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Abstract: The work deals with the existence of solutions of a certain quadratic
integral equation inH1(R). The theory of quadratic integral equations has many
useful applications in the mathematical physics, economics, biology, as well as in
describing the real world problems. The proof of the existence of solutions is based
on a fixed point technique in our Sobolev space on the real line.
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1. Introduction

The present article is devoted to the existence of solutionsof the following integral
equation

u(x) = u0(x) + [Tu(x)]

∫

∞

−∞

K(x− y)g(u(y))dy, x ∈ R. (1.1)

The precise conditions on the functionsu0(x), g(u), the linear operatorT and the
kernelK(x) will be specified further down. The theory of integral equations has
many useful applications in describing the numerous eventsand problems of the
real world. It is caused by the fact that this theory is frequently applicable in var-
ious branches of mathematics and in mathematical physics, economics, biology as
well as in dealing with the real world problems. The quadratic integral equations
arise in the theories of the radiative transfer, neutron transport, in the kinetic the-
ory of gases, in the design of the bandlimited signals for thebinary communication
using the simple memoryless correlation detection, when the signals are disturbed
by the additive white Gaussian noise (see e.g. [1], [5], [11]and the references
therein). The article [1] deals with the solvability of a nonlinear quadratic integral
equation in the Banach space of the real functions being defined and continuous
on a bounded and closed interval using the fixed point result.The works [2] and

1



[4] are devoted to the studies of the existence of solutions for quadratic integral
equations on unbounded intervals. The existence of solutions for quadratic integral
inclusions was treated in [3]. The paper [10] deals with the nondecreasing so-
lutions of a quadratic integral equation of Urysohn-Stieltjes type. The solvability
of the quadratic integral equations in Orlicz spaces was covered in [7], [8], [9].
The reduction of dimension in multi-dimensional integral equations was discussed
in [15]. The integro-differential equations, which may involve either Fredholm or
non Fredholm operators arise in the mathematical biology when studying the sys-
tems with the nonlocal consumption of resources and the intra-specific competition
(see [12], [13], [17], [18] and the references therein). Thecontraction argu-
ment was used in [16] to estimate the perturbation to the standing solitary wave of
the Nonlinear Schrödinger (NLS) equation when either the external potential or the
nonlinear term were perturbed. The similar ideas were exploited to show the per-
sistence of pulses for certain reaction-diffusion type equations (see [6]). Suppose
that the assumption below is fulfilled.

Assumption 1.1. Let the kernelK(x) : R → R be nontrivial, such thatK(x) ∈
W 1,1(R). The functionu0(x) : R → R does not vanish identically on the real line
andu0(x) ∈ H1(R). Suppose also that the linear operatorT : H1(R) → H1(R) is
bounded, such that its norm0 < ‖T‖ < ∞.

Let the functionV (x) : R → R be nontrivial andV (x) ∈ W 1,∞(R), such thatV (x)

and its derivative
dV

dx
are bounded on the whole real line. Then it can be easily

verified that the multiplication operator

Tu(x) = V (x)u(x), u(x) ∈ H1(R) (1.2)

satisfies the assumption above. We will use the Sobolev space

H1(R) :=
{

u(x) : R → R | u(x) ∈ L2(R),
du

dx
∈ L2(R)

}

. (1.3)

It is equipped with the norm

‖u‖2H1(R) := ‖u‖2L2(R) +
∥

∥

∥

du

dx

∥

∥

∥

2

L2(R)
. (1.4)

Another norm relevant to our argument is given by

‖K‖W 1,1(R) := ‖K‖L1(R) +
∥

∥

∥

dK

dx

∥

∥

∥

L1(R)
. (1.5)

By means of the Sobolev inequality in one dimension (see e.g.Sect 8.5 of [14]),
we have

‖u(x)‖L∞(R) ≤
1√
2
‖u(x)‖H1(R). (1.6)
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Let us recall the algebraic property of our Sobolev space, namely that for any
u(x), v(x) ∈ H1(R)

‖u(x)v(x)‖H1(R) ≤ ca‖u(x)‖H1(R)‖v(x)‖H1(R), (1.7)

whereca > 0 is a constant. Estimate from above (1.7) can be easily derived, for
instance via (1.6). The Young’s inequality (see e.g. Section 4.2 of [14]) enables us
to estimate the norm of the convolution as

‖u ∗ v‖L2(R) ≤ ‖u‖L1(R)‖v‖L2(R). (1.8)

Clearly, inequality (1.8) yields the upper bound

∥

∥

∥

d

dx

∫

∞

−∞

u(x− y)v(y)dy
∥

∥

∥

L2(R)
≤

∥

∥

∥

du

dx

∥

∥

∥

L1(R)
‖v‖L2(R). (1.9)

We seek the resulting solution of nonlinear equation (1.1) as

u(x) = u0(x) + up(x). (1.10)

Evidently, we arrive at the perturbative equation

up(x) = [T (u0(x) + up(x))]

∫

∞

−∞

K(x− y)g(u0(y) + up(y))dy. (1.11)

Let us introduce a closed ball in our Sobolev space

Bρ := {u(x) ∈ H1(R) | ‖u‖H1(R) ≤ ρ}, 0 < ρ ≤ 1. (1.12)

We seek the solution of equation (1.11) as the fixed point of the auxiliary nonlinear
problem

u(x) = [T (u0(x) + v(x))]

∫

∞

−∞

K(x− y)g(u0(y) + v(y))dy (1.13)

in ball (1.12). Let us introduce the interval on the real line

I :=
[

− 1√
2
− 1√

2
‖u0‖H1(R),

1√
2
+

1√
2
‖u0‖H1(R)

]

(1.14)

along with the closed ball in the space ofC1(I) functions, namely

DM := {g(z) ∈ C1(I) | ‖g‖C1(I) ≤ M}, M > 0. (1.15)

In this context the norm

‖g‖C1(I) := ‖g‖C(I) + ‖g′‖C(I), (1.16)
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where‖g‖C(I) := maxz∈I |g(z)|.

Assumption 1.2. Let g(z) : R → R, such thatg(0) = 0. It is also assumed that
g(z) ∈ DM and it does not vanish identically on the intervalI.

Let us introduce the operatortg, such thatu = tgv, whereu is a solution of equation
(1.13). Our first main result is as follows.

Theorem 1.3.Let Assumptions 1.1 and 1.2 hold and

ca‖T‖(‖u0‖H1(R) + 1)2‖K‖W 1,1(R)M ≤ ρ

2
. (1.17)

Then equation (1.13) defines the maptg : Bρ → Bρ, which is a strict contraction.
The unique fixed pointup(x) of this maptg is the only solution of problem (1.11) in
Bρ.

Obviously, the resulting solution of equation (1.1) given by (1.10) will not van-
ish identically on the real line becauseg(0) = 0, the operatorT is linear and the
functionu0(x) is nontrivial according to our assumptions.

For the technical purposes we define

σ := 2ca(‖u0‖H1(R) + 1)‖T‖M‖K‖W 1,1(R) > 0. (1.18)

Our second major statement is about the continuity of the cumulative solution of
problem (1.1) given by formula (1.10) with respect to the functiong.

Theorem 1.4. Let j = 1, 2, the assumptions of Theorem 1.3 are valid, such that
up,j(x) is the unique fixed point of the maptgj : Bρ → Bρ, which is a strict contrac-
tion since inequality (1.17) holds and the resulting solution of problem (1.1) with
g(z) = gj(z) is given by

uj(x) = u0(x) + up,j(x). (1.19)

Then the estimate from above

‖u1(x)− u2(x)‖H1(R) ≤
σ

2M(1− σ)
(‖u0‖H1(R) + 1)‖g1(z)− g2(z)‖C1(I) (1.20)

is valid.

Let us proceed to the proof of our first main proposition.

2. The existence of the perturbed solution
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Proof of Theorem 1.3.Let us choose arbitrarilyv(x) ∈ Bρ. By means of (1.13)
along with (1.7) we obtain the upper bound‖u‖H1(R) ≤

≤ ca‖T (u0(x) + v(x))‖H1(R)

∥

∥

∥

∫

∞

−∞

K(x− y)g(u0(y) + v(y))dy
∥

∥

∥

H1(R)
. (2.1)

Let us estimate the right side of (2.1). Clearly, we have

‖T (u0(x) + v(x))‖H1(R) ≤ ‖T‖(‖u0(x)‖H1(R) + 1). (2.2)

By means of inequality (1.8), we obtain

∥

∥

∥

∫

∞

−∞

K(x−y)g(u0(y)+v(y))dy
∥

∥

∥

L2(R)
≤ ‖K‖L1(R)‖g(u0(x)+v(x))‖L2(R). (2.3)

Similarly, (1.9) yields

∥

∥

∥

d

dx

∫

∞

−∞

K(x− y)g(u0(y) + v(y))dy
∥

∥

∥

L2(R)
≤

≤
∥

∥

∥

dK

dx

∥

∥

∥

L1(R)
‖g(u0(x) + v(x))‖L2(R). (2.4)

Estimates (2.3) and (2.4) give us

∥

∥

∥

∫

∞

−∞

K(x− y)g(u0(y) + v(y))dy
∥

∥

∥

H1(R)
≤

≤ ‖K‖W 1,1(R)‖g(u0(x) + v(x))‖L2(R). (2.5)

Let us express

g(u0(x) + v(x)) =

∫ u0(x)+v(x)

0

g′(z)dz. (2.6)

Forv(x) ∈ Bρ using inequality (1.6) we easily derive

|u0 + v| ≤ 1√
2
(‖u0‖H1(R) + 1). (2.7)

Hence,

|g(u0(x) + v(x))| ≤ maxz∈I |g′(z)||u0(x) + v(x)| ≤ M |u0(x) + v(x)|, (2.8)

where the intervalI is defined in (1.14). This yields

‖g(u0(x) + v(x))‖L2(R) ≤ M(‖u0‖H1(R) + 1). (2.9)

Therefore, we arrive at

‖u(x)‖H1(R) ≤ ca‖T‖(‖u0‖H1(R) + 1)2‖K‖W 1,1(R)M. (2.10)
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By virtue of (1.17), we have‖u(x)‖H1(R) ≤ ρ. Thus, the functionu(x), which
is uniquely determined by (1.13) belongs toBρ as well. This means that equation
(1.13) defines a maptg : Bρ → Bρ under the given conditions.
Let us establish that under the stated assumptions this map is a strict contraction.
We choose arbitrarilyv1,2(x) ∈ Bρ. The argument above yields thatu1,2 := tgv1,2 ∈
Bρ. By virtue of (1.13) we have

u1(x) = [T (u0(x) + v1(x))]

∫

∞

−∞

K(x− y)g(u0(y) + v1(y))dy, (2.11)

u2(x) = [T (u0(x) + v2(x))]

∫

∞

−∞

K(x− y)g(u0(y) + v2(y))dy. (2.12)

From (2.11) and (2.12) we easily deduce that

u1(x)− u2(x) = [Tv1(x)− Tv2(x)]

∫

∞

−∞

K(x− y)g(u0(y) + v1(y))dy+

+[T (u0(x)+v2(x))]

∫

∞

−∞

K(x−y)[g(u0(y)+v1(y))−g(u0(y)+v2(y))]dy. (2.13)

By means of (2.13) along with (1.7) we derive

‖u1(x)− u2(x)‖H1(R) ≤ ca‖Tv1(x)− Tv2(x)‖H1(R)×

×
∥

∥

∥

∫

∞

−∞

K(x− y)g(u0(y) + v1(y))dy
∥

∥

∥

H1(R)
+ ca‖T (u0(x) + v2(x))‖H1(R)×

×
∥

∥

∥

∫

∞

−∞

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy
∥

∥

∥

H1(R)
. (2.14)

Let us obtain the upper bound on the right side of (2.14). Obviously,

‖Tv1(x)− Tv2(x)‖H1(R) ≤ ‖T‖‖v1(x)− v2(x)‖H1(R). (2.15)

Using inequality (1.8), we arrive at

∥

∥

∥

∫

∞

−∞

K(x− y)g(u0(y) + v1(y))dy
∥

∥

∥

L2(R)
≤

≤ ‖K‖L1(R)‖g(u0(x) + v1(x))‖L2(R). (2.16)

By applying (1.9), we have

∥

∥

∥

d

dx

∫

∞

−∞

K(x− y)g(u0(y) + v1(y))dy
∥

∥

∥

L2(R)
≤

≤
∥

∥

∥

dK

dx

∥

∥

∥

L1(R)
‖g(u0(x) + v1(x))‖L2(R). (2.17)
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Estimates from above (2.16) and (2.17) give us

∥

∥

∥

∫

∞

−∞

K(x− y)g(u0(y) + v1(y))dy
∥

∥

∥

H1(R)
≤

≤ ‖K‖W 1,1(R)‖g(u0(x) + v1(x))‖L2(R). (2.18)

Clearly,

g(u0(x) + v1(x)) =

∫ u0(x)+v1(x)

0

g′(z)dz. (2.19)

From (2.19) we easily deduce that

|g(u0(x) + v1(x))| ≤ maxz∈I |g′(z)||u0(x) + v1(x)| ≤ M |u0(x) + v1(x)|, (2.20)

such that
‖g(u0(x) + v1(x))‖L2(R) ≤ M(‖u0‖H1(R) + 1). (2.21)

Therefore, the first term in the right side of inequality (2.14) can be bounded from
above by

ca‖T‖‖v1(x)− v2(x)‖H1(R)‖K‖W 1,1(R)M(‖u0‖H1(R) + 1). (2.22)

Hence, it remains to estimate the second term in the right side of (2.14). Evidently,

‖T (u0(x) + v2(x))‖H1(R) ≤ ‖T‖(‖u0‖H1(R) + 1). (2.23)

By means of inequality (1.8), we easily derive

∥

∥

∥

∫

∞

−∞

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy
∥

∥

∥

L2(R)
≤

≤ ‖K‖L1(R)‖g(u0(x) + v1(x))− g(u0(x) + v2(x))‖L2(R). (2.24)

Upper bound (1.9) yields

∥

∥

∥

d

dx

∫

∞

−∞

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy
∥

∥

∥

L2(R)
≤

≤
∥

∥

∥

dK

dx

∥

∥

∥

L1(R)
‖g(u0(x) + v1(x))− g(u0(x) + v2(x))‖L2(R). (2.25)

Using (2.24) and (2.25), we arrive at

∥

∥

∥

∫

∞

−∞

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy
∥

∥

∥

H1(R)
≤

≤ ‖K‖W 1,1(R)‖g(u0(x) + v1(x))− g(u0(x) + v2(x))‖L2(R). (2.26)
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We easily express

g(u0(x) + v1(x))− g(u0(x) + v2(x)) =

∫ u0(x)+v1(x)

u0(x)+v2(x)

g′(z)dz. (2.27)

Formula (2.27) gives us

|g(u0(x) + v1(x))− g(u0(x) + v2(x))| ≤ maxz∈I |g′(z)||v1(x)− v1(x)| ≤

≤ M |v1(x)− v1(x)|, (2.28)

such that

‖g(u0(x) + v1(x))− g(u0(x) + v2(x))‖L2(R) ≤ M‖v1(x)− v2(x)‖H1(R). (2.29)

Thus, the second term in the right side of inequality (2.14) can be estimated from
above by expression (2.22) as well. Hence, we obtain‖u1(x)− u2(x)‖H1(R) ≤

≤ 2ca(‖u0‖H1(R) + 1)‖T‖M‖K‖W 1,1(R)‖v1(x)− v2(x)‖H1(R). (2.30)

By virtue of (2.30) along with definition (1.18), we have

‖tgv1(x)− tgv2(x)‖H1(R) ≤ σ‖v1(x)− v2(x)‖H1(R). (2.31)

It can be easily verified using (1.17) that the constant in theright side of inequality
above

σ < 1. (2.32)

This implies that our maptg : Bρ → Bρ defined by equation (1.13) is a strict
contraction under the given conditions. Its unique fixed point up(x) is the only
solution of problem (1.11) in the ballBρ. The resultingu(x) given by (1.10) is a
solution of equation (1.1).

Let us conclude the article by establishing our second main result.

3. The continuity of the resulting solution

Proof of Theorem 1.4.Obviously, under the stated assumptions, we have

up,1 = tg1up,1, up,2 = tg2up,2. (3.1)

Thus,
up,1 − up,2 = tg1up,1 − tg1up,2 + tg1up,2 − tg2up,2. (3.2)

Therefore,

‖up,1 − up,2‖H1(R) ≤ ‖tg1up,1 − tg1up,2‖H1(R) + ‖tg1up,2 − tg2up,2‖H1(R). (3.3)
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By means of estimate (2.31), we have

‖tg1up,1 − tg1up,2‖H1(R) ≤ σ‖up,1 − up,2‖H1(R) (3.4)

with σ given by (1.18), such that (2.32) holds. Hence, we obtain

(1− σ)‖up,1 − up,2‖H1(R) ≤ ‖tg1up,2 − tg2up,2‖H1(R). (3.5)

Evidently, for our fixed pointtg2up,2 = up,2. We denoter(x) := tg1up,2 and arrive
at

r(x) = [T (u0(x) + up,2(x))]

∫

∞

−∞

K(x− y)g1(u0(y) + up,2(y))dy, (3.6)

up,2(x) = [T (u0(x) + up,2(x))]

∫

∞

−∞

K(x− y)g2(u0(y) + up,2(y))dy. (3.7)

Formulas (3.6) and (3.7) yield

r(x)− up,2(x) = [T (u0(x) + up,2(x))]×

×
∫

∞

−∞

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy. (3.8)

By virtue of (1.7), we derive

‖r(x)− up,2(x)‖H1(R) ≤ ca‖T (u0(x) + up,2(x))‖H1(R)×

×
∥

∥

∥

∫

∞

−∞

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy
∥

∥

∥

H1(R)
. (3.9)

Clearly, we have the upper bound

‖T (u0(x) + up,2(x))‖H1(R) ≤ ‖T‖(‖u0‖H1(R) + 1). (3.10)

By means of inequality (1.8),

∥

∥

∥

∫

∞

−∞

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy
∥

∥

∥

L2(R)
≤

≤ ‖K‖L1(R)‖g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))‖L2(R). (3.11)

Similarly, (1.9) gives us

∥

∥

∥

d

dx

∫

∞

−∞

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy
∥

∥

∥

L2(R)
≤

≤
∥

∥

∥

dK

dx

∥

∥

∥

L1(R)
‖g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))‖L2(R). (3.12)
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Estimates (3.11) and (3.12) easily imply

∥

∥

∥

∫

∞

−∞

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy
∥

∥

∥

H1(R)
≤

≤ ‖K‖W 1,1(R)‖g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))‖L2(R). (3.13)

Evidently,

g1(u0(x)+up,2(x))−g2(u0(x)+up,2(x)) =

∫ u0(x)+up,2(x)

0

[g′1(z)−g′2(z)]dz. (3.14)

From (3.14) we deduce

|g1(u0(x)+up,2(x))−g2(u0(x)+up,2(x))| ≤ maxz∈I |g′1(z)−g′2(z)||u0(x)+up,2(x)|

≤ ‖g1(z)− g2(z)‖C1(I)|u0(x) + up,2(x)|, (3.15)

so that
‖g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))‖L2(R) ≤

≤ ‖g1(z)− g2(z)‖C1(I)(‖u0‖H1(R) + 1). (3.16)

By virtue of upper bounds (3.9), (3.10), (3.13), (3.16) obtained above, we derive

‖r(x)− up,2(x)‖H1(R) ≤

≤ ca‖T‖(‖u0‖H1(R) + 1)2‖K‖W 1,1(R)‖g1(z)− g2(z)‖C1(I). (3.17)

Inequalities (3.5) and (3.17) give us

‖up,1(x)− up,2(x)‖H1(R) ≤

≤ ca

1− σ
‖T‖(‖u0‖H1(R) + 1)2‖K‖W 1,1(R)‖g1(z)− g2(z)‖C1(I). (3.18)

By means of (1.19) along with (3.18) and definition (1.18) estimate (1.20) holds.
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