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ABSTRACT. For a bounded real-valued function V on Rd, we consider two Schrödinger operators
H+ = −∆+V and H− = −∆−V . We prove that if the negative spectra H+ and H− are discrete
and the negative eigenvalues of H+ and H− tend to zero sufficiently fast, then the absolutely
continuous spectra cover the positive half-line [0,∞).

1. MAIN RESULTS

Being discrete and being continuous are two opposite properties of a set in the plane. However,
there are situations in which the fact that one part of the set is discrete implies that the other part
is continuous. The set below

has two parts: the discrete part (to the left of the vertical arrow), and the continuous one (to the
right of the arrow). In general, one part is not related to the other. That is no longer true if this
picture represents the spectrum of a Schrödinger operator!

There is a relation between the two parts of the spectrum. It is particularly simple if the poten-
tial V (x) in the Schrödinger equation is bounded and negative. In this case, if the left part of the
spectrum is discrete, then the right part is continuous. Moreover, the continuous part coincides
with the half-line [0,∞). In the general case, one has to consider two Schrödinger operators, one
of which is obtained from the other by flipping the sign of the electric potential V (x) at every
point x.

Theorem 1. Let V be a real-valued bounded measurable function on Rd. If the negative spectra
of the two Schrödinger operators H+ = −∆ + V and H− = −∆ − V are discrete, then both
spectra contain every point of the interval [0,∞).

This theorem admits mathematical assumptions of the form V ∈ Lploc(Rd) that allow usual
singularities of V appearing in physics (see [2]).

The rate of accumulation of eigenvalues to zero determines certain properties of the positive
spectrum. If the negative eigenvalues tend to zero sufficiently fast, we can talk about absolute
continuity of the positive part. Absolute continuity is a mathematical notion that is not easy
to describe. An absolutely continuous spectrum can be seen in a rainbow in which one color
is consecutively followed by another. The colors change from red to violet so gradually and
smoothly, that one gets an impression that this passage is ”absolutely continuous”.
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Theorem 2. Let V be a real-valued bounded measurable function on Rd. Assume that the nega-
tive spectra of both operators H+ = −∆ +V and H− = −∆−V consist of isolated eigenvalues
{λ+

j }∞j=1 and {λ−j }∞j=1 satisfying the condition∑
j

|λ+
j |1/2 +

∑
j

|λ−j |1/2 <∞.

Then the absolutely continuous spectrum of each of the two operators is essentially supported on
the positive half-line [0,∞).

The last line of the theorem should be understood in the sense that the density of the spectrum
is positive almost everywhere on [0,∞). Namelly, for each f ∈ L2(Rd), there is a unique non-
negative measure µ± on R having the property(

(H± − z)−1f, f
)

=

∫
R

dµ±(t)

(t− z)
, ∀z ∈ C \ R.

The measure µ± is said to be of maximal spectral type for H± provided that any condition of
the form µ±(δ) = 0 implies that the spectral projection EH±(δ) of H± corresponding to the same
Borel set δ ⊂ R is zero. By a density of the spectrum we mean the derivative of a spectral measure
µ± of the maximal spectral type. The theorem says that

µ′± > 0 almost everywhere on [0,∞).

A complete proof of Theorem 1 can be found in our joint paper [2] with R. Killip and S.
Molchanov. The case d = 1 of Theorem 2 was studied by D. Damanik and Ch. Remling. The
corresponding proof for d = 1 can be found in [1].

The main goal of our paper is to present a better proof of Theorem 2 than the unsatisfactory
sketch given in [4]. This proof is different from the one written for d = 3 in [5] , because it covers
all dimensions.

2. ESTIMATES OF THE POTENTIAL

The following theorem tells us that the rate of accumilation of negative eigenvalues to zero
might determine some properties of the potential.

Theorem 3. Let W ≥ 0 be a bounded function on Rd having the property∫
Rd

W (x)

|x|d−1
dx <∞.

Let V be a real-valued bounded function on Rd and let λ±j be the negative eigenvalues of the
Schrödinger operator H± = −∆ +W ± V . Suppose that∑

j

(√
|λ+
j |+

√
|λ−j |

)
<∞.

Then V is representable in the form

V (x) = W̃ (x) + divA(x) + |A(x)|2,
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where the vector potential A : Rd → Rd and the function W̃ : Rd → R satisfy the conditions

A ∈ L∞loc(Rd,Rd) ∩H1
loc(Rd,Rd), W̃ ∈ L∞loc(Rd),∫

Rd

(|W̃ (x)|+ |A(x)|2)

|x|d−1
dx <∞.

Remark. The theorem does not say that the functions W̃ and A have to be bounded or have to
decay at infinity.

The next statement can be proved by integration by parts.

Lemma 2.1. Let φ be a real-valued bounded function with bounded derivatives of first order
defined on a domain Ω ⊂ Rd. Suppose that ψ ∈ H2(Ω) is a real-valued solution of

−∆ψ + (W ± V )ψ = λψ

and the product φψ vanishes on the boundary of the domain {a < |x| < b} ⊂ Ω with a > 0.
Then ∫

a<|x|<b

(
|∇(φψ)|2 + (W ± V )|φψ|2

)
dx =

∫
a<|x|<b

(
|∇φ|2ψ2 + λ|φψ|2

)
dx.

Before stating a very important lemma, we introduce the notion of the inner size (width) d(G)
of a spherical layer G = {a ≤ |x| ≤ b} by setting it equal to d(G) = b − a. For two spherical
layers G̃ = {ã ≤ |x| ≤ b̃} and G = {a ≤ |x| ≤ b}, we say that G encloses G̃, if b̃ ≤ a.

By the Schrödinger operator −∆ +W ± V on a domain Ω ⊂ Rd we always mean an operator
with the Dirichlet boundary conditions. We will sometimes denote these operators by H+

∣∣∣
Ω

and

H−

∣∣∣
Ω

. More often we will denote them by H+ and H−, but in this case, we will provide a verbal
description mentioning the domain Ω.

Lemma 2.2. Assume that the lowest eigenvalue ofH± on the domain {a < |x| < b} is the number
−γ2 where γ > 0. Suppose that b−a ≥ 6γ−1. Then there is a spherical layer Ω ⊂ {a < |x| < b}
with d(Ω) = 6γ−1 such that the lowest eigenvalue of H± on Ω is not higher than −γ2/2.

Proof. Let ψ be the real eigenfunction corresponding to the eigenvalue −γ2 for the problem
on the domain {a < |x| < b} with the Dirichlet boundary conditions. Put L = γ−1 and pick a
number c > 0 giving the maximum to the function f(c) =

∫
||x|−c|<L |ψ|

2dx on the interval [a, b].
Define φ as by

φ(x) =


1 if ||x| − c| < L,

0 if ||x| − c| ≥ 3L,

3/2− ||x| − c|/(2L), otherwise.

By the choice of the number c,

(1)
∫
a<|x|<b

|∇φ|2ψ2dx ≤ γ2

2

∫
a<|x|<b

|φψ|2dx.
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Indeed, |∇φ| vanishes everywhere except for the two sperical layers of width 2L, where it equals
γ/2. Consequently,∫

a<|x|<b
|∇φ|2ψ2dx ≤ γ2

2

∫
||x|−c|<L

|ψ|2dx =
γ2

2

∫
||x|−c|<L

|φψ|2dx.

Therefore, by Lemma 2.1 and the inequality (1),∫
a<|x|<b

(
|∇(φψ)|2 + (W ± V )|φψ|2

)
dx ≤ −γ

2

2

∫
a<|x|<b

|φψ|2dx.

That proved the result with Ω defined as the intersection of the support of φ with the layer {a <
|x| < b}. If d(Ω) < 6γ−1, then we enlarge Ω until its width becomes equal to 6γ−1. The bottom
of the spectrum of the corresponding operator will not move up in this process. �

Lemma 2.3. Let V and W ≥ 0 be two real valued bounded potentials on Rd. Let H± =
−∆±V +W be two Schrödinger operators acting on L2(Rd). Suppose that the negative spectra
of the operators H± are discrete and consist of eigenvalues {λ±j } satisfying∑

j

(√
|λ+
j |+

√
|λ−j |

)
<∞.

Then there is a sequence of spherical layers Ωn = {x ∈ Rd : an ≤ |x| ≤ bn} and a monotone
sequence of numbers εn > 0 having the properties:

(1)
∑

n ε
1/2
n <∞ and the widths d(Ωn) of Ωn are estimated by

(2) d(Ωn) ≤ 42ε−1/2
n , ∀n > 1.

(2) H± ≥ 0 on the set Rd \ ∩nΩn. Moreover,

(3) H± ≥ −εn on Ωn ∪
(
Rd \ ∪j<nΩj

)
, ∀n.

(3) If Ωj ∩ Ωn 6= ∅, then the width of the intersection Ωj ∩ Ωn is bounded below by 6ε
−1/2
k

d
(

Ωj ∩ Ωn

)
≥ 6ε

−1/2
k ,

where k = min{j, n}.
(4) For each index n, there are at most two sets Ωj intersecting Ωn and

dist
(

Ωn,∪m<j(n)Ωm

)
≥ 6ε

−1/2
j(n) ,

where j(n) is the smallest index j < n for which the intersection Ωj ∩ Ωn is not empty.
(5) Any ball Br = {x ∈ Rd : |x| ≤ r} of a finite radius r > 0 intersects only a finite number

of sets Ωj .

Proof. We will construct the sets

Ωn = {x ∈ Rd : an ≤ |x| ≤ bn}
inductively. We will also construct auxiliary sets ωn = {x ∈ Rd : αn ≤ |x| ≤ βn} ⊂ Ωn whose
description will take a lot of space in this proof. First, set

ω0 = {x ∈ Rd : |x| ≤ 6ε
−1/2
0 } and Ω0 = {x ∈ Rd : |x| ≤ 12ε

−1/2
0 }
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where −ε0 is the the lowest of the eigenvalues {λ±j }.

Suppose the sets ωn ⊂ Ωn and the numbers εn are already constructed for n < N . Consider
the set

S = Rd \ ∪n<NΩn

and define −εN as the lowest of the eigenvalues of H+ and H− on S. By construction,

εj ≥ εj+1.

Define ω ⊂ S to be the spherical layer on which one of the operators H± has spectrum below
−εn/2, i.e.

inf σ
(
H±

∣∣∣
ω

)
≤ −εN/2 either for + or -,

while the width of ω is not larger than L = 6ε
−1/2
N . We assume that one can not enlarge ω

preserving the properties described above. The existence of this set is proved in Lemma 2.2.

Let α and β be the non-negative numbers defined by

ω = {x ∈ Rd : α ≤ |x| ≤ β}.
Choose the index l so that al is the smallest of the numbers {an}n<N having the property

β ≤ an.

After that, choose the index k so that bk is the largest of the numbers {bn}n<N having the property

bn ≤ α.

Note that the number l might not exist. However, the case where l does not exist can be dealt with
as if al was infinite.

Case 1. If al − bk < 2 max{L−, L+} where L− = 6ε
−1/2
k and L+ = 6ε

−1/2
l , then we replace

Ωk and Ωl by two larger sets so that the width of the intersection will be equal to

d(Ωk ∩ Ωl) = min{L−, L+}
For instance, if L− ≤ L+, then we replace Ωk by {ak ≤ |x| ≤ bk + L−} and replace Ωl by
{bk ≤ |x| ≤ bl}. This operation would not change the property

H±

∣∣∣
Ωn

≥ −εn for n < N,

because of the claim 2) of the lemma.
After we redefine the two sets Ωk and Ωl, we start the process over with a new collection of the

sets {Ωn}n<N .

Case 2. If both al − β > L and α− bk > L, then we set

ΩN = {x ∈ Rd : α− L ≤ |x| ≤ β + L}
and ωN = ω.

Case 3. If al − bk ≥ 2 max{L−, L+}, but α− bk ≤ L and al − β ≤ L, then we set ωN = ω,

ΩN = {x ∈ Rd : bk ≤ |x| ≤ al},
and we replace Ωk and Ωl by the sets

{x ∈ Rd : ak ≤ |x| ≤ bk + L−} and {x ∈ Rd : al − L+ ≤ |x| ≤ bl}
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correspondingly.

Case 4. Finally, consider the case where al − bk ≥ 2 max{L−, L+}, but only one of the
numbers α − bk and al − β is not larger than L. Let us assume that α − bk ≤ L but al − β > L.
In this case, we set ωN = ω,

ΩN = {x ∈ Rd : bk ≤ |x| ≤ β + L},
and we replace Ωk by the set {x ∈ Rd : ak ≤ |x| ≤ bk + L−}.

We see that initially the width of ΩN does not exceed 3L. However, we might change ΩN by
2L at the next step of the process. Since the number of the steps at which one set Ωn can be
changed is at most two, the width of Ωn does not exceed 42ε

−1/2
n . That proves (2).

Since the set ΩN ∪
(
Rd \ ∪j<NΩj

)
is contained in S, we the relation (3) holds for n = N .

Therefore it holds for any n after the construction of the sets Ωn is completed.
Obviously, we extended the sets Ωn so that the claim 3) holds. Since ωk and ωl have not been

changed, the are at least distance L− and L+ apart from ΩN . Since L± ≥ 6ε
−1/2
j(N) , we obtain the

clam 4) is true.
The sets ωn are disjoint and one of the operators H± on ωn has an eigenvalue below −εn/2 for

n ≥ 1. Consequently,
∞∑
n=1

ε1/2n ≤
√

2
∑
n

(√
|λ+
n |+

√
|λ−n |

)
.

It is also clear that a ball Br of finite radius r > 0 can intersect only a finite number of the
disjoint sets ωn. Otherwise the spectrum of one of the operators H±

∣∣∣
Br

would accumulate to

zero, which can never occur on a bounded domain due to one of Sobolev’s embedding theorems.
This implies the fifth claim of the lemma.

The fact that, for each N ,
Rd \ ∪nΩn ⊂ Rd \ ∪n<NΩn

implies that H± ≥ −εN on Rd \ ∪nΩn. Consequently, H± ≥ 0 on Rd \ ∪nΩn. �

Lemma 2.3 allows one to estimate the potential V on the union ∪nΩn. However, these sets
might not cover the whole space Rd, so we have to consider the case

Rd \ ∪nΩn 6= ∅.

Lemma 2.4. Enlarging some of the sets Ωn from Lemma 2.3, one can achieve that

Rd =
(
∪nΩn

)
∪
(
∪nΛn

)
where Λn = {x ∈ Rd : αn < |x| < βn} are spherical layers with the properties:

(1) both operators H+ and H− are positive on Λn

(2) each bounded layer Λm intersects exactly two sets Ωn

(3) if Λn intersects Ωn1 and Ωn2 , then

d(Λn) ≥ 6ε−1/2
n1

+ 6ε−1/2
n2

,

and
d(Λn ∩ Ωnj

) = 6ε−1/2
n1

, j = 1, 2,
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where d(G) denotes the width of G.
(4) all claims of Lemma 2.3 hold for the sets Ωn except for inequality (2) which should be

replaced by

(4) d(Ωn) ≤ 67ε−1/2
n , ∀n > 1.

Proof. Let the collection of sets {Ωn} be the same as in Lemma 2.3. The set Rd \ ∪nΩn

is a disjoint union of spherical layers on which both operators H± are positive. If a spherical
layer Λ is a connected component of Rd \ ∪nΩn then there are two sets Ωn1 and Ωn2 whose
boundaries intersect the boundary of Λ. In this case, the width of Λ should be compared with
6ε
−1/2
n1 + 6ε

−1/2
n2 . If d(Λ) is smaller than this number, we enlarge Ωn1 and Ωn2 so that the gap

between them will disappear. For instance, if d(Λ) < 6ε
−1/2
n1 +6ε

−1/2
n2 , and ε−1/2

n1 ≤ ε
−1/2
n2 , then we

replace Ωn2 by the union Ωn2 ∪ Λ̄ and give the piece of width 6ε
−1/2
n1 to the set Ωn1 . Otherwise,

if if d(Λ) ≥ 6ε
−1/2
n1 + 6ε

−1/2
n2 , we keep Λ as a member of the collection {Λn}. In this case,

we enlarge both sets Ωn1 and Ωn2 giving them the pieces of Λ of the width 6ε
−1/2
n1 and 6ε

−1/2
n2 ,

correspondingly.
Since the width of Ωn in this process might change at most by 24ε

−1/2
n , we obtain the inequality

(4). �

In order to obtain the required estimates of the potential V we need the following elementary
statement.

Lemma 2.5. Let both H+ ≥ −γ2 and H+ ≥ −γ2 on a bounded spherical layer Ω = {a <
|x| < b}, a > 0. Then W + V + γ2 = divA + |A|2 on Ω, where the vector potential A ∈
L∞loc(Ω;Rd) ∩H1

loc(Ω;Rd) satisfies the estimate
1

2

∫
a<|x|<b

|φ|2|A(x)|2dx ≤

γ2

∫
a<|x|<b

|φ|2dx+

∫
a<|x|<b

W |φ|2dx+ 3

∫
a<|x|<b

|∇φ|2dx.
(5)

for any function φ ∈ C∞0 (Ω).

Proof. Let u be a positive solution of the equation−∆+(W+V )u = −γ2u. ThenA = u−1∇u
is a vector potential obeying

W + V = −γ2 + divA+ |A|2 on Ω.

This step is justified in my paper [?]. Now, the condition H+ ≥ −γ2 can be written in the form∫
a<|x|<b

(
|∇φ|2 + (W − V )|φ|2dx

)
≥ −γ2

∫
a<|x|<b

|φ|2dx.

The latter leads to the inequality (5) due to the estimate∫
a<|x|<b

divA|φ|2dx ≤ 1

2

∫
a<|x|<b

|A|2|φ|2dx+ 2

∫
a<|x|<b

|∇φ|2dx.

The proof is completed. �

Since the functions φ in Lemma 2.5 must vanish at the boundary of Ω, this lemma allows one
to estimate A only inside the domain.
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Corollary 2.1. Let both H+ ≥ −γ2 and H+ ≥ −γ2 on a bounded spherical layer Ω = {a <
|x| < b}, where a, γ > 0 and b− a ≤ 67/γ. Let also

Ω̃ = {ã < |x| < b̃},

where a < ã < b̃ < b. Then

(6) W + V + γ2 = divA+ |A|2

on Ω, where the vector potential A ∈ L∞loc(Ω;Rd) ∩H1
loc(Ω;Rd) satisfies the estimate

1

2

∫
Ω̃

|A(x)|2|x|1−ddx ≤

67γ +

∫
Ω

(
W + 6|x|−2

)
|x|1−ddx+ 6

(
(ã− a)−1) + (b− b̃)−1

)
.

(7)

Proof. The inequality (7) follows from (5) in which one has to set φ(x) = θ(|x|)|x|(1−d)/2,
where θ is a continuous function on R defined by

θ(t) =


0, if t /∈ [a, b];

1, if t ∈ [ã, b̃];

is linear on [a, ã];

is linear on [b̃, b].

The proof is completed. �

Obviously, Corollary 2.1 holds for γ = 0.

Corollary 2.2. Let both H+ ≥ 0 and H+ ≥ 0 on a bounded spherical layer Λ = {α < |x| < β},
where α > 0. Let also

Λ̃ = {α̃ < |x| < β̃},

where α < α̃ < β̃ < β. Then

(8) W + V = divA+ |A|2

on Λ, where the vector potential A ∈ L∞loc(Λ;Rd) ∩H1
loc(Λ;Rd) satisfies the estimate

1

2

∫
Λ̃

|A(x)|2|x|1−ddx ≤∫
Λ

(
W + 6|x|−2

)
|x|1−ddx+ 6

(
(α̃− α)−1) + (β − β̃)−1

)
.

(9)

We can now use the information obtained in the two preceding corollaries to prove the follow-
ing statement.

Lemma 2.6. Let V and W ≥ 0 be two real valued bounded potentials on Rd. Assume that∫
Rd

W

|x|d−1
dx <∞.
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Suppose that the negative spectra of the operators H± = −∆± V +W are discrete and consist
of eigenvalues {λ±j } satisfying ∑

j

(√
|λ+
j |+

√
|λ−j |

)
<∞.

Let Ωn, Λn and εn be the same as in Lemma 2.4. Assume that Ωn ⊂ {|x| ≥ 6ε
−1/2
0 } for all

n ≥ 1. Then there is a sequence of H1-functions φn ≥ 0 supported inside Ωn and a sequence of
H1-functions ψn ≥ 0 supported inside Λn such that

(10)
∑
n

φn(x) +
∑
n

ψn(x) = 1,

(11)
∑
n

∫
Rd

(
|∇φn(x)|2 + |∇ψn(x)|2

)
|x|1−ddx ≤ 72

∑
n

ε1/2n

Moreover, one can find vector potentials An and Ãn such that

(12) V +W + εn = divAn + |An|2 on Ωn, V +W = div Ãn + |Ãn|2 on Λn.

and

1

2

∞∑
n=1

(∫
suppφn

|An|2|x|1−ddx+

∫
suppψn

|Ãn|2|x|1−ddx
)
≤

(|Sd|+ 500)
∑
n

ε1/2n +

∫
Rd

W

|x|d−1
dx,

(13)

where |Sd| is the area of the unit sphere in Rd.

Proof. According to Lemma 2.3, the width of a non-empty set of the form Ωj ∩ Ωn 6= ∅
is bounded from below by 6ε

−1/2
k , where k = min{j, n}. Also, according to Lemma 2.4, if

Λj ∩ Ωn 6= ∅, then the width of the intersection Λj ∩ Ωn is not less than 6ε
−1/2
n . Let

{rn < |x| < Rn}
be the enumeration of the interiors of all such intersections that has the property Rn ≤ rn+1 for
all n. Define the functions θn so that they are continuous on R and are linear on the middle thirds[
rn +

(Rn − rn)

3
, Rn −

(Rn − rn)

3

]
and

[
rn+1 +

(Rn+1 − rn+1)

3
, Rn+1 −

(Rn+1 − rn+1)

3

]
of the intervals

[rn, Rn] and [rn+1, Rn+1],

correspondingly. We define θn to be identically zero outside of

[rn +
(Rn − rn)

3
, Rn+1 −

(Rn+1 − rn+1)

3
].

Finally, we define θn to be identically equal to one on the interval

[Rn −
(Rn − rn)

3
, rn+1 +

(Rn+1 − rn+1)

3
].
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Now for each index n, we set φn(x) = θj(|x|), where j is the index for which the support of
the function θj(| · |) is contained in Ωn. Also, for each index n, we set ψn(x) = θl(|x|), where l
is the index for which the support of the function θl(| · |) is contained in Λn.

Observe that ∫
Ωj∩Ωn

|∇φn|2|x|1−ddx ≤ 18ε
1/2
k , k = min{n, j}.∫

Λj∩Ωn

|∇φn|2|x|1−ddx ≤ 18ε1/2n .

These relations imply (11). Moreover, φn + φj = 1 on the set Ωj ∩ Ωn and φn + ψj = 1 on the
set Λj ∩ Ωn. The latter properties imply (10).

The representations (12) as well as the integral estimates for An and Ãn follow from Corollar-
ies 2.1 and 2.2, because H± ≥ −εn on Ωn, and both operators H± are positive on Λn. We also
use the fact that

6

∫
|x|>6ε

−1/2
0

|x|−2|x|1−ddx = |Sd|ε1/20 .

�

The end of the proof of Theorem 3. Let us define

A =
∞∑
n=1

(
φnAn + ψnÃn

)
, p(x) = −

∞∑
n=1

εnφn(x), V1 = p+ divA+ |A|2.

Note that ∫
Rd

|p(x)| |x|1−ddx ≤ 42
∑
n

ε1/2n <∞,
∫
Rd

|A(x)|2 |x|1−ddx ≤

2
∞∑
n=1

(∫
suppφn

|An(x)|2 |x|1−ddx+

∫
suppψn

|Ãn(x)|2 |x|1−ddx
)
<∞.

(14)

The relations (12) imply

φn(V +W + εn) = φn(divAn + |An|2), ψn(V +W ) = ψn(div Ãn + |Ãn|2),

Taking the sum over all n and using the property that {φn} and {ψn} is a partition of the unity,
we obtain the relation

V +W − p =
∞∑
n=0

φn(divAn + |An|2) +
∞∑
n=0

ψn(div Ãn + |Ãn|2).

Consequently,

V +W = V1 −
∞∑
n=0

(An∇φn + Ãn∇ψn)− |A|2 +
∞∑
n=0

(φn|An|2 + ψn|Ãn|2).

This representation implies that

(15)
∫
Rd

|V +W − V1| |x|1−ddx <∞,

because the gradients of φn and ψn obey the condition (11).
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It remains to set W̃ = V − V1 + p. Then V = W̃ + divA+ |A|2,∫
Rd

|A(x)| |x|1−ddx <∞, and
∫
Rd

|W̃ | |x|1−ddx <∞

due to (14) and (15). The proof is completed.

3. ABSOLUTE CONTINUITY OF THE SPECTUM FOR POTENTIALS OF A SPECIAL FORM

According to Theorem 3 proved in the preceding section, Theorem 2 follows from the statement
formulated below.

Theorem 4. Let V be a real-valued bounded measurable function on Rd representable in the
form

(16) V (x) = W̃ (x) + divA(x) + |A(x)|2,
where the vector potential A : Rd → Rd and the function W̃ : Rd → R satisfy the conditions

A ∈ L∞loc(Rd,Rd) ∩H1
loc(Rd,Rd), W̃ ∈ L∞loc(Rd),∫

Rd

(|W̃ (x)|+ |A(x)|2)

|x|d−1
dx <∞.

(17)

Assume that the negative spectrum of the operator H = −∆ + V consists of eigenvalues {λj}
obeying the condition ∑

j

√
|λj| <∞.

Then the absolutely continuous spectrum of the operator H = −∆ + V is essentially supported
on [0,∞).

Theorem 3 is a consequence of a certain estimate of the entropy of the spectral measure corre-
sponding to an element f ∈ L2(Rd). This measure is defined as a unique non-negative measure
µ on R having the property(

(H − z)−1f, f
)

=

∫
R

dµ(t)

(t− z)
, ∀z ∈ C \ R.

Theorem 5. Let the conditions of Theorem 3 be fulfilled. Then there is a vector f ∈ L2(Rd) such
that, for any 0 < a < b <∞,

(18)
∫ b

a

log
(
µ′(λ)

)
λ−1/2dλ ≥ −Cd

(∫
Rd

(W̃ + |A|2)|x|1−ddx+
∑
j

√
|λj|
)
− αd(a, b; ‖V ‖∞),

where the constant Cd > 0 depends only on the dimension d, while αd(a, b; ‖V ‖∞) depends on a,
b, the dimension d and the norm ‖V ‖∞.

If the right hand side of (18) is finite, then µ′(λ) > 0 for almost every λ > 0. Therefore (18)
implies Theorem 4.

An important part of the proof of this theorem is related to approximations of the spectral
measure of the operator −∆ +W + V by spectral measures of similar operators with compactly
supported potentials. We have to consider several cases, one of which is the case where the
potential is unbounded. The operator in this case can be defined in the sense of quadratic forms.
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Let us recall certain facts of this theory. Let a[u, v] be a closed semi-bounded sesquilinear form
in a Hilbert space H. Semi-boundedness means that

a[u, u] ≥ −C‖u‖2, ∀u ∈ Dom [a],

with some positive constant C > 0. Closedness means that for any τ > C, the domain Dom [a]
of the form is a complete Hilbert space with respect to the inner product

a[u, v] + τ(u, v).

There is a unique self-adjoint operator A corresponding to the form a, such that DomA ⊂
Dom [a] and

(Au, v) = a[u, v] ∀u, v ∈ Dom [a].

A vector u ∈ H belongs to DomA if and only if there is a vector w ∈ H such that

a[u, v] = (w, v) ∀v ∈ Dom [a].

In this case, Au = w.
First consider a Schrodinger operator−∆+W̃−+V , where V and W̃− ≥ 0 obey the conditions

(19) V ∈ L∞(Rd), W̃− ∈ L∞loc(Rd),

(20)
∫
Rd

W̃−
|x|d−1

dx <∞.

We define −∆ + W̃− + V as the operator corresponding to the quadratic form∫
Rd

(
|∇u|2 + (W̃− + V )|u|2

)
dx.

The domain of this quadratic form consists of all H1(Rd)-functions that are square integrable
with respect to the measure W̃−dx.

Proposition 3.1. Let f ∈ L2(Rd) and let V and W̃− ≥ 0 satisfy (19). Assume that u ∈
Dom (−∆ + W̃− + V ) is a solution of the equation

−∆u+ (W̃− + V − z)u = f, Im z 6= 0.

Then
‖u‖H1 ≤ C‖f‖L2

with

C =

√(
(3/2 + |Re z|+ ‖V ‖∞)/|Im z|2 + 1/2

)
.

Proof. Since ∫
Rd

|∇u|2dx+

∫
Rd

(W̃− + V − z)|u|2dx =

∫
Rd

fūdx,

we conclude that ∫
Rd

|∇u|2dx+

∫
Rd

(W̃− + V − Re z)|u|2dx = Re

∫
Rd

fūdx,
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Consequently, ∫
Rd

|∇u|2dx ≤ (1/2 + ‖V ‖∞ + |Re z|)
∫
Rd

|u|2dx+
1

2

∫
Rd

|f |2dx.

It remains to note that ‖u‖L2 ≤ (Im z)−1‖f‖L2 . �

Let V be a real-valued bounded measurable function on Rd representable in the form (16),
where the vector potential A : Rd → Rd and the function W̃ : Rd → R satisfy the conditions
(17). Let θ be a smooth real-valued function on R having the property

(21) θ(t) =

{
1 if t < 0,

0 if t > 1.

For a natural number n, we define θn by

(22) θn(x) = θ(|x| − n), x ∈ Rd.

After that, we set

(23) Vn = θn(W̃− + V ) + |∇θn · A|+∇θn · A− χRW̃−,

where W̃− = 1
2
(|W̃ | − W̃ ) is the negative part of the function W̃ and χR is the characteristic

function of the ball {x ∈ Rd : |x| < R}.
Now, for a fixed function f ∈ L2(Rd), define the non-negative measures µn and µ on R by

(24)
(

(−∆ + Vn − z)−1f, f
)

=

∫
R

dµn(t)

t− z
, ∀z ∈ C \ R,

and

(25)
(

(−∆ + (1− χR)W− + V − z)−1f, f
)

=

∫
R

dµ(t)

t− z
, ∀z ∈ C \ R.

Proposition 3.2. Let µn and µ be the measures defined by (24) and (25). Then the sequence
µn converges to µ in the weak-∗ topology, i.e. for any compactly supported continuous function
φ ∈ C(R), ∫

R
φ(t) dµn(t)→

∫
R
φ(t) dµ(t), as n→∞.

Proof. Since any compactly supported function φ ∈ C(R) can be approximated by finite linear
combinations of functions of the form φz(t) = Im

(
1/(t− z)

)
, it is sufficient to show that∫

R

dµn(t)

t− z
→
∫
R

dµ(t)

t− z
as n→∞, ∀z ∈ C \ R,

uniformly on compact sets in C \ R, which is the same as showing that(
(−∆+Vn−z)−1f, f

)
→
(

(−∆+(1−χR)W̃−+V −z)−1f, f
)

as n→∞, ∀z ∈ C\R.
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Using the Heine-Borel lemma, one can reduce it to one point z ∈ C \ R. In order to establish the
required convergence, we use Hilbert’s identity saying that(

(−∆ + Vn − z)−1f, f
)
−
(

(−∆ + (1− χR)W̃− + V − z)−1f, f
)

=(
((1− χR)W̃− + V − Vn)(−∆ + Vn − z)−1f, (−∆ + (1− χR)W̃− + V − z̄)−1f

)
.

It becomes clear that to prove the proposition, one needs to show that∫
Rd

((1− χR)W̃− + V − Vn)un(x)ū(x) dx→ 0, as n→∞,

where

un = (−∆ + Vn − z)−1f and u = (−∆ + (1− χR)W̃− + V − z̄)−1f.

Let us first establish the relation

(26)
∫
Rd

(1− θn)(W̃− + V )un(x)ū(x) dx→ 0, as n→∞.

According to Proposition 3.1,

(27) sup
n
‖un‖H1 <∞, and ‖u‖H1 <∞.

On the other hand, for n > R, ∫
Rd

(
(−∇θn)un + (1− θn)∇un

)
∇ū dx+

+

∫
Rd

(1− θn(x))(W̃− + V − z)un(x)ū(x) dx =

∫
Rd

(1− θn(x))un(x)f(x) dx.

(28)

Thus (26) follows from (28) by (27).
Since (1− χR)W̃− + V − Vn = (1− θn)(W̃− + V )− |∇θn ·A| −∇θn ·A, it remains to show

that

(29)
∫
Rd

(|∇θn · A|+∇θn · A)un(x)ū(x) dx→ 0, as n→∞.

Replacing 1 − θn by (1 − θn−1)θn and −∇θn by ∇(1 − θn−1)θn in (28), one can easily show
that

(30)
∫
Rd

(1− θn−1)θn(W̃− + V )un(x)ū(x) dx→ 0, as n→∞.

Using the equality ∫
Rd

∇un
(

(−∇θn−1)ū+ (1− θn−1)∇ū
)
dx+

+

∫
Rd

(1− θn−1(x))(Vn − z)un(x)ū(x) dx =

∫
Rd

(1− θn−1(x))f(x)ū(x) dx,

one also obtains

(31)
∫
Rd

(1− θn−1)Vn(x)un(x)ū(x) dx→ 0, as n→∞.
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Since Vn = θn(W̃−+V ) + |∇θn ·A|+∇θn ·A−χRW̃− and∇θn = (1− θn−1)∇θn, the relation
(29) follows from (30) and (31). �

Let V be representable in the form (16), where A : Rd → Rd and W̃ : Rd → R satisfy the
conditions (17). Let χn be the characteristic function of the ball {x ∈ Rd : |x| < R}. This time,
we set

Vn = (1− χn)W̃− + V,

where W̃− = 1
2
(|W̃ |−W̃ ) is the negative part of the function W̃ . For a fixed function f ∈ L2(Rd),

define the non-negative measures µn and µ on R by

(32)
(

(−∆ + Vn − z)−1f, f
)

=

∫
R

dµn(t)

t− z
, ∀z ∈ C \ R,

and

(33)
(

(−∆ + V − z)−1f, f
)

=

∫
R

dµ(t)

t− z
, ∀z ∈ C \ R.

Proposition 3.3. Let µn and µ be the measures defined by (32) and (33). Then the sequence
µn converges to µ in the weak-∗ topology, i.e. for any compactly supported continuous function
φ ∈ C(R), ∫

R
φ(t) dµn(t)→

∫
R
φ(t) dµ(t), as n→∞.

Proof. It suffices to show that(
(−∆ + Vn − z)−1f, f

)
→
(

(−∆ + V − z)−1f, f
)

as n→∞, ∀z ∈ C \ R.

In order to establish the required convergence, we use Hilbert’s identity saying that(
(−∆ + Vn − z)−1f, f

)
−
(

(−∆ + V − z)−1f, f
)

=(
(V − Vn)(−∆ + Vn − z)−1f, (−∆ + V − z̄)−1f

)
.

It becomes clear that to prove the proposition, one needs to show that∫
Rd

(V − Vn)un(x)ū(x) dx→ 0, as n→∞,

where
un = (−∆ + Vn − z)−1f and u = (−∆ + V − z̄)−1f.

Put differently, we have to establish the relation

(34)
∫
Rd

(1− χn)W̃−un(x)ū(x) dx→ 0, as n→∞.

According to Proposition 3.1,

(35) sup
n
‖un‖H1 <∞, and ‖u‖H1 <∞.
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On the other hand, ∫
Rd

∇un
(

(−∇θn−1)ū+ (1− θn−1)∇ū
)
dx+

+

∫
Rd

(1− θn−1(x))(Vn − z)un(x)ū(x) dx =

∫
Rd

(1− θn−1(x))f(x)ū(x) dx,

(36)

where θn are defined by (21) and (22). Combining (36) and (35), we obtain that∫
Rd

(1− θn−1(x))Vnun(x)ū(x) dx→ 0, as n→∞.

The latter relation implies (34), because (1− χn)W̃− = (1− θn−1)(Vn − V ). �

4. THE ENTROPY OF A MEASURE

Let µ be an arbitrary non-negative finite Borel measure on the real line R. It can be decomposed
into the sum of three terms

µ = µac + µpp + µsc

where the first term is absolutely continuous, the second term is pure point, and the last term is
singular continuous with respect to the Lebesgue measure. The limit

µ′(λ) = lim
ε→0

µ(λ− ε, λ+ ε)

2ε

exists and coincides with µ′ac(λ) for almost every λ ∈ R. Therefore the fact that µ′ > 0 almost
everywhere on R+ = [0,∞) implies that the support of the absolutely continuous part of the
measure contains R+. A useful tool that often allows to understand the structure of the set

{λ ∈ R : µ′(λ) > 0}
is the entropy of one measure with respect to the other.

Definition. Let ρ and ν be finite Borel measures on a compact Hausdorff space X . We define
the entropy of the measure ρ relative to ν by

S(ρ|ν) =

{
−∞, if ρ is not ν − ac
−
∫
X

log( dρ
dν

)dρ, if ρ is ν − ac.

The following result was proved in the remarkable paper [3] by Killip and Simon.

Theorem 6. The entropy is jointly upper semi-continuous in ρ and ν with respect to the weak-∗
topology. That is, if ρn → ρ and νn → ν as n→∞, then

S(ρ|ν) ≥ lim sup
n→∞

S(ρn|νn).

The weak-∗ convergence in this theorem means convergence of the sequence of integrals of an
arbitrary continuous function on X with respect to the measures ρn and νn. The definition of the
weak-∗ convergence of measures on R involves integrals of continuous functions on R which can
not be viewed as a compact space X .
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Corollary 4.1. Let µn be a sequence of finite Borel measures on the real line R converging to a
finite Borel measure µ in the weak-∗ sense. That is∫

R
φ(λ)dµn(λ)→

∫
R
φ(λ)dµn(λ), as n→∞,

for any compactly supported continuous function φ on R. Then for any 0 < a < b <∞,

(37)
∫ b

a

log(µ′(λ))λ−1/2dλ ≥ lim sup
n→∞

∫ b

a

log(µ′n(λ))λ−1/2dλ.

Proof. Choose ε > 0 so that a − ε > 0. Set X = [a − ε, b + ε], dρ = χ[a,b](λ)λ−1/2dλ and
dνn = θ(λ)dµn, where θ is a continuous function on R vanishing outside of X and equal to 1 on
[a, b]. The notation χ[a,b] is used for the characteristic function of the interval [a, b]. Consider ρ
and νn as measures on X . According to Theorem 6,∫ b

a

log
(
µ′(λ)λ1/2

)
λ−1/2dλ ≥ lim sup

n→∞

∫ b

a

log
(

(µ′n(λ)λ1/2
)
λ−1/2dλ.

This inequality is equivalent to (37). �

5. A ”TRACE-TYPE” ESTIMATE FOR THE SPECTRAL MEASURE

Let T be the operator defined by

(38)
[
Tu
]
(r) = −d

2u

dr2
(r) +Q(r)u(r), r > 1,

where Q(r) is a selfadjoint n × n-matrix for each r > 1. The domain of T consists of all
H2([1,∞);Cn)-functions vanishing at the point r = 1. We will assume that Q is a continuous
compactly supported function.

Let e0 ∈ Cn be the vector whose first component is 1 and all other components are equal to
zero. Set f(r) = χ[1,2](r)e0, where χ[1,2] is the characteristic function of the interval [1, 2]. We
define the measure µ as the unique non-negative measure on R obeying

(39)
(

(T − z)−1f, f
)

=

∫
R

dµ(t)

t− z
for all z ∈ C \ R.

Theorem 7. Let {λj} be the negative eigenvalues of the operator (38). Let µ be defined by (39).
Assume that

Q(r)e0 = 0 for all r ≤ 2.

Then for any 0 < a < b <∞,∫ b

a

log
(
µ′(λ)

)
λ−1/2dλ+

∫ b

a

log
((1− cos(

√
λ))2

4πλ3/2

)
λ−1/2dλ

≥ −π
2

∫ ∞
2

(
Q(r)e0, e0

)
dr − 2π

∑
j

√
|λj| − 2π‖Q−‖1/2

∞ ,
(40)

where Q−(r) = 1
2
(|Q(r)| −Q(r)).
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Except for the replacement of ‖Q‖∞ by ‖Q−‖∞, the proof of (40) repeats word by word the
proof of Theorem 2.1 from my paper [5]. It was overlooked in [5] that the bottom of the spectrum
of a Schrödinger operator with the potential Q can be estimated by ‖Q−‖∞ instead of ‖Q‖∞.

Let

(41) H̃ = −∆ + V

be the operator on L2(Rd \ B1) with the Dirichlet condition on the boundary of the unit ball
B1 = {x ∈ Rd : |x| ≤ 1}. Let f(x) = |S|−1/2χ[1,2](|x|)|x|−(d−1)/2 for all x ∈ Rd \ B1, where
χ[1,2] is the characteristic function of the interval [1, 2] and |S| is the area of the unit sphere in Rd.
We define the measure µ̃ as the unique non-negative measure on R obeying

(42)
(

(H̃ − z)−1f, f
)

=

∫
R

dµ̃(t)

t− z
for all z ∈ C \ R.

Corollary 5.1. Let V be a continuous real-valued function on {x ∈ Rd : |x| ≥ 1} having the
property

V (x) =
−(d− 1)(d− 3)

4|x|2
for 1 ≤ |x| ≤ 2.

Let µ̃ be defined by (42) where H̃ is the operator defined by (41). Assume that V is compactly
supported. Then for any 0 < a < b <∞,∫ b

a

log
(
µ̃′(λ)

)
λ−1/2dλ+

∫ b

a

log
((1− cos(

√
λ))2

4πλ3/2

)
λ−1/2dλ

≥ − π

2|S|

∫
|x|>2

V (x)

|x|d−1
dx− 2π

∑
j

√
|λj| − 2π

(
‖V−‖∞ +

1

4

)1/2

− (d− 1)(d− 3)

8
,

(43)

where V−(x) = 1
2
(|V (x)| − V (x)) and |S| is the area of the unit sphere in Rd.

Proof. Let r and θ be the polar coordinates in Rd. For each natural number n, we define Pn to
be the orthogonal projection in L2(Rd \ B1) onto the space of functions of the form v(r)Yn(θ),
where Yn(θ) is the n-th eigenfunction of the Laplace-Beltrami operator −∆θ on the unit sphere.
Define also P̃n by

P̃n =
n∑
j=1

Pj.

Then P̃n → I strongly as n→∞. Using this property, one can easily show that

P̃nV P̃nu→ V u as n→∞ for each u ∈ L2(Rd \B1).

Consequently,(
(−∆ + P̃nV P̃n − z)−1f, f

)
→
(

(−∆ + V − z)−1f, f
)
, as n→∞,

for each z ∈ C \ R and f ∈ L2(Rd \ B1). This relation implies the weak-∗ convergence of the
corresponding spectral measures:

(44) µ̃n → µ̃, as n→∞,
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where µ̃n is defined by(
(−∆ + P̃nV P̃n − z)−1f, f

)
=

∫
R

dµ̃n(t)

t− z
for all z ∈ C \ R.

On the other hand, the measure µ̃n coincides with the spectral measure (39) of the operator (38)
with the potential Q

Q = P̃nV P̃n +
(d− 1)(d− 3)

4r2
P̃n −

1

r2
∆θP̃n.

This matrix-valued potential Q can be also approximated by compactly supported matrix-valued
potentials

Ql = χ[1,l](r)Q,

where χ[1,l] is the characteristic function of the interval [1, l]. Since

‖Q−Ql‖∞ → 0, as l→∞.
we obtain that(

(−d2/dr2 +Ql − z)−1f, f
)
→
(

(−d2/dr2 +Q− z)−1f, f
)
, as l→∞,

for each z ∈ C \R. Therefore the sequence of the corresponding measures νl constructed for the
operators −d2/dr2 + Ql converges to µ̃n in the weak-∗ topology as l → ∞. Theorem 7 tells us
that ∫ b

a

log
(
ν̃ ′l(λ)

)
λ−1/2dλ+

∫ b

a

log
((1− cos(

√
λ))2

4πλ3/2

)
λ−1/2dλ

≥ − π

2|S|

∫
|x|>2

V (x)

|x|d−1
dx− 2π

∑
j

√
|λ̃j| − 2π

(
‖V−‖∞ +

1

4

)1/2

− (d− 1)(d− 3)

8
,

where λ̃j are the negative eigenvalues of the operator−d2/dr2 +Ql. Hence, by Corollary 4.1, the
following inequality holds for the measure µ̃n and the negative eigenvalues {Λj} of the operator
−∆ + P̃nV P̃n: ∫ b

a

log
(
µ̃′n(λ)

)
λ−1/2dλ+

∫ b

a

log
((1− cos(

√
λ))2

4πλ3/2

)
λ−1/2dλ

≥ − π

2|S|

∫
|x|>2

V (x)

|x|d−1
dx− 2π

∑
j

√
|Λj| − 2π

(
‖V−‖∞ +

1

4

)1/2

− (d− 1)(d− 3)

8
,

(45)

Using Corollary 4.1 one more time, we infer (43) from (44) and (45). �

6. EIGENVALUE SUMS STAY BOUNDED

Let Vn be the sequence of potentials defined by (23). Assume that A(x) = 0 for |x| < 2. Then∫
|x|>2

|x|1−dVndx =

∫
|x|>2

|x|1−d
(
θn(W̃+ + |A|2) + |∇θn · A| − χRW̃−

)
dx,

where W̃+ = 1
2
(|W̃ |+ W̃ ) is the positive ppart of W̃ . Consequently,∫

|x|>2

|x|1−dVndx ≤
∫
Rd

|x|1−d
(
|W̃ |+ |A|2

)
dx+ c

(∫
|x|>n
|x|1−d|A|2dx

)1/2
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with some universal constant c > 0. It is also easy to see that ‖(Vn)−‖∞ ≤ ‖V−‖∞ for n > R.
It is more difficult to prove that the eigenvalue sums

∑
j |λj(Vn)|1/2 for the operators −∆ + Vn

have an upper bound independent of n. This fact follows from the proposition stated below.

Proposition 6.1. There are numbers N ∈ N and C > 0 such that each operator −∆ + Vn has at
most N negative eigenvalues {λj(Vn)} and all of them obey the condition |λj(Vn)| ≤ C.

Proof. The quadratic form of the operator −∆ + Vn can be estimated from below by the
functional ∫

Rd

|∇u− θnAu|2dx−
∫
Rd

χRW̃−(x)|u|2dx, u ∈ H1(Rd).

For n > R, the value of this funcional at u ∈ H1(Rd) does not exceed∫
BR

|∇u− Au|2dx−
∫
BR

W̃−(x)|u|2dx,

where BR = {x ∈ Rd : |x| < R} is the ball of radius R > 0 centered at the origin.
Since ∫

BR

|∇u− Au|2dx ≥
∫
BR

(1

2
|∇u|2 − |Au|2

)
dx,

we conclude that the iegenvalues of −∆ + Vn can be estimated from below by eigenvalues of the
operator −∆/2 − |A|2 − W̃− on the ball BR. It remains to note that the spectrum of the latter
operator is discrete and semi-bounded. �

Proposition 6.2. Both Propositions 3.2 and 3.3 hold in the case where the operator −∆ on Rd is
replaced by the operator −∆ on the domain Rd \ B1 with the Dirichlet boundary conditions on
the unit sphere.

Proof. The arguments used in the proofs of Propositions 3.2 and 3.3 are suitable for the opera-
tors on Rd \B1. �

Corollary 6.1. Let V be a real-valued measurable function on Rd representable in the form

(46) V (x) = (1− χR)W̃−(x) + W̃ (x) + divA(x) + |A(x)|2,

where the vector potential A : Rd → Rd and the function W̃ : Rd → R satisfy the conditions

A ∈ L∞loc(Rd,Rd) ∩H1
loc(Rd,Rd), W̃ ∈ L∞loc(Rd),∫

Rd

(|W̃ (x)|+ |A(x)|2)

|x|d−1
dx <∞.

(47)

Assume that A(x) = 0 for |x| < 2 and that

W̃ (x) =
−(d− 1)(d− 3)

4|x|2
for 1 ≤ |x| ≤ 2.
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Let µ̃ be defined by (42) where H̃ is the operator defined by (41). Finally, let {λj} be the negative
eigenvalues of H̃ . Then for any 0 < a < b <∞,

∫ b

a

log
(
µ̃′(λ)

)
λ−1/2dλ+

∫ b

a

log
((1− cos(

√
λ))2

4πλ3/2

)
λ−1/2dλ

≥ − π

2|S|

∫
|x|>2

|W̃ (x)|+ |A(x)|2

|x|d−1
dx− 2π

∑
j

√
|λj| − 2π

(
‖V−‖∞ +

1

4

)1/2

− (d− 1)(d− 3)

8
,

(48)

where V−(x) = 1
2
(|V (x)| − V (x)) and |S| is the area of the unit sphere in Rd.

Proof. This statement is a consequence of Corollaries 4.1, 5.1 and Propositions 6.1, 6.2. �

Theorem 8. Let V be a real-valued measurable function on Rd representable in the form

(49) V (x) = W̃ (x) + divA(x) + |A(x)|2,
where the vector potential A : Rd → Rd and the function W̃ : Rd → R satisfy the conditions
(47). Assume that
(50)

A(x) = 0 for |x| < 2, and that W̃ (x) =
−(d− 1)(d− 3)

4|x|2
for 1 ≤ |x| ≤ 2.

Let µ̃ be defined by (42) where H̃ is the operator defined by (41) with V representable in the form
(49). Finally, let {λj} be the negative eigenvalues of H̃ . Then for any 0 < a < b <∞,

∫ b

a

log
(
µ̃′(λ)

)
λ−1/2dλ+

∫ b

a

log
((1− cos(

√
λ))2

4πλ3/2

)
λ−1/2dλ

≥ − π

2|S|

∫
|x|>2

|W̃ (x)|+ |A(x)|2

|x|d−1
dx− 2π

∑
j

√
|λj| − 2π

(
‖V−‖∞ +

1

4

)1/2

− (d− 1)(d− 3)

8
,

(51)

where V−(x) = 1
2
(|V (x)| − V (x)) and |S| is the area of the unit sphere in Rd.

Proof. This theorem follows from Corollary 4.1, Proposition 6.2 and Corollary 6.1. The in-
equality (51) is obtained by passing to the upper limit as R → ∞ on both sides of (48). One
only needs to observe that negative egenvalues of the Schrödinger operator with the potential
(1−χR)W̃−+ V are monotone functions of R. Therefore they lie higher than negative eigenval-
ues of the operator with the potential V . �

LetH = −∆+V be the Schrödinger operator on the whole space Rd with an arbitrary bounded
potential of the form (16). Assume that A and W̃ obey (47). Define the function Ṽ by

Ṽ (x) =
−(d− 1)(d− 3)θ2(x)

4|x|2
+ (1− θ2(x)W̃ (x) + div

(
θ2(x)A(x)

)
+ |θ2(x)A(x)|2,

where θ2 is defined by (21) and (22) with n = 2. After that, consider the operator H1 = −∆ + Ṽ
on Rd \ B1 with the Dirichlet boundary conditions on the unit sphere. Since Ṽ satisfies the
conditions of Theorem 8 imposed on V , an inequaity of the form (51) holds for the spectral
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measure of the operatorH1 corresponding to some f ∈ L2(Rd\B1) that belongs to the absolutely
continuous subpace for the operator H1. By rather standard arguments of scattering theory, the
absolutely continuous parts of operators H and H1 are unitary equaivalent. Therefore (18) also
holds with Cd = π/(2|S|) + 2π and

αd(a, b, ‖V−‖∞) = 2π
(
‖V−‖∞ +

1

4

)1/2

+
(d− 1)(d− 3)

8
+

∫ b

a

log
((1− cos(

√
λ))2

4πλ3/2

)
λ−1/2dλ

for some f ∈ L2(Rd).
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