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Abstract: The work deals with the existence of solutions of a certaiadgatic
integral equation in7!(R). The theory of quadratic integral equations has many
useful applications in the mathematical physics, econsnimlogy, as well as in
describing the real world problems. The proof of the exis¢enf solutions is based
on a fixed point technique in our Sobolev space on the real line
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1. Introduction

The present article is devoted to the existence of solutébiise following integral
equation

u(z) = uo(z) + [Tu(z)] /_°°K<x—y>g<u<y>>dy, ceR (L1

The precise conditions on the functiomgz), g(u), the linear operatof’ and the
kernel K'(z) will be specified further down. The theory of integral eqaas has
many useful applications in describing the numerous evandsproblems of the
real world. It is caused by the fact that this theory is freglyeapplicable in var-
lous branches of mathematics and in mathematical physiosoenics, biology as
well as in dealing with the real world problems. The quadrattegral equations
arise in the theories of the radiative transfer, neutronsjpart, in the kinetic the-
ory of gases, in the design of the bandlimited signals fobihary communication
using the simple memoryless correlation detection, wherstgnals are disturbed
by the additive white Gaussian noise (see e.g. [1], [5], Erd the references
therein). The article [1] deals with the solvability of a hiaear quadratic integral
equation in the Banach space of the real functions beingetefamd continuous
on a bounded and closed interval using the fixed point re3iié works [2] and
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[4] are devoted to the studies of the existence of solutiongytiadratic integral
equations on unbounded intervals. The existence of solufmr quadratic integral
inclusions was treated in [3]. The paper [10] deals with tbadecreasing so-
lutions of a quadratic integral equation of Urysohn-Sjslttype. The solvability
of the quadratic integral equations in Orlicz spaces wagmVin [7], [8], [9].
The reduction of dimension in multi-dimensional integrquiations was discussed
in [15]. The integro-differential equations, which may ahve either Fredholm or
non Fredholm operators arise in the mathematical biologgnndtudying the sys-
tems with the nonlocal consumption of resources and tha-syecific competition
(see [12], [13], [17], [18] and the references therein). Theatraction argu-
ment was used in [16] to estimate the perturbation to thedsigrsolitary wave of
the Nonlinear Schrodinger (NLS) equation when either ttier@al potential or the
nonlinear term were perturbed. The similar ideas were éguldo show the per-
sistence of pulses for certain reaction-diffusion typeagigms (see [6]). Suppose
that the assumption below is fulfilled.

Assumption 1.1. Let the kernelK'(z) : R — R be nontrivial, such thaf(z) €
WH1(R). The functioniy(z) : R — R does not vanish identically on the real line
anduy(z) € H'(R). Suppose also that the linear operatbr. H'(R) — H'(R) is
bounded, such that its nortn< ||T'|| < oc.

Let the functionV/ (x) : R — R be nontrivial and/ (z) € W1>(R), such that/ (z)

. . dV . . .
and its derivative— are bounded on the whole real line. Then it can be easily
X
verified that the multiplication operator

Tu(z) = V(x)u(z), u(z)e H(R) (1.2)

satisfies the assumption above. We will use the Sobolev space

H'(R) := {u(z) : R — R |u(z) € L*(R), ;l—z € L*(R)}. (1.3)

It is equipped with the norm

du
ol ey 2= Nulage) + | |y (14)
Another norm relevant to our argument is given by
dK
e Ty S (15

By means of the Sobolev inequality in one dimension (see $egt 8.5 of [14]),
we have

() ey < %uuwmm (1.6)
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Let us recall the algebraic property of our Sobolev spacepeta that for any
u(x),v(z) € H'(R)

[u(@)o(@)]| @) < callu(@)]m@llo(@)]|a @), 1.7)

wherec, > 0 is a constant. Estimate from above (1.7) can be easily dkrioe
instance via (1.6). The Young’s inequality (see e.g. Sacti@ of [14]) enables us
to estimate the norm of the convolution as

|u vl 2wy < |lullowyl|v] L2 w)- (1.8)

Clearly, inequality (1.8) yields the upper bound

| [ ate = ety

du
=l : 1.9

We seek the resulting solution of nonlinear equation (1s1) a
u(z) = up(z) + up(x). (1.10)

Evidently, we arrive at the perturbative equation

up(x) = [T'(uo(x) + up(x))] / K(z —y)g(uo(y) + up(y))dy. (1.11)
Let us introduce a closed ball in our Sobolev space
B, = {u(z) € H'R) | [ulm@ < p}, 0<p<1. (1.12)

We seek the solution of equation (1.11) as the fixed point@gtixiliary nonlinear
problem

ule) = [T (uo(o) + v(o)] [ T K- p)gluoly) tow)dy  (1.13)

in ball (1.12). Let us introduce the interval on the real line

1 1 1 1
ﬁ - EHUOHHl(R)a E + EHUOHHl(R) (1.14)

along with the closed ball in the space®f(!) functions, namely

I.=|-

Dy = {g(z) € Ci(1) | lglleyay < M}, M > 0. (1.15)
In this context the norm
l9llevy = llgllea + 19l (1.16)
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where||g||c(r) := max.cr|g(2)].

Assumption 1.2. Letg(z) : R — R, such thaty(0) = 0. It is also assumed that
g(z) € Dy, and it does not vanish identically on the interval

Let us introduce the operatgy, such that. = ¢, v, whereu is a solution of equation
(1.13). Our first main result is as follows.

Theorem 1.3.Let Assumptions 1.1 and 1.2 hold and

p
call Tl (lluoll ey + DI K llwrae M < 5 (1.17)

Then equation (1.13) defines the mgp B, — B,, which is a strict contraction.
The unique fixed point,(x) of this map, is the only solution of problem (1.11) in
B

P

Obviously, the resulting solution of equation (1.1) given (h.10) will not van-
ish identically on the real line becaug®)) = 0, the operatofl’ is linear and the
functionug () is nontrivial according to our assumptions.

For the technical purposes we define
o= QCa(HUOHHl(R) + 1)HT”M”K”W171(R) > 0. (118)

Our second major statement is about the continuity of theutatine solution of
problem (1.1) given by formula (1.10) with respect to thediion g.

Theorem 1.4. Let ;7 = 1,2, the assumptions of Theorem 1.3 are valid, such that
u, ;(z) is the unique fixed point of the mgp : B, — B, which is a strict contrac-
tion since inequality (1.17) holds and the resulting sauatof problem (1.1) with

9(2) = g,(=) is given by
w;(z) = uo(z) + up (). (1.19)

Then the estimate from above

o
[ur(z) — u2(2)|[mr) < m(”UOHHl(R) + Dllg1(2) = g2(2)ller(ry (1.20)
is valid.
Let us proceed to the proof of our first main proposition.

2. The existence of the perturbed solution



Proof of Theorem 1.3Let us choose arbitrarily(z) € B,. By means of (1.13)
along with (1.7) we obtain the upper boufd|| ;1 &) <

< el Pulo) + o@Dl [ Ko = atul) + o], - @)

H'(R) '
Let us estimate the right side of (2.1). Clearly, we have

1T (uo(z) +v(@) @ < I T(luo(@) 1@ + 1)- (2.2)

By means of inequality (1.8), we obtain

| / Z K (=)o) +o@)dy |, . < 1K lauoa) +o(@)] - 23)

Similarly, (1.9) yields

d o0
|4 [ K= ngtunts) + vtas]], <
< |G Notuo@) + w20 (2.4)
Estimates (2.3) and (2.4) glve us
H /_ K(x —y)g(uoly) +v(y))
< [[Klwrr @ llg(uo(z) + v(@))l|z2m)- (2.5)
Let us express
(z)+v(z)
g(up(x) + v(x)) = /o g'(2)dz. (2.6)
Forv(z) € B, using inequality (1.6) we easily derive
Juo + ] < —=(luolrey + 1). @7)

V2

Hence,
|9(uo(x) + v(x))| < Maxer|g'(2)||uo(x) + v(@)| < Muo(z) +v(z)], (2.8)
where the interval is defined in (1.14). This yields

lg(uo() +v(@)) 2wy < M([Juollmr @ +1)- (2.9)

Therefore, we arrive at

(@)l z) < call Tll(Hlwoll @y + DK llwra@) M. (2.10)
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By virtue of (1.17), we havéju(z)| m®) < p. Thus, the function:(z), which

is uniquely determined by (1.13) belongs/g as well. This means that equation
(1.13) defines amafy : B, — B, under the given conditions.

Let us establish that under the stated assumptions this snastrict contraction.
We choose arbitrarily, »(z) € B,. The argument above yields that, := t,v; » €
B,. By virtue of (1.13) we have

u(x) = [T(uo(x) + v1())] /_Z K(z —y)g(uo(y) + vi(y))dy, (2.11)
us() = [T (o) + valx / Kz — p)g(uoy) + m@))dy.  (2.12)
From (2.11) and (2.12) we easily deduce that
() = uale) = [Tor(o) = Toa(o)] [ K (o = plgtul) + n(w))dy+
+[T (uo(x) +v2())] /: K(z—y)[g(uo(y)+vi(y)) —g(uo(y) +v2(y))ldy. (2.13)

By means of (2.13) along with (1.7) we derive

[ur(2) = wa(@) || 1Ry < callTvr(2) = To2(2)|| 11 ) X

<[] K- watuln - uwa

+ cal|T (uo(z) + va(2))|| 1 (m) X

g / Ko = )lgluo(y) + (6)) = (uo(w) +valo))ld . (2.1)

Let us obtain the upper bound on the right side of (2.14). Qumsly,

[Tv1 () = Toa (@) |y < TN [v2 (%) = v2(2) [ 1y (2.15)

Using inequality (1.8), we arrive at

|| K6 ngtut) + o], <
< I 3oy lgua() +va (o) sy (216)
By applying (1.9), we have
4 | K= natunt) + ], <
<[ %  latua(a) + 1)l ey (2.17)




Estimates from above (2.16) and (2.17) give us

H /_Z K(x —y)g(uo(y) + v1(y))

<K lwrmllg(uo(z) + v1(2)) || L2)- (2.18)
Clearly,

up(z)+v1 ()
olua(e) + ur(o) = | (2)d. (2.19)
0
From (2.19) we easily deduce that
|9(uo(@) + vi(2))| < maz.erlg'(2)|Juo() + vi(2)] < Mug(x) + vi(2)], (2.20)

such that
lg(uo(z) + v1(2)) || 2y < M([Juol|mrr) + 1) (2.21)

Therefore, the first term in the right side of inequality @.tan be bounded from
above by

ol T [Jvr(2) — va @) || a1 K | wr )y M ([Jwo || 1y + 1) (2.22)

Hence, it remains to estimate the second term in the rigktai@2.14). Evidently,

1T (o () + va () ey < (1T I([luoll ey +1)- (2.23)

By means of inequality (1.8), we easily derive

|| K = nlatuoto) + 0a0) = gtuats) + vl <
< Kl llg(uo(@) + v1(2)) — g(uo(@) + va(@)llo@.  (2.24)
Upper bound (1.9) yields
Hdg;/ K(z —y)[g(uo(y) +vi(y)) — g(uo(y) + v2(y))] . <

< Hd—K R)Hg(uo(:c) + v1(x)) — g(uo(z) + va()) || L2(r)- (2.25)
Using (2.24) and (2.25), we arrive at

| [ &= atunt) + ) - unts) + a0

< N K lwraw lg(uo(z) +vi(2)) — gluo(x) + va2(x)) | L2(r)- (2.26)



We easily express
uo(z)+v1 ()
9(uo(@) + v1(2)) — g(uo(x) + v2(x)) = / g'(z)dz. (2.27)
uo () +v2(w)
Formula (2.27) gives us
|9(uo(z) + vi(x)) — g(uo() + v2(2))| < mawzerlg'(2)||vi(2) — vi(2)] <
< Mlvi(z) — v ()], (2.28)

such that

lg(uo(@) +v1(2)) = g(uo(x) + v2(2)) [ 2@) < M[02(2) = v2(2) || 11 ). (2.29)

Thus, the second term in the right side of inequality (2.18%) be estimated from
above by expression (2.22) as well. Hence, we objtairiz) — us ()| m1@) <

< 2¢ca([luoll gy + DITI MK |wra@llor (@) = va (@) 2 wy- (2.30)
By virtue of (2.30) along with definition (1.18), we have
[tgvr(2) = tgva(@) |1y < ollva(z) — va(2) |11 m)- (2.31)

It can be easily verified using (1.17) that the constant irrigfiet side of inequality
above
o< 1. (2.32)

This implies that our map, : B, — B, defined by equation (1.13) is a strict
contraction under the given conditions. Its unique fixedhpai,(z) is the only
solution of problem (1.11) in the balB,. The resultingu(z) given by (1.10) is a
solution of equation (1.1). [ |

Let us conclude the article by establishing our second nesult.
3. The continuity of the resulting solution
Proof of Theorem 1.40bviously, under the stated assumptions, we have
Upr =l Up1, Up2 = LgUpo. (3.1)

Thus,
Up1 — Up2 = lg Up1 — g Up2 + g Up 2 — LgUp o (3.2)

Therefore,
||up,1 - up,2||H1(R) < ||tg1up71 - tg1up,2||H1(R) + ||tg1up,2 - tg2up,2||H1(R)- (3.3)
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By means of estimate (2.31), we have

”tglup,l - tglup,2”H1(R) < ollup,1 — up,2HH1(1R) (3.4)

with o given by (1.18), such that (2.32) holds. Hence, we obtain
(1 —o)[[up1 — up,2||H1(R) < ltg,up2 — tg2up,2||H1(R)- (3.5)

Evidently, for our fixed point,,u, . = u,.. We denote-(z) := t, u,, and arrive
at

r(@) = [T(uo(x) + ups(x))] /_ " K- p(uol) +ua)dy. (36)

up2(x) = [T(uo(x) + upa(x))] /_ K (= y)g2(uo(y) + upa(y))dy.  (3.7)
Formulas (3.6) and (3.7) yield
r(z) = upa(x) = [T(uo(x) + upa(x))]
X /OO K(z = y)[g1(uo(y) + up2(y)) — g2(uo(y) + up2(y))]dy. (3.8)
By virtue of (1.7), we derive

I (2) = wpa (@) @y < call T (uo() + up2(2))] 1 @) %

<[ K= o) + o) ~ galuo(v) + wpaods], . (39
Clearly, we have the upper bound
1T (uo() + up2(2)) | ) < | T[|(lluollm @) + 1) (3.10)
By means of inequality (1.8),
| [ K= plastunts) + up00)) - g2lunlw) + wal)lds], . <
< K e llg1(uo(z) + upa(z)) — ga(uo(x) + up2(x)) 2 w).- (3.11)

Similarly, (1.9) gives us

<
L2(R)

4 | o= 0o un(0) + wralo) = a(s) + o)l

< H% (uo(z) + upa(z)) — ga(uo(w) + up2(2))|| L2R)- (3.12)

LU(R) 191
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Estimates (3.11) and (3.12) easily imply

H /_Z K(x —y)[g1(uo(y) + up2(y)) — ga(uoly) + up72(y))]dy‘ . <

< [[Klwramllgr(uo(z) + upa(@)) — galuo(@) + up2(2)) |22 (w).- (3.13)
Evidently,

uo(z)+up,2(z)
g1(uo () +upa()) —ga(uo(x) +upa(r)) = /0 [91(2) g5 (2)]d=. (3.14)
From (3.14) we deduce
|91 (o () +p2(2)) = g2 (uo () +1p2(2)) | < maw.er|gy () —go(2)l[uo () +upa(2))]

< [lg1(2) = g2() Ml cn(n [uo (@) + up (@), (3.15)

so that
191 (uo(x) 4 upa(x)) — galuo(z) + upa(2)) || 2m) <

< lg91(2) = g2(2)lleveny (lwoll e ) + 1) (3.16)
By virtue of upper bounds (3.9), (3.10), (3.13), (3.16) aitd above, we derive

I7(2) = up2() || 1wy <
< cal| Tl (lluoll ey + DK lwram ll91(2) = g2(2) lew - (3.17)
Inequalities (3.5) and (3.17) give us

[up1 () — tp2(7) || 51 ) <

Ca

< T ITl ol + DA IK lwrawllg1(2) = g2(2)llewn. (3.18)

By means of (1.19) along with (3.18) and definition (1.18)reate (1.20) holdsm
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