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Abstract We study the existence of maximal strictly invariant compact sets 
for a certain two-parameter family of Expanding Baker Maps (EBMs), called 
2-D tent maps. If, in addition, these sets are minimal, then they will be attrac-
tors. Since EBMs are expansive, these attractors will be 2-D strange attractors 
provided that they have non-empty interior. The results and proposals stated 
in this work will be essential to prove the existence of 2-D strange attractors 
for the quadratic family Ta,b(x, y) = (a + y2, x + by). Such family appears as a 
family of limit return maps in the unfolding of certain generalized homoclinic 
tangencies of 3-D diffeomorphisms.

1 Introduction

The most significant e lements o f t he phase p ortrait o f d issipative dynamical 
systems are their attractors. These sets compete against each other to attract 
towards themselves the orbits of the system making their internal dynamics 
observable.

Definition 1  A n a ttractor f or a  m ap f :  M  →  M  o n a  m anifold M  i s a 
transitive f -invariant compact set A whose stable set

W s(A) = { z ∈ M : d(fn(z), A) → 0 as n → ∞ }

has non-empty interior.

Since every attractor A is transitive, then A is minimal, i.e. it contains no 
proper invariant compact set with non-empty interior. Therefore, A is strictly 
f -invariant, i.e. f(A) = A, whenever f is continuous. The simplest examples of
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attractors are periodic orbits, closed curves, and tori. In the past century, other
attractors with a fractal structure and a very complicated internal dynamics
were found. Arbitrarily small deviations on the initial conditions grow ever
larger along such attractors, making it impossible to predict the dynamics—
thus arose the idea of chaotic dynamics and the concept of strange attractor.

Definition 2 An attractor A for a map f : M →M is said to be strange if it
contains a dense orbit {fn(z1) : n ≥ 0} displaying exponential growth of the
derivative, i.e. there exist a unit vector v and a constant c > 0 such that, for
all n ≥ 0,

‖Dfn(z1)(v)‖ ≥ ecn.

The supremum of such c is called a Lyapunov exponent.

The observability of an attractor, or actually of any dynamics, requires
some kind of robustness to survive small perturbations of the system. Namely,
maps sufficiently close in some topology (the C1-topology, for example) must
have equivalent dynamics.

Definition 3 An attractor A for a map f : M →M is said to be structurally
stable if every sufficiently C1-close map g : M →M also has an attractor A(g)
that is conjugate to A, i.e. there exists a homeomorphism h : A → A(g) such
that g|A(g) ◦ h = h ◦ f|A. The homeomorphism h is called a conjugation.

It was proved in [12] that structural stability is equivalent to uniform hyper-
bolicity in the set of C1-diffeomorphisms on M . Previously, some hyperbolic
strange attractors had been ingeniously devised (e.g. Smale’s solenoid [27]).
However, examples as simple as the 3-D quadratic vector field of Lorenz [11]
or the 2-D quadratic diffeomorphism of Hénon [10] displayed attractors with
a complicated structure and an unpredictable dynamics which are not struc-
turally stable, and therefore, are not uniformly hyperbolic. At that point there
arose a natural question: Do there really exist for the set of C1-diffeomorphisms
on M non-uniformly hyperbolic strange attractors with some kind of persis-
tence making them observable?

The first positive answer was provided by Benedicks and Carleson [4] for
the Hénon family

Ha,b(x, y) = (1− ax2 + y, bx). (1)

The authors proved that for arbitrarily small b > 0 and for values of a
sufficiently close to 2, the Hénon family has strange attractors persistent in
the measure sense.

Definition 4 Let fµ : M →M be a continuous family of maps. Assume that
fµ has a strange attractor A for some µ = µ0. We say that A is persistent
(in the measure sense), or that it occurs with positive probability, if for every
δ > 0 there exists Eδ ⊆ B(µ0, δ) with positive Lebesgue measure such that fµ
has a strange attractor for all µ ∈ Eδ. If Eδ = B(µ0, δ) for some δ > 0, then
A is said to be fully persistent.



Strictly invariant sets for 2-D tent maps: 2-D strange attractors 3

The proof of the existence of strange attractors in [4] is very hard. One has
to start by observing that the dynamics of (1) for b = 0 is the dynamics of the
quadratic family

fa(x) = 1− ax2 (2)

and then, the dynamics of this limit family is transferred to one of the branches
of the unstable manifold of the saddle fixed point of (1) arising for b > 0. Actu-
ally, the same authors had already proved in [3] that family (2) has persistent
strange attractors for a set of parameters with positive Lebesgue measure near
a = 2.

In a simpler scenario, fully persistent strange attractors had been found
for the family {λµ}µ∈(1,2] of tent maps given by

λµ(x) =

{
µx if 0 ≤ x ≤ 1,
µ(2− x) if 1 ≤ x ≤ 2.

(3)

Clearly, the interval Iµ = [µ(2 − µ), µ] is strictly λµ-invariant for every
µ ∈ (1, 2]. In fact, Iµ is a strange attractor for every µ ∈ (

√
2, 2] and is limited

by the first iterates of the critical point. Iterating the critical set will also be
our strategy for looking for strange attractors in the 2-D setting of this paper.

Strange attractors with several pieces can also be obtained for µ ∈ (1,
√

2]
by means of renormalization techniques (for related details, see [5], [8], or [9]).
In many cases, the dynamics of family (3) is conjugate to that of family (2).
It is well-known that this is the case when, for instance, we choose µ = a = 2.

Persistent strange attractors play an important role in non-uniformly hy-
perbolic dynamics. They appear generically close to homoclinic points. As it
was proved in [13], a generic one-parameter family of diffeomorphisms fµ de-
fined on a surface which has a homoclinic tangency for some µ = µ0 displays,
for values of µ sufficiently close to µ0, persistent strange attractors. See [16,
17] for the coexistence of persistent strange attractors in a neighbourhood of
a homoclinic orbit of a family of 3-D vector fields.

The idea of taking advantage of the dynamics of families of limit return
maps was used in [13]. In order to be more precise, we must remark that
the main result in [13], as well as many others (see [7], [14], [15], and [30]),
is strongly based on the existence of families of limit return maps associated
to the unfolding of homoclinic tangencies. Under an appropriate change of
coordinates, these return maps are defined in a neighborhood of the homoclinic
point and they are very similar to the ones defined in (1). This is the reason
why they were called Hénon-like maps.

All the above-mentioned attractors are one-dimensional. The existence of
strange attractors of an ever greater dimension is the key to establishing a
certain hierarchy on the understanding of the dynamical complexity arising
in nature. In order to get abundance of higher-dimensional strange attractors,
a saddle fixed point with an unstable manifold of dimension greater than or
equal to 2 becomes necessary. We may consider a generic two-parameter family
fa,b : M →M of 3-D diffeomorphisms unfolding a generalized homoclinic tan-
gency, as it was originally defined in [28, p. 272]. Then, the unstable manifold
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of the periodic orbit involved in the homoclinic tangency is two-dimensional
and the limit family is conjugate to the family of two-dimensional quadratic
maps given by

Ta,b(x, y) = (a+ y2, x+ by). (4)

With a view to showing the existence of 2-D strange attractors when the
3-D homoclinic tangency is unfolded, the first step should be to demonstrate,
as was done in the 1-D setting, the existence of strange attractors for the limit
family (4). Only then will it make sense to lift the dynamics to the closure
of the unstable manifold, which is the candidate to be the two-dimensional
strange attractor arising in the unfolding of the tangency.

The dynamical behaviour of family (4) is rather complicated as was nu-
merically shown in [25] and, in particular, the attractors exhibited by Ta,b for
a large set of parameters seem to be 2-D strange attractors. Moreover, in [24],
a curve of parameters G = G(s) = {(a(s), b(s))} was constructed in such a
way that Ta(s),b(s) has an invariant region in R2 that is homeomorphic to a
triangle for all s ≤ 2. In particular, for s = 2, a(2) = −4 and b(2)− 2, and the
map T−4,−2 is conjugate to the non-invertible piecewise affine map

Λ(x, y) =

{
(x+ y, x− y) if (x, y) ∈ T0,
(2− x+ y, 2− x− y) if (x, y) ∈ T1,

(5)

defined on the triangle T = T0 ∪ T1, where T0 = {0 ≤ x ≤ 1, 0 ≤ y ≤ x} and
T1 = {1 ≤ x ≤ 2, 0 ≤ y ≤ 2− x}.

As was pointed out in [24], the map Λ enjoys the same nice properties as the
1-D tent map λ2 in (3). In particular, the consecutive pre-images {Λ−n(C)}n∈N
of the critical line C = {(x, y) ∈ T : x = 1} define a sequence of partitions
(whose diameter tends to zero as n goes to infinity) of T leading the authors
to conjugate Λ (and therefore T−4,−2) to a one-sided shift on two symbols.
Furthermore, for every initial point (x0, y0) ∈ T whose orbit never visits the
critical line, the Lyapunov exponent of Λ along the orbit of (x0, y0) is positive
(in fact, it is equal to 1

2 ln 2) in all non-zero direction and the same holds for the
limit return map T−4,−2. Finally, an absolutely continuous ergodic invariant
measure for Λ can be constructed, and therefore the same holds for T−4,−2.
These basically were the main reasons why the authors in [24] called Λ the
2-D tent map.

As a first approach to studying the dynamics of Ta(s),b(s) for s close to 2,
the family {Λt}t∈(0,1] of piecewise affine self-maps of T given by

Λt(x, y) = t · Λ(x, y) =

{
(t(x+ y), t(x− y)) if (x, y) ∈ T0,
(t(2− x+ y), t(2− x− y)) if (x, y) ∈ T1,

(6)

was introduced in [19]. The study of the dynamics exhibited by family (6)
is mainly justified when one compares its attractors (numerically obtained in
[18]) with the attractors (numerically obtained in [25]) for the family Ta,b with
(a, b) ∈ G. For different values of the parameters, both families of maps dis-
play convex strange attractors, connected (but not simply-connected) strange



Strictly invariant sets for 2-D tent maps: 2-D strange attractors 5

attractors, and non-connected strange attractors (formed by numerous con-
nected pieces).

A first analytical proof of the existence of a convex strange attractor for Λt
was given in [20] for t0 < t < 1, where t0 = 2−

1
2 (1+

√
2)

1
4 , and, as it was seen in

[24] for t = 1, it was also proved that the attractor supports a unique ergodic
invariant probability measure for all t ∈ (t0, 1]. The existence of persistent
strange attractors with several pieces for 2−

1
2 < t < 2−

2
5 is proved from [21],

[22] and [23]. The proof is a consequence of a renormalization procedure that
allows us to understand how connected invariant compact sets (formed by a
unique piece) may split giving rise to others formed by an increasing number n
of pieces. Then, from Theorem 1.2 in [23] it follows that these new disconnected
invariant compact sets contain strange attractors formed by n pieces.

Just as the dynamics of family (3) approximates the dynamics of family (2),
the dynamics of family (4) for (a, b) ∈ G was approximated by the dynamics
of family (6) throughout [18,19,20,21,22,23]. However, the whole family (4)
is a two-parameter one, which makes it necessary to choose a two-parameter
family of piecewise affine maps that approximate the dynamics of family (4) for
values of the parameters outside the curve G. For this reason, we will consider
in this paper the family {Γa,θ : (a, θ) ∈ (1,∞) × (0, π)} given in the complex
variable z = x+ iy by

Γa,θ(x+ iy) =

{
a · eiθ(x+ iy) if x ≤ 1,
a · eiθ(2− x+ iy) if x ≥ 1.

(7)

Note that Γa,θ is the composition of the fold

F(x+ iy) = 1− |1− x|+ iy

and the expanding linear map Aa,θ(z) = aeiθz.

Definition 5 Let K ⊆ R2 be a set with non-empty interior. Let L be a line
in R2 intersecting the interior of K. The line L splits K into two sets K0 and
K1, i.e. K0 ∪K1 = K and K0 ∩K1 = L∩K. Let P ∈ K0. The fold with respect
to L onto P for K is the map FL,P : K → R2 given by

FL,P (Q) =

{
Q if Q ∈ K0,
Q̃ if Q ∈ K1,

where Q̃ denotes the symmetric point of Q with respect to L. If FL,P (K) = K0,
we say that FL,P is a good fold for K.

For the folds considered in this work, the line L will be C = {x = 1} and
the point P will be the origin O.

Definition 6 Let K ⊂ R2 be a set with non-empty interior such that O ∈
K. Let FL,O be a good fold for K. An Expanding Baker Map (EBM) is the
composition of FL,O with an expanding linear map A : R2 → R2 such that
A(K0) ⊆ K. For short, we will denote them by EBM(L,O, A).
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For a definition of EBM in more general contexts, see [21].

Remark 1 By performing a suitable affine change of coordinates, the map Λt
is transformed into Γa,θ with a =

√
2t and θ = 3π/4.

Therefore, an interesting program of work arises immediately: trying to
prove, for the general family Γa,θ, the results stated for the family Λt in [20,
21,22,23]. In this paper, we start off with a first, yet essential task, which is
to search for compact sets K with non-empty interior that are strictly Γa,θ-
invariant.

When looking for strictly Γa,θ-invariant sets K, we will distinguish two
types: if F(K) ⊆ K, we will say that K is first-rate, and second-rate otherwise.

Definition 7 A set K ⊆ R2 is said to be Aa,θ-self-similar if Aa,θ(K0) = K,
where K0 = {(x, y) ∈ K : x ≤ 1}.

Clearly, first-rate strictly Γa,θ-invariant sets are Aa,θ-self-similar. There-
fore, in order to prove the existence of first-rate strictly Γa,θ-invariant sets we
will prove the following result of existence of Aa,θ-self-similar sets.

Theorem A For every (a, θ) ∈ (1,∞)× (0, π), there exists a convex (N + 1)-
sided polygon RN for some natural number N = N(a, θ) ≥ 1+bπ/θc such that
KN := Γa,θ(RN ) is the maximal Aa,θ-self-similar set. Moreover, there exists a
non-increasing sequence (aj)j with the following properties:

(a) aj ≥ 1 for every j ∈ N.
(b) For any j ∈ N, aj+1 ≤ aj with equality holding if and only if aj = 1.
(c) limj→∞ aj = 1.
(d) {aj}j is finite if and only if θ

π ∈ Q.
(e) The sequence (Nj)j with Nj = N(aj , θ) is increasing.
(f) For every j ∈ N and for all aj ≤ a < aj−1 it holds that N(a, θ) = Nj.

In practice, proving that KN is strictly invariant is reduced to checking
that F(KN ) ⊆ RN . Since Aa,θ multiplies the area of any set by a factor of a2

and F at most halves it, it is clear that strictly invariant compact sets with
non-empty interior can only exist for a ≤

√
2. This condition is not sufficient: if

a ≤
√

2, then the Aa,θ-self-similar sets given in Theorem A are not necessarily
strictly invariant. As an extreme example, for θ = 2π/3 the Aa,θ-self-similar
sets that exist for each a > 1 are triangles that are never strictly invariant. For
θ = π/2, however, all the self-similar polygons that exist are strictly invariant
rectangles when a ≤

√
2. According to the next result, except for θ = 2π/3,

the Aa,θ-self-similar sets become strictly invariant as a→ 1.

Theorem B Let θ ∈ (0, π). If θ 6= 2π/3, then there exists aθ > 1 such that
KN(a) is strictly Γa,θ-invariant for all a ∈ (1, aθ].

Strictly invariant sets referred to in Theorem B are first-rate since they
are self-similar. Second-rate strictly invariant sets do also exist, complicating
the study of the dynamics of the family Γa,θ. Some examples are provided for
θ = 2π/3.
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This paper is organized as follows. In Section 2, we develop the construction
of the maximal self-similar polygons of Theorem A and prove such theorem.
Section 3 is devoted to studying when the self-similar sets seen in Section 2
are strictly invariant, and finally we prove Theorem B. In Section 4, second-
rate strictly invariant sets are constructed for θ = 2π/3. This work finishes
with a brief Section 5 stating some open questions for future works, especially
aiming for characterizing when a strictly invariant set KN is minimal (and,
consequently, an attractor), and studying what other attractors it contains
otherwise.

2 Existence of self-similar sets: the polygon KN

From now on, we will denote C = {(x, y) ∈ R2 : x = 1} and O = (0, 0). The
aim of this section is to study the dynamics of the family of EBMs

{Γa,θ = EBM(C,O, Aa,θ) : (a, θ) ∈ ∆}

where ∆ = (1,∞) × (0, π) and Aa,θ is the a-expanding counterclockwise 2-D
rotation of angle θ. We will refer to this family as the 2-D tent maps family
and we will focus on the existence of strictly invariant compact sets for these
EBMs. Recall that the attractors of Γa,θ, provided that they exist, as well
as their respective stable sets and their closure, are strictly Γa,θ-invariant.
Moreover, attractors are compact and minimal (i.e. containing no non-empty
compact strictly invariant set different from themselves), while the closure of
their respective stable sets are maximal (i.e. contained in no strictly invariant
set different from themselves).

In order to find strictly invariant sets, first we will search for self-similar
sets. Let K be a self-similar set. According to definition 7, Aa,θ(K0) = K with
K0 contained in Π0 = {x ≤ 1}. Since K0 ⊆ K, then

K0 ⊆ K = Aa,θ(K0) ⊆ Aa,θ(Π0).

Setting Πn = Ana,θ(Π0) and

Rn = Πn ∩Πn−1 ∩ · · · ∩Π0

for each n ≥ 0, it holds that K0 ⊆ Rn for all n by induction. Therefore, every
self similar set is contained in Aa,θ(

⋂∞
n=0Rn). We will prove that the latter

set is an Aa,θ self-similar polygon.
Let (a, θ) ∈ ∆. For each n ≥ 0, the line Ln = Ln(a, θ) = Ana,θ(C) is

implicitly given by the equation

Ln ≡ x cosnθ + y sinnθ = an (8)

so that the distance between Ln and O is equal to an and

Πn = {x cosnθ + y sinnθ ≤ an}.

From now on, unless otherwise stated, the angles nθ will be taken mod 2π.
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A line Ln is vertical if and only if sinnθ = 0. Otherwise, its slope is
equal to − cotnθ. In addition, two lines Ln and Lm are parallel if and only if
sin(n−m)θ = 0. Otherwise, they intersect at the point

Vn,m = Vn,m(a, θ) = (xn,m, yn,m) (9)

with

xn,m = xn,m(a, θ) = (am sinnθ − an sinmθ) csc(n−m)θ,

yn,m = yn,m(a, θ) = (am cosnθ − an cosmθ) csc(m− n)θ.

Note that A`a,θ(Vn,m) = Vn+`,m+` for every ` ≥ 0 whenever Vn,m exists.
In the following proposition, whose proof is straightforward, we show that

there exists a natural number N such that RN = Rn for all n ≥ N .

Proposition 1 The following statements hold for any (a, θ) ∈ ∆:

(a) The sequence of sets {Rn}n is non-increasing (with respect to inclusion)
and bounded below by the closed unit disc. In addition, Rn is a (possibly
unbounded) closed convex polygon.

(b) Let Nθ = 1 + bπθ c, where b·c denotes the floor function. Then,

θ ≤ (Nθ − 1)θ ≤ π < Nθθ ≤ π + θ.

In particular,
(i) 2 ≤ Nθ < 2π

θ and sinNθθ < 0,
(ii) Nθ = min{n ∈ N : θ > π

n},
(iii) Nθ = min{n ∈ N : Rn is bounded }.

(c) For any n ∈ N it holds that Rn = Rn+1 if and only if Ln+1 ∩ intRn = ∅.
(d) There exists n such that Rn = Rn+1. Letting

N = N(a, θ) = inf{n ∈ N : Rn = Rn+1},

then RN =
⋂∞
n=0Πn.

(e) N ≥ Nθ with equality holding if and only if min{xNθ,Nθ+1, x1,Nθ+1} ≥ 1.

Remark 2 The definition of the natural number N given at statement d can
be extended to the limit case a = 1 for every angle θ ∈ (0, π) enjoying the
same properties, except maybe for the finiteness. In this case, the map A1,θ is
non-expansive, so Γ1,θ is no longer an EBM. It is easy to check that

N(1, θ) = inf{n : cos(n+ 1)θ = 1} ∈ {1, 2, . . . ,∞} .

Let us write θ = 2πβ. If β = p
q ∈ Q with p and q coprime, then N(1, θ) = q−1

and Rq−1 is a regular q-sided polygon centered at the origin. On the other
hand, if β is an irrational number, then N(1, θ) = ∞ and R∞ is the closed
unit disc.
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V−
0 = V0,N

V+
0 = V0,1

V1,2

V1,N+1

VN,N+1

L0 = CL1

L2

LN

LN+1

(1, 0)O
θ

RN

Fig. 1: The polygon RN (with N = 4) for a = 1.25 and θ = 3π
8

The limit case a = 1 is of little interest to us since RN(1,θ) is strictly Γ1,θ-
invariant for all θ, but cannot be a strange attractor. However, in the rational
case, the natural number N(1, θ) from Remark 2 proves to be useful as it is
a non-trivial upper bound for N because LN(1,θ)+1(a)∩ intRN(1,θ)(a) = ∅ for
every a. This implies, in particular, that N(a, 2π

3 ) = 2 and N(a, π2 ) = 3 for all
a.

The (N+1)-sided convex polygon RN , limited by the lines L0,L1, . . . ,LN ,
will be the core of our candidate for the maximal strictly Γa,θ-invariant set,
which will be none other than its image under Aa,θ. For simplicity, let us now
introduce the following notation:

– V+
0 = V+

0 (a, θ) and V−0 = V−0 (a, θ) denote the upper and lower vertices of
RN on L0, respectively, see Figure 1.

– n± = n±(a, θ) denote the unique natural numbers such that V+
0 = V0,n+

and V−0 = V0,n− . Note that n± ∈ {1, 2, . . . , N}. Moreover, sinn+θ > 0 and
sinn−θ < 0 since y+

0 > 0 and y−0 < 0, respectively, see (9).
– O+

0 = O+
0 (a, θ) and O−0 = O−0 (a, θ) denote the Aa,θ-orbits on RN of V+

0

and V−0 , respectively. These orbits lie on the boundary ∂RN of RN and
consist of a finite number of points.

– `± = `±(a, θ) denote the lengths of O+
0 and O−0 . Note that `±(a, θ) ∈

{1, 2, . . . , N + 1}. Moreover, O±0 = {V`,`+n±}`
±−1
`=0 .

These numbers will play a crucial role in what follows.
For example, if N < 2π

θ (e.g. for N = Nθ), the N + 1 vertices of RN
are V0,1,V1,2, . . . ,VN−1,N , and V0,N . In particular, n+ = 1 and n− = N (see
Figure 1).

As a consequence of the definition of the sequence {Rn}n, the following
result holds.
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Proposition 2 For every (a, θ) ∈ ∆, the N + 1 vertices of RN are O+
0 ∪O

−
0 .

Moreover, one and only one of the following three statements holds:

(a) LN+1 ∩ ∂RN = ∅ and O+
0 ∩ O

−
0 = ∅.

(b) LN+1 ∩ ∂RN = {V+
0 } and O

+
0 ∪ O

−
0 = O−0 .

(c) LN+1 ∩ ∂RN = {V−0 } and O
+
0 ∪ O

−
0 = O+

0 .

V−
0 = VN,N+1

V+
0

V1,2

V1,N+1

L0 = C
L1

L2

LN

LN+1

O
θ

RN

(a) The polygon R4 for a = 1.074 . . .

V−
0

V+
0

V1,2

VN,N+1

VN+1,N+2

V1,N+2

L0 = C

L1

L2

LN

LN+1

LN+2

O
θ

RN+1

(b) The polygon R5 for a . 1.074 . . .

Fig. 2: Bifurcation from V−0 for θ = 3π
8

We will prove Proposition 2 later on. According to it, essentially only two
scenarios can take place:

(i) If the line LN+1 comes into contact with RN at either V+
0 or V−0 , then

the orbit of the contact vertex Vσ0 , with σ = + or σ = −, is strictly
contained in the orbit of the other one, which thus runs through all the
vertices of RN .

(ii) If the line LN+1 does not intersectRN at all, then V+
0 or V−0 have disjoint

orbits whose union consist of all the vertices of RN .

Note that, if the line LN+1 does not intersect RN , the structure of RN is
persistent in the sense that the corresponding perturbed polygon RN(ã,θ)(ã, θ)
with ã = a + ε for every sufficiently small |ε| is essentially the same as RN
(in particular, they have the same number of sides). Otherwise, this is not so
for ε < 0, where a bifurcation occurs on the boundary of RN : each and every
vertex in the orbit of the contact vertex Vσ0 bifurcates into two new ones giving
rise to a polygon with N(a) + `σ(a) + 1 sides (see Figures 2-3). We will carry
out a study of this bifurcation process later.

We can firstly consider the non-expansive case a = 1 in order to understand
this process. In this case, if θ = 2π pq , then N = q − 1 and RN is limited by
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V−
0 = V0,N+1

V+
0 = V1,N+2

V1,2

V2,3

V3,N

VN,N+1

L0 = C

L1

L2

L3

LN

LN+1

LN+2

LN+3

LN+4

LN+5

LN+6
O

θ

RN+1

(a) The polygon R5 for a = 1.031 . . .

V−
0 = V0,N+1

V+
0 = V0,N+2

V1,N+2

L0 = C

L1

L2

L3

LN

LN+1

LN+2

LN+3

LN+4

LN+5

LN+6

LN+7

O
θ

RN+2

(b) The polygon R10 for a . 1.031 . . .

Fig. 3: Bifurcation from V+
0 for θ = 3π

8

the lines L1,L2, . . . ,Lq = L0, which are tangent to the unit circle at eiθk with
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θk = 2kπ pq for k = 0, 1, . . . , q−1. The orbit {eiθk}qk=1 is not necessarily ordered
along the circle. Denote 0 < θr < θs < 2π the contiguous angles to θ = 0. If
a = 1 then the polygon RN is regular and it is contained in Π0. However, if
a = 1 + ε then the line Lq is the vertical line x = (1 + ε)q > 1. By considering
ε small enough so that (1 + ε)r cos θr < 1 and (1 + ε)s cos θs < 1, then RN
continues to be a polygon with q sides limited by the lines L1,L2, . . . ,Lq,L0.
Otherwise, the polygon RN has N + 1 < q sides. In fact, the number of
sides of RN remains constant or decreases as a increases until RN becomes a
primary polygon according to the following definition.

Definition 8 A polygon RN is said to be primary if N = Nθ, i.e., if RN has
Nθ + 1 sides.

A primary polygon has the minimum number of sides Nθ + 1 and it is
clearly obtained for a large enough. As a decreases towards a = 1, the number
of sides N + 1 increases to q if θ = 2π pq or it tends to infinity if θ

π /∈ Q.
Fixed θ ∈ (0, π), next we will study the variation of N with respect to

a. According to the construction of RN it is clear that N = N(a, θ) remains
constant until a certain value of a for which the line LN+1 intersects RN at
a vertex V+

0 (a, θ) or V−(a, θ) on the line L0. These values of a for which the
natural number N changes we will be called the bifurcation values. Just to
clarify these ideas, for each θ ∈ (0, π) let us consider the map

a ∈ [1,∞) 7→ N(a, θ) ∈ N . (10)

We will indirectly prove that this map is non-increasing and piecewise constant.
Of course, its points of discontinuity will be precisely the bifurcation values
associated to θ. We advance that each bifurcation sequence will be decreasingly
convergent to 1 for every θ ∈ (0, π). We will meet two different situations:

(i) If θ
π ∈ Q, then the set of points of discontinuity of the map given in

(10) is finite. In this case, the bifurcation sequence is eventually constant
equal to 1.

(ii) If θπ /∈ Q, then the set of points of discontinuity of the map given in (10)
is countably infinite and accumulates at 1.

Of course, the irrational case shows much more dynamical richness that the
rational one, nonetheless keeping in mind that the map given in (10) is always
non-increasing. In both cases, and once the value of θ is fixed, the domain of
definition of this map can be decomposed as the (finite or infinite) disjoint
union of intervals on which it will be continuous (i.e. constant). Our aim is to
determine, at once, the bifurcation sequence and the value of the map given
in (10) on such intervals.

The proof of Proposition 2 will be straightforward by the following lemma:

Lemma 1 The following statements hold for every (a, θ) ∈ ∆:

(a) If Vn,m is a vertex of RN , then either |n−m| = n+ or |n−m| = n−.
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(b) If Vn,m is a vertex of RN , then Vn+1,m+1 is a vertex of RN if and only if
xn+1,m+1 ≤ 1.

(c) `± = min{` ∈ N : x`,`+n± > 1} for all a > 1.
(d) O±0 ⊂ O

∓
0 if and only if V±0 ∈ O

∓
0 .

(e) O+
0 ∩ O

−
0 6= ∅ if and only if either V+

0 ∈ O
−
0 or V−0 ∈ O

+
0 .

(f) LN+1 ∩ ∂RN 6= ∅ if and only if either V+
0 ∈ LN+1 or V−0 ∈ LN+1.

(g) If V±0 ∈ LN+1, then V±0 ∈ O
∓
0 .

(h) If LN+1 ∩ ∂RN = ∅, then O+
0 ∩ O

−
0 = ∅.

Proof (Proposition 2) Let Vn,m be a vertex of RN with n < m. Then, ei-
ther V0,m−n = V+

0 or V0,m−n = V−0 , so either Vn,m = Ana,θ(V
+
0 ) or Vn,m =

Ana,θ(V
−
0 ), and therefore Vm,n ∈ O+

0 ∪O
−
0 . The rest is obvious by Lemma 1. �

We end this subsection by introducing an important polygon.

Proposition 3 The following statements hold for every (a, θ) ∈ ∆:

(a) The set KN = Aa,θ(RN ) is the convex (N+1)-sided polygon limited by the
lines L1, L2, . . . , LN+1. The two vertices of KN on LN+1 are VN+1,n+ and
VN+1,n− . These vertices, located on the half-plane {x ≥ 1}, are called the
proper vertices of KN and are denoted by V+

N+1 and V−N+1, respectively.
(b) The polygon KN is Aa,θ-self-similar.
(c) Every Aa,θ-self-similar set is contained in KN . In particular, if KN is

strictly Γa,θ-invariant itself, then it is the maximal first-rate strictly Γa,θ-
invariant set.

Proof (a) Clear by construction.
(b) From statements a and c of Proposition 1 it follows that

KN ∩RN = RN+1 = RN ,

so that RN is contained in KN .
(c) Let K be a Aa,θ-self-similar set, and let K0 = K∩ {x ≤ 1}. It is clear that
K0 ⊂ Π0. Proceeding by induction, if we assume that K0 ⊂ Πn, then

K0 ⊆ K = Aa,θ(K0) ⊂ Aa,θ(Πn) = Πn+1.

so that K0 ⊆ RN by statement d of Proposition 1, and therefore K =
Aa,θ(K0) ⊆ KN . �

Corollary 1 Every first-rate strictly invariant set is bounded.

2.1 The bifurcation sequence

For each fixed angle θ ∈ (0, π), the respective bifurcations (if any) occur at
those values aj = aj(θ) for which the line LNj+1 contains either of the vertices
V0,n+

j
or V0,n−

j
that the polygon RNj has on the critical line L0 = C. For
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a slightly less than aj , another polygon with Nj+1 + 1 sides appears, where
Nj+1 = Nj + `+j or Nj+1 = Nj + `−j depending on whether the contact takes
place at V0,n+

j
or V0,n−

j
, respectively. Recall that `+j and `−j denote the lengths

of the orbits of V0,n+
j
and V0,n−

j
, respectively. Therefore, in order to determine

the sequence of bifurcation values aj in an iterative way, we define the 6-tuple

Aj = Aj(θ) = (aj , Nj , n
+
j , n

−
j , `

+
j , `
−
j ),

that we call a bifurcation stair-step. Each Aj is a tag representing a (Nj + 1)-
sided bounded polygon that becomes a (Nj+1 + 1)-sided bounded polygon for
a . aj .

The largest bifurcation value a1 is associated to the primary polygon RNθ ,
see Proposition 1. For this polygon we have N1 = Nθ, n+

1 = `−1 = 1 and
n−1 = `+1 = Nθ. Therefore, the first bifurcation stair-step is

A1 = (a1, Nθ, 1, Nθ, Nθ, 1).

where a1 depends on σ1 = sgn (sin(Nθ + 1)θ):

– If σ1 = 0, then the line LNθ+1(a) is vertical for all a ≥ 1, so no bifurcation
occurs and a1 = 1. Note that σ1 = 0 if and only if θ ∈ {π2 ,

2π
3 }.

– If σ1 = +1, the upper vertex is V0,1(a1) = (1, (a1 − cos θ) csc θ), see (9),
and the line LNθ+1(a1) is given by

x cos(Nθ + 1)θ + y sin(Nθ + 1)θ = aNθ+1
1 ,

see (8). Since V0,1(a1) ∈ LNθ+1(a1), it holds that

aNθ+1
1 sin θ − a1 sin(Nθ + 1)θ + sinNθθ = 0. (11)

– If σ1 = −1, the lower vertex is V0,Nθ (a1) = (1, (aNθ1 − cosNθθ) cscNθθ),
see (9). Since V0,Nθ (a1) ∈ LNθ+1(a1), it holds that

aNθ+1
1 sinNθθ − aNθ1 sin(Nθ + 1)θ + sin θ = 0. (12)

Equations (11) and (12) can be seen as polynomials of the form

p+
1 (a) = ar1+s1 sin r1θ − ar1 sin(r1 + s1)θ + sin s1θ ,

p−1 (a) = ar1+s1 sin s1θ − as1 sin(r1 + s1)θ + sin r1θ ,

where r1 = 1 and s1 = Nθ. In the following lemma we prove that these
polynomials have unique positive roots denoted by a+

1 and a−1 , respectively.
Then, it holds that a1 = max{a+

1 , a
−
1 }.

Lemma 2 Let θ ∈ (0, π), and let r, s ∈ N such that sin rθ > 0 and sin sθ < 0.
Then, the polynomials

p+(a) = ar+s sin rθ − ar sin(r + s)θ + sin sθ ,

p−(a) = ar+s sin sθ − as sin(r + s)θ + sin rθ ,

have unique positive roots a+ = a+(θ) and a− = a−(θ), respectively. Moreover,
the roots a+ and a− are simple and a+ · a− = 1.
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Proof The existence and uniqueness of a+ and a− are guaranteed by Descartes’
rule of signs as sin rθ > 0 and sin sθ < 0. Moreover, since p−(a) is the recipro-
cal polynomial of p+(a), then a− = 1

a+ by uniqueness. �

The construction of the bifurcation sequence is iteratively obtained from
A1 according to the following result. For each j ∈ N, let us denote

σj = sgn (sin(Nj + 1)θ) .

Proposition 4 For every j ∈ N, given

Aj = (aj , Nj , n
+
j , n

−
j , `

+
j , `
−
j ),

the next bifurcation stair-step

Aj+1 = (aj+1, Nj+1, n
+
j+1, n

−
j+1, `

+
j+1, `

−
j+1)

is obtained applying the following rule:

(a) Case σj = +1:

Nj+1 = Nj + `+j , n+
j+1 = `−j+1 = Nj + 1, n−j+1 = n−j , `+j+1 = `+j .

(b) Case σj = −1:

Nj+1 = Nj + `−j , n+
j+1 = n+

j , n−j+1 = `+j+1 = Nj + 1, `−j+1 = `−j .

(c) Case σj = 0:

Nj+1 = Nj, n+
j+1 = n+

j , n−j+1 = n−j , `+j+1 = `+j , `−j+1 = `−j .

In order to obtain aj+1, if σj+1 = 0, then aj+1 = 1. Otherwise, the bifurcation
value aj+1 is the unique positive root of the polynomial

p+
j+1(a) = aNj+1+1 sinn+

j+1θ − a
n+
j+1 sin(Nj+1 + 1)θ + sinn−j+1θ

if σj+1 = +1, or of

p−j+1(a) = aNj+1+1 sinn−j+1θ − a
n−
j+1 sin(Nj+1 + 1)θ + sinn+

j+1θ

if σj+1 = −1, respectively.

Proof If σj = 0, then the line LNj+1(a) is vertical for all 1 ≤ a < aj−1, so no
other bifurcation occurs. Therefore, all parameters of Aj remain constant and
aj = 1. If σj 6= 0, then from our geometric discussion in the previous subsection
we deduce the values of the entries of Aj+1. In this case, if σj+1 = +1, then
the upper vertex

V+
0 (aj+1) = (1, (a

n+
j+1

j+1 − cosn+
j+1θ) cscn+

j+1θ), (13)
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see (9), belongs to the line LNj+1+1(aj+1), whose equation is

x cos(Nj+1 + 1)θ + y sin(Nj+1 + 1)θ = a
Nj+1+1
j+1 , (14)

see (8). From a direct substitution of (13) into (14) we obtain p+
j+1(aj+1) = 0.

Similarly, if σj+1 = −1, then the lower vertex

V−0 (aj+1) = (1, (a
n−
j+1

j+1 − cosn−j+1θ) cscn−j+1θ), (15)

see (9), belongs to the line LNj+1+1(aj+1). From a direct substitution of (15)
into (14) we obtain p−j+1(aj+1) = 0.

The uniqueness of the positive roots of p+
j+1(a) and p−j+1(a) is due to

Lemma 2. �

The result that we prove next contains Theorem A.

Theorem 1 For every θ ∈ (0, π) there exists a non-increasing sequence (aj)j,
called the bifurcation sequence, with the following properties:

(a) aj ≥ 1 for every j ∈ N.
(b) σj = 0 if and only if aj = 1 for every j ∈ N.
(c) For any j ∈ N, aj+1 ≤ aj with equality holding if and only if aj = 1.
(d) limj→∞ aj = 1.
(e) {aj} is finite if and only if θ

π ∈ Q.
(f) The following statements hold for every j ∈ N:

– For every aj ≤ a < aj−1, N(a, θ) = Nj , n
+(a, θ) = n+

j and n−(a, θ) =

n−j . Moreover,

VN+1,nσj (aj) = Vσj0 (aj) = V0,N+1(aj) .

– For every aj+1 < a ≤ aj, `+(a, θ) = `+j and `−(a, θ) = `−j .

Proof The first five statements hold as we have already discussed (see also
Remark 2). We prove the last one by induction:

The case j = 1 is true by our previous results. Assume that this theorem
holds for j = k and let us prove it for j = k + 1. Assume without loss of
generality that σk = +1. As we diminish the value of a from ak to ak+1,
each point in the Aak,θ-orbit of V+

0 (ak) bifurcates into two new ones, one in
the Aa,θ-orbit of V+

0 (a) and the other in the Aa,θ-orbit of V−0 (a), and this
structure persists until the next contact takes place for a = ak+1. It is easily
deduced that for every ak+1 ≤ a < ak,

N(a) = N(ak) + `+(ak) = Nk + `+k = Nk+1,

and
n+(a) = N(ak) + 1 = Nk + 1 = n+

k+1

and
n−(a) = n−k = n−k+1.
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Now, if ak+1 < a, then
`+(a) = `+(ak) = `+k

and
`−(a) = `−(ak) = Nk + 1 = `−k .

Finally, if σk+1 6= 0, then

`σk+1(ak+1) = `
σk+1

k = `
σk+1

k+1

and
`−σk+1(ak+1) = Nk+1 + 1 = `

−σk+1

k+1 .

�

Fig. 4: The curves of the bifurcation values aj(θ) for j = 1 (red), 2 (green), 3
(cyan), 4 (blue) and θ ∈ (π5 , π)

We say that a > 1 is a generic value if it is not a bifurcation value. In
Figure 4 we show a numerical approximation of the first bifurcation curves. The
concatenation of some of them at certain points are justified by the following
analytical results.

Proposition 5 For every j ∈ N it holds that σj ≡ −1 on (0, π/(j + 1)).

Proof The result easily follows for j = 1. Assume that it holds for j ≤ k and
let us prove it for j = k + 1. Fix θ ∈ (0, π/(k + 2)). Since

(0, π/(k + 2)) ⊂ (0, π/(k + 1)) ⊂ · · · ⊂ (0, π/2),

then σn(θ) = −1 for n = 1, 2, . . . , k by the induction hypothesis, so Nk+1 +1 =
Nθ + k + 1. Note that Nθ ≥ k + 3. Now, since π/Nθ < θ ≤ π/(Nθ − 1) if
Nθ > k + 3 and π/Nθ < θ < π/(Nθ − 1) if Nθ = k + 3, then

π < π +
(k + 1)π

Nθ
< (Nk+1 + 1)θ ≤ π +

(k + 2)π

Nθ − 1
< 2π,
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so σk+1(θ) = −1. �

Corollary 2 Let j ∈ N. For all k > j, it holds that

lim
θ↓πk

aj(θ) = aj−1

(π
k

)
.

3 Existence of first-rate strictly invariant sets

In the previous section we have seen that, for every (a, θ) ∈ ∆, the (N + 1)-
sided polygon KN = ΠN+1 ∩ ΠN ∩ · · · ∩ Π1 is the maximal Aa,θ-self-similar
set. However, it may not be strictly Γa,θ-invariant. Two particular cases are
θ = π

2 and by θ = 2π
3 . If θ = π

2 , then the respective self-similar rectangle is
strictly invariant if and only if a ≤

√
2. On the other hand, if θ = 2π

3 , then the
respective self-similar triangle is strictly invariant if and only if a = 1. Recall
that, for any (a, θ) ∈ ∆, if KN is strictly invariant, then a ≤

√
2 because KN

is compact and has non-empty interior.
From the convexity of RN , it follows that KN is strictly invariant if and

only if RN contains the images Ṽ+
N+1 and Ṽ−N+1 under the fold of the proper

vertices V+
N+1 and V−N+1 of KN , respectively. Computing the coordinates of

these vertices and considering the equations of the lines Ln, see (8) and (9),
we obtain the following result:

Proposition 6 For any (a, θ) ∈ ∆, the self-similar polygon KN is strictly
invariant if and only if

aN+1 sin(n+ n+)θ − an
+

sin(N + 1 + n)θ − (an − 2 cosnθ) sinn−θ ≥ 0

aN+1 sin(n+ n−)θ − an
−

sin(N + 1 + n)θ − (an − 2 cosnθ) sinn+θ ≥ 0(16)

for all n ∈ {0, 1, . . . , N}.

Proof The proper vertices of KN are located on the right side of the critical
line, so the result trivially follows for n = 0.

Let us now recall that the coordinates of the proper vertices of KN are

xn±,N+1 = (−aN+1 sinn±θ + an
±

sin(N + 1)θ) cscn∓θ

yn±,N+1 = (aN+1 cosn±θ − an
±

cos(N + 1)θ) cscn∓θ .

Therefore, the folded proper vertices Ṽ+
N+1 and Ṽ−N+1 are

Ṽ±N+1 = (2− xn±,N+1, yn±,N+1)
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Since RN = ΠN ∩ . . . ∩ Π1 ∩ Π0, then Ṽ+
N+1 and Ṽ−N+1 belong to RN if

and only if Ṽ+
N+1 ∈ Πn and Ṽ−N+1 ∈ Πn for each n = 1, ..., N , that is, if and

only if

(2− xn+,N+1) cosnθ + yn+,N+1 sinnθ ≤ an

(2− xn−,N+1) cosnθ + yn−,N+1 sinnθ ≤ an . (17)

Since sinn+θ > 0 and sinn−θ < 0, we obtain (16). �

Remark 3 It is sufficient to check the inequalities of Proposition 6 for those
n ∈ {1, . . . , N} such that cosnθ < 0.

The characterization provided by Proposition 6 of the strict invariance
of the (N + 1)-sided polygon KN has little practical value when N is large.
However, the following corollary allows us to easily discard those which cannot
be strictly invariant from a basic geometric remark.

Proposition 7 Let θ ∈ (0, π). Assume that KN(a) is strictly invariant for
some a > 1. Then, the following statements hold:

(a) If a is a generic value, then min{cosn+θ, cosn−θ} ≥ 0.
(b) If a is a bifurcation value, then

min{cosn−σθ, σ sin(2nσ + n−σ)θ} ≥ 0

where σ is the sign of sin(N + 1)θ.

Proof (a) Assume that a is a generic value. Then, neither V+
0 nor V−0 is a

vertex of KN and the lines Ln+ and Ln− must have non-positive and non-
negative slopes because Ṽ+

N+1 ∈ Πn+ and Ṽ−N+1 ∈ Πn− , respectively. Since
these slopes are equal to − cotn±θ, and since sinn+θ > 0 and sinn−θ < 0,
this implies that cosn+θ ≥ 0 and cosn−θ ≥ 0.

(b) Assume that a is a bifurcation value. Then, ṼσN+1 = VσN+1 = Vσ0 is a vertex
of KN . In order that Ṽ−σN+1 ∈ Πn−σ , the slope of Lnσ must be no greater
than the slope of LN+1 (both in absolute value), and line Ln−σ must be in
the same generic conditions as before. Therefore, | cot(N+1)θ| ≥ | cotnσθ|
and cosn−σθ ≥ 0.
Applying the fundamental identity of trigonometry, it follows that the first
inequality is equivalent to

sin2 nσθ ≥ sin2(N + 1)θ

and

0 ≤ sin2 nσθ − sin2(N + 1)θ = − sin(N + nσ + 1)θ · sinn−σθ.

Since −σ is the sign of sinn−σθ, we conclude that

σ sin(2nσ + n−σ)θ ≥ 0 .
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�
We just obtained a necessary condition for the strict invariance of KN . In

this way, we say that the self-similar polygon KN is a possible strictly invariant
polygon if it verifies either of the conditions in Proposition 7.

Proposition 8 Let θ ∈ (0, π) such that θ 6= 2π/3. The following statements
hold:
(a) There exists ā > 1 such that KN(ā) is a possible strictly Γā,θ-invariant

polygon.
(b) If KN(ā) is a possible strictly Γā,θ-invariant polygon for some ā > 1, then
KN(a) is a possible strictly Γa,θ-invariant polygon for all a ∈ (1, ā].

Proof We only prove statement (b). Let [aj , aj−1) be the interval obtained
in Theorem 1 containing ā. Since n+ and n− remain constant on [aj , aj−1),
then cosn+θ ≥ 0 and cosn−θ ≥ 0 for every a ∈ (aj , aj−1). Assume first that
ā > aj . In particular, KN(a) is a possible strictly invariant polygon for every
a ∈ (aj , ā). On the other hand, if a = aj then

σ sin(2nσ + n−σ)θ = cosnσθ|sin(N + 1)θ|+ |sinnσθ| cos(N + 1)θ ≥ 0

because cosn+θ ≥ 0 and cosn−θ ≥ 0 implies cos(N + 1)θ ≥ 0. So KN(aj) is a
possible strictly invariant polygon.

By induction we only have to prove that KN(a) is possibly strictly invariant
for a ∈ (aj+1, aj). This is straightforward since on that interval we have nσ =
Nj + 1 and n−σ = n−σj .

Assume now that ā = aj and cosnσθ < 0. Since σ sin(2nσ + n−σ)θ ≥ 0,
then

|sinnσθ| cos(N + 1)θ ≥ − cosnσθ|sin(N + 1)θ| ≥ 0,

so cos(N + 1)θ ≥ 0, and therefore KN(a) is possibly strictly invariant for
a ∈ (aj+1, aj). �

Remark 4 For each θ ∈ (0, π), let ā = ā(θ) be the supremum of the set of
values of a for which KN(a) is a possible strictly Γa,θ-invariant polygon. If
ā > 1, then KN(a) is a possible strictly Γa,θ-invariant polygon for all 1 ≤ a < ā
by Proposition 8. In this case, note that ā is a bifurcation value for θ. It could
be that KN(ā) is not a possible strictly invariant polygon.

Now we prove Theorem B:

Proof (Theorem B) Let

Ba = {(x, y) ∈ R2 : y−0 < y < y+
0 }.

For all a ∈ (1, ā), since KN(a) is a possible strictly Γa,θ-invariant polygon by
remark 4, then both V±N+1 and Ṽ±N+1 belong to Ba. On the other hand, the
rectangle

Ca = {(x, y) ∈ Ba : 0 ≤ x ≤ 1}
is contained in RN(a) by convexity. Therefore, since x±N+1 → 1 as a→ 1, then
Ṽ±N+1 ∈ Ca ⊆ RN(a) for all a > 1 sufficiently close to 1. �
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4 Existence of second-rate strictly invariant sets

In section 3, we have seen that, for all θ 6= 2π/3, the self-similar polygons
KN(a) are (first-rate) strictly invariant for all a > 1 sufficiently close to 1. For
larger values of a, these polygons are not necessarily strictly invariant. If they
are not, then KN(a) is strictly contained in Γa,θ(KN(a)). Therefore, in this case,
the consecutive images of KN(a) under Γa,θ form a non-decreasing sequence of
sets that converge to a second-rate strictly invariant compact set, namely the
closure of K =

⋃∞
k=0 Γ

k
a,θ(KN ) (provided that it is bounded). These arguments

allow to state directly the next result.

Proposition 9 Let (a, θ) ∈ ∆. If KN is not strictly invariant, then KN is
strictly contained in Γa,θ(KN ). In particular, the union

⋃∞
k=0 Γ

k
a,θ(KN ) is a

second-rate strictly invariant set.

Let us illustrate what we have said to the particular case θ = 2π/3. In
this case, the self-similar triangle KN(a) is not even a possible strictly invari-
ant polygon for any a > 1. However, we will see that there exist values of
a ∈ (1,

√
2] for which we can find second-rate strictly invariant compact sets

obtained by a finite number of iterates
⋃m
k=0 Γ

k
a,θ(KN(a)) for some m ∈ N.

In Figure 5 it is represented the construction of one of these second-rate
strictly invariant compact sets for a = 1.27 from the first five iterates of KN(a).
See in Figure 7a how the attractor numerically obtained for these values of the
parameters adjusts to K thus showing that K is a second-rate strictly invariant
minimal set.

In Figure 6 it is represented the construction of one of these second-rate
strictly invariant compact sets for a = 1.19. However, in this case, see Fig-
ure 7b, the non-simply connected attractor is strictly contained in K, so that
K is not minimal.

Another attractor is numerically found for a = 1.12. In this case, as can
be seen in Figure 7c, this attractor is formed by three connected components
and is again strictly contained in K.
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(a) k = 0 (b) k = 1

(c) k = 2 (d) k = 3

(e) k = 4 (f) k = 5

Fig. 5: Construction of the strictly invariant set Γ 5
a,θ(KN(a)) for a = 1.27 and

θ = 2π/3. In grey, the k-th iterate of KN(a) for k = 0, 1, ..., 5. In red, the set
FC,O(Γ ka,θ(KN(a))). Note that FC,O(Γ 4

a,θ(KN(a))) = FC,O(Γ 5
a,θ(KN(a))).
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(a) k = 0 (b) k = 1

(c) k = 2 (d) k = 3

(e) k = 4 (f) k = 5

Fig. 6: Construction of the strictly invariant set Γ 5
a,θ(KN(a)) for a = 1.19 and

θ = 2π/3. In grey, the k-th iterate of KN(a) for k = 0, 1, ..., 5. In red, the set
FC,O(Γ ka,θ(KN(a))). Note that FC,O(Γ 4

a,θ(KN(a))) = FC,O(Γ 5
a,θ(KN(a))).
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(a) a = 1.27 (b) a = 1.19 (c) a = 1.12

Fig. 7: Numerical attractors for θ = 2π/3. Note that the first attractor fills the
strictly invariant set, and therefore it is minimal, while the second and third
one do not.

5 Attractors for 2-D tent maps: open problems

If an invariant compact polygon KN is minimal (i.e. contains no invariant com-
pact set with non-empty interior different from itself), then it is an attractor
by definition. Recall that, in this case, this polygon has to be strictly invariant.
It contains a dense orbit with two positive Lyapunov exponents and, therefore,
it will be a two-dimensional strange attractor.

Let K∗N = KN \RN . Numerical experiments suggest that KN is minimal if
and only if O ∈ FC,O(K∗N ), that is, if and only if (2, 0) ∈ K∗N . As a decreases,
the FC,O(K∗N ) shrinks and there comes a point that O does not belong to it.
Then, a new minimal strictly invariant compact set A  KN turns up. At first,
A continues to be connected, but not simply connected: a hole around O takes
place. Then, A splits into an increasing number of connected components as
a → 1. In this case, A may be formed by several strange attractors and A is
no longer minimal. A numerical observation of this process was found in [19]
for θ = 3π/4 and is also seen in Figure 7.

An analytical proof of the results stated in the paragraph above was given
in [20], [21], [22] and [23] for θ = 3π

4 . For this value of θ, it is proved that
(2, 0) ∈ K∗N if and only if a ≥ 2

1
6 . In [20], it is proved that KN is transitive for

(1+
√

2)
1
4 ≤ a ≤

√
2. In [21], for 1 < a < 2

1
10 , a certain renormalization process

was introduced in order to prove the existence of a strictly invariant compact
set made up of eight connected pieces. A second renormalization exists as a→
1 that allows to prove the coexistence of two strictly invariant compact sets.
Later, in [22], it is proved the existence of a sequence {an} → 1 such that for all
a ∈ (1, an) the EBM Γa, 3π4 is n-times renormalizable. These renormalization
procedures allowed us to prove the existence of a sequence of intervals In such
that for each a ∈ In there coexist 2n strictly invariant compact sets for Γa, 3π4 .
In fact, according to Theorem 1.2 in [23], the strictly invariant compact sets
obtained in [21] and [22] are strange attractors themselves or contain a certain
strange attractor.
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A long task is to be done beyond this work. First, proving if in all cases
KN is minimal whenever (2, 0) ∈ K∗N . Second, checking if the same kind of
results proved for θ = 3π/4 can be obtained for other values of θ. Among such
mentioned results, let us remark those proving the existence of absolutely
continuous invariant measures which allow us to derive, see Theorem 1.2 in
[23], fruitful results relating the existence of strange attractors to the presence
of invariant compact sets with non-empty interior. Theorem 1.2 in [23] in
strongly based on the results given in [6], [26] and [29]. Moreover, once the
existence of such measures is proved for the case θ = 3π/4, we demonstrate,
see [1] and [2], that the respective density functions vary with continuity (in
the L1-norm) with respect to the parameter a. Finally, in [1] we also derive
an entropy formula for such measures as well as prove that this entropy also
varies with continuity with respect to a.

One of our next objectives is, of course, to extend all of these results for
any value of θ. Although it seems to be an achievable task to get all the above
results for any rational value of θ/π, certain conditions used in [1], [2] and [26]
may certainly fail in the case in which θ/π is not rational.

Adding to the above ingredients the fact that the polygon KN may not be
strictly invariant shows that serious difficulties can be faced.
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