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1 Introduction
?〈s: intro〉?

The dynamics of quantum particles confined to unbounded regions of various
shapes is of interest not only from the physical point of view but also as a math-
ematical problem revealing interesting connections between spectral properties
of the corresponding Hamiltonians and the confinement geometry. Problem of
this type were discussed in numerous papers; for a survey and extensive bib-
liography we refer to the monograph [EK15]. While some types of geometric
perturbations such as bends or twists of straight tubes, both local and periodic,
were investigated mathematically in considerable depth, some other mostly es-
caped attention. In particular, this is the case of spiral structures which appear
in physics, for instance, as waveguides for cold atoms [JLX15]. A mathematical
analysis of Dirichlet Laplacians in spiral-shaped regions has been presented re-
cently in [ET21]; we refer to this paper also for references to other applications
of spiral structures in different areas of physics.1

Spiral regions are of many different type. A decisive factor for the spec-
tral properties is the behavior of the coil width as we follow the spiral from

1Those include, in particular, electromagnetism and acoustics. Some of such systems are
described by the Neumann Laplacian the spectral properties of which may be very different
from the Dirichlet one as illustrated, e.g., in [Si92].
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the center to infinity; among those for which this quantity is monotonous, we
can distinguish spirals expanding, asymptotically Archimedean, and shrinking –
definitions will be given below. In the present paper we are concerned with the
latter type for which the Dirichlet Laplacian spectrum is purely discrete accu-
mulating at the infinity. In such a situation it is natural to ask about moments
of finite families of eigenvalues relative to a fixed energy value in the spirit of
the estimates derived by Lieb and Thirring, Berezin, Lieb, and Li and Yau,
cf. [LT76, Be72a, Be72b, Li73, LY83] and the monograph [FLW22]. The cited
results concern situations in which the motion is confined to finite region, or it
is governed by a Schrödinger operator with a finite classically allowed region.
The finiteness is not needed, however, similar estimates were also derived for
infinite cusp-shaped regions [GW11, BE13, EB14, BK19].

Our main result, an estimate of the eigenvalue moments in terms of the
geometric properties of the spiral, is presented and proved as Theorem 3.1 in
Sec. 3. Before coming to it, we collect in the following section the necessary
geometrical prerequisites. In particular, we will introduce locally orthogonal
coordinates, sometimes called Fermi or parallel, that will allow us to rephrase
the problem as spectral analysis of Dirichlet Laplacians on geometrically simpler
cusped regions. In Sec. 4, we finish the paper with concluding remarks on the
sharpness of the obtained bounds and on modifications of the result to the case
of multi-armed spirals.

2 Preliminaries
?〈s: prelim〉?

To begin with, let us describe the geometry of spiral-shaped regions. It is
characterized be a curve Γ which is the graph of an increasing function r : R+ →
R+ with r(0) = 0, that is, the family of points (r(θ), θ) in the polar coordinates.
We note that spirals considered here are semi-infinite; a modification of our
results to the case of ‘fully’ infinite spirals, the example of which is the Simon’s
jellyroll mentioned above, is straightforward. The region we are interested in
depends on the function r. Its closure is R2 provided that limθ→∞ r(θ) =∞, in
the opposite case it is the closed disc of radius R := limθ→∞ r(θ).

The assumed monotonicity of r means that Γ does not intersect itself which
means, in particular, that the width function

a(θ) :=
1

2π

(
r(θ)− r(θ − 2π)

)
(2.1) ?a?

is positive for any θ ≥ 2π. A spiral curve Γ is called simple if the corresponding
a(·) is monotonous, and expanding or shrinking if this function is, respectively,
increasing or decreasing in θ away from a neighborhood of the origin; these
qualifications are labeled as strict if limθ→∞ a(θ) = ∞ and limθ→∞ a(θ) = 0
holds, respectively. A simple spiral laying between these two extremes, for
which the limit is finite and nonzero, is called asymptotically Archimedean.

The main object of our interest the two-dimensional Laplace operator with
the Dirichlet condition imposed at the boundary represented by the curve Γ,
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in other words, the Dirichlet Laplacian HΩ defined in the standard way [RS78,
Sec. XIII.15] on the open set Ω = ΩΓ = R2 \ Γ, or alternatively on BR \ Γ if
limθ→∞ r(θ) <∞. As shown in [ET21], spectral properties of such operators on
simple spiral regions depend strongly on the function a(·). For strictly expanding
regions the spectrum is purely essential and covers the halfline R+. On the other
hand, if the spiral Γ is strictly shrinking the spectrum of HΩ is purely discrete
which is the situation we will be interested in.

Remark 2.1. In the intermediate case of asymptotically Archimedean spirals
the spectrum may be more complicated. Its essential part covers the inter-
val

[
1
4 (limθ→∞ a(θ))−2,∞

)
. The discrete part may be empty as in the case of

the pure Archimedean spiral, but also infinite, accumulating at the threshold
of σess(HΩ) if the spiral is shrinking in the appropriate way [ET21, Proposi-
tion 5.4]. It is clear that neither of these situations allows us to derive bounds
on eigenvalues moments analogous, say, to what one can derive in case of bent
Dirichlet tubes [ELW04].

A useful way to characterize the region Ω, possibly with the exception of a
neighborhood of the origin of the coordinates, is to employ the the Fermi (or
parallel) coordinates, that is a locally orthogonal system in which the Cartesian
coordinates of Γ are written as

x1(θ, u) = r(θ) cos θ − u√
ṙ(θ)2 + r(θ)2

(ṙ(θ) sin θ + r(θ) cos θ),

x2(θ, u) = r(θ) sin θ +
u√

ṙ(θ)2 + r(θ)2
(ṙ(θ) cos θ − r(θ) sin θ), (2.2) Fermi

where u measures the distance of (x1, x2) from Γ. A natural counterpart of the
variable u is the arc length of the spiral given by

s(θ) =

∫ θ

0

√
ṙ(θ)2 + r(θ)2 dθ. (2.3) s

We want to use relations (2.2) and (2.3) to parametrize the region Ω with the
coordinates (s, u), possibly with the exception of a finite central part, as

Ω1 = Ω ∩ {(s, u) : s > s0} =
{
x(s, u) : s > s0, u ∈ (0, d(s))

}
; (2.4) parametrization

here s0 > 0 is a number depending on curve Γ characterizing the excluded part,
and d(s) is the length of the inward normal starting from the point x(s, 0) of Γ
towards the intersection with the previous coil of the spiral.

One more quantity associated with the spiral that we will need to state the
result is its curvature which is in terms of the angular variable given by

γ(θ) =
r(θ)2 + 2ṙ(θ)2 − r(θ)r̈(θ)

(r(θ)2 + ṙ(θ)2)3/2
, (2.5) curvature

provided, of course, that the derivatives make sense. Using the pull-back, s 7→
θ(s), of the map (2.3) we can express it alternatively as a function of the arc
length s, even if in general we lack an explicit expression; with abuse of notation
we will write γ(s) instead of γ(θ(s)).
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3 Main result
〈Main result〉

The domains to be considered are determined by the function r. In addition to
its monotonicity and the requirement r(0) = 0 we suppose that

(a) r is C2-smooth and such that limθ→∞ ṙ(θ) = 0; its second derivative is
bounded and r̈(θ) < 0.

〈assa〉
Under this assumption Γ is shrinking, because in view of the concavity of r the
derivative ṙ is decreasing and so is the function ȧ(θ) := 1

2π

(
ṙ(θ) − ṙ(θ − 2π)

)
.

Moreover, it is strictly shrinking, because a(θ) = 1
2π

∫ θ
θ−2π

ṙ(θ) dθ → 0 holds
as θ → ∞, and furthermore, in view of (2.5) we have γ(θ) > 0. At the same
time, the relation (2.5) in combination with the assumed boundedness of r̈(·)
implies that γ(θ) = O(r(θ)−1) as θ → ∞, and since d(s) ≤ 2πa(θ(s)) vanishes
asymptotically, there is an s0 > 0 such that d(s)γ(s) < 1 holds for all s ≥
s0 which means, in particular, that in the corresponding part of Ω the Fermi
coordinates are well defined.

The quantities we are interested in are moments of negative part of the
operator HΩ − Λ for a fixed energy Λ. We have the following bound:

〈Main〉Theorem 3.1. Let Ω = ΩΓ be a simple strictly shrinking domain determined by
a spiral curve Γ satisfying assumption (a), and let HΩ be corresponding Dirichlet
Laplacian. Then for any Λ > 0 and σ ≥ 3

2 the following inequality holds,

tr (HΩ − Λ)
σ
− ≤

Lcl
σ,1

π

(
‖W‖∞+Λ

)σ+1
∫
{d(s)≥π(W (s)+Λ)−1/2}

d(s) ds+c1Λσ+1+c2(Λ),

(3.1) theorem

where c1 > 0 is an explicit constant given in (3.22) below, c2(Λ) is given in
(3.16), ‖ · ‖∞ := ‖ · ‖L∞(s0,∞), and Lcl

σ,1 is the semiclassical constant,

Lcl
σ,1 :=

Γ(σ + 1)√
4πΓ(σ + 3

2 )
; (3.2) ?LTconstant?

the function W in (3.1) is given by

W (s) :=
γ2(s)

4(1− γ(s)d(s))2
+

d(s)|γ̈(s)|
2(1− γ(s)d(s))3

+
5

4

d(s)2|γ̇(s)|2

(1− d(s)γ(s))4
. (3.3) W

Moreover, we have

c2(Λ) = O

(
Λ2

∫
{
d(s)≥ π√

Λ

} d(s) ds

)

for large values of Λ.

As a consequence, we get the asymptotic form of the bound:
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?〈corollary〉?Corollary 3.2. In the regime Λ→∞, the inequality (3.1) becomes

tr (HΩ − Λ)
σ
− ≤ Λσ+1

(
Lcl
σ,1

π

∫{
d(s)≥ π√

Λ

} d(s) ds+ c1

)(
1 + ō(1)

)
. (3.4) asy_corollary

We note that in the asymptotic regime the curvature-related effects are sup-
pressed being contained in the error term of (3.4). Beyond the asymptotics,
they may be significant; for an analogy, recall the numerical result of [ET21,
Sec. 5.1] about the number of eigenvalues in the Fermat spiral region which is
at low energies larger than an estimate based on the spiral width only.

Proof of Theorem (3.1). As argued above, assumption (a) makes it possible to
use the Fermi coordinate parametrization (2.4) of Ω with some s0 > 0. We
employ the Neumann bracketing method [RS78, Sec. XIII.15] which gives

HΩ ≥ HΩ1
⊕HΩ2

, (3.5) bracketing

where HΩ1
and HΩ2

are the restrictions of HΩ referring to the regions Ω1 ⊂ Ω
corresponding to the arc lengths s > s0 and Ω2 := Ω \ Ω̄1, both having the
additional Neumann condition at s = s0.

Consider first the operator HΩ1
. According to [ET21] the coordinates (2.2)

allow us to pass from HΩ1
to a unitarily equivalent operator H̃Ω̃1

acting on

the ‘straightened’ region Ω̃1 := {(s, u) : s > s0, 0 < u < d(s)} with Neumann
boundary condition at s = s0 and the Dirichlet condition on the rest of the
boundary of Ω1 as follows,

(
H̃Ω̃1

ψ
)
(s, u) = −

(
∂

∂s

1

(1− uγ(s))2

∂ψ

∂s

)
(s, u)− ∂2ψ

∂u2
(s, u) + W̃ (s, u)ψ(s, u) ,

(3.6) unitary eq.

where

W̃ (s, u) :=
γ2(s)

4(1− uγ(s))2
+

uγ̈(s)

2(1− uγ(s))3
+

5

4

u2γ̇(s)2

(1− uγ(s))4
. (3.7) tildeW

It is straightforward to check that

H̃Ω̃1
≥ H0, (3.8) est.

where operator H0 = −∆−W acts on L2(Ω̃1) and satisfies the same boundary

conditions as H̃Ω̃1
, and W is given by (3.3).

Hence it is enough to deal with H0.
We take inspiration from [LW00, We08] and use a variational argument to

reduce the problem to a Lieb-Thirring inequality with an operator-valued po-
tential. Given a function g ∈ C∞(Ω̃1) with zero trace at the ‘transverse part’
of the boundary, that is, at the points {s ∈ (s0,∞), u = 0, d(s)}, and a number
Λ > 0, we can express the value of the corresponding quadratic form as
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∫
Ω̃1

(
|∇ g(s, u)|2 − (W + Λ)(s)|g(s, u)|2

)
dsdu

=

∫
Ω̃1

∣∣∣∂g
∂s

(s, u)
∣∣∣2 dsdu+

∫ ∞
s0

ds

∫ d(s)

0

(∣∣∣∂g
∂u

(s, u)
∣∣∣2 − (W (s) + Λ)|g(s, u)|2

)
du

=

∫
Ω̃1

∣∣∣∂g
∂s

(s, u)
∣∣∣2 dsdu+

∫ ∞
s0

〈L(s,W,Λ)g(s, ·), g(s, ·)〉L2(0,d(s)) ds ,

where L(s,W,Λ) is the Sturm-Liouville operator

L(s,W,Λ) = − d2

du2
−W (s)− Λ

defined on L2(0, d(s)) with Dirichlet conditions at u = 0 and u = d(s).

Next we consider the complement of Ω̃1 to the halfplane {s ≥ s0, u ∈ R}
and denote its interior as Ω̃c. We take arbitrary functions g ∈ C∞(Ω̃1) and

v ∈ C∞(Ω̃c), both having zero trace at {s ∈ (s0,∞), u = 0, d(s)}; extending

them by zero to the complements of Ω̃1 and Ω̃c, respectively, we can regard
them as functions in the whole halfplane. Similarly we extend L(s,W,Λ) to
the operator on L2(R) acting as L(s,W,Λ) ⊕ 0 with the zero component on
R \ [0, d(s)]. For their sum, h = g + v, we then have

‖∇ g‖2
L2(Ω̃1)

+ ‖∇ v‖2
L2(Ω̃2)

−
∫

Ω̃1

(W (s) + Λ)|g(s, u)|2 dsdu

≥
∫
{s>s0,u∈R}

∣∣∣∂h
∂s

(s, u)
∣∣∣2 dsdu+

∫ ∞
s0

〈L(s,W,Λ)h(s, ·), h(s, ·)〉L2(R) ds .

The left-hand side of this inequality is the quadratic form corresponding to the
direct sum of operator H0−Λ and the Laplace operator defined on Ω̃c with the
Neumann boundary conditions at s = s0 and Dirichlet conditions at the rest
part of the boundary, while the right-hand side is the form associated with the
operator

− ∂2

∂ s2
⊗ IL2(R) + L(s,W,Λ) ,

the form domain of which is larger, namely H1
(
(s0,∞), L2(R)

)
. Since the

Laplace operator is positive, the minimax principle allows us to infer that

tr (H0 − Λ)σ− ≤ tr
(
− ∂2

∂ s2
⊗ IL2(R) + L(s,W,Λ)

)σ
−

(3.9) op.val.

holds for any nonnegative number σ. This makes it possible to employ the
following version of Lieb-Thirring inequality for operator-valued potentials (the
proof of which is given in Appendix):

〈operator valued1〉
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Theorem 3.3. Let Q(s), s ≥ 0, be a family of self-adjoint operators on L2(R)
with discrete spectrum. Then the following estimate holds for any σ ≥ 3/2,

tr
(
− ∂2

∂ s2
⊗ IL2(R) +Q(s)

)σ
−
≤ Lcl

σ,1

∫ ∞
0

trQ
σ+1/2
− (s) ds+

1

2
Nλ

(N)
1 , (3.10) new result

where the operator on the left-hand side acts on the space L2(R+, L
2(R)) of

vector-valued functions with the Neumann boundary condition at s = 0, the
number of its negative eigenvalues is denoted by N , and

− λ(N)
1 := inf

(
σ
(
− ∂2

∂ s2
⊗ I + PNQ(s)PN

)
∩ (−∞, 0)

)
, (3.11) Nlambda

where PN is the projection on the span of the eigenfunctions referring to the

negative eigenvalues of the operator − ∂2

∂ s2 ⊗ IL2(R) +Q(s).

?〈s0〉?Remark 3.4. One can easily check that Theorem(3.3) holds true if L2(R+, L
2(R))

is replaced by L2((s0,∞), L2(R)) with some s0 ∈ R; the only price to pay is the
change of the integration interval on the right-hand side of (3.10) to (s0,∞).

Let us now return to the estimate (3.9). In order to apply Theorem 3.3 we
have to find a suitable upper bound for the number of negative eigenvalues of

− ∂2

∂ s2 ⊗ IL2(R) + L(s,W,Λ). We employ a ‘mirroring’ trick the idea of which
belongs to Rupert Frank [Fr22]. It consists of introducing extended potential
functions,

Ŵ (s1 + t) = W (s1 + t) and d̂(s1 + t) = d(s1 + t) if t ≥ 0, (3.12) ?notation1?

Ŵ (s1 + t) = W (s1 − t) and d̂(s1 + t) = d(s1 − t) if t < 0, (3.13) ?notation2?

with which it is easy to see that for any Λ′ > 0 the spectrum of operator

Ĥ = − ∂2

∂ s2 ⊗ IL2(R)+L(s, Ŵ ,Λ′) defined on L2(R, L2(R)) contains the spectrum

of operator of it ‘Neumann half’, − ∂2

∂ s2 ⊗ IL2(R) + L(s,W,Λ′). This implies

tr
(
− ∂2

∂ s2
⊗ IL2(R) + L(s,W,Λ′)

)σ
−
≤ tr

(
Ĥ
)σ
−, σ ≥ 0.

Next we use to fact the validity of spectral estimates of this type can be extended
to smaller values of the power σ at the price of having a multiplicative coefficient
r(σ, 1) on the right hand side, cf. inequality (3.23) in Remark 3.5 below in which
also the explicit knowledge of eigenvalues of the transverse part of the operator
is used. From that inequality in combination with above estimate we get for
σ = 1/2 and Λ′ = 2Λ the bound

tr
(
− ∂2

∂ s2
⊗ IL2(R) + L(s,W, 2Λ)

)1/2

−

≤
2r(1/2, 1)Lcl

1/2,1

π

(
‖W‖L∞(s0,∞) + 2Λ

)3/2 ∫{
d(s)≥π(W (s)+2Λ)−1/2

} d(s) ds

7



Let N(Λ) be the number of negative eigenvalues of − ∂2

∂ s2 ⊗ IL2(R) +L(s,W,Λ).
Using the last inequality together with a simple estimate,

tr
(
− ∂2

∂ s2
⊗ IL2(R) + L(s,W, 2Λ)

)1/2

−

= tr
(
− ∂2

∂ s2
⊗ IL2(R) + L(s,W,Λ)− Λ

)1/2

−
≥
√

ΛN(Λ),

we infer that

N(Λ) ≤
2r(1/2, 1)Lcl

1/2,1

π

(
‖W‖L∞(s0,∞) +2Λ

)3/2 ∫{
d(s)≥π(W (s)+2Λ)−1/2

} d(s) ds

(3.14) count.

Now we are in position to apply the operator-valued version of Lieb-Thirring
inequality. Let PN(Λ) be the projection on the span of the eigenfunctions cor-

responding to the negative eigenvalues of operator − ∂2

∂ s2 ⊗ IL2(R) + L(s,W,Λ).
Combining Theorem 3.3 with (4.4) we arrive at the estimate

tr
(
− ∂2

∂ s2
⊗ IL2(R) + L(s,W,Λ)

)σ
−
≤ Lcl

σ,1

∫ ∞
0

trL(s,W,Λ)
σ+1/2
− ds+ c2(Λ),

(3.15) op.val.new

where

c2(Λ) :=
r(1/2, 1)Lcl

1/2,1λ1(Λ)

π
√

Λ

(
‖W‖L∞(s0,∞)+2Λ

)3/2 ∫{
d(s)≥π(W (s)+2Λ)−1/2

} d(s) ds

(3.16) cc

and

−λ1(Λ) := inf
(
σ
(
− ∂2

∂ s2
⊗ IL2(R)+PN(Λ)L(s,W,Λ)PN(Λ)

)
∩(−∞, 0)

)
. (3.17) ?ccc?

To make use of (3.15) we need to know the negative eigenvalues of L(s,W,Λ).
Those, however, are easy to be found using the fact L(s, 0, 0) is the Dirichlet

Laplacian on (0, d(s)) with the eigenvalues
(
πj
d(s)

)2
, j = 1, 2, . . . , and the poten-

tial is independent of the transverse variable u. Consequently, the right-hand
side of (3.9) can be for any σ ≥ 3/2 estimated as

tr (H0 − Λ)
σ
− ≤ Lcl

σ,1

∫ ∞
s0

∞∑
j=1

(
−
( πj

d(s)

)2

+W (s) + Λ
)σ+ 1

2

+
ds+ c2(Λ).

Combining next the above bound with (3.8) and using the unitary equivalence

between HΩ1 and H̃Ω̃1
we obtain

tr (HΩ1
− Λ)

σ
− ≤ Lcl

σ,1

∫ ∞
s0

∞∑
j=1

(
−
( πj

d(s)

)2

+W (s) + Λ
)σ+ 1

2

+
ds+ c2(Λ)

8
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Figure 1: The region Ω2

and a simple manipulation of the right-hand side of this inequality leads to

tr (HΩ1
− Λ)

σ
−

≤ Lcl
σ,1

∫{
d(s)≥π(W (s)+2Λ)−1/2

} [ 1
π (W (s)+Λ)1/2d(s)]∑

j=1

(W (s) + Λ)
σ+ 1

2 ds+ c2(Λ)

≤
Lcl
σ,1

π

∫{
d(s)≥π(W (s)+2Λ)−1/2

} (W (s) + Λ)
σ+1

d(s) ds+ c2(Λ)

≤
Lcl
σ,1

π

(
‖W‖L∞(s0,∞) + Λ

)σ+1
∫{

d(s)≥π(W (s)+2Λ)−1/2
} d(s) ds+ c2(Λ).

(3.18) first result

Now let us pass to the inner part of the spiral associated with operator HΩ2
.

We use another version of the ‘mirroring’ trick [Fr22]. Let l be the segment
obtained by extending the straight part of that boundary, that is, the interval
{s = s0} × {u ∈ (0, d(s0))}, to the left up to the boundary of Ω2. It divides
the region into two parts; we denote by Ω1

2 and Ω2
2 the upper and lower one,

respectively. By Neumann bracketing one gets

HΩ2
≥ HΩ1

2
⊕HΩ2

2
, (3.19) ?Omega2?

where both operators HΩ1
2

and HΩ2
2

are the restrictions of HΩ2
to Ω1

2 and on Ω2
2,

respectively, with the additional Neumann condition imposed on l. The spectra
of HΩ1

2
and HΩ2

2
are contained in the spectra HΩ1,sym

2
and HΩ2,sym

2
, respectively,
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where the latter regions are unions of the former ones and their mirror images
with respect to the line spanned by the segment l. Using the Berezin inequality
[Be72a, Be72b] we estimate the traces of HΩj,sym

2
, j = 1, 2, as follows

tr(HΩj,sym
2

− Λ)σ− ≤ Lcl
σ,2 vol(Ωj,sym

2 ) Λσ+1, j = 1, 2, (3.20) Berezin

where Λ > 0, σ ≥ 1 are any numbers and the semiclassical constant

Lcl
σ,2 :=

Γ(σ + 1)

4πΓ(σ + 2)
=

1

4π(σ + 1)
. (3.21) L2

Finally, combining inequalities (3.5) and (3.18)–(3.20) we arrive at

tr (HΩ − Λ)
σ
−

≤
Lcl
σ,1

π

(
‖W‖L∞(s0,∞) + Λ

)σ+1
∫{

d(s)≥π(W (s)+2Λ)−1/2
} d(s) ds+ c1Λσ+1 + c2(Λ),

where

c1 := Lcl
σ,2

(
vol(Ω1,sym

2 ) + vol(Ω2,sym
2 )

)
= 2Lcl

σ,2

(
vol(Ω1

2) + vol(Ω2
2)
)

= 2Lcl
σ,2 vol(Ω2). (3.22) c

It remains to check the asymptotic behavior of the quantity (3.16). Since
λ1(Λ) ≤ ‖W‖L∞(s0,∞) + Λ, it is straightforward to check that

c2(Λ) = O
(

Λ2

∫
{
d(s)≥ π√

Λ

} d(s) ds
)
.

holds for for large values of Λ; this concludes the proof.

〈remark〉Remark 3.5. Let us note that Theorem(3.1) remains valid for smaller powers,
σ ≥ 1/2, provided we replace the semiclassical constant Lcl

σ,1 in the right-hand

side of (3.1) by 2r(σ, 1)Lcl
σ,1. On the other hand, we may then set c2 = 0. This

is related with the modification of the Lieb-Thirring inequality for operator-
valued potentials defined on the line R to the powers σ ≥ 1/2 and the constant
r(σ, 1)Lcl

σ,1 where r(σ, 1) ≤ 2 if σ < 3/2 [ELW04] which we used to derive the
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estimate (4.4). Indeed, for σ ≥ 1/2 we have

tr
(
− ∂2

∂ s2
⊗ IL2(R) + L(s, Ŵ ,Λ′)

)σ
−

≤ r(σ, 1)Lcl
σ,1

∫
R

∞∑
j=1

(
−
( πj

d̂(s)

)2

+ Ŵ (s) + Λ′
)σ+ 1

2

+
ds

= 2r(σ, 1)Lcl
σ,1

∫ ∞
s1

∞∑
j=1

(
−
( πj

d(s)

)2

+W (s) + Λ′
)σ+ 1

2

+
ds

≤
2r(σ, 1)Lcl

σ,1

π

(
‖W‖L∞(s0,∞) + Λ′

)σ+1
∫{

d(s)≥π(W (s)+2Λ)−1/2
} d(s) ds.

(3.23) ELW

This completes the argument leading to (4.4) and at the same time, allows us
to get the result mentioned in the opening of the remark by repeating the steps
of the previous proof.

4 Concluding remarks

〈s: conl〉4.1 Optimality of the bound (3.1)

Let us now show that the bound of Theorem 3.1 is asymptotically sharp in the
sense that the dependence on Λ the leading term in (3.4) cannot be improved.
To provide an example proving this claim, consider a spiral region Ω such that its
parallel coordinates representation (2.4) outside a compact area satisfies d(s) =
s−1 starting from some s0 > 0. As indicated in the discussion of assumption (a),
one can choose s0 in such a way that w := ‖d(s)γ(s)‖L∞(s0,∞) < 1.

Using Dirichlet bracketing method one estimates HΩ from above as follows,

HΩ ≤ H1 ⊕H2, (4.1) ?Dir.brack.?

where H1 and H2 are the Dirichlet restrictions of HΩ to Ω1 ⊂ Ω satisfying s > s0

and on Ω2 = Ω \ Ω̄1. Since Ω2 is bounded, its contribution to the eigenvalue
moment count is of the standard form [We1912],

tr (H2 − Λ)
σ
− = Lcl

σ,2 vol(Ω2) Λσ+1 + ō(Λσ+1), σ ≥ 0, Λ→∞, (4.2) ?Omega2?

with Lcl
σ,2 given by (3.21). To deal with H1 we pass to the unitary equivalent

operator (3.6) acting as

H̃ = − ∂

∂s

(
1

(1− uγ(s))2

∂

∂s

)
− ∂2

∂u2
+ W̃ (s, u)

on Ω̃1 := {(s, u) : s > s0, u ∈ (0, d(s))} with the effective potential W̃ given by
(3.7). It is straightforward to check that

H̃ ≤ 1

(1− w)2
(−∆D) + ‖W̃‖L∞(Ω̃1),

11



where ∆D is the Dirichlet Laplacian in L2(Ω̃1). Consequently, for any σ ≥ 0 we
have

tr(H̃ − Λ)σ− ≥
1

(1− w)2σ
tr
(
−∆D − (1− w)2(Λ− ‖W̃‖L∞(s>s0,u∈(0,d(s)))

)σ
−
.

(4.3) Berg

The right-hand side can be estimated using the asymptotic properties of the
spectral counting function of the Dirichlet Laplacian on horn-shaped regions
[vdB92]:

Theorem 4.1. Let functions fj : [0,∞) → R+, j = 1, 2, be right-continuous
and decreasing to zero. Consider the region

D = {(s, u) : s > 0,−f1(s) < u < f2(s)} ⊂ R2

and suppose that f(s) := f1(s) + f2(s), s > 0, satisfies∫ ∞
0

e−tf(s)−2

ds <∞, t > 0.

Then for the number ND(λ) of eigenvalues of the Dirichlet Laplacian on D that
are less than λ we have

ND(λ) ∼
∫ ∞

0

∞∑
k=1

(( λ
π2
− k2

f2(s)

)
+

)1/2

ds, λ→∞, (4.4) count.

where f(t) ∼ g(t) means that f(t)/g(t)→ 1 as t→∞.

In our case f1 = 0, f2(s) = f(s) = d(s) and λ = Λ; a series of simple
estimates then gives∫ ∞

0

∞∑
k=1

(( Λ

π2
− k2

d2(s)

)
+

)1/2

ds

=

∫ ∞
0

∑
{
k≤
√

Λd(s)
π

}
(( Λ

π2
− k2

d2(s)

)
+

)1/2

ds

=

∫ ∞{
d(s)≥ π√

Λ

} ∑
{
k≤
√

Λd(s)
π

}
(( Λ

π2
− k2

d2(s)

))1/2

ds

≥
∫ ∞{

d(s)≥ π√
Λ

} ∑
{
k≤
√

Λd(s)√
2π

}
(( Λ

π2
− k2

d2(s)

))1/2

ds

≥ Λ

2π2

∫
{
d(s)≥ π√

Λ

} d(s) ds,

where in the last step we simply took the lower bound to the square root ex-
pression times the number of summands. Using next the fact that we have
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d(s) = s−1 in combination with (4.3) in which we divide the potential into the
sum of two equal parts, we get

tr(H̃ − Λ)σ− ≥
1

(1− w)2σ

(
1

2
(1− w)2

(
Λ− ‖W̃‖L∞(s>s0,u∈(0,d(s))

))σ
×NΩ̃1

(
1

2
(1− w)2

(
Λ− ‖W̃‖L∞(s>s0,u∈(0,d(s))

))
>

(
1

2

(
Λ− ‖W̃‖L∞(s>s0,u∈(0,d(s))

))σ 1

4π2
(1− w)2

(
Λ− ‖W̃‖L∞(s>s0,u∈(0,d(s))

)
×
∫{

d(s)≥π
√

2(1−w)−1
(

Λ−‖W̃‖L∞(s>s0,u∈(0,d(s)))

)−1/2
} d(s) ds

=
(1− w)2

2σ+3π2
Λσ+1 ln Λ (1 + ō(1)), (4.5) end

which differs from (3.4) by a multiplicative constant only. We note that w in
the above discussion can be chosen arbitrarily small and the ratio of the two
constants,

2σ+3π Lcl
σ,1 = 2σ+2

√
π

Γ(σ + 1)√
4πΓ(σ + 3

2 )
, (4.6) ratio

should not be smaller than one. In fact, the bound (4.5) illustrates that the
estimate in (3.4) is getting worse with increasing σ, since we have [TE52]

Γ(z)

Γ(z + 1/2)
=

1√
z

(1 + ō(1)) as z →∞.

For half-integer values, σ = n+ 1
2 with n ∈ N0 the ratio (4.6) can be expressed

explicitly as

2σ+3π Lcl
σ,1 = 23/2

√
π

(2n+ 1)!!

(n+ 1)!
,

in particular, for σ = 3/2 the value is 3
√

2π ≈ 13.3.

4.2 Multi-arm spirals

Let us note finally that the obtained result extends easily to the situation where
the region is determined by a multi-armed spiral.

Let Γ0 = (r0(θ), θ) be a shrinking spiral satisfying the assumptions of Theo-
rem(3.1) and let Γm be the union of m ‘angularly shifted’ spirals Γj = (rj(θ), θ),
where rj(θ) := r (θ − θj) for 0 ≤ j ≤ m − 1 corresponding to the partition
0 = θ0 < . . . < θm−1 < 2π. Let HΩΓm

be the Laplace operator defined on
ΩΓm = R2 \ Γm with the Dirichlet conditions imposed on Γm. It is obvious
that HΩΓm

decomposes into the direct sum of m Dirichlet Laplacians unitar-
ily equivalent to operators Hj acting on the ‘rotated’ spiral-shaped domains
Ωj := {(r, θ) : r ∈ (max{0, r(θ − θj−1)}, r(θ − θj)}, and consequently, it is

13



enough to estimate separately tr (Hj − Λ)
σ
− , 0 ≤ j ≤ m − 1. By a straightfor-

ward modification of Theorem (3.1) we get

tr (Hj − Λ)
σ
− ≤

Lcl
σ,1

π

(
‖Wj‖L∞(s′1,j ,∞) + Λ

)σ+1
∫
{dj(s)≥π(Wj(s)+Λ)−1/2}

dj(s) ds

+ cjΛ
σ+1 + cj2(Λ), (4.7) multi-arm

where dj(s),Wj(s), s
′
0,j , cj , and cj2(Λ) are natural modifications of the quantities

appearing in the main result. To estimate tr
(
HΩΓm

− Λ
)σ
− one has to sum the

expressions on the right-hand side of (4.7). In particular, in the asymptotic
regime, Λ→∞, we have

tr
(
HΩΓm

− Λ
)σ
− ≤ Λσ+1

(
Lcl
σ,1

π

m−1∑
j=0

∫
{
dj(s)≥ π√

Λ

} dj(s) ds+ c̃m

)
(1 + ō(1)),

where the constant c̃ := max
0≤j≤m−1

cj .

Appendix

Here we provide proof of Theorem 3.3 which was skipped in Sec. 3. Let λ1, . . . , λN
be the negative eigenvalues of − ∂2

∂ s2 ⊗ IL2(R) +Q(s) and denote by PN the pro-
jection on the linear span of the corresponding eigenfunctions. It is easy to see
that

tr

(
− ∂2

∂ s2
⊗ IL2(R) +Q(s)

)σ
−
≤ tr(HN )σ−, σ ≥ 0, (4.8) span

holds for the finite-dimensional restriction of the operator,

HN = PN

(
− ∂2

∂ s2
⊗ IL2(R) +Q(s)

)
PN .

The expression on the right-hand side of (4.8) is nothing but the Riesz mean
of the order σ of the negative eigenvalues of the N × N -system of ordinary

differential equations − ∂2

∂ s2 ⊗ I + PNQ(s)PN acting on L2(R+,CN ) with the
Neumann boundary condition at s = 0, where I denotes the identity operator on
CN . This allows us to use the Lieb-Thirring inequality for general second-order
differential operators with matrix-valued potentials on the positive half-line with
Neumann condition at the origin proved in [Mi15]. In this way we get

tr(HN )σ− ≤ Lcl
σ,1

∫ ∞
0

tr (PNQ(s)PN )
σ+1/2

(s) ds+
1

2
Nλ

(N)
1

≤ Lcl
σ,1

∫ ∞
0

trQσ+1/2(s) ds+
1

2
Nλ

(N)
1

with λ
(N)
1 given by 3.11 which is the sought result.
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EK15 [EK15] P. Exner, H. Kovař́ık: Quantum Waveguides, Springer, Cham 2015.

ELW04 [ELW04] P. Exner, H. Linde, T. Weidl: Lieb-Thirring inequalities for geomet-
rically induced bound states, Lett. Math. Phys. 70 (2004), 83–95.

ET21 [ET21] P. Exner, M. Tater: Spectral properties of spiral-shaped quantum
waveguides, J. Phys. A: Math. Theor. 53 (2020), 5050303

F22 [Fr22] R.L. Frank, private communication

FLW22 [FLW22] R.L. Frank, A. Laptev, T. Weidl: Schrödinger Operators: Eigenvalues
and Lieb-Thirring Inequalities, Cambridge University Press, to appear

GW11 [GW11] L. Geisinger, T. Weidl: Sharp spectral estimates in domain of infinite
volume, Rev. Math. Phys. 23 (2011), 615–641.

JLXZY15 [JLX15] Jiang Xiao-Jun, Li Xiao-Lin, Xu Xin-Ping, Zhang Hai-Chao, Wang Yu-
Zhu: Archimedean-spiral-based microchip ring waveguide for cold atoms,
Chinese Phys. Lett. 32 (2015), 020301.

15



LY83 [LY83] P. Li, S.T. Yau: On the Schrödinger equation and the eigenvalue prob-
lem, Commun. Math. Phys. 88 (1983), 309–318.

Li73 [Li73] E.H. Lieb: The classical limit of quantum spin systems, Commun. Math.
Phys. 31 (1973), 327–340.

LT76 [LT76] E.H. Lieb, W. Thirring: Inequalities for the moments of the eigenvalues
of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, in
Studies in Math. Phys., Essays in Honor of Valentine Bargmann (E. Lieb,
B. Simon and A.S. Wightman, eds.); Princeton Univ. Press, Princeton,
1976; pp. 269–330.

LW00 [LW00] A. Laptev, T. Weidl: Sharp Lieb-Thirring inequalities in high dimen-
sions, Acta Math. 184 (2000), 87–100.

M15 [Mi15] O. Mickelin, Lieb-Thirring inequalities for generalized magnetic fields,
Bulletin of Mathematical Sciences, (2015), pp. 1–14.

RS78 [RS78] M. Reed, B. Simon: Methods of Modern Mathematical Physics,
IV. Analysis of Operators, Academic Press, New York 1978.

Si92 [Si92] B. Simon: The Neumann Laplacian of a jelly roll, Proc. AMS 114 (1992),
783–785.

TE52 [TE52] F. Tricomi, A. Erdelyi: The asymptotic expansion of a ratio of Gamma
functions, Pacific J. Math. 1 (1951), 133–142.

V92 [vdB92] M. van den Berg: Dirichlet-Neumann bracketing for horn-shaped re-
gions, J. Funct. Anal. 104 (1992), 101–120.

W12 [We1912] H. Weyl: Das asymptotische Verteilungsgesetz der Eigenwerte lin-
earer partieller Diffenertialgleichungen (mit einer Anwendung auf die The-
orie der Hohlraumstrahlung), Math. Ann. 71(4) (1912), 441–479.

W08 [We08] T. Weidl: Improved Berezin-Li-Yau inequalities with a remainder term,
in Spectral Theory of Differential Operators, Amer. Math. Soc. Transl. 225
(2008), 253–263.

16


	Introduction
	Preliminaries
	Main result
	Concluding remarks
	Optimality of the bound (3.1)
	Multi-arm spirals


