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1. Introduction

The present work deals with the existence of stationarytiewois of the following
system of nonlocal reaction-diffusion equations

O, *u,, o0
=D [ Konla =~ pm(e @ty )+ andle), (L)

with a,;, € R, «,, # 0, 1 < m < N. We usew(x) in system (1.1) as a cut-
off function. The assumptions on it will be stated furthewdo The problems of
this kind are relevant to the cell population dynamics. Tpace variabler here
corresponds to the cell genotyps, (x, t) stand for the cell density distributions for
the various groups of cells as the functions of their ger®gd time,

u(z,t) = (uy(z,1), ug(, t), ..., un(z, 1))’
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The right side of our system of equations describes the gwalwf cell densi-
ties due to the cell proliferation, mutations and cell infarxefflux. The diffusion
terms here correspond to the change of genotype by meang shthll random
mutations, and the nonlocal production terms describedlgelmutations. The
functionsg,, (w(x)u(z,t)) designate the rates of cell birth dependinguon (den-
sity dependent proliferation). The kerndls, (= — y) express the proportions of
newly born cells changing their genotypes frgrto =. Let us assume that they de-
pend on the distance between the genotypes. The last tehra right side of each
equation of our system, which is proportional to the Dirattadéunction stands
for the influx/efflux of cells for different genotypes. Thelhsbility of the single
integro-differential equation analogous to (1.1) was ussed in [33]. The similar
system of equations in one dimension in the case of the stdnégative Laplacian

raised to the powed < s < 1 in the diffusion term was studied in [40]. But in

[40] it was assumed that the influx/efflux ternfis(z) € L'(R) N L*(R). Thus,
in the present work we treat the more singular case. In neigose, the integro-
differential problems describe the nonlocal interactibneurons (see [9] and the
references therein).

We set allD,, = 1 and establish the existence of solutions of the system

d?u,,
dz?

4 [ K= gnlw@uln)dy + and) =0, 1<m<N. (12)

Let us deal with the situation when the linear part of suchrajoe does not sat-
isfy the Fredholm property. As a consequence, the convegitimethods of the
nonlinear analysis may not be applicable. We use the sdityatonditions for the
non-Fredholm operators along with the method of the contiacappings.
Consider the problem

—Au+V(x)u — au = f, (1.3)

whereu € E = H*(RY) andf € F = L?(R%), d € N, ais a constant and the scalar
potential functionV/ (z) is either trivial in the whole space or tends(at infinity.

If a« > 0, the essential spectrum of the operator £ — F', which corresponds to
the left side of equation (1.3) contains the origin. As a eguence, such operator
does not satisfy the Fredholm property. Its image is notedp$ord > 1 the di-
mension of its kernel and the codimension of its image ardinid¢. The present
article deals with the studies of the certain propertiehefdperators of this kind.
Note that the elliptic equations involving the non-Fredahaperators were treated
actively in recent years. Approaches in weighted SobolevHdlder spaces were
developed in [4], [5], [6], [7], [8]- The Schrodinger typperators without the
Fredholm property were studied with the methods of the spleihd the scattering
theory in [17], [30], [34], [35]. Fredholm structures, tdpgical invariants and
their applications were covered in [13]. The work [14] dealth the finite and
infinite dimensional attractors for the evolution equasioh mathematical physics.

2



The large time behavior of the solutions of a class of fountther parabolic prob-
lems defined on unbounded domains using the Kolmogeosmropy as a measure
was studied in [15]. The attractor for a nonlinear reactiiffusion system in an
unbounded domain in the space of three dimensions was detus [22]. The arti-
cles [24] and [29] are devoted to the understanding of thétlteden and properness
properties of the quasilinear elliptic systems of secorteoand of the operators
of this kind onR”. The exponential decay and Fredholm properties in the secon
order quasilinear elliptic systems were discussed in [2Bg Laplace operator with
drift from the perspective of the operators without the lRadch property was con-
sidered in [37] and linearized Cahn-Hilliard equations 81][and [38]. Nonlinear
non-Fredholm elliptic problems were treated in [16], [18]9], [20], [21], [36],
[39], [40]. The significant applications to the theory ofetan-diffusion equations
were developed in [11], [12]. The operators without the Radoh property arise
when studying wave systems with an infinite number of loeairaveling waves
as well (see [2]). The article [3] is devoted to the standaigjde solitons in the
discrete NLS equation with saturation. In particular, whes 0 our operatorA

is Fredholm in some properly chosen weighted spaces (sef]4]6], [7], [8]).
However, the case af # 0 is significantly different and the method developed
in these works cannot be applied. The existence, stabilitykafurcations of the
solutions of the nonlinear partial differential equati@mtaining the Dirac delta
function type potentials were studied actively in [1], [2326], [27].

Let us setk,,(z) = &, (x) with €, > 0, so that
€ = MaX <m<NEm- (14)

Suppose all the nonnegative parametgrsare trivial. Then we arrive at the linear
Poisson equations
d?u,,

— g2 = and(z), 1<m<N. (1.5)
We will use the ramp function
r, x>0
R(z):=<"" - 1.6
(@) {o, < 0. (1.6)

Clearly, the solution of each equation (1.5), which is a&iat the negative infinity
is
—Osz(ZL'), 1 S m S N7 (17)

so that
uo(7) == (—ay R(z), —auR(x), ..., —an R(z))". (1.8)

As distinct from the case covered in [40], such solutiong)(@re not bounded and
do not belong td7!(R). We suppose that the conditions below are fulfilled.



Assumption 1.1. Let1 < m < N, K,,(z) : R — R are nontrivial, so that
Kn(z), 2K,.(x) € L'(R) and orthogonality conditions (4.2) are valid. Suppose
also that the cut-off functiom(z) : R — R is such thatv(z)R(x) does not vanish
identically on the real line and(z)R(z) € H*(R). Furthermorew(z) € H'(R)
and fora,,, € R, a,, # 0 the upper bound

afpy < (1.9)

[w(z) R(2)]| 1 (m)
holds.

Here and further down := (ay, ay, ...,ay)? and|.|z~ will denote the length of

a vector inR”Y. It can be trivially checked that(r) = e71*l, 2 € R satisfies the
assumptions above and therefore it can be used as our dutioffon. Let us recall
that in the argument of [40] we did not need to use such cutho# to the more
regular behaviour of the solutions of the Poisson type egusit In the work we
choose the space dimensién= 1, which is related to the solvability of the linear
Poisson equations (1.5) discussed above. From the pexspetthe applications,
the space dimension is not restricteddto= 1 because the space variable corre-
sponds to the cell genotype but not to the usual physicakspéle use the Sobolev
space

d
H'(R) == {¢(z) : R = R | ¢() € L*(R), ﬁ € IAR)},
equipped with the norm
d 2
16 = 191 + | o (1.10)

Obviously, by virtue of the standard Fourier transform J2guch norm can be
expressed as

||¢||§{1(R) = |6(0) |1 72r) + ||p¢(p)||i2(m)- (1.11)
For a vector function

u(@) = (u1(2), ua(2), .., un(z))",

we will use the norm

N
du,, |2
2 — 2 _m 1.12
HUHHI(R,RN) HuHLQ(R,RN) +mZ=1 H dz L2 (Rr) ( )
with
N
lullF2@myy = D ltmll72m)-
m=1



The Sobolev inequality on the real line (see e.g. Sect 8.28f) gives us

[o(2) ]| ow ) \flkb( ) ey- (1.13)

Let us use the algebraic property of our Sobolev space. Ropai), ¢(z) €
H'(R)
[¢1(2)P2(2) || 1wy < call@1 (@) ) | D2(2) |2 () (1.14)

wherec, > 0 is a constant. Inequality (1.14) can be trivially deriveat, é&xample
via (1.13). We look for the resulting solution of the nonlmeystem of equations
(1.2) as
u(z) = uo(z) + up(x), (1.15)
where
up(2) = (Up1(2), Up2 (@), ooy up,n ()"

andug(z) is given by (1.8). Evidently, we arrive at the perturbatiystem

Enlt) o [ Kot = Danw o) Dy, (026

dzx? -
with 1 < m < N. Let us use a closed ball in our Sobolev space
B, = {u(z) € H'(R,RY) | |lull m@r~) < p}, 0<p<1. (1.17)

We seek the solution of the system of equations (1.16) as xkd point of the
auxiliary nonlinear system

d*ty, (z

dx2 / Kon (@ = y)gm(w(y)[uo(y) + v(y)])dy, (1.18)

wherel < m < N in ball (1.17). For a given vector functiar{y) this is a system
of equations with respect t(z). Each equation of (1.18) in its left side contains
2

d : . :
the operatopﬁ acting onL?*(R), which does not satisfy the Fredholm property.

Its essential spectrum fills the nonnegative semi-8xis-oo). Thus, such opera-
tor does not have a bounded inverse. The similar situatichencontext of the
integro-differential equations occurred also in works][&6d [39]. The problems
considered there also required the application of the gadhality relations. The
contraction argument was used in [32] to estimate the dmatiom to the standing
solitary wave of the Nonlinear Schrodinger (NLS) equatidren either the external
potential or the nonlinear term in the NLS were perturbedthetSchrodinger op-
erator involved in the nonlinear problem there satisfiedrfelholm property (see
Assumption 1 of [32], also [10]). Let us define the closed bathe space ofV
dimensions as

@)l } (1.19)



along with the closed ball in the space 6f (I, R") vector functions, namely
DM =

{9(2) = (91(2), 92(2), ..., gn(2)) € CHLRY) [ |lgllerrrmy < M}, (1.20)

with M > 0. In such context the norms

N
lgllcrrmy == Z gmllcrny, (1.21)

m=1

3 %‘ (1.22)

lgmllcry == llgmllew + ; H 02, )c(z)’
With [|gim||cy = Maxer|gm(2)|. From the perspective of the biological applica-
tions, the rates of the cell birth functions are nonlineat are trivial at the origin.

Assumption 1.2. Let1 < m < N. Suppose tha,,(z) : RY — R, so that
gm(0) = 0. We also assume thatz) € D), and it does not vanish identically in
the ball /.

Note that in [40] the vector functiog(z) was supposed to be twice continuously
differentiable in the corresponding closed kalWe will use the following positive
auxiliary expressions

Q= max{ "sz@) , "Cm(p) } I<m<N. (129
p L>°(R) p L>°(R)
Let
Q == MaX <N Q- (1.24)

Clearly, < oo under the conditions of Theorem 1.3 below by means of thdtresu
of Lemma 4.1.

We introduce the operatdi,, such that: = 7,v, whereu is a solution of the system
of equations (1.18). Our first main result is as follows.

Theorem 1.3.Let Assumptions 1.1 and 1.2 hold. Then for every (0, 1] the sys-
tem of equations (1.18) defines the Mgp B, — B,, which is a strict contraction
for all
P
0<e< . (1.25)
2mQM (1 + col|w()| 1))

The unique fixed point,(x) of this mapI, is the only solution of system (1.16) in
B

P



Clearly, the resulting solution of the system of equatidn2)given by (1.15) will
not vanish identically on the real line becaugg0) = 0, o, #0, 1 < m < N
due to our assumptions.

Our second main proposition is about the continuity of thenalative solution of
the system of equations (1.2) given by formula (1.15) wigpezt to the nonlinear
vector functiong. We introduce the following positive, technical expressio

0 1= 2ymQMec,||w(w) | a1 w)- (1.26)

Theorem 1.4.Letj = 1,2 and suppose that the assumumptions of Theorem 1.3 are
valid, so thatu,, ;(x) is the unique fixed point of the mdp, : B, — B,, which is

a strict contraction for all the values afsatisfying bound (1.25) and the resulting
solution of the system of equations (1.2) with) = ¢,(z) is given by

uj(x) = uo(z) + up (). (1.27)
Then for alle satisfying inequality (1.25), the estimate from above
[ur(2) — w2 (@) || iy <

= 2VTeQ(L+ collw(@)llmz)
= 1—ceo

191(2) = g2(2)[lcr (r,mv) (1.28)

holds.
Let us proceed to the proof of our first main proposition.
2. The existence of the perturbed solution

Proof of Theorem 1.3We choose arbitrarily(z) € B,. The term contained in the
integral expression in the right side of the system of eguat(1.18) is denoted as

G () := gm(w(2)[uo(z) + v(z)]), 1 <m <N,

Let us use the standard Fourier transform, which is given by

) = = | @ per (2.1)
Evidently, the inequality
~ 1
lo@lze@ < —=llé@)lm (2.2)



is valid. We apply (2.1) to both sides of system (1.18). Tinegus

@@ﬂwﬂ&%%@,MMF%ﬁ%———n

with 1 <m < N. Thus,

i (p)| < evV27Q|Go(p)l,  |ptim(p)| < eV27Q|Gr(p)|, 1< m < N. (2.3)

Here @ is given by (1.24). It is finite by virtue of Lemma 4.1 below w@ncbur
assumptions. By means of formulas (1.11) and (1.12) alotigegtimates (2.3) we
trivially obtain the upper bound for the norm as

(@)% g vy < A7e?Q? Z |G ()]|72z) - (2.4)
It can be easily established that fatr) € B,, we have

|w(z)[uo(x) + v(@)][py < 7{1 + callw(@) @} (2.5)

Indeed, the left side of (2.5) can be trivially estimatedrirabove via the triangle
inequality by
w(@)uo(z) ey + |[w(z)o(2)|Ry. (2.6)

To treat the first term in (2.6), we recall inequalities (3.48d (1.9). Hence,

w(z)R()lalzy < l|w(@) R@)l|ie@lalsy <

1
(@) R(2) || 1wy || ry < —=.

1
<
<z V2
To derive the upper bound on the second term in (2.6), we ui8)(and (1.14),
such that

N

sz< MJZu;% )2y <

m=1

<\IZ;"U() ()HHI(R) \/_Hw )| e szm ”Hl(ﬂ@_

m=1
= %Hw(x)HHI(R)Hv(x)HHl(R,RN) < ﬁHM(w)HHl(R)-
Thus, (2.5) is valid. Analogously, far(z) € B,
[w(@)uo(z) +v(@)] | 2@ry) < 1+ callw(@)]|m ). (2.7)
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Clearly, the left side of (2.7) can be easily estimated frdrove by virtue of the
triangle inequality by

[w(@)uo(2) || 2@ryy + [w(z)v(@) || 2@ Y- (2.8)
For the first term in (2.8), we derive using (1.9) that
e [[w(2) R(2) | 2qgy <l |w(@) R(x) ey < 1.
For the second term in (2.8), we apply (1.14) to arrive at
lw(@)o(@)ll e < llo@)o@)]m ez <
< callw(@) [ 0@l gz < callw@)lm .

Hence, (2.7) holds. Let us use Assumption 1.2 to express

Gm(z) = /0 YV gm (tw(x)[ug(x) + v(z)]).w(x)[ue(z) + v(x)]dt, 1< m < N.

Here and below the dot stands for the scalar product of thevéetors in our space
of N dimensions. Obviously, by means of (2.5)

|G (2)] < SURe/|Vgm (2)[rv [w(@)[uo(z) + v(z)]|]av, 1 <m <N,
with the ball7 defined in (1.19). Using inequality (2.7), we obtain
G (@)1 2@y < [SURer|Vgm(2) lrx ] lw(@)[uo(2) + v(@)]||72 g gy <
< [SURe Vg (D)lev (L + coallw(@) @), 1<m<N.  (2.9)
Upper bounds (2.4) and (2.9) give us
lu(@) gy < 2V7eQMA + coflw@)lmm) <p  (2.10)

for all the values of the parametey which satisfy condition (1.25). Therefore,
u(x) € B, as well.

Suppose for a certain(x) € B, there exist two solutions, ,(z) € B, of the
system of equations (1.18). Clearly, their differencer) = uy(z) — ug(x) €
L*(R,RY) satisfies the homogeneous system

d2
—@wm(x) =0, 1<m<N.

But the negative second derivative operator considereti®mwhole real line does
not have any nontrivial square integrable zero modes. Térenew(x) vanishes
identically inR. Hence, the system of equations (1.18) defines afpa@3, — B,
for all the values ot, which satisfy inequality (1.25).
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Let us demonstrate that under the stated assumptions sughisnaastrict con-
traction. We choose arbitrarily, ,(x) € B,. The argument above yields that
w o = Tyvio € B, as well fore satisfying bound (1.25). By virtue of (1.18),
we have forl <m < N

%_%/W’C (& = y)gm(w(y)[uo(y) + vi(y)])dy, (2.11)
u;;:; Em/ Kn(@ = y)gm(w(y)[uo(y) + v2(y)])dy. (2.12)

Let us introduce

Grm(@) = gm(w(@)[uo(2) +v1(2)]);  Gom(2) = gm(w(2)[uo(z) + va()]),

with 1 < m < N. We apply the standard Fourier transform (2.1) to both sades
the systems of equations (2.11) and (2.12). This gives us

o Knp)Crmp) o) G
aTn(p) = env/ar P 0) ) — o, EnPCan®)

p p
so that - e -
m(p) — Gam(p) =€ \/%’Cm(P) [G1m(p) — Gam(p)]
,m 2,m m p2 ,
() — T ()] — ey Crn0) = Conlol] -

p
Thus, the estimates

T (p) — T ()] < eV27Q|Grm(D) — Gam(D),

Pl (D) — T2 (p)]] < eV27QIG1m(p) — Gam(p)l, 1<m <N
are valid. This enables us to derive the upper bound on thea meing (1.11) and
(1.12) asf|ui(z) — u2(£)”%{1(R,RN) =

fx/mmm )~ @)y + [

o0

P () — T2 (p)) P} <

—00

N
< 4me?)? Z |G () — GQ,m(x)H%Q(R)
m=1
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Obviously, we can write fot < m < N thatG,,(z) — Gom(z) =

1
= / Vgm(w(@)[uo(x) + tor (z) + (1 = t)va(2)]) w(@)[v1 (z) — va(a)]dt.
0
Evidently, fort € [0, 1]
[tvy () + (1 = D)oo () |1 ey < Hlor (@)l ey + (1= ][ 02(2) | @ vy <
< P
so thattv (z) + (1 — t)ve(z) € B,. Let us recall inequality (2.5). Hence,

1

V2

|w(z)[uo(x) + tor(x) + (1 = va(2)] ey < —={1 + callw (@) 51w }-

Therefore, we arrive at
|G () — Gom(7)] < SURCV g (2) |y |w () (vi(2) — va(2)) |y <

< lgmller|wz)(vi(x) = va(2))[py, 1T <m <N,
where the ball is defined in (1.19). By means of (1.14),

N
1GLn(2) = G (@) [Fag) < NgmlErn D lw(@)(via(@) = van(@) g <
k=1

< llgmllen pycallw@)llin @ o (@) = va(@)[ip ey, 1<m <N (2.14)
By virtue of (2.13), (2.14) and Assumption 1.2, we obtain
|ui () — u2(x)||H1(R,RN) <
< 2y/me@Q@Me||w() | g vi () — va ()] 1 ). (2.15)
We have

p 1
2VrQM(L+ callw(@)[mm)  2v/aQMea[w(@) e

Hence, by means of (1.25) for our parameteve arrive at

1
2V/TQMeq||lw(z)|| gy

Thus, the constant in the right side of estimate (2.15) s tlean one. This implies
that the magl, : B, — B, defined by the system of equations (1.18) is a strict
contraction for all the values of the parametesatisfying inequality (1.25). Its
unique fixed pointu,(z) is the only solution of system (1.16) in the b&l},. By

O<e<
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virtue of (2.10), we havé@u, ()| g1 (rv) — 0 ase — 0. The resulting:(z) given
by formula (1.15) is a solution of the system of equation2)(1. [ |

We turn our attention to demonstrating the validity of thea®l main statement of
our work.

3. The continuity of the resulting solution

Proof of Theorem 1.40bviously, for all the values of the parametewhich satisfy
bound (1.25), we have

up1 = Toupr,  Upo = Tg,upo.

Thus,
Up1 — Upo = Tgup1 — Ty upo + Tgupo — Tyup o,

so that
up1 — Upallm @ryy < | Tgups — Ty upallmr@eyy + | Totp2 — Tootp 2| 51 m ) -
Using estimate (2.15), we derive

H 1Up,1 — Up,zﬂHl(R,RN) < 50’”“;:,1 - Up&”Hl(R,RN)a

whereo is defined in (1.26). Clearly,oc < 1, since the mafy, : B, = B, is a
strict contraction under our assumptions. Therefore,

(1 —eo)llups — wpollmeryy < [Ty up2 — Toptpollm@ry)- (3.1)

Evidently, for our fixed point/,,,u,» = u,». Let us introduce)(z) := T}, u,».
Explicity, for 1 < m < N, we have

dZ’ZZz / Kon (2 = y)g1.m(w(y)uo(y) + up2(y)])dy, (3.2)
_%_gm/ Kn(& = y)g2m(w(y)[uo(y) + up2(y))dy.  (3.3)

Let us define
Gram(®) = gim(w(w)uo(z) + upa(2)]),
Ga2,m(7) = gom(w(2)[uo(z) + up2(x)]), 1<m <N

We apply the standard Fourier transform (2.1) to both sidesystems (3.2) and
(3.3) above and arrive at

—_~ o~

VarKn@0)Gran() Vo Kn(9)Go (1)

p2 ) up,Q,m(p) = gm p2

ﬁr;(p) =E&m

)
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with 1 < m < N, so that

Ko (p)
p2

(D) — Gpam(p) = em /27 Grom(®) — Gaom(®)],

wmmﬂmamzwﬂﬁfméﬁ@—@ﬂ@y

Obviously, the estimates from above
7 (P) = tipzm (D)] < eV27QIG1 2 (P) — Gz (D),
Pl(p) — Gram ()| < eV2RQIGram(p) — Gaom(p)

are valid forl < m < N. Inequality (3.4) gives us

n@@—@%m%®=/|@@—@5mmms

S 27T€2Q2||G1727m(l‘) — G2,2,m($)||%2(R)7 1 S m S N.
Analogously, by virtue of (3.5) we derive

o0

M@@—@zmwam=/|mmm—@%@W@s

< 21°Q?||Grgm(7) — Goom (@) F2@), 1< m < N.
Formulas (1.10), (1.11), (1.12), (3.6) and (3.7) imply that

In(z) = upa2(@) | @) =
N
Z{Hnm — 2 (D) | L2y + (P17 (P) = 2 (P2} <

< Ane?)? Z |G 12m(7) = Gaom(x )”%%R)v

so that

”77(1’) — Up, 2( )”Hl(RRN) < 2\/7562\] Z HGI 2m G22m< )H%Q(R)

Evidently, forl <m < N we haveG s ,,(z) — Gaom(z) =

= /0 Vig1m = gaml (bw(2)[uo() + wpa(2)]).w(x)[uo(x) + ups(w)]dL.

13
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Let us recall inequality (2.5). Hence,
1
[tw(z)[uo(x) + up2()][py < ﬁ{l +callw@)m@}, tel0,1].

We easily obtainG 2., () — Goam(z)| <

< SUR/|VI[gLm — gom)(2)|ry |w(2) [uo(z) + up2(2)]|ry <

< lgrm = g2mllorlw(@)[uo(x) + upo(2)][er, 1 <m <N,

with the ballI defined in (1.19). This enables us to derive the upper bourttien
norm via (2.7) as

|G 2.m () = Goom (%) F2my <
< llg1m = G2l llw(@) [uo(@) + up2(@)]l|72 @ vy <
< llg1m = G2mllény (L + callw(@)lmm)?, 1 <m<N. (3.9)
Using estimates (3.8) and (3.9), we arrive|atr) — u,2(7)|| g1 rry) <
< 2vmeQ(1+ callw(@) | m@)llg1(2) = g2(2)llcr ). (3.10)

By virtue of (3.1) and (3.10), the inequalifiy.,,  (z) — up2(2)|| g1 ryy <

_ 2v7eQ(L + cal|w(@) [l e)
- 1—co

is valid. By means of (1.27) and (3.11), bound (1.28) holds. [ |

191(2) = 92(2) |1 (1,mv) (3.11)

4. Auxiliary results

Let us derive the conditions under which the express@ns 1 < m < N intro-
duced in (1.23) are finite. We designate the inner product as

(f(2). 9(2)) 2y = / " f@)g(e)de, (@.1)

with a slight abuse of notations when the functions involve@.1) do not belong
to L?(R), like for instance the ones present in the first orthogopalindition in
(4.2) of Lemma 4.1 below. Indeed, ji(z) € L'(R) andg(z) € L>(R), then the
integral in the right side of (4.1) is well defined. The tecdatlemma below is the
adaptation of the one established in [33] for the purposé@®fttudy of the single
integro-differential equation with the influx/efflux ternrgportional to the delta
function, analogous to system (1.1) (see also the part b¢ofrha Al of [36]). Let
us present it here for the convenience of the readers.
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Lemma 4.1. Let1 < m < N, the functions,,(z) : R — R do not vanish
identically on the real line, so thdt,, (z), z°,,(z) € L'(R). Then®,, is finite if
and only if the orthogonality relations

(K@), Doy = 0, (Ko@), 2) 2y = 0 (4.2)
are valid.

Proof. First we obtain the upper bound on the norm as
Jokn(@ e = [ follCn@lds+ [ follnla)lde <
|z|<1 |z|>1
< (@) lrwy + 122K (@) 1wy < 00, 1<m <N
due to our assumptions. Thus, the expression in the leftcfittee second orthog-

onality condition in (4.2) makes sense. Let us establishifhw € L>(R),
p
thenw is also bounded. Obviously,
p
Kn(p) _ Knlp Kn(p
p( ) p( )X{|p|§1} + %Xﬂpm}, 1<m<N. (4.3)

Here and further downy 4 will stand for the characteristic function of a sétC R.
Clearly, the second term in the right side of (4.3) can bevestd from above in
the absolute value by virtue of (2.2) by

|@MH<J4W

as assumed. The first term in the right side of (4.3) can bdydasunded from
above in the absolute value as

(@)l @y <00, 1<m<N

—~

K K
—¥&MMMMS @ <oo, 1<m<N
p P e
| Ko .
due to our assumption. Thus,ﬂ € L*(R) as well. Evidently,
p
Kn(p)  Kulp Kon(p
5)2 (&mm+ (&walﬁmﬁN (4.4)
p p? p?
By virtue of (2.2), we arrive at
Ko (p)

P2 X{|pl>1}

~ 1
< |Kn < —|IKn(@)|lpir) <00, 1<m<N
< [Kon(p)] ﬁEH()M®
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by means of the one of our assumptions. Clearly, we can write

- P diC,n vt d?Kn(q)
ICmp:ICmO+p—O+/ / dq |ds, 1<m < N.
(1) = Kn(0) +p=1(0) O<O p
Hence, the first term in the right side of (4.4) equals to

ul0) | 50 7 (5 S dq)ds]

P2 p 0 X{pl<ty, 1<m<N. (45)

The definition of the standard Fourier transform (2.1) yseld

A2 (p) 1,
< K , 1<m<N,
| € K@i, 1<m<
so that
s d2KCom
m d )ds 1
0 ( 0 dg M )
e X{pl<1}| < 2\/%”93 Kn(2)|lni@ <oo, 1<m<N

via the one of our assumptions. By virtue of definition (2ut¢, have

. 1 dic, i

Kin(0) = —(Kn(2), Di2m), —2(0)=— K(x),x) 12
with 1 < m < N. This allows us to express the sum of the first two terms in)(4.5
as

(Km(x)a 1)L2(R) .(’Cm@), $)L2(R)
— ., 1<m<N. 4.6
V2 HRY = X{Ipl<1} m (4.6)
Obviously, each expression (4.6) is bounded if and onlytii@gonality relations
(4.2) are valid. [ |

Let us recall the earlier work [40]. As distinct from the peasarticle, the argument
there did not use the orthogonality conditions.
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