtain that Φξ,y

∗ (s, T ) is continuous for all (s, y, T ) ∈ (0, 1] × (Ω \ {ξ}) × (0,+∞), and since it
is symmetric with respect to the space variables, we deduce the continuity for all (s, (ξ, y), T ) ∈
(0, 1]× C × (0,+∞).

If n = 1 the eigenfunctions ζ∗,k’s are uniformly bounded in L∞(Ω) and the eigenvalues β∗,k’s are
proportional to k2, for each k ⩾ 1. More precisely, there exist two positive constants C∗, c∗ > 0 such
that

c∗k
2 ⩽ β∗,k ⩽ C∗k

2,

for each k ⩾ 1, see for instance [Pro87].
Therefore, we have that

rs∗(t, x, y) =
+∞∑
k=0

ζ∗,k(x) ζ∗,k(y) exp(−tβs
∗,k)

⩽
+∞∑
k=0

∥ζ∗,k∥2L∞(Ω) exp(−tβs
∗,k)

⩽ M2
∗

+∞∑
k=0

exp(−tcs∗k
2s)

=: f∗,s(t),

(2.67)

where ∥ζ∗,k∥L∞(Ω) ⩽ M∗ for some M∗ ∈ (0,+∞) and we adopted the convention ζD,0 = 0 = βD,0.

Thus, if s, sk ∈
(
1
2
, 1
]
, then we can choose also (ξ, y) ∈ Ω×Ω, indeed thanks to (2.67) we have that

χTk
(t)rsk∗ (t, ξ, yk) ⩽ χT̃ (t) infk∈N

f∗,sk(t),

and the right-hand side is L1(0,+∞).
Repeating the above reasoning, if n = 1, we obtain that Φx,y

∗ (s, T ) ∈ C
((

1
2
, 1
]
× Ω× Ω× (0,+∞)

)
.

Now, we observe that

ly∗(s, T ) =

∫ T

0

∫
Ω

|ξ − y|rs∗(t, ξ, y) dξ dt

=

∫
Ω

|ξ − y|
∫ T

0

rs∗(t, ξ, y) dt dξ

=

∫
Ω

|ξ − y|Φξ,y
∗ (s, T ).

(2.68)

Using this identity, the continuity of Φ∗ and the estimates in Theorem 2.9, we conclude using the
Dominated Convergence Theorem. The proof of the continuity of Ay

∗(s, T ) is analogous
Also, if n ⩾ 3, from (2.68) and (2.60) we have that

lyD(s, T ) ⩽
Cn

Γ(s)

∫
Ω

|ξ − y|n−1 dξ,

for some suitable Cn, which proves that lyD is uniformly bounded in (0, 1]× Ω× (0,+∞) if n ⩾ 3.
The proof of the uniform boundedness in the case n ⩽ 2 is done similarly replacing (2.60) in the

above equation with (2.61).
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Finally, using (3.10) in [DGV22a] we obtain that

lyN(s, T ) =

∫ T

0

∫
Ω

|ξ − y|rsN(t, ξ, y) dξ dt

⩽ dΩ

∫ T

0

∫
Ω

rsN(t, ξ, y) dξ dt

= dΩT.

The proof of the boundedness of A∗ is analogous. □

In the following two lemmas we establish the limits as s ↘ 0 of the Dirichlet efficiency functionals
given in (1.6) and (1.9).

We will show that ΦD, lD, AD, Φ̃D, l̃D and ÃD all go to 0 linearly in s. Moreover, we will also

determine the value of the limit for E2,D, E3,D, Ẽ2,D and Ẽ3,D so that we will be able to extend them
by continuity in [0, 1].

This asymptotic analysis is a fundamental tool in order to establish Theorems 1.6 and 1.14 and
the claims in (1.18) and (1.28).

Lemma 2.13. Let Ω ⊂ Rn be bounded, smooth and connected.
Then, for all ((x, y), T ) ∈ C × (0,+∞), it holds that

lim
s↘0

Ex,y
1,D(s, T ) = 0,(2.69)

lim
s↘0

Ex,y
2,D(s, T ) =

FD(x, y)∫
Ω
|ξ − y|FD(ξ, y) dξ

,(2.70)

lim
s↘0

Ex,y
3,D(s, T ) =

FD(x, y)∫
Ω
|ξ − y|2FD(ξ, y) dξ

,(2.71)

where we have defined

(2.72) FD(x, y) :=

∫ +∞

0

pΩD(l, x, y)

l
dl for all (x, y) ∈ C.

Proof. Equation (2.69) is a direct consequence of (2.60) and (2.61), since Γ(s) → +∞ for s ↘ 0.
Now we focus on the proof of (2.70). For this, we claim that

(2.73) lim
s↘0

Φx,y
D (s, T )

s
=
(
1− e−T (T + 1)

)
FD(x, y) for all ((x, y), T ) ∈ C × (0,+∞).

Thanks to (2.9) and (2.15), if s ∈
(
0, 1

2

)
we have that

(2.74)
1

s

∣∣∣∣pΩD(l, x, y)µs
t(l)

∣∣∣∣ ⩽ t

(4πl)
n
2

exp

(
−|x− y|2

4l

)
Γ(1 + s)

l1+s
.

This bound together with (2.1), (D.1) and the Dominated Convergence Theorem yields to

(2.75) lim
s↘0

rsD(t, x, y)

s
= te−tFD(x, y),

for all (t, (x, y)) ∈ (0,+∞)× C. Therefore, if s ∈
(
0, 1

2

)
, from (2.1) and (2.74) we obtain that

rsD(t, x, y)

s
⩽
∫ +∞

0

tΓ(1 + s)

(4π)
n
2 l

n
2
+s+1

exp

(
−|x− y|2

4l

)
dl

⩽
C0t

|x− y|n+2s

=:fx,y(t),

(2.76)
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where we defined

C0 := sup
s∈(0, 12)

4sΓ(1 + s)

π
n
2

Γ
(n
2
+ s
)
.

Now, clearly we have that

(2.77) fx,y ∈ L1((0, T )),

and thus from (2.75), (2.76) and (2.77) we can apply the Dominated Convergence Theorem to obtain
that

(2.78) lim
s↘0

Φx,y
D (s, T )

s
=

∫ T

0

te−tFD(x, y) dt =
(
1− e−T (T + 1)

)
FD(x, y).

This concludes the proof of (2.73).
Note that using (2.60), (2.61) and (2.73), we obtain that

lim
s↘0

lyD(s, T )

s
= lim

s↘0

1

s

∫ T

0

∫
Ω

|ξ − y|rsD(t, ξ, y) dξ dt

= lim
s↘0

∫
Ω

|ξ − y|Φ
ξ,y
D (s, T )

s
dξ

=
(
1− e−T (T + 1)

) ∫
Ω

|ξ − y|FD(ξ, y) dξ,

(2.79)

by means of the Dominated Convergence Theorem. Finally, from (2.73) and (2.79) we deduce that

lim
s↘0

Φx,y
D (s, T )

lyD(s, T )
= lim

s↘0

∫ T

0
rsD(t, x, y) dt∫ T

0

∫
Ω
|ξ − y|rsD(t, ξ, y) dξ dt

s

s

=
FD(x, y)∫

Ω
|ξ − y|FD(ξ, y) dξ

,

(2.80)

which concludes the proof of (2.70).
It is left to show (2.71). To do so, we observe that applying the same reasoning we used to

show (2.79), one can easily prove that

(2.81) lim
s↘0

Ay
D(s, T )

s
=
(
1− e−T (T + 1)

) ∫
Ω

|ξ − y|2FD(ξ, y) dξ,

for all (y, T ) ∈ Ω× (0,+∞). From this identity and (2.73) it is immediate to deduce (2.71). □

The following result can be considered as the set functional version of Lemma 2.13.

Lemma 2.14. Let Ω be bounded, smooth and connected and Ω1,Ω2 ⊂ Ω be smooth and disjoint.
Then, for all T ∈ (0,+∞), it holds that

lim
s↘0

ẼΩ1,Ω2

1,D (s, T ) = 0,(2.82)

lim
s↘0

ẼΩ1,Ω2

2,D (s, T ) =
|Ω2|F̃D(Ω1,Ω2)∫

Ω2×Ω
|ξ − y|FD(ξ, y) dξ dy

(2.83)

and lim
s↘0

ẼΩ1,Ω2

3,D (s, T ) =
|Ω2|F̃D(Ω1,Ω2)∫

Ω2×Ω
|ξ − y|2FD(ξ, y) dξ dy

,(2.84)

where

(2.85) F̃D(Ω1,Ω2) :=
1

|Ω1||Ω2|

∫
Ω1×Ω2

FD(x, y) dx dy,

and FD is given in equation (2.72).
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Proof. We begin by proving (2.82). We have that

Φ̃Ω1,Ω2

D (s, T )

s
=

1

|Ω1||Ω2|

∫
Ω1×Ω2

Φx,y
D (s, T )

s
dx dy.

Thanks to equations (2.60) and (2.61), if s ∈
(
0, 1

2

)
, there exists some constant Ĉn depending on n

such that

(2.86)
Φx,y

D (s, T )

s
⩽

Ĉn

sΓ(s)

1

|x− y|n−2s
⩽

C3

|x− y|n
=: g(x, y),

where C3 depends only on Ω. If Ω1,Ω2 are smooth and disjoint, then g ∈ L1(Ω1 × Ω2). There-
fore, under these assumptions we can apply the Dominated Convergence Theorem, which together
with (2.73) yields to

(2.87) lim
s↘0

Φ̃Ω1,Ω2

D (s, T )

s
=
(
1− e−T (T + 1)

)
F̃D(Ω1,Ω2).

Also, thanks to Lemma D.4 and the hypothesis on Ω1,Ω2 we have that F̃D(Ω1,Ω2) is finite. From
this observation and (2.87) one readily deduces (2.82).

Now, we show (2.83). To do so, we claim that

(2.88) lim
s↘0

l̃Ω2
D (s, T )

s
=

(
1− e−T (T + 1)

)
|Ω2|

∫
Ω2×Ω

|ξ − y|FD(ξ, y) dξ dy,

for all T ∈ (0,+∞). As a matter of fact

l̃Ω2
D (s, T )

s
:=

1

|Ω2|

∫
Ω2

lyD(s, T )

s
dy.

Hence, from (2.86) and the definition of lyD(s, T ) we infer the existence of some C4 ∈ (0,+∞) such
that

lyD(s, T )

s
⩽ C4,

for all s ∈
(
0, 1

2

)
. Therefore, by the Dominated Convergence Theorem we can conclude the proof

of (2.88). The limit in equation (2.83) follows easily from (2.87) and (2.88).
Following the same procedure adopted to prove (2.88), one obtains that

(2.89) lim
s↘0

ÃΩ2
D (s, T )

s
=

(
1− e−T (T + 1)

)
|Ω2|

∫
Ω2×Ω

|ξ − y|2FD(ξ, y) dξ dy,

for all T ∈ (0,+∞). Thereby, the limit in equation (2.84) follows easily from (2.87) and (2.89). □

In the following lemma we study the asymptotic behavior of the Neumann functional Φx,y
N (s, T )

for s ↘ 0. In particular, we observe that the limit substantially differs from the one of Φx,y
D , which

was indeed vanishing, see Lemma 2.13. With this result we establish also that the lim inf and lim sup
of Φx,y

N (s, T ) for s ↘ 0 are controlled by some quantities that do not depend on x, y ∈ Ω. This feature
will let us prove that if the forager starting position and target location are close enough, then the
most rewarding search strategy for the Neumann functionals in equation (1.6) is not s = 0.

Lemma 2.15. Let Ω ⊂ Rn be bounded, smooth and connected.
Then, there exist h1, h2 ∈ C([0,+∞)) such that for each T ∈ (0,+∞) it holds that

h1(T )

T
⩽ lim inf

s↘0
Ex,y
1,N(s, T ) ⩽ lim sup

s↘0
Ex,y
1,N(s, T ) ⩽

h2(T )

T
,(2.90)

h1(T )

h2(T )M(y)
⩽ lim inf

s↘0
Ex,y
2,N(s, T ) ⩽ lim sup

s↘0
Ex,y
2,N(s, T ) ⩽

h2(T )

M(y)h1(T )
(2.91)
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and
h1(T )

h2(T )M̃(y)
⩽ lim inf

s↘0
Ex,y
3,N(s, T ) ⩽ lim sup

s↘0
Ex,y
3,N(s, T ) ⩽

h2(T )

M̃(y)h1(T )
,(2.92)

for all (x, y) ∈ C, where we set

(2.93) M(y) :=

∫
Ω

|ξ − y| dξ and M̃(y) :=

∫
Ω

|ξ − y|2 dξ.

Proof. Let (x, y) ∈ C. Notice that if t ∈ (0,+∞) we can write

pΩN(t, x, y) =
1

|Ω|
+

+∞∑
k=1

ζN,k(x)ζN,k(y) exp (−t βN,k) ,

where ζN,k’s and βN,k’s are given in (2.3). Now, thanks to Proposition A.1 and Lemma A.3 in [DGV22a],
together withWeyl’s law on the asymptotic behavior of the eigenvalues βN,k’s (see for instance [Pro87]),
we have that

lim
t→+∞

+∞∑
k=1

ζN,k(x)ζN,k(y) exp (−t βN,k) = 0,

from which we deduce that

lim
l→+∞

pΩN(l, x, y) =
1

|Ω|
.

Therefore, there exists some t0 ∈ (1,+∞) such that

1

2|Ω|
⩽ pΩN(t, x, y) for all t ∈ [t0,+∞).

Thus, using (2.1), we have that if t1,s = max
{
t0, T

1
s

}
, we can apply Theorem 2.3 and obtain that

Φx,y
N (s, T ) =

∫ T

0

∫ +∞

0

pΩN(l, x, y)µ
s
t(l) dl dt

⩾
1

2|Ω|

∫ T

0

∫ +∞

t1,s

µs
t(l) dl dt

⩾
C1

2π|Ω|

∫ T

0

∫ +∞

t1,s

s t

l1+s
dl dt

⩾
C1

2π|Ω|

∫ T

0

t

ts1,s
dt

=
C1

4π|Ω|
T 2

ts1,s
.

Therefore, if T ∈ (1,+∞) from the above inequality we obtain

(2.94) lim sup
s↘0

Φx,y
N (s, T ) ⩾ lim inf

s↘0
Φx,y

N (s, T ) ⩾
C1

4π|Ω|
T,

while if T ∈ (0, 1] we have that

(2.95) lim sup
s↘0

Φx,y
N (s, T ) ⩾ lim inf

s↘0
Φx,y

N (s, T ) ⩾
C1

4π|Ω|
T 2.
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Hence, we have just proved the left-hand side inequality in (2.90) with

(2.96) h1(T ) :=


C1

4π|Ω|
T 2 if T ∈ (0, 1],

C1

4π|Ω|
T if T ∈ (1,+∞).

Now we show the right-hand side inequality of (2.90). Using (2.20), we obtain that

Φx,y
N (s, T ) =

∫ T

0

∫ +∞

0

pΩN(l, x, y)µ
s
t(l) dl

⩽
∫ T

0

∫ 1

0

cΩ

l
n
2

exp

(
−|x− y|2

6l

)
µs
t(l) dl dt+

∫ T

0

∫ +∞

1

cΩµ
s
t(l) dl dt

⩽
∫ T

0

∫ 1

0

cΩ

l
n
2

exp

(
−|x− y|2

6l

)
µs
t(l) dl dt+ cΩT.

(2.97)

Now, in view of (2.9) we have that∣∣∣∣cΩl n2 exp

(
−|x− y|2

6l

)
µs
t(l)

∣∣∣∣ ⩽ tcΩΓ(1 + s)

l
n
2
+1+s

exp

(
−|x− y|2

6l

)
,

and the function on the right-hand side in the above equation is in L1((0, T )× (0, 1)).
Therefore, using also (2.9) we can apply the Dominated Convergence Theorem and obtain the limit

(2.98) lim
s↘0

∫ T

0

∫ 1

0

cΩ

l
n
2

exp

(
−|x− y|2

6l

)
µs
t(l) dl dt = 0.

From this equation and (2.97), we can infer that if T ∈ (1,+∞)

(2.99) lim inf
s↘0

Φx,y
N (s, T ) ⩽ lim sup

s↘0
Φx,y

N (s, T ) ⩽ cΩT.

Also, assuming that T ∈ (0, 1], from (2.9) we obtain that∫ T

0

∫ +∞

1

cΩµ
s
t(l) dl dt ⩽ cΩ

∫ T

0

∫ +∞

1

stΓ(1 + s)

l1+s
dl dt =

cΩΓ(1 + s)

2
T 2.

Thus, from this latter observation, the limit in (2.98) and equation (2.97) we deduce that

(2.100) lim inf
s↘0

Φx,y
N (s, T ) ⩽ lim sup

s↘0
Φx,y

N (s, T ) ⩽
cΩ
2
T 2.

In light of (2.99) and (2.100), and defining

(2.101) h2(T ) :=

{
cΩT

2 if T ∈ (0, 1],

cΩT if T ∈ (1,+∞),

we conclude the proof of the right-hand side inequality of (2.90).
Now, we prove (2.91). To do so, we claim that

(2.102) h1(T )M(y) ⩽ lim inf
s↘0

lyN(s, T ) ⩽ lim sup
s↘0

lyN(s, T ) ⩽ h2(T )M(y).

We recall that

lyN(s, T ) =

∫
Ω

|ξ − y|Φξ,y
N (s, T ) dξ,

with (y, T ) ∈ Ω × (0,+∞). Then, using (2.94), (2.95) and Fatou’s Lemma we prove the left-hand
side inequality of (2.91).
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Now, we focus on the proof of the right-hand side inequality . Let K ⋐ Ω be any compact such
that it is star-shaped with respect to y and y ∈ Ko, and dK ⩽ 1. Then, in view of (2.47), (2.48) and
Proposition D.2 with E = Ω \K and F = y, we evince the existence of some u ∈ L1(Ω) such that

|ξ − y|Φξ,y
N (s, T ) ⩽ u(ξ),

for all ξ ∈ Ω. Thus, thanks to Fatou’s Lemma and (2.99) we obtain the right-hand side inequality
of (2.91). Note that from (2.90) and (2.102) one evinces (2.91).

It is left to show (2.92). Reasoning analogously to the proof of claim (2.102), one obtains that

h1(T )M̃(y) ⩽ lim inf
s↘0

Ay
N(s, T ) ⩽ lim sup

s↘0
Ay

N(s, T ) ⩽ h2(T )M̃(y)

Making use of this two sided inequality and (2.90) we conclude the proof of (2.92). □

The following result is the Neumann counterpart of Lemma 2.14.

Lemma 2.16. Let Ω ⊂ Rn be bounded, smooth and connected.
Then, for all T ∈ (0,+∞) and Ω1,Ω2 ⋐ Ω smooth and disjoint, it holds that

h1(T )

T
⩽ lim inf

s↘0
ẼΩ1,Ω2

1,N (s, T ) ⩽ lim sup
s↘0

ẼΩ1,Ω2

1,N (s, T ) ⩽
h2(T )

T
,(2.103)

h1(T )

h2(T )P (Ω2)
⩽ lim inf

s↘0
ẼΩ1,Ω2

2,N (s, T ) ⩽ lim sup
s↘0

ẼΩ1,Ω2

2,N (s, T ) ⩽
h2(T )

h1(T )P (Ω2)
(2.104)

and
h1(T )

h2(T )P̃ (Ω2)
⩽ lim inf

s↘0
ẼΩ1,Ω2

3,N (s, T ) ⩽ lim sup
s↘0

ẼΩ1,Ω2

3,N (s, T ) ⩽
h2(T )

h1(T )P̃ (Ω2)
,(2.105)

where h1 and h2 are given respectively in (2.96) and (2.101), and we set

(2.106) P (Ω2) :=
∥M∥L1(Ω2)

|Ω2|
and P̃ (Ω2) :=

∥M̃∥L1(Ω2)

|Ω2|
,

where M and M̃ are defined in (2.93).

Proof. We begin by proving (2.103). To do so, we notice that by definition we have

(2.107) Φ̃Ω1,Ω2

N (s, T ) =
1

|Ω1||Ω2|

∫
Ω1×Ω2

Φx,y
N (s, T ) dx dy.

From Proposition 2.12 we know that Φx,y
N (s, T ) ⩾ 0. Thus, by Fatou’s Lemma, (2.94) and (2.95) we

conclude the proof of the left-hand side inequality of (2.103).
Now, if Ω1 ∩ Ω2 = ∅, thanks to Proposition D.2 with Ω1 = E and Ω2 = F , we easily obtain the

right-hand side inequality of (2.103) using Fatou’s Lemma.
We assume now that Ω1 ∩Ω2 ̸= ∅. We claim that there exists some z ∈ L1(Ω1 ×Ω2) such that for

all s ∈
(
0, 1

2

)
it holds that

(2.108) Φx,y
N (s, T ) ⩽ z(x, y) for all (x, y) ∈ Ω1 × Ω2.

We prove claim (2.108). Thanks to the assumption Ω1∩Ω2 ̸= ∅, the set A := ∂Ω1∩∂Ω2 is nonempty.
Since Ω1,Ω2 ⋐ Ω and A is compact, then we can choose r > 0 and Pi ∈ A with i ∈ {1, . . . , N}

such that

A ⊂ B :=
N⋃
i=1

Br(Pi) ⋐ Ω.



THE LÉVY FLIGHT FORAGING HYPOTHESIS 37

If for some i, j ∈ {1, . . . , N} it holds that Br(Pi) ∩ Br(Pj) ̸= ∅, then we can choose Ki,j = Br(Pi) ∪
Br(Pj) in (2.47) and (2.48) and deduce that

(2.109) Φx,y
N (s, T ) ⩽

C

|x− y|n
,

for all (x, y) ∈ Ki,j × Ki,j with i, j such that Br(Pi) ∩ Br(Pj) ̸= ∅, where C depends on B, T,Ω.
Moreover, we define the constant

(2.110) C̃N := max
{
CBr(Pi),Br(Pj) s.t. Br(Pi) ∩Br(Pj) = ∅

}
,

where CBr(Pi),Br(Pj) is given in (D.4) with E = Br(Pi) and F = Br(Pj). Therefore, if x ∈ Ω1 ∩Br(Pi)

and y ∈ Ω2 ∩Br(Pj), such that Br(Pi) ∩Br(Pj) = ∅, then by (D.3) and (2.110) we see that

(2.111) Φx,y
N (s, T ) ⩽ C̃NT.

Finally, if we set

ĈΩ1,Ω2 := max
{
CΩ1∩K′,Ω2\K′ , CΩ1\K′,Ω2∩K′ , CΩ1\K′,Ω2\K′

}
,

thanks to Proposition D.2, we obtain that

(2.112) Φx,y
N (s, T ) ⩽ ĈΩ1,Ω2T,

for all (x, y) ∈ ((Ω1 ∩K ′)× (Ω2 \K ′)) ∪ ((Ω1 \K ′)× (Ω2 ∩K)) ∪ ((Ω1 \K ′)× (Ω2 \K ′)).
Thanks to (2.109), (2.111) and (2.112) we conclude the proof of claim (2.108).
By that means, we can apply Fatou’s Lemma and using (2.90) we prove the right-hand side

inequality in (2.103).
Now, we focus our attention to the proof of (2.104). In order to do so, we claim that

(2.113) h1(T )P (Ω2) ⩽ lim inf
s↘0

l̃Ω2
N (s, T ) ⩽ lim sup

s↘0
l̃Ω2
N (s, T ) ⩽ h2(T )P (Ω2)

We observe that

l̃Ω2
N :=

1

|Ω2|

∫
Ω2

lyN(s, T ) dy

and, since lyN(s, T ) ⩾ 0, see Proposition 2.12, using Fatou’s Lemma and (2.102) we prove the left-hand
side inequality of (2.113).

Furthermore, we discussed in Proposition 2.12 that lyN(s, T ) is uniformly bounded in (s, y) ∈
(0, 1) × Ω. Thus, we can apply again Fatou’s Lemma together with (2.102) and conclude the proof
of the right-hand side inequality of (2.113). The inequalities in (2.103) and (2.113) yields to (2.104).

It is left to show (2.105). To do so, it is enough to show that

(2.114) h1(T )P̃ (Ω2) ⩽ lim inf
s↘0

ÃΩ2
N (s, T ) ⩽ lim sup

s↘0
ÃΩ2

N (s, T ) ⩽ h2(T )P̃ (Ω2).

From this and (2.103) it is easy to deduce (2.105). The proof of (2.114) is analogous to the one
of (2.113), and thus it is omitted. □

3. Proof of the main results

This section is devoted to the proofs of the main results discussed in the introduction. It is divided
into two main parts.

In Section 3.1 we prove the results stated in Section 1.2. Namely, we analyze the environmental
scenario where the target location coincides with the forager starting point.

In Section 3.2 we instead discuss the best search strategy when the prey is in a small neighborhood
of the seeker initial position. In particular, we prove all the results contained in Sections 1.3 and 1.4.
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3.1. Proof of the results in Section 1.2. To prove the results presented in Section 1.2, we con-
sider Ω = (0, a) for some a ∈ (0,+∞). The normalized eigenfunctions of the Laplacian in (0, a) with
Dirichlet datum as defined in (2.3) are

(3.1) ζD,k(x) =

√
2

a
sin

(
πkx

a

)
and the corresponding eigenvalues are

(3.2) βD,k =

(
πk

a

)2

.

As a consequence, recalling (2.4), the Dirichlet spectral fractional heat kernel reads as

(3.3) rsD(t, x, y) =
2

a

+∞∑
k=1

sin

(
πky

a

)
sin

(
πkx

a

)
exp

(
−t

(
πk

a

)2s
)
.

This and (1.5) lead to

(3.4) Φx,y
D (s, T ) =

2

a

∫ T

0

+∞∑
k=1

sin

(
πky

a

)
sin

(
πkx

a

)
exp

(
−t

(
πk

a

)2s
)

dt

and accordingly, if s ∈
(
1
2
, 1
)
,

(3.5) Φx,y
D (s, T ) =

2a2s−1

π2s

+∞∑
k=1

1

k2s
sin

(
πky

a

)
sin

(
πkx

a

)[
1− exp

(
−T

(
πk

a

)2s
)]

.

We can also compute explicitly the average distance lyD(s, T ) and the mean square displace-
ment Ay

D(s, T ) as a series, as showed in detail in Appendix B.
The normalized eigenfunctions of the Laplacian in (0, a) under Neumann conditions as defined

in (2.3) take the form

(3.6)


ζN,k(x) =

√
2

a
cos

(
πkx

a

)
if k ∈ {1, 2, 3, . . . },

ζN,0(x) =
1√
a

if k = 0,

and the corresponding eigenvalues are

(3.7) βN,k =

(
πk

a

)2

if k ∈ {0, 1, 2, 3, . . . }.

Therefore, in view of (2.4), the Neumann spectral fractional heat kernel reads as

rsN(t, x, y) =
1

a
+

2

a

+∞∑
k=1

cos

(
πkx

a

)
cos

(
πky

a

)
exp

(
−t

(
πk

a

)2s
)
.

Hence, by (1.5),

(3.8) Φx,y
N (s, T ) =

T

a
+

2

a

+∞∑
k=1

∫ T

0

cos

(
πkx

a

)
cos

(
πky

a

)
exp

(
−t

(
πk

a

)2s
)

dt

and, as a result, when s ∈
(
1
2
, 1
)
,

(3.9) Φx,y
N (s, T ) =

T

a
+

2a2s−1

π2s

+∞∑
k=1

1

k2s
cos

(
πkx

a

)
cos

(
πky

a

)[
1− exp

(
−T

(
πk

a

)2s
)]

.
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Thanks to these preliminary observations, we are now in the position of proving the results pre-
sented in Section 1.2. We begin by showing Proposition 1.1.

We recall that we adopt the subscript ∗ every time that a functional refers to both the Dirichlet
and the Neumann case.

Proof of Proposition 1.1. Let x ∈ Ω and T ∈ (0,+∞). Then, thanks to Theorem 2.8 we know that
if either n ⩾ 2 or n = 1 and s ∈

(
0, 1

2

]
it holds that

(3.10) Φx,x
∗ (s, T ) = +∞.

Furthermore, from Proposition 2.12 we have that

(3.11) lx∗(s, T ) ∈ (0,+∞) and Ax
∗(s, T ) ∈ (0,+∞),

for all s ∈ (0, 1]. Therefore, as a direct consequence of (3.10) and (3.11) we obtain the desired
claim. □

The proof of Proposition 1.2 that we present here below is a consequence of Theorem 2.8. For the
sake of completeness, in Appendix C we also provide an alternative proof of Proposition 1.2 which
employs directly the spectral structure of the efficiency functionals.

Proof of Proposition 1.2. Let x ∈ Ω = (0, a), for some a ∈ (0,+∞). Then, thanks to Theorem 2.8 we
have that for each s ∈

(
0, 1

2

]
and T ∈ (0,+∞) the statement in (3.10) holds true. Also, if s ∈

(
1
2
, 1
]
,

in view of Proposition 2.12 one has that

(3.12) Φx,x
∗ (s, T ) ∈ (0,+∞).

Furthermore, from Proposition 2.12 we know that for each s ∈ (0, 1] and T ∈ (0,+∞) the statement
in (3.11) holds true as well. Therefore, using equation (3.12), in the notation of Proposition 1.2, we
conclude that

E∗,j(s, T ) ∈ (0,+∞) for all s ∈
(
1

2
, 1

]
,

for all j ∈ {1, 2, 3}.
Hence, to complete the proof of Proposition 1.2, it is only left to show the continuity statement.

Thanks to Proposition 2.12 we have that, for each x ∈ Ω and T ∈ (0,+∞), the functional Φx,x
∗ (·, T ) is

continuous with respect to s ∈
(
1
2
, 1
]
. Also, the continuity with respect to s ∈ (0, 1] of the functionals

Ax
∗(s, T ) and lx∗(s, T ) was already established in Proposition 2.12.
As a consequence, recalling (3.11) we conclude that the functionals in (1.6) are continuous in s ∈(

1
2
, 1
]
for x = y. □

Now we prove Theorem 1.3. Here we establish that s = 1
2
is the best search strategy in

(
1
2
, 1
]
when

the forager initial point coincide with the target location.

Proof of Theorem 1.3. We point out that, in order to prove Theorem 1.3, it suffices to establish (1.10).
Indeed, once (1.10) is proved, we already know from Proposition 1.2 that E∗,j(s, T ) ∈ (0,+∞) for
all s ∈

(
1
2
, 1
]
and j ∈ {1, 2, 3} and accordingly the supremum over s ∈

(
1
2
, 1
)
of Ej,∗ is attained

at s = 1/2.
Furthermore, thanks to (C.1) it is enough to show (1.10) for a := 1. To prove it, we observe that

all the denominators in (1.6) satisfy (3.11). Consequently, the claim in (1.10) is equivalent to

(3.13) lim
s↘ 1

2

Φx,x
∗ (s, T ) = +∞

Thus, from now on we focus on the proof of the claims in (3.13). We establish the claim for the
Dirichlet case, since the Neumann one follows from the Dirichlet one and (2.24).



40 SERENA DIPIERRO, GIOVANNI GIACOMIN, AND ENRICO VALDINOCI

For this, we recall (C.7) and we see that there exist K0, N ⩾ 1 such that, for every N ∈ N,

Φx,x
D (s, T ) ⩾

1

π2s

N−1∑
ℓ=0

ε0(
N + 3ℓK0

)2s .
We now pick L > 0, to be taken as large as we wish in what follows, such that eL ∈ N, and we
choose N := e2L + 1. In this way, we find that

Φx,x
D (s, T ) ⩾

1

π2s

exp(2L)∑
ℓ=exp(L)+1

ε0(
N + 3ℓK0

)2s ⩾
1

π2s

exp(2L)∑
ℓ=exp(L)+1

ε0(
4ℓK0

)2s
=

ε0
(4πK0)2s

L∑
j=1

exp(L+j)∑
ℓ=exp(L+j−1)+1

1

ℓ2s
⩾

ε0
(4πK0)2s

L∑
j=1

exp(L+j)∑
ℓ=exp(L+j−1)+1

1

exp(2s(L+ j))

=
ε0 (e− 1)

(4πK0)2s

L∑
j=1

exp(L+ j − 1)

exp(2s(L+ j))
=

ε0 (e− 1)

(4πK0)2s exp((2s− 1)L+ 1)

L∑
j=1

1

exp((2s− 1)j)

=
ε0 (e− 1)

(4πK0)2s exp((2s− 1)L+ 1)
×

exp(1− 2s)
(
1− exp((1− 2s)L)

)
1− exp(1− 2s)

=
ε0 (e− 1)

(4πeK0)2s exp(2(2s− 1)L)
×
(
exp((2s− 1)L)− 1

)
1− exp(1− 2s)

.

In particular, we can choose L ∈
[

1
2s−1

, 2
2s−1

]
such that eL ∈ N and deduce from the above estimate

that

Φx,x
D (s, T ) ⩾

ε0 (e− 1)2

(4πeK0)2s e4
× 1

1− exp(1− 2s)
.

Sending now s ↘ 1
2
we see that

lim
s↘ 1

2

Φx,x
D (s, T ) = +∞,

proving the claim in (3.13) for the Dirichlet case, as desired. □

Finally, we prove Theorem 1.4. In this result, we discuss the impact of some geometrical properties
of the domain, such as the size of it, on the monotonicity of the efficiency functionals in (1.5) with
respect to the fractional exponent.

Proof of Theorem 1.4. We prove the monotonicity properties of Φ∗. To this end, in the Dirichlet case,
when a ∈ (0, π] the first eigenvalue of the Laplacian is less than or equal to 1, thanks to (3.2): hence,
we capitalize on Theorem 1.10 in [DGV22a] and we conclude that, for all s0 ∈ (0, 1) and s1 ∈ (s0, 1),
we have that, for every x ∈ (0, a),

(3.14) rs0D (t, x, x) > rs1D (t, x, x).

Similarly, in the Neumann case, when a ∈ (0, π] the first nontrivial eigenvalue of the Laplacian is
less than or equal to 1, due to (3.7). This allows us to use Theorem 1.22 in [DGV22a] and obtain
that, for all s0 ∈ (0, 1), s1 ∈ (s0, 1) and x ∈ (0, a),

(3.15) rs0N (t, x, x) > rs1N (t, x, x).

Now, from (1.5), (3.14) and (3.15) it follows that, for all s0 ∈ (0, 1), s1 ∈ (s0, 1) and x ∈ (0, a),

(3.16) Φx,x
∗ (s0, T ) > Φx,x

∗ (s1, T ).

From (3.16) we obtain the desired monotonicity property when a ∈ (0, π], as stated in for-
mula (1.11) of Theorem 1.4.
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Now we deal with the case in which a is sufficiently large and we prove (1.12) and (1.13). To this
end, we start with the Dirichlet case, utilize (3.5) with the notation α := a

π
and deduce that, for

every T ∈ (0,+∞) and x ∈ (0, a),

a

2
∂sΦ

x,x
D (s, T ) =

∂

∂s

[
α2s

+∞∑
k=1

1

k2s
sin2

(
kx

α

)[
1− exp

(
−T

(
k

α

)2s
)]]

= 2α2s lnα
+∞∑
k=1

1

k2s
sin2

(
kx

α

)[
1− exp

(
−T

(
k

α

)2s
)]

− 2α2s

+∞∑
k=1

ln k

k2s
sin2

(
kx

α

)[
1− exp

(
−T

(
k

α

)2s
)]

+ 2Tα2s

+∞∑
k=1

1

k2s
sin2

(
kx

α

)
exp

(
−T

(
k

α

)2s
)(

k

α

)2s

ln

(
k

α

)

= 2α2s

+∞∑
k=1

lnα− ln k

k2s
sin2

(
kx

α

)[
1− exp

(
−T

(
k

α

)2s
)]

− 2Tα2s

+∞∑
k=1

lnα− ln k

k2s
sin2

(
kx

α

)
exp

(
−T

(
k

α

)2s
)(

k

α

)2s

= 2α2s

+∞∑
k=1

lnα− ln k

k2s
sin2

(
kx

α

)[
1− exp

(
−T

(
k

α

)2s
)(

1 + T

(
k

α

)2s
)]

.

(3.17)

These observations lead to

a

4α2s
∂sΦ

x,x
D (s, T ) = lnα sin2

(x
α

)[
1− exp

(
− T

α2s

)(
1 +

T

α2s

)]
+

+∞∑
k=2

lnα− ln k

k2s
sin2

(
kx

α

)[
1− exp

(
−T

(
k

α

)2s
)(

1 + T

(
k

α

)2s
)]

.

We also observe that, if f(τ) := 1 − e−τ (1 + τ), we have that f ′(τ) = τe−τ > 0 for all τ > 0.
Accordingly, we see that 1− e−τ (1 + τ) > f(0) = 0 for all τ > 0. In addition, we have that f(τ) ⩽ 1
for all τ > 0. As a result,

+∞∑
k=2

lnα− ln k

k2s
sin2

(
kx

α

)[
1− exp

(
−T

(
k

α

)2s
)(

1 + T

(
k

α

)2s
)]

⩾
∑

k∈N∩(α,+∞)

lnα− ln k

k2s
sin2

(
kx

α

)[
1− exp

(
−T

(
k

α

)2s
)(

1 + T

(
k

α

)2s
)]

⩾ −
∑

k∈N∩(α,+∞)

ln k

k2s
.

From these remarks, we arrive at

a

4α2s
∂sΦ

x,x
D (s, T ) ⩾ lnα sin2

(x
α

)[
1− exp

(
− T

α2s

)(
1 +

T

α2s

)]
−

∑
k∈N∩(α,+∞)

ln k

k2s
.
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Now, if T ∈ [νa2s,+∞) = [νπ2sα2s,+∞) then

1− exp

(
− T

α2s

)(
1 +

T

α2s

)
= f

(
T

α2s

)
⩾ f(νπ2s) ⩾ f(ν).

Hence, in this situation,

a

4α2s
∂sΦ

x,x
D (s, T ) ⩾ lnα sin2

(x
α

)
f(ν)−

∑
k∈N∩(α,+∞)

ln k

k2s
.

We also recall that ∫ +∞

α−2

ln τ

τ 2s
dτ =

1 + (2s− 1) ln(α− 2)

(2s− 1)2(α− 2)2s−1

and therefore, if α is large enough,∑
k∈N∩(α,+∞)

ln k

k2s
⩽

1 + (2s− 1) ln(α− 2)

(2s− 1)2(α− 2)2s−1
⩽

2s ln(α− 2)

(2s− 1)2(α− 2)2s−1
⩽

2s lnα

(2s− 1)2(α− 2)2s−1
.

Besides, if x ∈
(
νa, (1− ν)a

)
= (ναπ, (1− ν)απ) we have that

(3.18)
∣∣∣sin(x

α

)∣∣∣ > sin(επ).

These observations lead to
a

4α2s lnα
∂sΦ

x,x
D (s, T ) ⩾ sin2(νπ)f(ν)− 2s

(2s− 1)2(α− 2)2s−1

⩾ sin2(νπ)f(ν)− 2

ν2(α− 2)ν
> 0,

as long as α (whence a) is sufficiently large, possibly in dependence of ν.
This establishes (1.12) in the Dirichlet case and we now focus on the proof of (1.13) in the Neumann

case. In this situation, recalling (3.9),

a

2
Φx,x

N (s, T ) =
T

2
+ α2s

+∞∑
k=1

1

k2s
cos2

(
kx

α

)[
1− exp

(
−T

(
k

α

)2s
)]

and therefore

a

4α2s
∂sΦ

x,x
N (s, T ) = lnα

+∞∑
k=1

1

k2s
cos2

(
kx

α

)[
1− exp

(
−T

(
k

α

)2s
)]

−
+∞∑
k=1

ln k

k2s
cos2

(
kx

α

)[
1− exp

(
−T

(
k

α

)2s
)]

−T
+∞∑
k=1

lnα− ln k

k2s
cos2

(
kx

α

)
exp

(
−T

(
k

α

)2s
)(

k

α

)2s

.

This puts us in the same position as in (3.17), but with the sine replaced by the cosine. Hence, in

this case, we only need to detect the analog of (3.18). For this, we observe that if x ∈
(
0, (1−ν)a

2

)
∪(

(1+ν)a
2

, a
)
=
(
0, (1−ν)απ

2

)
∪
(

(1+ν)απ
2

, απ
)
we have that∣∣∣cos(x

α

)∣∣∣ > cos

(
(1− ν)π

2

)
.

Thus, the same argument as in the Dirichlet case leads to (1.13). □
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3.2. Proof of the results in Sections 1.3 and 1.4. In this section we prove the results stated in
Section 1.3. Here we discuss the optimal search strategy when the forager starting position y ∈ Ω is
sufficiently close to the prey location x ∈ Ω, but does not coincide with it.
We recall that we adopt the subscript ∗ every time that we refer to both the Dirichlet and the

Neumann case.
We start this section by showing that all the functionals defined in (1.6) are continuous with respect

to s ∈ (0, 1].

Proof of Proposition 1.5. Let (x, y, T ) ∈ Ω × Ω × (0,+∞) be such that x ̸= y. Then, thanks to
Proposition 2.12 we have that

Φx,y
∗ (s, T ) ∈ (0,+∞),

and also

(3.19) ly∗(s, T ) ∈ (0,+∞) and Ay
∗(s, T ) ∈ (0,+∞),

for each s ∈ (0, 1]. These considerations give that Ex,y
j,∗ (s, T ) for all s ∈ (0, 1].

Now, from Proposition 2.12 and (3.19), we deduce that the functionals Ex,y
j,∗ (·, T ) are continuous

with respect to s ∈ (0, 1]. □

Now we prove Theorem 1.6. We show that s = 0 is a global minimizer for Ex,y
1,D(·, T ) in (0, 1) for

each x, y ∈ Ω such that x ̸= y and for all T ∈ (0,+∞). Moreover, we discuss the existence of the
limit for s ↘ 0 of E2,D and E3,D.
Proof of Theorem 1.6. Let x, y ∈ Ω such that x ̸= y and T ∈ (0,+∞). Then, thanks to Lemma 2.13
we have that

(3.20) lim
s↘0

Ex,y
1,D(s, T ) = 0.

Since Φx,y
D (s, T ) ∈ (0,+∞) for each s ∈ (0, 1], see Proposition 2.12, we establish (1.14). We point out

that the existence of the limits in (1.15) was already obtained in Lemma 2.13.
Besides, making use of the Maximum Principle for the heat equation, we see that

(3.21) FD(z, w) > 0 for all z, w ∈ Ω,

and so the right-hand sides of the expressions in (2.70) and (2.71) are non negative. Also, using (D.6)
and (3.21) we deduce that the limits in (2.70) and (2.71) are also positive and finite. □

We prove now Theorems 1.7 and 1.8. We recall that this result states that if the forager starting
position is close enough to the target location, then the optimal search strategy for the functionals
in equation (1.6) is in a small neighborhood of s = 0.

Proof of Theorems 1.7 and 1.8. Let (y, T ) ∈ Ω × (0,+∞). We recall the limit in (2.69) and we
observe that

(3.22) sup
s∈(0,1)

Ex,y
1,D(s, T ) = Ex,y

1,D

(
s
(1)
x,y,T , T

)
with s

(1)
x,y,T ∈ (0, 1],

for each x ∈ Ω \ {y}.
Also, From Lemma 2.15 and equation (2.26), we evince that if s0 ∈

(
0, 1

2

)
there exists some β =

βs0,y,T,Ω ∈ (0, δ̂) such that, if x ∈ Bβ(y) \ {y}, then
lim sup

s↘0
Ex,y
j,N(s, T ) ⩽ Ex,y

j,N(s0, T ),

for all j ∈ {1, 2, 3}, where δ̂ is provided in (2.28).

Thus, we deduce that there exists some β̂ = β̂y,T,Ω such that if x ∈ Bβ̂(y) \ {y}, then

(3.23) sup
s∈(0,1)

Ex,y
j,N(s, T ) = Ex,y

1,D

(
s
(j)
x,y,T , T

)
with s

(j)
x,y,T ∈ (0, 1],
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for all j ∈ {1, 2, 3}.
Let us first study the case n ⩽ 2. We recall that thanks to Lemma 2.7, for each s0 ∈

(
0, 1

2

)
we

have the existence of some δ̂ = δ̂s0,y,T,Ω, given in (2.28), such that, for each x ∈ Bδ̂(y) \ {y}, one has
that

(3.24) Φx,y
∗ (s0, T ) ⩾

Cs0,y,Ω

|x− y|n−2s0
,

where Cs0,y,Ω is provided in (2.34). Also, for each s ∈ (0, 1) and µ ∈ An,s, where An,s is given in (2.46),
thanks to (2.48) we have the existence of some constant C∗,µ,B

δ̂
(y),T,Ω such that

(3.25) Φx,y
∗ (s, T ) ⩽

C∗,µ,B
δ̂
(y),T,Ω

|x− y|2µ
,

for each x ∈ Bδ̂(y) \ {y}.
Consequently, from the last two inequalities we obtain that if s0 ∈

(
0, 1

2

)
, s1 ∈ (s0, 1) and µ ∈ An,s1 ,

then

(3.26)
Ex,y
1,∗ (s0, T )

Ex,y
1,∗ (s1, T )

=
Φx,y

∗ (s0, T )

Φx,y
∗ (s1, T )

⩾
C∗,s0,y,µ,Bδ̂

(y),T,Ω

|x− y|n−2s0−2µ
,

for all x ∈ Bδ̂(y) \ {y}, where we set

(3.27) C∗,s0,y,µ,Bδ̂
(y),T,Ω :=

Cs0,y,Ω

C∗,µ,B
δ̂
(y),T,Ω

.

As a result, for each ε ∈ (0, 1), by choosing s0 := ε
4
, s1 ∈ (ε, 1) and µ := (n − ε)/2 in (3.26), and

recalling also (3.22) and (3.23), we infer the existence of some δ(1) = δ
(1)
ε,y,T,Ω ∈ (0, δ̂) such that for

each x ∈ Bδ(1)(y) \ {y} it holds that

sup
s∈(0,1)

Ex,y
1,∗ (s, T ) = Ex,y

1,∗

(
s
(1)
∗,x,y,T , T

)
with s

(1)
∗,x,y,T ∈ (0, ε).

This concludes the proof of (1.17) and (1.19) with j = 1.

Let us now prove (1.18) for the functional E2,D. To this end, let dy := d(y,∂Ω)
2

and By := Bdy(y).
Then, thanks to equation (D.5) in Lemma D.4 we have that there exists a constant c̃By ,Ω such that
for each x ∈ By \ {y} it holds that

(3.28) Ex,y
2,D(0, T ) =

FD(x, y)∫
Ω
|ξ − y|FD(ξ, y) dξ

⩾
c̃By ,Ω∫

Ω
|ξ − y|FD(ξ, y) dξ

1

|x− y|n
.

Therefore, using (3.25) and the estimates in (3.28), if s ∈ (0, 1), x ∈ Bδ̂(y) \ {y} and µ is given as
in (2.46), we obtain that

Ex,y
2,D(0, T )

Ex,y
2,D(s, T )

=
FD(x, y)∫

Ω
|ξ − y|FD(ξ, y) dξ

lyD(s, T )

Φx,y
D (s, T )

⩾
Γ(s)lyD(s, T )∫

Ω
|ξ − y|FD(ξ, y) dξ

c̃By ,Ω

CD,µ,B
δ̂
(y),T,Ω

1

|x− y|n−2µ
.

(3.29)

Now, using (2.79) and the limit

lim
s↘0

sΓ(s) = 1,

we obtain that

lim
s↘0

Γ(s)lyD(s, T )∫
Ω
|ξ − y|FD(ξ, y) dξ

= 1− e−T (T + 1).
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Thanks to this observation and Proposition 2.12, we can define the positive constant

(3.30) Cµ,y,B
δ̂
(y),T,Ω := inf

s∈(0,1)

Γ(s)lyD(s, T )∫
Ω
|ξ − y|FD(ξ, y) dξ

c̃By ,Ω

CD,µ,B
δ̂
(y),T,Ω

> 0.

Then, we obtain from (3.29) that for each x ∈ By \ {y}, s ∈ (0, 1) and µ as in (2.46) it holds that

(3.31)
Ex,y
2,D(0, T )

Ex,y
2,D(s, T )

⩾
Cµ,y,B

δ̂
(y),T,Ω

|x− y|n−2µ
.

Therefore, for each ε ∈ (0, 1) by taking s ∈ (ε, 1) and choosing µ := (n − ε)/2 in (3.31), we deduce

that there exists some δ(2) = δ
(2)
ε,y,T,Ω such that for each x ∈ Bδ(2)(y) \ {y} it holds that

Ex,y
2,D(0, T ) ⩾ sup

s∈(ε,1)
Ex,y
2,D(s, T ).

The proof of (1.18) for E3,D is analogous to the one for E2,D and therefore it will be omitted. This
last step concludes the proof of Theorem 1.7 for n ⩽ 2.

Now we show (1.19) when n ⩽ 2 for E2,N . To do so, thanks to Proposition 2.12 and (2.102) we can
define the positive constant

(3.32) C̃y,T,Ω := inf
s0∈(0,1)
s1∈(0,1)

lyN(s1, T )

lyN(s0, T )
> 0.

Then, if s0 ∈
(
0, 1

2

)
, s1 ∈ (s0, 1) and µ ∈ An,s1 , thanks to equations (3.24) and (3.25) we have that

(3.33)
Ex,y
2,N(s0, T )

Ex,y
2,N(s1, T )

=
Φx,y

N (s0, T )

Φx,y
N (s1, T )

lyN(s1, T )

lyN(s0, T )
⩾

C̃µ,s0,y,K,T,Ω

|x− y|n−2s0−2µ
,

for all x ∈ Bδ̂(y) \ {y}, where we defined

(3.34) C̃µ,s0,y,K,T,Ω := CN,s0,y,µ,Bδ̂
(y),T,ΩC̃y,T,Ω.

Therefore, for each ε ∈ (0, 1), by choosing s0 := ε
4
, s1 ∈ (ε, 1) and µ := (n − ε)/2 in (3.33), and

recalling (3.23), we deduce the existence of some δ(2) = δ
(2)
ε,y,T,Ω ∈ (0, β̂) such that for each x ∈

Bδ(2)(y) \ {y} it holds that

sup
s∈(0,1)

Ex,y
2,N(s, T ) = Ex,y

2,N

(
s
(2)
x,y,T , T

)
with s

(2)
x,y,T ∈ (0, ε).

This concludes the proof of (1.19) for E2,N . The proof of (1.19) for E3,N is analogous to the one for
E2,N .

It is left to prove Theorems 1.7 and 1.8 when n ⩾ 3.
If n ⩾ 3, we just have to replace the inequality (3.25) with the one in (2.47). Thus, repeating the

above procedure with this change, the inequalities in (3.26) and (3.33) become

(3.35)
Ex,y
∗ (s0, T )

Ex,y
∗ (s1, T )

⩾
C∗,s0,y,Bδ̂

(y),T,Ω

|x− y|2(s1−s0)
,

for all s0 ∈
(
0, 1

2

)
, s1 ∈ (s0, 1) and x ∈ Bδ̂(y) \ {y}, where we denoted by E∗ any of the functionals

E1,D, E1,N and E2,N .
The constant C∗,s0,y,Bδ̂

(y),T,Ω is obtained substituting the constant C∗,µ,B
δ̂
(y),T,Ω with C∗,B

δ̂
(y),T,Ω

in (3.27) for E1,D and E1,N , and in (3.34) for E2,N .
Analogously, equation (3.31) becomes

(3.36)
Ex,y
2,D(0, T )

Ex,y
2,D(s1, T )

⩾
C

(1)
y,B

δ̂
(y),T,Ω

|x− y|2s1
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for all s ∈ (0, 1) and x ∈ Bδ̂(y) \ {y}, where we defined

C
(1)
y,B

δ̂
(y),T,Ω := inf

s∈(0,1)

Γ(s)lyD(s, T )∫
Ω
|ξ − y|FD(ξ, y) dξ

c̃By ,Ω

CD,B
δ̂
(y),T,Ω

.

Therefore, for each ε ∈ (0, 1), by choosing s0 :=
ε
2
in (3.35) and s1 ∈ (ε, 1) in (3.35) and (3.36), we

obtain (1.17), (1.18) for E2,D and (1.19) for both E1,N and E2,N when n ⩾ 3.
The proof of (1.18) and (1.19) respectively for E3,D and E3,N are analogous to the one of E2,D

and E2,N when n ⩾ 3 and are therefore omitted. □

Now, we prove Corollary 1.12. Namely, we establish in the one-dimensional framework, and under
suitable geometric assumptions on the domain, that if the target location x ∈ Ω is close enough
to the forager starting position y ∈ Ω, then there exists a local maximizer for the functionals Ex,y

1,D

and Ex,y
1,N in a neighborhood of the local Brownian strategy s = 1.

Proof of Corollary 1.12. We will only prove (1.21), since the proof of (1.22) is analogous. For this,
let ν ∈

(
0, 1

2

)
. Then, thanks to Theorem 1.4, we have that there exists some aν ∈ (π,+∞) such that,

for all a ∈ (aν ,+∞), T ∈ [νa2s,+∞) and y ∈ (νa, ν(1− a)), it holds that

(3.37) Φy,y
D (s0, T ) < Φy,y

D (s1, T ),

for all s0 ∈
(
1+ν
2
, 1
]
and s1 ∈ (s0, 1].

Now, for any ε ∈
(
1+ν
2
, 1
)
we define the positive quantity

δ̃ = δ̃ε,ν,y,T := Φy,y
D (1, T )− Φy,y

D (1− ε, T ) .

Also, thanks to the continuity of Φx,y
D (s, T ) with respect to (s, x, y) ∈

(
1
2
, 1
]
× Ω × Ω stated in

Proposition 2.12, we can define δε,ν y,T,Ω ∈ (0,+∞), such that

|Φx,y
D (s, T )− Φy,y

D (s, T )| ⩽ δ̃

4
for all s ∈

(
1 + ν

2
, 1

]
.

Thus, using the monotonicity of Φy,y
D in (3.37), we obtain that, for each x ∈ Ω and s0 ∈

(
1+ν
2
, 1− ε

)
,

Φx,y
D (1, T )− Φx,y

D (s0, T )

=Φx,y
D (1, T )− Φy,y

D (1, T ) + Φy,y
D (1, T )− Φy,y

D (s0, T ) + Φy,y
D (s0, T )− Φx,y

D (s0, T )

>Φx,y
D (1, T )− Φy,y

D (1, T ) + δ̃ + Φy,y
D (s0, T )− Φx,y

D (s0, T )

⩾ − δ̃

4
+ δ̃ − δ̃

4

=
δ̃

2
.

From this, we infer that

sup
s∈( 1+ν

2
,1)

Ex,y
1,D(s, T ) = Ex,y

1,D

(
s∗x,y,T , T

)
with s∗x,y,T ∈ (1− ε, 1],

which proves (1.21). □

We now prove Proposition 1.13 and establish the continuity with respect to the fractional exponent
of the set functionls in (1.9).

Proof of Proposition 1.13. Since the proof for the Dirichlet and Neumann case are analogous, we
focus on the Dirichlet framework.

We already established in Proposition 2.12 that for all y ∈ Ω and s ∈ (0, 1) one has that (3.19)
holds, and also the functionals in (1.3) and (1.4) are uniformly bounded in (0, 1]× Ω.
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Therefore, by definition we obtain that, for all Ω2 ⊂ Ω,

(3.38) l̃Ω2
D (s, T ) ∈ (0,+∞) and ÃΩ2

D (s, T ) ∈ (0,+∞),

for all s ∈ (0, 1] and T ∈ (0,+∞).
Besides, thanks to Proposition 2.12 we know that lyD(·, T ) and Ay

D(·, T ) are continuous in (0, 1].

Thus, by the Dominated Convergence Theorem we obtain that l̃Ω2
D (·, T ) and ÃΩ2

D (·, T ) are continuous
in (0, 1].

Now, we observe that

Φ̃Ω1,Ω2

D (s, T ) =
1

|Ω1||Ω2|

∫ T

0

∫
Ω1×Ω2

rsD(t, x, y) dx dy dt.

Therefore, thanks to Theorem 1.9 in [DGV22a] we obtain that

(3.39) Φ̃Ω1,Ω2

D (s, T ) ∈ (0,+∞).

Also, rsD(t, x, y) is continuous for s ∈ (0, 1] for all (t, x, y) ∈ (0,+∞) × Ω × Ω, see e.g. Theorem 1.8
in [DGV22a]. Thanks to Proposition A.1 and Lemma A.2 in [DGV22a], we have that, for each
t ∈ (0,+∞) and ε ∈ (0, 1), the kernel rsD(t, x, y) is uniformly bounded in (s, x, y) ∈ (ε, 1] × Ω × Ω.
Thus, as a consequence of the Dominated Convergence Theorem we obtain that

f(s, t) :=

∫
Ω1×Ω2

rsD(t, x, y) dx dy

is continuous in s ∈ (0, 1].
Additionally, in view of Theorem 1.9 in [DGV22a], we see that

|f(s, t)| ⩽ |Ω2| for all (s, t) ∈ (0, 1)× (0,+∞),

and therefore by the Dominated Convergence Theorem we obtain the continuity of Φ̃Ω1,Ω2

D for s ∈
(0, 1].

Finally, the continuity of the functionals in (1.9) with respect to s ∈ (0, 1] follows from (3.38) and

the fact that Φ̃Ω1,Ω2

D (·, T ) ∈ C((0, 1]) and l̃Ω2
D (·, T ), ÃΩ2

D (·, T ) ∈ C((0, 1]). □

Now we prove Theorem 1.14. In this result we show that s = 0 is a minimizer for the func-

tional ẼΩ1,Ω2

1,D , where Ω1 and Ω2 are disjoint and smooth. Also, we show that ẼΩ1,Ω2

2,D and ẼΩ1,Ω2

3,D admit
a positive and finite limit for s ↘ 0.

Proof of Theorem 1.14. Let T ∈ (0,+∞) and Ω1,Ω2 ⋐ Ω be disjoint and smooth. Then, thanks to
Lemma 2.14, we obtain that

lim
s↘0

ẼΩ1,Ω2

1,D (s, T ) = 0.

Furthermore, thanks to (3.39), we see that EΩ1,Ω2

1,D (s, T ) ∈ (0,+∞) for all s ∈ (0, 1]. This latter
observation together with the above limit lead to (1.23).

Now we prove (1.24). The existence of the limits in (1.24) was already established in Lemma 2.14.
Using the fact that Ω1 and Ω2 are disjoint and smooth, together with the inequality in (D.6) and
also (3.21), we evince that

F̃D(Ω1,Ω2) ∈ (0,+∞),

∫
Ω×Ω2

|ξ − y|FD(ξ, y) dξ dy ∈ (0,+∞)

and

∫
Ω×Ω2

|ξ − y|2FD(ξ, y) dξ dy ∈ (0,+∞),

where FD and F̃D are given respectively in (2.72) and (2.85). Therefore, from (2.83), (2.84) and these
considerations we conclude the proof of (1.24).

□



48 SERENA DIPIERRO, GIOVANNI GIACOMIN, AND ENRICO VALDINOCI

Now we focus our attention to Theorems 1.15 and 1.16. To prove these results, it is useful to
state and prove the following proposition regarding a monotonicity property with respect to s and a
scaling property for the functional FΩ1,Ω2 introduced in (2.62). In what follows we denote by dB the
diameter of B for each bounded set B ⊂ Rn.

Proposition 3.1. Let K ⊂ Rn be a compact set and Ω1,Ω2 ⊂ K be measurable sets such that Ω1 ∩
Ω2 = ∅.

Then, if dK ⩽ 1, we have that

(3.40)
d

ds
FΩ1,Ω2(s) ⩽ 0 for all s ∈ (0, 1).

Moreover, for each r ∈ (0,+∞) and y ∈ Rn, it holds that

(3.41) F ryΩ1,ryΩ2(s) = rn+2sFΩ1,Ω2(s).

Proof. We observe that, thanks to the Dominated Convergence Theorem,

d

ds
FΩ1,Ω2(s) = 2

∫
Ω1×Ω2

ln |x− y|
|x− y|n−2s

dx dy.

Hence, if dK ⩽ 1, then
d

ds
FΩ1,Ω2(s) ⩽ 0,

which proves (3.40).
Now we show the scaling property in (3.41). Let r ∈ (0,+∞) and, up to a translation, assume

that y = 0. Then, applying the change of variable (x, y) = (rX, rY ) we obtain that

F rΩ1,rΩ2(s) =

∫
rΩ1×rΩ2

1

|x− y|n−2s
dx dy

=

∫
Ω1×Ω2

r2n

rn−2s|X − Y |n−2s
dX dY

= rn+2sFΩ1,Ω2(s),

which completes the proof. □

With this preliminary work, we can now prove Theorems 1.15 and 1.16. We recall that the aim of
this result is to show that if Ω1,Ω2 ⊂ Ω are disjoint, smooth and close enough, then the best search
strategy for the set efficiency functionals provided in (1.9) is in a small neighborhood of s = 0.

Proof of Theorems 1.15 and 1.16. Let (y, T ) ∈ Ω× (0,+∞). If Ω1,Ω2 ⊂ Ω are smooth and disjoint,
then thanks to Theorem 1.14 we have that

(3.42) sup
s∈(0,1)

ẼΩ1,Ω2

1,D (s, T ) = ẼΩ1,Ω2

1,D

(
s
(1)
Ω1,Ω2,T

, T
)

with s
(1)
Ω1,Ω2,T

∈ (0, 1].

Moreover, If P and P̃ are given as in (2.106), we observe that

inf
Ω2⊂Ω

P (Ω2) ∈ (0,+∞) and inf
Ω2⊂Ω

P̃ (Ω2) ∈ (0,+∞).

Now, using (2.65) we have that, for s0 ∈
(
0, 1

2

)
and r ∈ (0, δ̂), where δ̂ = δ̂s0,y,T,Ω has been given

in (2.28), then

Φ̃Ω1,Ω2

N (s0, T ) ⩾
Cs0,y,Ω

(2r)n−2s0
,

for all Ω1,Ω2 ⊂ Br(y), where Cs0,y,Ω is given (2.34).
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Consequently, using also (2.103), (2.104) and (2.105), we deduce that there exists some β = βy,T,Ω ∈
(0, 1) such that if Ω1,Ω2 ⊂ Bβ(y) are smooth and disjoint then

(3.43) sup
s∈(0,1)

ẼΩ1,Ω2

j,N (s, T ) = ẼΩ1,Ω2

j,N

(
s
(j)
Ω1,Ω2,T

, T
)

with s
(j)
Ω1,Ω2,T

∈ (0, 1],

for all j ∈ {1, 2, 3}.
We will first prove the results for n ⩽ 2.
We recall that, by Corollary 2.11, if s1 ∈ (0, 1) and µ ∈ An,s1 , where An,s1 is given in (2.46), then

(3.44) Φ̃Ω1,Ω2
∗ (s1, T ) ⩽

C∗,µ,B
δ̂
(y),T,Ω

|Ω1||Ω2|
FΩ1,Ω2

(
n− 2µ

2

)
,

for all Ω1,Ω2 ⋐ Bδ̂(y), where C∗,µ,B
δ̂
(y),T,Ω is introduced in Theorem 2.9.

Also, in light of (2.65) we deduce that if s0 ∈
(
0, 1

2

)
and Ω1,Ω2 ⋐ Bδ̂(y), then

(3.45) Φ̃Ω1,Ω2
∗ (s0, T ) ⩾

Cs0,y,Ω

|Ω1||Ω2|
FΩ1,Ω2(s0).

Now, we define

δ0 := min

{
δ̂,

1

2

}
,

and we consider Ω1,Ω2 ⊂ Bδ0(y) smooth and such that Ω1∩Ω2 = ∅. Thus, from (1.9), (3.40), (3.41),
(3.44) and (3.45) we deduce that if r ∈ (0, 1), s0 ∈

(
0, 1

2

)
, s1 ∈ (s0, 1) and µ ∈

(
0, n

2
− s0

)
∩ An,s1 ,

where An,s1 is given as in (2.46), it holds that

ẼryΩ1,ryΩ2

1,∗ (s0, T )

ẼryΩ1,ryΩ2

1,∗ (s1, T )
=

Φ̃
ryΩ1,ryΩ2
∗ (s0, T )

Φ̃
ryΩ1,ryΩ2
∗ (s1, T )

⩾ C
(1)
s0,∗,µ,Bδ̂

(y),y,T,Ω

F ryΩ1,ryΩ2(s0)

F ryΩ1,ryΩ2
(
n−2µ

2

)
⩾ C

(1)
s0,∗,µ,Bδ̂

(y),y,T,Ω

rn+2s0FΩ1,Ω2(s0)

r2n−2µFΩ1,Ω2
(
n−2µ

2

)
⩾

C
(1)
s0,∗,µ,Bδ̂

(y),y,T,Ω

rn−2s0−2µ
,

(3.46)

where we defined

C
(1)
s0,∗,µ,Bδ̂

(y),y,T,Ω :=
Cs0,y,Ω

C∗,µ,B
δ̂
(y),T,Ω

.

We recall that in writing ryΩ1 and ryΩ2 we adopted the notation in (1.26).
As a result, for all ε ∈ (0, 1), by choosing for instance s0 :=

ε
4
and µ := (n−ε)/2 in (3.46), and using

also (3.42) and (3.43), we infer that there exists some r(1) = r
(1)
ε,y,T,Ω such that if Ω1,Ω2 ⋐ Br(1)δ0(y)

are smooth and satisfy Ω1 ∩ Ω2 = ∅, then

sup
s∈(0,1)

ẼΩ1,Ω2

1,∗ (s, T ) = ẼΩ1,Ω2

1,∗

(
s
(1)
∗,Ω1,Ω2,T

, T
)

with s
(1)
∗,Ω1,Ω2,T

∈ (0, ε).

We now focus on the proof of (1.28) for Ẽ2,D. Let K ⋐ Ω and assume that Ω1,Ω2 ⊂ K. Then,
thanks to equations (2.83) and (D.5) we have that

ẼΩ1,Ω2

2,D (0, T ) ⩾
c̃K,Ω∫

Ω×Ω2
|ξ − y|FD(ξ, y) dξ dy

FΩ1,Ω2(0)

|Ω1|
,(3.47)
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where FD and c̃K,Ω are given respectively in (2.72) and (D.8). Then, in light of (2.64) and (3.44), if
s ∈ (0, 1) and µ ∈ An,s ∩ (0, 1), where An,s is given in (2.46), we have that, for each r ∈ (0, 1),

ẼryΩ1,ryΩ2

2,D (0, T )

ẼryΩ1,ryΩ2

2,D (s, T )
=

|ryΩ2|F̃D(ryΩ1, ryΩ2)∫
Ω×ryΩ2

|ξ − y|FD(ξ, y) dξ dy

l̃
ryΩ2

D (s, T )

Φ̃
ryΩ1,ryΩ2

D (s, T )

⩾
|ryΩ2|c̃K,ΩΓ(s)∫

Ω×ryΩ2
|ξ − y|FD(ξ, y) dξ dy

l̃
ryΩ2

D (s, T )

CD,µ,K,T,Ω

F ryΩ1,ryΩ2(0)

F ryΩ1,ryΩ2
(
n−2µ

2

) ,(3.48)

where CD,µ,K,T,Ω was introduced in Theorem 2.9.
Now, we observe that thanks to the limit in equation (2.88) one has that

lim
s↘0

l̃
ryΩ2

D (s, T )Γ(s) = lim
s↘0

l̃
ryΩ2

D (s, T )

s
Γ(s)s

=
(1− e−T (T + 1))

|ryΩ2|

∫
Ω×ryΩ2

|ξ − y|FD(ξ, y) dξ dy.

(3.49)

Let us set the notation

(3.50) Cµ,K,T,ryΩ2,Ω := inf
s∈(0,1)

|ryΩ2|c̃K,ΩΓ(s)∫
Ω×ryΩ2

|ξ − y|FD(ξ, y) dξ dy

l̃
ryΩ2

D (s, T )

CD,µ,K,T,Ω

.

In view of (3.49), we see that if such infimum is attained at s = 0, then it does not depend on ryΩ2.
If the infimum is attained for some ŝ ∈ (0, 1], then using Proposition 2.12 and Lemma D.3 with

(3.51) f(y) := lyD(ŝ, T ) and g(y) =

∫
Ω

|ξ − y|FD(ξ, y) dξ,

we obtain that

Cµ,K,T,Ω := inf
r∈(0,1)
Ω2⊂K

Cµ,K,T,ryΩ2,Ω > 0.

As a result, using equation (3.48) and Proposition 3.1, we deduce that if dK ⩽ 1, then

(3.52)
ẼryΩ1,ryΩ2

2,D (0, T )

ẼryΩ1,ryΩ2

2,D (s, T )
⩾ Cµ,K,T,Ω

F ryΩ1,ryΩ2(0)

F ryΩ1,ryΩ2
(
n−2µ

2

) ⩾
Cµ,K,T,Ω

rn−2µ
.

Therefore, for all ε ∈ (0, 1) and K ⋐ Ω that are start-shaped with respect to y ∈ K, by choosing s ∈
(ε, 1) and µ := (n − ε)/2 in (3.52), we deduce the existence of some r(2) = r

(2)
ε,K,T,Ω such that

if Ω1,Ω2 ⊂ r
(1)
y K satisfy Ω1 ∩ Ω2 = ∅ and are smooth, then

ẼΩ1,Ω2

2,D (0, T ) ⩾ sup
s∈(ε,1)

ẼΩ1,Ω2

2,D (s, T ).

This concludes the proof of (1.28) for Ẽ2,D. The proof of (1.28) for Ẽ3,D will be omitted, being

analogous to the one for Ẽ2,D.
We now prove (1.29) for Ẽ2,N . To do so, we fix some s0 ∈

(
0, 1

2

)
, and, in light of Proposition 2.12,

we define the positive constant

Cs0,T,Ω2,Ω := inf
s1∈(s0,1)

l̃Ω2
N (s1, T )

l̃Ω2
N (s0, T )

.

Also, if the above infimum is attained for some ŝ ∈ [s0, 1], using Lemma D.3 with

f(y) = lyN(ŝ, T ) and g(y) = lyN(s0, T ),
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we set

(3.53) Cs0,T,Ω := inf
Ω2⋐Ω

Cs0,T,Ω2,Ω > 0.

Thus, making use of equations (3.40), (3.41), (3.44) and (3.45), we deduce that if Ω1,Ω2 ⋐ Bδ0(y),
and K ⊃ Bδ0(y), r ∈ (0, 1), s0 ∈

(
0, 1

2

)
, s1 ∈ (s0, 1) and µ ∈ An,s1 ∩

(
0, n

2
− s0

)
, we have that

ẼryΩ1,ryΩ2

2,N (s0, T )

ẼryΩ1,ryΩ2

2,N (s1, T )
=

Φ̃
ryΩ1,ryΩ2

N (s0, T )

l̃
ryΩ2

N (s0, T )

l̃
ryΩ2

N (s1, T )

Φ̃
ryΩ1,ryΩ2

N (s1, T )

⩾ C
(1)
µ,s0,y,K,T,Ω

F ryΩ1,ryΩ2(s0)

F ryΩ1,ryΩ2
(
n−2µ

2

)
= C

(1)
µ,s0,y,K,T,Ω

rn+2s0FΩ1,Ω2(s0)

r2n−2µFΩ1,Ω2
(
n−2µ

2

)
⩾

C
(1)
µ,s0,y,K,T,Ω

rn−2s0−2µ
,

(3.54)

where we defined

C
(1)
µ,s0,y,K,T,Ω :=

Cs0,y,Ω

CN,µ,B
δ̂
(y),T,Ω

Cs0,T,Ω.

Therefore, for each ε ∈ (0, 1), by choosing for instance s0 := ε
4
, s1 ∈ (ε, 1) and µ := (n − ε)/2

in (3.54), and also thanks to (3.43), we deduce that there exists some r(2) = r
(2)
ε,y,T,Ω ∈ (0, β) such

that, for each Ω1,Ω2 ⊂ Br(2)δ0(y) smooth and disjoint,

sup
s∈(0,1)

ẼΩ1,Ω2

2,N (s, T ) = ẼΩ1,Ω2

2,N

(
s
(2)
Ω1,Ω2,T

, T
)

with s
(2)
Ω1,Ω2,T

∈ (0, ε).

This concludes the proof of (1.29) for Ẽ2,N . The proof of (1.29) for Ẽ3,N is analogous to the one

for Ẽ2,N just concluded and therefore it will be omitted.
This concludes the proof of Theorems 1.15 and 1.16 for n ⩽ 2.
Few changes are in order to show Theorems 1.15 and 1.16 also for n ⩾ 3. In particular, we have

to repeat the above arguments by replacing (3.44) with the inequality in (2.64). The procedure will
determine changes only on the constants involved, in the same fashion of the proof of Theorems 1.7
and 1.8 for n ⩾ 3.

□

Appendix A. Green Function for the Dirichlet spectral fractional Laplacian

Here we give a proof of a well-known identity for the Green function Gs
D(x, y) of the Diriclet

spectral fractional Laplacian. The Green function is given by

Gs
D(x, y) =

1

Γ(s)

∫ +∞

0

pΩD(t, x, y)t
s−1 dt,

see also [AD17]. Before we state the following result, let us recall the notation

C = {(x, y) ∈ Ω× Ω s.t. x ̸= y} .

Proposition A.1. Let Ω ⊂ Rn be bounded, smooth and connected.
Then, for each (x, y) ∈ C it holds that

(A.1)

∫ +∞

0

rsD(t, x, y) dt =
1

Γ(s)

∫ +∞

0

pΩD(t, x, y)t
s−1 dt.
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Proof. Given x, y ∈ C, we let

I(x, y) :=
∫ +∞

0

rsD(t, x, y) dt

and J (x, y) :=
1

Γ(s)

∫ +∞

0

pΩD(t, x, y)t
s−1 dt,

Now, let {ϕk}k be an orthonormal basis of L2(Ω) made of eigenfunctions of the Laplacian with
Dirichlet boundary conditions, ordered such that if λk’s are the corresponding eigenvalues, then
0 < λ1 ⩽ λ2 ⩽ . . . (see for instance [Eva10]). In view of Theorem 1.8 in [DGV22a] we know that

rsD(t, x, y) =
+∞∑
k=1

ϕk(x)ϕk(y) exp(−tλs
k),

for each (t, x, y) ∈ (0,+∞)× Ω× Ω. In order to prove (A.1), we first show that I(x, y) and J (x, y)
are both continuous in C. Thanks to Theorem 2.8 we know that∫ T

0

rsD(t, x, y) dy < +∞

for each T ∈ (0,+∞), s ∈ (0, 1] and x ̸= y. Moreover, thanks to Proposition A.1 in [DGV22a] we
observe that for each t > T and s ∈ (0, 1] it holds that

rsD(t, x, y) = exp(−tλs
1)

+∞∑
k=1

ϕk(x)ϕk(y) exp(−t(λs
k − λs

1))

⩽ cm0,Ω,0 exp(−tλs
1)

+∞∑
k=1

λ
2α(m0)
k exp(−T (λs

k − λs
1))

⩽ CT,s,Ω exp(−tλs
1),

(A.2)

where the last inequality is a consequence of Lemma A.3 in [DGV22a], and CT,s,Ω > 0 is a constant
depending on T > 0, s ∈ (0, 1] and Ω. The constants α(m0) and cm0,Ω,0 have been explicitly defined
in Proposition A.1 in [DGV22a]. Therefore, if we call

gsD(t, x, y) :=

{
rsD(t, x, y) for all (t, x, y) ∈ (0, T ]× C,
CT,s,Ω exp(−tλs

1) for all (t, x, y) ∈ (T,+∞)× C,

we obtain that gsD(t, x, y) ∈ L1(0,+∞) for each (x, y) ∈ C, and also

rsD(t, x, y) ⩽ gsD(t, x, y),

for each (t, x, y) ∈ (0,+∞) × Ω × Ω and s ∈ (0, 1]. Therefore, thanks to the continuity of the ker-
nel rsD discussed in Lemma 2.12 in [DGV22a], we conclude by the Dominated Convergence Theorem
that I(·, ·) is continuous in C.

Furthermore, thanks to the inequalities in (2.15) and (A.2) we have that if we define

fD(t, x, y) =


1

(4πt)
n
2

exp

(
−|x− y|2

4t

)
for all (t, x, y) ∈ (0, T ]× C,

CT,1,Ω exp(−tλ1) for all (t, x, y) ∈ (T,+∞)× C,

then we get that fD(t, x, y)t
s−1 ∈ L1(0,+∞) for each (x, y) ∈ C, and also

pΩD(t, x, y)t
s−1 ⩽ fD(t, x, y)t

s−1

for each (t, x, y) ∈ (0,+∞) × C. Thanks to the continuity of pΩD (see for instance Lemma 2.12
in [DGV22a]) and the last observations we can apply the Dominated Convergence Theorem and
conclude that J (·, ·) ∈ C(C).
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Now let f ∈ C∞
c (Ω) such that f ⩾ 0. Then, for each x ∈ Ω we compute

∫
Ω

I(x, y)f(y) dy =

∫
Ω

∫ +∞

0

rsD(t, x, y)f(y) dt dy

=

∫ +∞

0

∫
Ω

rsD(t, x, y)f(y) dy dt

=

∫ +∞

0

+∞∑
k=1

fkϕk(x) exp(−tλs
k) dt

=
+∞∑
k=1

fkϕk(x)

λs
k

.

(A.3)

In the above computation we denoted

fk :=

∫
Ω

f(y)ϕk(y) dy,

and the identity between the first and the second line, as well as between the second and the third,
are due to Lemma A.2 in [DGV22a]; in addition, the estimates on the coefficients fk given in Propo-
sition A.4 in [DGV22a].

Similarly, we also observe that

∫
Ω

J (x, y)f(y) dy =
1

Γ(s)

∫
Ω

∫ +∞

0

pΩD(t, x, y)t
s−1f(y) dt dy

=
1

Γ(s)

∫ +∞

0

ts−1

∫
Ω

pΩD(t, x, y)f(y) dy dt

=
1

Γ(s)

∫ +∞

0

+∞∑
k=1

fkϕk(x) exp(−tλk)t
s−1 dt

=
1

Γ(s)

+∞∑
k=1

fkϕk(x)

∫ +∞

0

exp(−tλk)t
s−1 dt

=
1

Γ(s)

+∞∑
k=1

fkϕk(x)
Γ(s)

λs
k

=
+∞∑
k=1

fkϕk(x)

λs
k

.

(A.4)

Therefore, from equations (A.3) and (A.4) we deduce that for each x ∈ Ω and f ∈ C∞
c (Ω) such

that f ⩾ 0 it holds ∫
Ω

(I(x, y)− J (x, y))f(y) dy = 0.

Thanks to this latter identity and the fact that J , I ∈ C(C) we conclude the proof of (A.1). □
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Appendix B. Some explicit formula for the 1-dimensional functionals

Lemma B.1. We have that

lyD(s, T ) = 2a1+2s

+∞∑
k=1

(
(−1)k+1

πk
+

y

πka
+

y(−1)k

πka
− 2

(πk)2
sin

(
πky

a

))

× sin

(
πky

a

)1− exp
(
−T

(
πk
a

)2s)
(πk)2s

(B.1)

and

Ay
D(s, T ) = 2a2+2s

+∞∑
k=1

(
(−1)k+1

πk
+

2(−1)k

(πk)3
− 2

(πk)3
− y2(−1)k

πka2
+

y2

πka2
− 2y(−1)k

πka

)

× sin

(
πky

a

)1− exp
(
−T

(
πk
a

)2s)
(πk)2s

 .

(B.2)

Proof. The gist to obtain explicit formulas for the average distance lyD(s, T ) and the mean square
displacementAy

D(s, T ) is to compute the L2((0, a)) components of the decomposition in eigenfunctions
of the functions |x− y| and (x− y)2. For this, it is first useful to consider the case a := 1 and then
to reduce to it via a scaling argument. Thus, we first suppose that a = 1 and note that∫ 1

0

|x− y| sin(πkx)dx =
(−1)k+1

πk
+

y

πk
+

y(−1)k

πk
− 2

sin(πky)

(πk)2

and

∫ 1

0

(x− y)2 sin(πkx)dx =
(−1)k+1

πk
+

2(−1)k

(πk)3
− 2

(πk)3
− y2(−1)k

πk
+

y2

πk
− 2y(−1)k

πk
.

Therefore lyD(s, T ) and Ay
D(s, T ) take the form

lyD(s, T ) = 2

∫ T

0

+∞∑
k=1

(
(−1)k+1

πk
+

y

πk
+

y(−1)k

πk
− 2

sin(πky)

(πk)2

)
sin(πky) exp(−(πk)2st)dt

= 2
+∞∑
k=1

(
(−1)k+1

πk
+

y

πk
+

y(−1)k

πk
− 2

sin(πky)

(πk)2

)
sin(πky)

(
1− exp(−T (πk)2s)

(πk)2s

)(B.3)

and

Ay
D(s, T ) = 2

∫ 1

0

+∞∑
k=1

(
(−1)k+1

πk
+

2(−1)k

(πk)3
− 2

(πk)3
− y2(−1)k

πk
+

y2

πk
− 2y(−1)k

πk

)
× sin(πky) exp(−(πk)2st)dt

= 2
+∞∑
k=1

(
(−1)k+1

πk
+

2(−1)k

(πk)3
− 2

(πk)3
− y2(−1)k

πk
+

y2

πk
− 2y(−1)k

πk

)
× sin(πky)

(
1− exp(−T (πk)2s)

(πk)2s

)
,

(B.4)

which is the desired result for a = 1.
Now we address the case of a general a > 0. To this end, we denote with an additional subscript a

the quantities related to the interval (0, a) (and, consistently, with an additional subscript 1 the
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quantities related to the interval (0, 1)). With this notation, we infer from (3.1), (3.2) and (3.3) that

ϕk,a(x) =
1√
a
ϕk,1

(x
a

)
, λk,a =

λk,1

a2
and rsD,a(t, x, y) =

1

a
rsD,1

(
t

a2s
,
x

a
,
y

a

)
.

As a consequence, by (1.3),

lyD,a(s, T ) =

∫ T

0

∫ a

0

|ζ − y| rsD,a(t, ζ, y) dζ dt

=

∫ T

0

∫ a

0

∣∣∣∣ζa − y

a

∣∣∣∣ rsD,1

(
t

a2s
,
ζ

a
,
y

a

)
dζ dt

= a1+2s

∫ T/a2s

0

∫ 1

0

∣∣∣ζ̃ − y

a

∣∣∣ rsD,1

(
t̃, ζ̃ ,

y

a

)
dζ̃ dt̃

= a1+2s l
y/a
D,1

(
s,

T

a2s

)
.

(B.5)

This and (B.3) yield that

lyD,a(s, T ) = 2a1+2s

+∞∑
k=1

(
(−1)k+1

πk
+

y

πka
+

y(−1)k

πka
− 2

(πk)2
sin

(
πky

a

))

× sin

(
πky

a

)1− exp
(
−T

(
πk
a

)2s)
(πk)2s


and this gives (B.1), as desired.

Furthermore, by (1.4),

Ay
D,a(s, T ) =

∫ T

0

∫ a

0

|ζ − y|2 rsD,a(t, ζ, y) dζ dt

=
1

a

∫ T

0

∫ a

0

|ζ − y|2 rsD,1

(
t

a2s
,
ζ

a
,
y

a

)
dζ dt

= a2+2s

∫ T/a2s

0

∫ 1

0

∣∣∣x̃− y

a

∣∣∣2 rsD,1

(
t̃, x̃,

y

a

)
dx̃ dt̃

= a2+2s Ay/a
D,1

(
s,

T

a2s

)
.

(B.6)

Thus, recalling (B.4),

Ay
D,a(s, T ) = 2a2+2s

+∞∑
k=1

(
(−1)k+1

πk
+

2(−1)k

(πk)3
− 2

(πk)3
− y2(−1)k

πka2
+

y2

πka2
− 2y(−1)k

πka

)

× sin

(
πky

a

)1− exp
(
−T

(
πk
a

)2s)
(πk)2s

 ,

which proves (B.2), as desired. □

Additionally, the Neumann counterpart of Lemma B.1 reads
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Lemma B.2. We have that

lyN(s, T ) = aT

(
1

2
+

y2

a2
− y

a

)
+ 2a1+2s

+∞∑
k=1

(
1

(πk)2
− 2

(πk)2
cos

(
πky

a

)
+

(−1)k

(πk)2

)
cos

(
πky

a

)

×
1− exp

(
−T

(
π(2k+1)

a

)2s)
(π(2k + 1))2s

,

and Ay
N(s, T ) = a2T

(
1

3
+

y2

a2
− y

a

)

+ 2a2+2s

+∞∑
k=1

(
2

(πk)2
− 2y

a

(
(−1)k

(πk)2
− 1

(πk)2

))
cos

(
πky

a

) 1− exp
(
−T

(
πk
a

)2s)
(πk)2s

.

Proof. As in the proof of Lemma B.1, we can focus on the case a := 1, since the general case
then would follow from scaling. Thus, we consider the coefficients of the L2((0, 1)) expansion of the
functions |x− y| and (x− y)2 in terms of the Neumann eigenfunctions, thus finding that

∫ 1

0

|x− y| cos(πkx) dx =


1

2
+ y2 − y if k = 0,

1

(πk)2
− 2

cos(πky)

(πk)2
+

(−1)k

(πk)2
if k ̸= 0

and

∫ 1

0

(x− y)2 cos(πkx) dx =


1

3
− y + y2 if k = 0,

2

(πk)2
− 2y

(
(−1)k

(πk)2
− 1

(πk)2

)
if k ̸= 0.

Therefore lyN(s, T ) and Ay
N(s, T ) take the form

lyN(s, T ) =

∫ T

0

(
1

2
+ y2 − y

)
+ 2

+∞∑
k=1

(
1

(πk)2
− 2

cos(πky)

(πk)2
+

(−1)k

(πk)2

)
cos(πky) exp(−t(π(2k + 1))2s) dt

= T

(
1

2
+ y2 − y

)
+ 2

+∞∑
k=1

(
1

(πk)2
− 2

cos(πky)

(πk)2
+

(−1)k

(πk)2

)
cos(πky)

(
1− exp(−T (π(2k + 1))2s)

(π(2k + 1))2s

)
and

Ay
N(s, T ) =

∫ T

0

2

(
1

3
+ y2 − y

)
+ 2

+∞∑
k=1

(
2

(πk)2
− 2y

(
(−1)k

(πk)2
− 1

(πk)2

))
cos(πky) exp(−t(πk)2s) dt

= T

(
1

3
+ y2 − y

)
+ 2

+∞∑
k=1

(
2

(πk)2
− 2y

(
(−1)k

(πk)2
− 1

(πk)2

))
cos(πky)

(
1− exp(−T (πk)2s)

(πk)2s

)
,

as claimed. □
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Appendix C. Alternative proof of Proposition 1.2

Here we showcase an alternative proof of Proposition 1.2. The advantage of this argument is that
it does not make use of the explicit formula (2.2) for the density µs

t of a s-stable subordinator. The
details go as follows:

Proof of Proposition 1.2. As in the proof of Lemma B.1, we denote by an additional subscript a the
quantities related to the interval (0, a). In particular, by (3.4) and (3.8),

(C.1) Φx,y
D,a(s, T ) = a2s−1Φ

x/a,y/a
D,1

(
s,

T

a2s

)
and Φx,y

N,a(s, T ) = a2s−1Φ
x/a,y/a
N,1

(
s,

T

a2s

)
.

From this, (B.5) and (B.6) (and the corresponding scaling properties for the Neumann case), we
deduce that it suffices to establish Proposition 1.2 for a := 1.

Hence, let x = y ∈ Ω = (0, 1). We have that

1− exp(−T (πk)2s)

(πk)2s
+

1− exp(−T (π(2k + 1))2s)

(π(2k + 1))2s
⩽

1

(πk)2s
+

1

(π(2k + 1))2s
⩽

2

(πk)2s

and, as a result, we obtain that

the series in Lemmata B.1 and B.2 converge absolutely for all s ∈ (0, 1) and T > 0

and uniformly in s in every set of the form (s0, 1) with s0 ∈ (0, 1).
(C.2)

Consequently, the convergence or divergence of E(s, T ) in this case is equivalent to that of Φx,x
D (s, T )

or Φx,x
N (s, T ), depending on the boundary conditions considered. Hence, when s ∈ (0, 1/2], for

all M ∈ N, we infer from (3.4) that

(C.3) Φx,x
D (s, T ) ⩾ 2

M∑
k=1

∫ T

0

sin2(πkx) exp(−t(πk)2s) dt = 2
M∑
k=1

sin2(πkx)
(
1− exp(−T (πk)2s)

)
(πk)2s

and from (3.8) that

(C.4) Φx,x
N (s, T ) ⩾ 2

M∑
k=1

∫ T

0

cos2(πkx) exp(−t(πk)2s) dt = 2
M∑
k=1

cos2(πkx)
(
1− exp(−T (πk)2s)

)
(πk)2s

.

We now want to check the fact that, when s ∈ (0, 1/2], the quantities in (C.3) and (C.4) are divergent
asM → +∞. To this end, we need to estimate “how often” in k the functions sin2(πkx) and cos2(πkx)
can get close to zero. This concept is formalized via the following claim: given x ∈ (0, 1),

there exist ε0 > 0 and K0 ∈ N ∩ [1,+∞) such that for every k0 ∈ N
there exists k ∈ {k0, k0 + 1, . . . , k0 +K0} such that sin2(πkx) ⩾ ε0.

(C.5)

To prove this, up to exchanging x with 1 − x, we can suppose that x ∈
(
0, 1

2

]
. Thus, we argue by

contradiction and we suppose that, for some x ∈
(
0, 1

2

]
, for every ε > 0, as small as we wish, and

every K ∈ N, as large as we wish, there exists kε,K ∈ N such that for all k ∈ {kε,K , kε,K+1, . . . , kε,K+
K} we have that sin2(πkx) < ε.
This means that for all k ∈ {kε,K , kε,K + 1, . . . , kε,K + K} the angle πkx is sufficiently close to

either 0 or π, modulo multiples of 2π. Hence, for concreteness, let us suppose that the angle πkε,K x
is sufficiently close to 0 modulo multiples of 2π, namely that

|πkε,K x+ 2πJ | < δ := arcsin
√
ε,

for some J ∈ N.
Therefore, for every j ∈ N,

π(kε,K + j)x+ 2πJ ∈ (−δ + πjx, δ + πjx).
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We also note that, if j ⩽ π−2δ
πx

and δ is sufficiently small, it follows that (−δ + πjx, δ + πjx) ⊆
(−δ, π − δ). Chosing K ⩾ 1 + π−2δ

πx
, we thus conclude that, for every j ∈ N ∩

[
0, π−2δ

πx

]
,

π(kε,K + j)x+ 2πJ ∈ (−δ, δ).

Now we remark that, for sufficiently small δ, we have

π − 2δ

πx
⩾

2(π − 2δ)

π
⩾

3

2
.

In particular, we can find j⋆ ∈ N ∩
[
π−2δ
πx

− 1, π−2δ
πx

]
. It thereby follows that

δ > π(kε,K + j⋆)x+ 2πJ = πkε,K x+ 2πJ + πj⋆ x > −δ + πj⋆ x

⩾ −δ + π x

(
π − 2δ

πx
− 1

)
= π − 3δ − πx ⩾

π

2
− 3δ > δ,

provided that δ is sufficiently small. This is a contradiction and the claim in (C.5) is established.
Similarly, one can prove that given x ∈ (0, 1)

there exist ε0 > 0 and K0 ∈ N ∩ [1,+∞) such that for every k0 ∈ N
there exists k ∈ {k0, k0 + 1, . . . , k0 +K0} such that cos2(πkx) ⩾ ε0.

(C.6)

We now pick arbitrary integers N , N ∈ N with N < N and take M := N(K0 + 2) in (C.3). Thus,
assuming N large enough such that exp(−T (πN)2s) ⩽ 1

2
and using (C.5), we conclude that

Φx,x
D (s, T ) ⩾ 2

N(K0+2)∑
k=N

sin2(πkx)
(
1− exp(−T (πk)2s)

)
(πk)2s

⩾
N(K0+2)∑

k=N

sin2(πkx)

(πk)2s

⩾
N−1∑
ℓ=0

N+(ℓ+1)K0+ℓ∑
k=N+ℓK0+ℓ

sin2(πkx)

(πk)2s

⩾
1

π2s

N−1∑
ℓ=0

N+(ℓ+1)K0+ℓ∑
k=N+ℓK0+ℓ

sin2(πkx)(
N + (ℓ+ 1)K0 + ℓ

)2s
⩾

1

π2s

N−1∑
ℓ=0

ε0(
N + (ℓ+ 1)K0 + ℓ

)2s .

(C.7)

Sending now N → +∞ we conclude that, when s ∈ (0, 1/2],

(C.8) Φx,x
D (s, T ) ⩾

ε0
π2s

+∞∑
ℓ=0

1(
N + (ℓ+ 1)K0 + ℓ

)2s = +∞.

Similarly, combining (C.4) and (C.6), we find that, when s ∈ (0, 1/2],

Φx,x
N (s, T ) = +∞.

This and (C.8) yield that E(s, T ) = +∞ for all s ∈ (0, 1/2], as claimed in the statement of Proposi-
tion 1.2.
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We now consider the case s ∈ (1/2, 1]. In this situation, it follows from (3.5) that, for every x,
y ∈ (0, 1),

(C.9) Φx,y
D (s, T ) ⩽ 2

+∞∑
k=1

1− exp(−T (πk)2s)

(πk)2s
⩽

2

π2s

+∞∑
k=1

1

k2s
< +∞.

Similarly, using (3.9), for all s ∈ (1/2, 1] and x, y ∈ (0, 1),

(C.10) Φx,y
N (s, T ) < +∞.

From this estimate and (C.9) we infer that E(s, T ) ∈ (0,+∞) for all s ∈ (1/2, 1), as desired. □

Appendix D. Some technical results

In this section we collect some technical results which have been used throughout the paper.

Proposition D.1. Let (l, t) ∈ (0,+∞)× (0,+∞). Then,

(D.1) lim
s↘0

µs
t(l)

s
=

te−t

l
.

Proof. Thanks to (2.2), we have that

lim
s↘0

µs
t(l)

s
= lim

s↘0

1

π

∫ +∞

0

e−lue−tus cos(πs)tus sin(tu
s sin(πs))

tuss
du

=

∫ +∞

0

lim
s↘0

e−lu−tus cos(πs)tus sin(tu
s sin(πs))

tuss
du

= te−t

∫ +∞

0

e−lu du

=
te−t

l
,

(D.2)

where we have used the fact that for each s ∈
(
0, 1

2

)
it holds that∣∣∣∣e−lu−tus cos(πs)tus sin(tu

s sin(πs))

tuss

∣∣∣∣ ⩽ te−lu
(
χ(0,1)(u) + χ(1,+∞)(u)u

1
2

)
∈ L1((0,+∞))

in order to apply the Dominated Convergence Theorem in (D.2). □

Proposition D.2. Let Ω ⊂ Rn be bounded, smooth and connected.
Then, if E,F ⊂ Ω and E ∩ F = ∅, there exists some constant CE,F ∈ (0,+∞), depending only

on E and F , such that for all (s, T ) ∈ (0, 1)× (0,+∞) it holds that

(D.3) Φx,y
N (s, T ) ⩽ CE,FT for all (x, y) ∈ E × F.

Proof. Thanks to the hypothesis E ∩ F = ∅, we can define the positive constant

d := inf
x∈E
y∈F

|x− y|.
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Then, by the definition of ΦN and the upper bound in (2.20), we obtain that

Φx,y
N (s, T ) :=

∫ T

0

∫ +∞

0

pΩN(l, x, y)µ
s
t(l) dl dt

⩽
∫ T

0

∫ +∞

0

cΩ max

{
1

l
n
2

, 1

}
exp

(
−d

2

6l

)
µs
t(l) dl dt

⩽
∫ T

0

∫ +∞

0

CE,Fµ
s
t(l) dl dt

=CE,FT,

where we set

□(D.4) CE,F := sup
l∈(0,+∞)

cΩ max

{
1

l
n
2

, 1

}
exp

(
−d

2

6l

)
.

Lemma D.3. Let Ω ⊂ Rn be bounded and f, g ∈ C(Ω) be strictly positive in a compact set K ⋐ Ω.
Then,

inf
Ω2⊂K

∫
Ω2

f(x) dx∫
Ω2

g(x) dx
∈ (0,+∞).

Proof. We set

m := min
x∈K

f(x) ∈ (0,+∞) and M = max
x∈K

g(x) ∈ (0,+∞).

Then,

inf
Ω2⊂K

∫
Ω2

f(x) dx∫
Ω2

g(x) dx
⩾

m

M
∈ (0,+∞). □

We give some lower and upper bounds for the function FD(x, y) defined in equation (2.72). This
result is applied several times, when proving Theorem 1.7.

Lemma D.4. Let Ω ⊂ Rn be bounded, smooth and connected.
Then, for each K ⋐ Ω there exists some constant c̃K,Ω ∈ (0,+∞) such that

(D.5) FD(x, y) ⩾
c̃K,Ω

|x− y|n
for all (x, y) ∈ C ∩ (K ×K),

where C has been defined in (2.35).
Furthermore, it holds that

(D.6) FD(x, y) ⩽
Cn

|x− y|n
for all (x, y) ∈ C,

for some Cn ∈ (0,+∞).

Proof. We first prove (D.5). Thanks to equations (2.16) and (2.17) we observe that there exists two
constants c1, c2 and some TK,Ω ∈ (0,+∞) depending on Ω and K, such that

pΩD(t, x, y) ⩾
c1

t
n
2

exp

(
−c2|x− y|2

t

)
for all (t, x, y) ∈ (0,+∞)×K ×K.
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Therefore, thanks to equation (2.72) we deduce that for each (x, y) ∈ C ∩ (K ×K) it holds that

FD(x, y) =

∫ +∞

0

pΩD(l, x, y)

l
dl

⩾
∫ TK,Ω

0

c1

l
n
2
+1

exp

(
−c2|x− y|2

l

)
dl

=
c1c

−n
2

2

|x− y|n

∫ +∞

c2|x−y|2
TK,Ω

a
n
2
−1e−a da

⩾
c̃K,Ω

|x− y|n
,

(D.7)

where, by calling as usual dK the diameter of K, we defined

(D.8) c̃k,Ω := c1c
−n

2
2

∫ +∞

c2d
2
K

TK,Ω

a
n
2
−1e−a da.

This concludes the proof of (D.5).

We now show (D.6). By equation (2.15) and the change of variable θ = |x−y|2
4l

we obtain that

FD(x, y) =

∫ +∞

0

pΩD(l, x, y)

l
dl

⩽
1

(4π)
n
2

∫ +∞

0

1

l
n
2
+1

exp

(
−|x− y|2

4l

)
dl

⩽
1

π
n
2 |x− y|n

∫ +∞

0

θ
n
2
−1e−θ dθ

=
Γ
(
n
2

)
π

n
2

1

|x− y|n
.

Therefore, (D.6) is proved with Cn :=
Γ(n

2 )
π

n
2
. □
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