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Recent investigations into wormhole solutions in modified gravity have shown that the primary
topological features of such solutions is the ”shape function”, which determines the topological
structure of these wormholes. In particular, f(R) theories of gravity allow us to understand such
models and to understand the nature of such solutions by extending General relativity into an
arbitrary class of functions of the Ricci scalar. In this paper, we will discuss shape functions of
different models and the nature of energy conditions for such models by finding out the energy
condition parameters.

I. INTRODUCTION

f(R) theories of gravity are derived by perturbing the
approach to GR. Such theories are theories that extend
the Einstein-Hilbert action into arbitrary functions of the
Ricci scalar [14]. Such theories are in general, a part of
family of such modified theories built of curvature invari-
ants Cn, where C1 is R, C2 is RµνR

µν , C3 is RαβγδR
αβγδ

and so on. f(R) theories of gravity are made of a modi-
fied Einstein-Hilbert action of the form

S =
1

2κ

∫
f(R) d4x

√
−g + Smatter[gµν , Ψ] (1)

Where Ψ are the matter fields on (M, g). In the metric
formalism, we derive the field equations for our theory
of gravity by directly varying the action with respect to
the metric, which is different than the approach in the
Palatini formalism where we consider the metric and the
connection as two independent terms. The general form
of field equations for f(R) gravity is of the form

f ′(R)Rµν−
1

2
gµνf(R)− [∇µ∇ν−gµν□]f ′(R) = Tµν (2)

This can be written in terms of the ”effective” energy
momentum tensor T eff

µν , which is a combination of T c
µν

and T̃m
µν as:

Gµν = T eff
µν

Wormholes are topological structures joining two points
of same or two different universes. Such geometric solu-
tions lack a singularity or a horizon, and are defined in
terms of the shape function b(r) and the redshift function
χ(r). Predicted initially in GR, such solutions require
a violation of the Null Energy condition (NEC), char-
acterised by their requirement of ”exotic matter” that
contribute to a negative nature of the energy momentum
tensor. However, modified theories of gravity allow us to
understand wormholes without exotic matter.

The kind of wormholes we wish to understand are
spherically symmetric and have a static metric, i.e.
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∂0gµν = 0. Such wormholes would have a metric of the
form

ds2 = −χ(r)dt2 + dr2
(
1− b(r)

r

)−1

+ r2dΩ2 (3)

With χ(r) being the redshift function and b(r) the shape
function. The shape function determines the geometry
of the wormhole and satisfy the following conditions:

1. b(r0) = r0,

2.
(
1− b(r)

r

)
> 0 for r > r0,

3. b; (r0) < 1 (flare-out condition),

4. limr→∞
b(r)
r = 0 (asymptotic flatness condition)

In the f(R) background, we consider different forms
of f(R) models along with b(r) and χ(r) for determin-
ing wormhole solutions. In this paper, our interest is in
understanding a case of Nojiri-Odintsov, Amendole et al,
and in deriving f(R) from a chosen shape function.
The basic research of wormholes in GR has a feature

of violating the energy conditions. This is because a
negative energy-density is an elementary complication of
wormholes. In f(R) gravity, we can instead ignore this
feature and define the physical properties of wormholes
using a purely geometric correction. One of the first re-
search showed that this was possible was by Starobin-
skii. We will study the boundaries of energy-conditions
in f(R) wormholes.
The energy conditions are built on the nature of terms

appearing in Tµν [3]. The following are the energy con-
ditions for a perfect fluid:

• Null energy condition (NEC): ρ+pr ≥ 0, ρ+pt ≥ 0,

• Strong energy condition (SEC): ρ+ pr + 2pt ≥ 0,

• Weak energy condition (WEC): ρ ≥ 0, ρ+ pr ≥ 0,
ρ+ pt ≥ 0

• Dominant energy condition (DEC): ρ ≥ 0, ρ +
|pr| ≥ 0, ρ− |pr| ≥ 0
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Where ρ represents the energy-density, pr denotes the ra-
dial pressure and pt the tangential pressure. The energy-
momentum tensor of perfect fluids is of the form

Tµν = (ρ+ ptuµuν)− ptgµν + (pr − pt)XµXν (4)

The trace of Tµν is of the form T = pr − ρ + 2pt. The
terms that we will calculate for wormhole solutions are
of the form ρ+pr, ρ+pt, ρ−|pr|, ρ−|pt|, ρ+pr+2pt and
pt − pr, which will help us in understanding the energy
conditions for each model.

The Einstein field equations for the metric would be in
terms of ρ, pt and pr as follows:

ρ+ F
b′(r)

r2
−
(
1− b(r)

r

)
F ′χ′(r)−H (5)

pt = F
b(r)− rb′(r)

2r3
− F ′

r

(
1− b(r)

r

)
+ F

(
1− b(r)

r

)
(
χ′′(r)− (rb′(r)χ′(r))

2r2 − 2rb(r)
+

χ′(r)

r
+ χ′2(r)

)
+H

(6)

pr = −F
b(r)

r3
+ 2

(
1− b(r)

r

)
χ′(r)F

r
−
(
1− b(r)

r

)
F ′′ − F ′(rb′(r)− b(r))

2r2 − 2r2
(
1− b(r)

r

)
+H

(7)

Where H = 1
4 (FR + □F + T ), F (R) is df(R)/dR and

the prime denotes ∂/∂r.

II. NOJIRI-ODINTSOV WORMHOLE
SOLUTIONS

Consider the form of f(R) gravity introduced by Nojiri
and Odintsov [8], given by

f(R) = R+ αRm − βR−n (8)

This model has many implications in cosmology. Late
time acceleration of Friedmann-Robertson cosmologies
with such an f(R) background was analyzed by Cao et
al.

Following [7], we introduce a shape function of the form

b(r) = r0

(
xr

xr0

)
(9)

with 0 < x < 1. It is clear that the above shape function
satisfies the required conditions for shape functions seen
in section I.

We will start by deriving the field equations for this
model in terms of ρ, pr and pt, which would allow us

to calculate the nature of the energy conditions for the
model. Recall that if a model always has a non-negative
value of ρ + pt and ρ + pr, it satisfies NEC, while if it
always has a non-negative ρ+pr+2pt and a non-negative
energy-density ρ, it satisfies SEC and WEC respectively.
In our present theory, following [7], we will split the the-
ory into different cases based on the values of the param-
eters α, β, m, n and x.
Following the required values for NEC, SEC and DEC,

we can analyse the nature of the geometry of the model.
Following our required physical parameters for calcu-
lating the energy conditions, we first consider different
classes of this model, by varying the parameters α, β, m,
n and x.

A. Recovering GR: f(R) = R

Our model, defined by (8) recovers GR when α = β =
0. In this case, the following would be the nature of the
energy conditions:

• Null energy condition (NEC): ρ + pr ≥ 0: clearly
not satisfied, following the calculations for ρ and
pr. In the tangential pressure component of NEC,
we would consider ρ + pt ≥ 0. Clearly, this is also
not the case, since there would be a negative value
of this quantity some point. Therefore, NEC is
violated.

• Strong energy condition (SEC): By finding ρ+pr+
2pt ≥ 0, we see that SEC is also violated.

• Dominant energy condition (DEC): The DEC in
the radial and tangential components are found to
be negative, implying a violation of DEC by the
model.

• The anisotropy parameter shows that the geometry
of the model is repulsive due to a positive value of
it.

Therefore, in the case of the Nojiri-Odintsov model (8)
being equivalent to GR, we see that the model is filled
with exotic matter.

B. When we set β = 0

We set the base x = 0.5 and m = 2. With these
conditions, we can plot the energy conditions w.r.t α to
derive the following results:

• Null energy condition (NEC): The radial compo-
nent of the NEC is found to be preserved. However,
for suitable values of α, the tangential component
of NEC is found to be violated.

• Strong energy condition (SEC): This is found to be
violated for r greater than r0.
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• Dominant energy condition (DEC): In both the ra-
dial and the tangential components of DEC, the
values observed are negative.

• Again, the anisotropy parameter has positive values
in certain regions (interestingly at r = r0), and
therefore implies a repulsive nature of the model.

Again, we see that this model too is filled with exotic
matter as a result of the violation of NEC and DEC and
the nature of the anisotropy parameter.

C. Setting α = 0

Our assumption following the paper in consideration is
setting x = 0.5 as before, n = 4 and plotting the energy
conditions w.r.t β. Interestingly, this model has some
intriguing features based on NEC and DEC.

• Null energy condition (NEC): The energy

density is positive, while the radial and tangential
components of NEC are positive, therefore preserv-
ing NEC at all times.

• Strong energy condition (SEC): Thec SEC term ρ+
pr+2pt ≥ 0 is positive for all values of β > 20, and
is therefore preserved by this case of our model (8).

• Dominant energy condition (DEC): Both the radial
and tangential components of DEC are negative,
implying that DEC is not preserved.

• The anisotropy parameter in this case is negative,
indicating an attractive framework of the model.

This is a case of an elementary wormhole solution with-
out exotic matter. At the same time, this also implies
that it is possible to have a wormhole with non-exotic
matter while maintaining SEC and NEC, with a viola-
tion of DEC with an attractive nature of the model.

D. The case of non-zero parameters

Our final scenario is considering m, n, α and β being
non-zero. Considering the case of the base x = 0.5,m = 2
and n = 4 as considered before individually, we find the
following results:

• Null energy condition (NEC): The energy density ρ
is positive, while NEC in both the radial and tan-
gential components is positive, implying a preser-
vation of NEC throughout the model.

• Strong energy condition (SEC): The SEC term is
again found to be always positive, therefore imply-
ing a preservation of SEC too.

• Dominant energy condition (DEC): DEC is again
found to be violated in both the radial and tangen-
tial components.

• The anisotropy parameter is again found to be neg-
ative, implying that the model has an attractive
nature.

This model is interesting for a number of reasons –
firstly, it is straightforward to look at the nature of the
energy conditions. We started by considering an f(R)
theory of gravity, and then we considered a shape func-
tion (9). Using these results, we were able to understand
different energy conditions. Next, we were able to anal-
yse the energy conditions and understand the nature of
the wormhole solution in question – here, in each case we
found a violation of DEC in both the components. How-
ever, we showed that a wormhole solution with a satisfied
NEC and SEC with a violation of DEC can exist without
exotic matter.
We will now investigate into wormhole solutions with

a Tsujikawa and Amendola et al type f(R) background.
We will follow [20] and [9] and analyse the energy con-
ditions with the exponential shape function in consider-
ation along with the given f(R) models.

The following are tables associated with the four different cases of Nojiri-Odintsov wormhole solutions examined
above. Note that SEC does not have radial/tangential components – the following values imply that SEC is violated
in general instead of a particular form of violation or preservation of SEC in radial or tangential components. In
the case of Table-1, we analyse the nature of the energy conditions and their violations in Nojiri-Odintsov wormhole
solutions in section A. It is to be noted that the anisotropy parameter does not have radial or tangential components
and has therefore been left empty in those rows.

Table-1 shows that in the case of α, β = 0, NEC in radial component and SEC and DEC are violated, while the
model has a positive anisotropy parameter, indicating that the model has exotic matter in it. Table-2 shows that in
the case of β = 0 all the energy conditions are violated, with the model exhibiting a positive anisotropy parameter.

Table-3 depicts the case of α = 0, where NEC in both radial and tangential components and SEC are preserved.
DEC in this case is negative in regions of the wormhole, implying a violation of DEC in both radial and tangential
components. In this case, the anisotropy parameter is negative, meaning that the model has an attractive nature.
The case of α, β ̸= 0 is depicted in Table-4, where we observe that NEC in both radial and tangential components are
preserved, while SEC is also preserved. DEC however, is still violated in both the radial and tangential components,
with the anisotropy parameter being negative, again indicating that the nature of the model is attractive.
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NEC SEC DEC Anisotropy parameter
Radial Violated Violated Violated

Tangential Preserved Violated Violated
Positive

Table-1: Violation of energy conditions in the case of the Nojiri-Odintsov model (8) with shape function (9) and
f(R) = R. In this case, the equation of state (EOS) is positive.

NEC SEC DEC Anisotropy parameter
Radial Violated Violated Violated

Tangential Violated Violated Violated
Positive

Table-2: Violation of energy conditions in the case of the Nojiri-Odintsov model (8) with shape function (9) and
f(R) = R+ αRm.

NEC SEC DEC Anisotropy parameter
Radial Preserved Preserved Violated

Tangential Preserved Preserved Violated
Negative

Table-3: Violation of energy conditions in the case of the Nojiri-Odintsov model (8) with shape function (9) and
f(R) = R− βR−n.

NEC SEC DEC Anisotropy parameter
Radial Preserved Preserved Violated

Tangential Preserved Preserved Violated
Negative

Table-4: Violation of energy conditions in the case of the Nojiri-Odintsov model (8) with shape function (9) and
f(R) = R+ αRm − βR−n.

In this model, we investigated the nature of the energy conditions in Nojiri-Odintsov models with an exponential
shape function. We started by understanding the field equations and then by analysing the parameters to find the
nature of the violation of energy conditions. We will follow the same algorithm to investigate Tsujikawa and Amendola
et al f(R) models using the shape function introduced by Samanta et al in 2018 [20], and we will investigate energy
conditions like we did the previous case of Nojiri-Odintsov wormhole solutions.

III. TSUJIKAWA AND AMENDOLA ET AL
WORMHOLE SOLUTIONS

Our next candidate for investigating energy conditions
for shape functions in f(R) gravity is that of Amendola-
Tsujikawa models [16], defined by

f(R) = R− µRA

(
R

RA

)p

(10)

Where µ, RA and p are positive constants and an expo-
nent, 0 < p < 1. In this case, following Samanta and
Godani 2020 [9], we will consider the shape function of
the form

b(r) = r exp (−(r − r0)) (11)

In this case, we will consider a redshift function χ(r) =
1/r for simplicity. In our case, the derivatives of χ(r) do

not vanish, and the field equations are as given in [9].
The following would be the results in the case of (10)

with a shape function of the form of (11).

• Null energy condition (NEC): For certain values of
r, WEC is indefinite. Due to this, we consider val-
ues of r greater than that limit. For this, we would
see that the NEC in both the radial and tangential
components would be positive above certain values.
For values lesser than these, both the components
of NEC would be indefinite. Therefore, both WEC
and NEC have such properties.

• Strong energy condition (SEC): All values of ρ +
pr + 2pt are negative for r ≥ 1.2, implying that
SEC is violated.

• Dominant energy condition (DEC): The radial
component of DEC is indefinite for r < 1.2, while
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the tangential component of DEC is indefinite for
values less than or equal to 1.8.

• The anisotropy parameter is further indefinite for

all other values from less than 1.2, otherwise neg-
ative values, indicating that the geometry of the
model is attractive.

The following table summarises the results of our investigation of the shape function (10) together with (11) with
a constant variable parameter-type redshift function in terms of NEC, SEC, DEC and the anisotropy parameters –
note that each of the energy conditions are only valid for certain regions of the wormhole geometry.

NEC SEC DEC Anisotropy parameter
Radial Preserved for r¿l1r Violated for all r > lr Preserved for r > l1r

Tangential Preserved for r > l2r Violated for all r > lr Preserved for all r > l2r
Negative for all r > l1r

Table-4: The nature of energy conditions with model of the form [16] with [9]

Here, l1r is the first radial limit 1.2 considered in the paper [9] and l2r is the second radial limit 1.8 considered. For
all other values of r, the energy conditions parameters are either negative or indefinite.

This is the form of Amendola et al f(R) theory with
the shape function (11) introduced by Samanta et al
(2018). We will now wish to reverse-engineer such the-
ories of gravity – that is, we will consider a shape func-
tion and determine the function f(R) corresponding to
the theory with that physical setting. We will consider a
case of an equation of state relating ρ with the tangential
pressure pt, and then consider a case of a shape function
identical to (11). Using our conditions, we will find out
the corresponding form of f(R) for the theory.

IV. FINDING f(R) FROM A GIVEN b(r)

We wish to find out the function f(R) for a given
shape function and investigate the nature of energy con-
ditions for such wormhole solutions. We wil consider a
barotropic fluid model, i.e. a model in which pt is a func-
tion of the energy density ρ:

pt = ωρ (12)

1. We consider the shape function we wish to find the
corresponding f(R) of and get the terms ρ, pt and
pr.

2. We then solve the field equations to find T = −ρ+
pr + 2pt, □F and get the value of f(R).

3. We then find out the nature of the energy condi-
tions terms ρ± pt, r, ρ± |pt r| and ρ+ pr + 2pt.

We will consider two cases of shape functions and derive
f(R) for these models.

A. Setting b(r) = r exp (−2(r − r0))

We will consider a case of a shape function close to
(11) [11],

b(r) = r exp (−2(r − r0)) (13)

For the equation of state (12), we would see that F (R)
is given by the following:

F ′
(
1− b(r)

r

)
− F

2r2
(b(r)− (1 + 2ω)rb′(r)) = 0 (14)

Using (14) for the shape function (13), we would get the
value of F , where and L = (−ω{r(exp (2(r − r0)))− 1})

F = (1− exp (−2(r − r0)))
2ω+1

2 × exp

(∫
L(r) dr

)
(15)

From this, the equations for ρ, pt and pr can be calculated
from (5-7) – the values are given by (16-18), where A =
exp (−2(r − r0)) and B = exp (2(r − r0)).

ρ = A(1−A)ω+ 1
2
1− 2r

r2
× exp

∫
(L(r)) dr (16)

pt = ω

(
1− 2r

r2

)
(1−A)ω+ 1

2 × exp (

∫
L(r) dr) (17)

pr = −ρ

[
1

1− 2r

(
1 +

r2(r(1 + 2ω)− ω)

r ×B − 1

)
+

r2 ×B

1− 2r(
(1 + 2ω)2 − 2(1 + 2ω)B

(B − 1)2
+

ω2 + ω((2r + 1)×B − 1)

r2(B − 1)2
+

2ω(1 + 2ω)

r(B − 1)2

(18)
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We can find T and □F and get the field equations. Note

that the Ricci scalar is R = 2b′(r)
r2 , which for our shape

function (13) gives R = 2(1−2r) exp (2(r−r0))
r2 . We then see

that f(R) is of the form

f(R) =
F

2

[
2(1− 2r)×B

r2
+ 2(1−A)

(
(1 + 2ω)2 − 2(1 + 2ω ×B)

(B − 1)2
+

ω2 + ω((2r + 1)×B − 1)

r2(B − 1)2
− 2(1 + 2ω)

r(B − 1)2

)
+

r(1 + 2ω)− ω

r(B − 1)

(
(−r + 2(B − 1))

r ×B

)
− 1− 2r

r2
(1− 2ω)×A+

1

r2 ×B
+A

(1 + 2ω)r − ω

r(B − 1)
(19)

In this case, we found the function f(R) from the shape
function and by imposing the condition that the model
satisfies the differential equation (14). We will now anal-
yse a model with a different shape function and investi-
gate the energy conditions for such a model.

B. Setting b(r) = rn0 r
(1−n)

In the previous case, we derived the function f(R) for
the case of a shape function of the form (13). Our pro-
cedure was to derive ρ, pt and pr after finding F . We
then derive the trace of Tµν and □F , and use the field
equations in f(R) gravity to find out the function f(R).
We will now consider the case of the shape function of
the form [17]

b(r) = rn0 r
(1−n) (20)

We again require the function F to satisfy the differential
equation (14). In this case, F is determined to be of the
form

F = Θ(1− rn0 r
−n)

n+2ω(n−1)
2n (21)

Where Θ is a constant. The field equations can be shown
to give the following values of ρ, pt and pr:

ρ = Θ(1− n)rn0 r
−(n+2)(1− rn0 r

−n)
n+2ω(n−1)

2n (22)

pt = Θ× ωrn0 r
−(n−2)(1− n)(1− rn0 r

−n)
n+2ω(n−1)

2n (23)

pr =
Θ

2

(1− rn0 r
−n)

−n+2ω(n−1)
2n

r2(n+1)
[rn{2− (n+ 1)(n+ 2ω

(n− 1))}+ rn0 {(n+ 2ω(n− 1))(n+ ω(n− 1) + 1)− 2}
(24)

We can now derive T and □F and get the field equations
for this theory. The Ricci scalar in this case is of the
form R = 2(1 − n)rn0 r

−(n+2). We then can find f(R) to
be of the following form (where R0 is R for b(r)|r=r0):

f(R) =
Θ×R

2

1−
(

R

R0

)−n+2ω(n−1)
2n

×

[(
R

R0

) n
n+2

(
−3(1 + ω)

2

(
n+ 2ω(n− 1)

2

)
− 1

4(1− n)
(5ωn− 2ω − 3n

−2ω2 − n2 + 4ω2n+ 3ωn2 − 2ω2n2 + 4) +

(
3

2

n+ 2ω(n− 1)

2
− 1

4(1− n)(n2(2ω + 1) + 2ω − 4ωn+ 3n− 4)

)
(25)

Let us consider the throat radiusr0 = 0.1 and let ω =
0.5. We have the following results by setting n = 0.59:

• Null energy condition (NEC): The NEC term in
the radial component is negative for certain regions
of the wormhole geometry, implying a violation of
NEC in the radial component, while NEC in the
tangential component is always preserved.

• Strong energy condition (SEC): The SEC term is
negative for certain values of r/r0, therefore imply-
ing a violation of SEC.

• Dominant energy condition (DEC): DEC in the ra-
dial component is negative, while DEC in the tan-

gential component is positive, implying a preserva-
tion of DEC in the tangential component.

For different values of n we would observe different forms
of energy conditions. For isntance, minor changes in n
would yield different natures of the energy conditions
around Θ and ω.
The nature of the energy conditions of this model can

be summarized in the following table:

NEC SEC DEC
Radial Violated Violated Violated

Tangential Preserved Violated Preserved

Table-5: Violation of energy conditions for the shape
function (20) and f(R) of the form (25).
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Therefore, for a shape function b(r) of the form (20), we
see that the nature of the energy conditions is as shown
in Table-5, where we see that NEC in tangential com-
ponent is preserved along with DEC in the tangential
component.

In this section, we reviewed the process of deriving
f(R) from b(r) and have reviewed the energy conditions
for a shape function. It is interesting to note that we can
easily find out the embedded topology of the wormhole
solution. We can do this by considering a hypersurface
of the geometry H with a constant t = const. and setting
θ = π/2. For this, we would have the following:

ds2H = dr2
(
1− b(r)

r

)−1

+ r2dϕ2(1)2 (26)

This would be equivalent to the cylindrical geometry

ds2H =

(
1 +

(
dz

dr

)2
)
dr2 + r2dϕ2(1)2 (27)

From this, we can find out the integral for z(r), using
which we can find out the embedding diagram for the
wormhole.

When working with exotic matter in wormhole solu-
tions, it becomes important to ask how much exotic mat-
ter is present in the solution. For instance, the averaged
null energy condition (ANEC) is given by the following
line integral, where γ is a null curve:∫

γ

Tµνx
µxν dλ (28)

Where xµ is a null vector, and for γ being a null geodesic,
we would have λ as the affine parameter. In this case,
we can clearly not say anything about the amount of
exotic matter in the model, since we would require an
integral over V instead. For this, we consider definite

volume integrals of ρ and pr, called the volume integral
quantifier. Regions for a given wormhole solution where
these quantifiers are negative indicate the regions where
exotic matter is present. This is to say that we find out
the amount of matter in the solution for which ANEC
is violated, which allows us to find the amount of exotic
matter present. In [15] it was shown that in the general
relativistic case, for a given shape function, ANEC can
be made to be violated with an infinitesimal amount of
exotic matter.

CONCLUSION

Wormholes are an interesting arena of research, par-
ticularly for understanding the physical implications of
modified theories of gravity. Two characteristic features
of wormhole solutions are the shape function and the en-
ergy conditions and how they are violated. The shape
function for a wormhole solution determines the topo-
logical structure of the solution, while it also affects the
way the energy conditions are influenced. The frame-
work of the theory also affects the energy conditions and
the physical nature of the model. For instance, GR af-
fects all the energy conditions for any given wormhole
solution, since the throat of the wormhole requires ex-
otic matter to be open. This ”anomaly” can be changed
by introducing modified theories of gravity, particularly
those in the curvature sector (i.e. those modified theories
of gravity derived by introducing curvature terms rather
than matter terms) such as f(R) gravity and Lovelock
gravity. In this review, we considered a few of the many
possible f(R) theories with viable shape functions (i.e.
that satisfy the physical conditions imposed in section
I) and reviewed the nature of the energy conditions for
such models. In section IV, we found out the function
f(R) from the shape function and investigated the energy
conditions for a model.
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