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Abstract. We consider a system of ODE in a Fréchet space with uncondi-

tional Schauder basis. The right side of the ODE is a discontinuous function.
Under certain monotonicity conditions we prove an existence theorem for the

corresponding initial value problem.

1. Introduction

Analysis of ODE with non Lipschitz right hand side has long history. Without
any claims on a completeness of exposition we just note some principle points of
this history. A detailed discussion of further developments in anyone of these points
requires a separate survey.

The first result belongs to G. Peano (1890). G. Peano considered an initial
value problem

ẋ = f(t, x), x(t0) = x0 (1.1)

where f is a continuous mapping of some domain

D ⊂ Rm+1 = {(t, x)}, x = (x1, . . . , xm)

with values in Rm.
G. Peano stated that this problem has a solution that is defined locally for

small |t− t0|. This solution may not be unique.
C. Carathéodory relaxed the conditions of this theorem up to measurability of

the function f in t.
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All these results are essentially based on the fact that a closed ball in Rm is
compact. In an infinite dimensional Banach or more generally locally convex space
they are in general invalid.

The corresponding example was first constructed by J. Dieudonné [1]. His
example was as follows:

ẋk =
√

|xk|+
1

k
, xk(0) = 0, k ∈ N, t ≥ 0.

It is easy to check that this IVP does not have solutions x(t) = {xk(t)} ∈ c0.
To recover an existence in the infinite dimensional case one must impose some

extra compactness conditions on f [7] or consider the measure of non compactness
[8].

Observe that all the existence results mentioned above follow in one way or
another from the Schauder-Tychonoff fixed point theorem.

The next stop in this journey is the concept differential inclusions. If the right
side of equation (1.1) is just a measurable function then even for continuous x(t) a
mapping t 7→ f(t, x(t)) is not obliged to be measurable [4].

The corresponding transformation of the notion of a solution was proposed A.
Filippov [5]. According to him an absolutely continuous function x(t) is a solution
to (1.1) if for almost all t the following inclusion holds

ẋ(t) ∈
⋂
r>0

⋂
N

conv f
(
t, Br(x(t))\N

)
.

Here Br(x) ⊂ Rm is an open ball of the radius r and the center at x. The inter-
section

⋂
N is taken over all measure-null sets N ; and conv stands for the closed

convex hull of a set.
It is important to stress that once we have denied the classical concept of a

solution then there are a lot of reasonable generalizations arise. Filippov’s concept
is good for control and for dry friction mechanics [10]. A very different approach
by DiPerna and Lions is good for PDE and fluid mechanics [2].

2. The Main Theorems

Let E stand for a Fréchet space. Its topology is defined by a collection of
seminorms {∥ · ∥n}n∈N.

Recall that such a space is completely metrizable by the following metrics

ρ(x, y) =

∞∑
k=1

1

2k
min{1, ∥x− y∥k}.

Assume that the space E possesses an unconditional Schauder basis {ek}k∈N. Recall
several definitions.

Definition 1. A sequence {ek}k∈N ⊂ E is called a Schauder basis if for every
x ∈ E there is a unique sequence of scalars {xk}k∈N such that

x =

∞∑
k=1

xkek. (2.1)

This series is convergent in the topology of E.
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We shall say that {ek}k∈N is an unconditional basis if for any x ∈ E and for
any permutation π : N → N the sum

∞∑
k=1

xπ(k)eπ(k)

is convergent.

Introduce a notation IT = [0, T ], T > 0.
Equip the space E with a partial order ≪ as follows

x =

∞∑
k=1

xkek ≪ y =

∞∑
k=1

ykek ⇐⇒ xi ≤ yi, i ∈ N.

Definition 2. We shall say that a function g : E → R is left continuous if for
all x̃ ∈ E and for all sequences

xk → x̃, xk ≪ xk+1, k ∈ N

one has

lim
k→∞

g(xk) = g(x̃).

The main object of our study is the following initial value problem

ẋ(t) = f
(
t, x(t)

)
=

∞∑
k=1

fk
(
t, x(t)

)
ek, x(0) = x̂ ∈ E. (2.2)

Here the function f : IT × E → E is such that all the functions fk : IT × E → R
are left continuous in the second argument when the first one is fixed.

For any fixed x the function t 7→ f(t, x) is integrable on IT . For details on the
Lebesgue integrable functions with values in locally convex spaces see [7].

Assume that there exists an element C =
∑∞
k=1 Ckek ∈ E such that for any

x ∈ E the following inequality holds

f(t, x) ≪ C. (2.3)

Assume that there exists an element x∗ ∈ E such that the following inequality
holds

x∗ ≪ x̂+

∫ t

0

f(s, x∗)ds, t ∈ IT . (2.4)

Definition 3. We shall say that a function x ∈ C(IT , E) is a solution to IVP
(2.2) if a function t 7→ f(t, x(t)) is integrable in IT and the following equation

x(t) = x̂+

∫ t

0

f
(
s, x(s)

)
ds, t ∈ IT

is satisfied.

Theorem 1. In addition to the hypotheses above assume that f is monotone:

x≪ y =⇒ f(t, x) ≪ f(t, y), ∀x, y ∈ E, ∀t ∈ IT . (2.5)

Then problem (2.2) has a solution x(t).

Theorem 1 is proved in section 3.2.
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Theorem 2. Assume in addition that E is a reflexive space. Then for almost
all t the solution x(t) from theorem 1 is weakly differentiable that is there exists
ẋ(t) ∈ E such that for almost all t one has(

ψ,
x(t+ h)− x(t)

h

)
→ (ψ, ẋ(t)), h→ 0, h ̸= 0, ∀ψ ∈ E′

and
ẋ(t) = f(t, x(t)).

Theorem 2 is proved in section 3.3.

Remark 1. The assertions of theorems 1, 2 remain valid if the functions fk
are right continuous in the second argument.

Moreover if in formulas (2.3), (2.4) one replaces ”≪” with ”≫” and ”f(t, x) ≪
f(t, y)” with ”f(t, x) ≫ f(t, y)” in (2.5) then both theorems hold.

3. Proofs of the Theorems

We denote all inessential positive constants by the same letter c.

3.1. Auxiliary Facts. The following theorem is essentially based on the as-
sumption that the Schauder basis is unconditional. This theorem generalizes the
corresponding result for Banach spaces [6].

Theorem 3 ([9]). Fix a sequence λ = {λj}j∈N ∈ ℓ∞. Then

Mλx =

∞∑
k=1

λkxkek, x =

∞∑
k=1

xkek ∈ E

is a bounded linear operator of E to E and for any number i′ there exists a number
i and a positive constant c both independent on λ such that

∥Mλx∥i′ ≤ c∥λ∥ℓ∞ · ∥x∥i, ∀x ∈ E.

Particularly this theorem implies

y =

∞∑
k=1

ykek ∈ E =⇒ |y| :=
∞∑
k=1

|yk|ek ∈ E.

Other consequence of this theorem is as follows.

Lemma 1. Assume that constant vectors

a =

∞∑
k=1

akek, b =

∞∑
k=1

bkek ∈ E

are such that a≪ b. Then for any sequence of reals yk, ak ≤ yk ≤ bk an element

y =

∞∑
k=1

ykek ∈ E

is well defined.

Indeed,
y = Mαa+Mβb,

where
α = {αk}, β = {βk} ∈ ℓ∞, αk + βk = 1, αk, βk ≥ 0.
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Lemma 2. Assume that constant vectors

a =

∞∑
k=1

akek, b =

∞∑
k=1

bkek ∈ E

are such that a≪ b. Then the interval

[a, b] := {x ∈ E | a≪ x≪ b}
is a compact set.

Moreover for any i′ ∈ N there exists i ∈ N and a positive constant c > 0 such
that

x ∈ [a, b] =⇒ ∥x∥i′ ≤ c(∥a+ b∥i′ + ∥a− b∥i). (3.1)

The constant c does not depend on a, b.

Proof of lemma 2. Let us shift the set [a, b] and consider a set

J = [a− s, b− s], s =
a+ b

2
.

The set [a, b] is compact iff the set J is compact.
Consider a projection Pny =

∑n
k=1 ykek. Each set

Kn = Pn(J) ⊂ J

is compact since it is a closed and bounded subset of Rn.
Show that the sets {Kn} form ε-nets in J .
Indeed, take any element y ∈ J and present it as follows

y = Pny + qn, qn =

∞∑
k=n+1

ykek, |yk| ≤ rk =
bk − ak

2
.

A series Rn =
∑∞
k=n+1 rkek ∈ E is a tail of the expansion of the element

(b− a)/2 and thus for all i it follows that ∥Rn∥i → 0. Observe that

qn = MλRn,

where λ = {λj}, λj = yj/rj provided rj ̸= 0 and λj = 0 otherwise.
Theorem 3 implies that for any i′ there exists i such that

∥qn∥i′ = ∥MλRn∥i′ ≤ c∥Rn∥i → 0. (3.2)

The limit in the last part of formula (3.2) is uniform in y ∈ J . This proves the
lemma in the part of compactness.

From the formulas above it also follows that y = MλR0, y ∈ J,

∥y∥i′ ≤ c∥R0∥i = c
∥∥∥a− b

2

∥∥∥
i
.

This readily implies estimate (3.1).
Lemma 2 is proved.
Introduce linear functions ej : E → R by the formula ej(y) = yj . These func-

tions are continuous [3].

Lemma 3. Let W ⊂ E be a chain (linearly ordered set) with an upper bound
w ∈ E.

Then the element

supW :=

∞∑
k=1

sup{ek(W )}ek ∈ E
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is well defined and supW ≪ w.

Indeed, the assertion follows from lemma 1: take any x ∈ W ; then supW ∈
[x,w].

Lemma 4. Let a function F : IT × E → R be left continuous in the second
argument and a function t 7→ F (t, x) be integrable on IT for each x ∈ E.

Suppose also that F is monotone:

x≪ y =⇒ F (t, x) ≤ F (t, y), ∀t ∈ IT .

Assume that a function u : IT → E,

u(t) =

∞∑
k=1

uk(t)ek

is such that all the functions uk : IT → R are integrable and for some a, b ∈
E, a≪ b and for all t ∈ IT one has

u(t) ∈ [a, b].

Then a mapping t 7→ F (t, u(t)) is integrable on IT .

Proof of lemma 4. From [4] we know that for each k there exists a sequence
φk,j(t) of simple functions such that

ak ≤ φk,j ≤ φk,j+1 ≤ bk, a =

∞∑
r=1

arer, b =

∞∑
r=1

brer

and φk,j → uk pointwise for each t ∈ IT as j → ∞.
Introduce the following functions

[a, b] ∋ Uj(t) =

j∑
k=1

φk,j(t)ek +

∞∑
r=j+1

arer, Fj(t) = F (t, Uj(t)).

Each function Uj has a finite set of values in E and Uj ≪ Uj+1. Thus Fj : IT → E
is integrable.

Let us show that Uj → u pointwise in E. Indeed, consider an estimate:

∥Uj(t)− u(t)∥i ≤
∥∥∥ N∑
k=1

(φk,j(t)− uk(t))ek

∥∥∥
i

+
∥∥∥ j∑
k=N+1

(φk,j(t)− uk(t))ek +

∞∑
k=j+1

(ak − uk(t))ek

∥∥∥
i
, j > N.

The first summand in the right hand side of this formula vanishes as j → ∞. By
lemma 2 the second summand is estimated from above in terms of∥∥∥ j∑

k=N+1

akek

∥∥∥
i1
,

∥∥∥ j∑
k=N+1

akek

∥∥∥
i2
,

∥∥∥ j∑
k=N+1

bkek

∥∥∥
i1
,

∥∥∥ j∑
k=N+1

bkek

∥∥∥
i2

and ∥∥∥ ∞∑
k=j+1

akek

∥∥∥
i1
,

∥∥∥ ∞∑
k=j+1

akek

∥∥∥
i2
,

∥∥∥ ∞∑
k=j+1

bkek

∥∥∥
i1
,

∥∥∥ ∞∑
k=j+1

bkek

∥∥∥
i2
.

These terms vanish as N → ∞.
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So that Fj(t) → F (t, u(t)) pointwise. On the other hand

F (t, a) ≤ Fj(t) ≤ F (t, b).

Therefore the assertion of the lemma follows from the Dominated convergence the-
orem.

Lemma 4 is proved.

Lemma 5. Take a function u : IT → [a, b] ⊂ E,

u(t) =

∞∑
k=1

uk(t)ek

with integrable uk. Then a function t 7→ f(t, u(t)) is integrable in IT .

Indeed, from lemma 4 we know that the functions fk(·, u(·)) : IT → R are
integrable and fk(t, a) ≤ fk(t, u(t)) ≤ fk(t, b).

Introduce functions

ϕn(·) =
n∑
k=1

fk(·, u(·))ek

and observe that ϕn(·) → f(·, u(·)) pointwise in E.
The functions ϕn are integrable. Moreover,

Mλnf(t, a) ≪ ϕn(t) ≪ Mλnf(t, b), λn = (1, . . . , 1︸ ︷︷ ︸
n times

, 0, 0, . . .)

and from lemma 2 and theorem 3 it follows that for any i ∈ N there are i′, i′′ ∈ N
and a constant c > 0 such that for all t one has

∥ϕn(t)∥i ≤ c(∥f(t, a)∥i′ + ∥f(t, b)∥i′ + ∥f(t, a)∥i′′ + ∥f(t, b)∥i′′).
The function in the right side of this inequality is integrable by the statement of
the problem.

The Dominated convergence theorem concludes the proof.

3.2. Proof of Theorem 1. Here we employ a version of N. Bourbaki’s famous
idea.

Introduce a set

S =
{
u(t) =

∞∑
k=1

uk(t)ek ∈ E
∣∣∣uk are lower semicontinuous,

x∗ ≪ u(t) ≪ Φ(u)(t), t ∈ IT

}
,

where

Φ(u)(t) = x̂+

∫ t

0

f(s, u(s))ds.

The set S is not empty since x∗ ∈ S.
By formula (2.3) if u ∈ S then one has

Φ(u)(t) ∈ [x∗, x̂+ T |C|], u(t) ∈ [x∗, x̂+ T |C|], t ∈ IT . (3.3)

Observe also that Φ(S) ⊂ S. Indeed, this follows by lemma 5 from the first inclusion
of (3.3) and monotonicity of the mapping f .

The set S is partially ordered by the following binary relation. For any u, v ∈ S
by definition put

u ≺ v ⇐⇒ u(t) ≪ v(t) ∀t ∈ IT .
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Let W ⊂ S be a chain.
By lemma 3 a function w∗(t) = (supW )(t) is correctly defined. We then obtain

w∗(t) =

∞∑
k=1

w∗
k(t)ek ∈ [x∗, x̂+ T |C|].

From [3] we know that all the functions w∗
k are lower semicontinuous.

Furthermore

W ∋ w(t) ≪ w∗(t) =⇒ f(t, w(t)) ≪ f(t, w∗(t))

=⇒
∫ t

0

f(s, w(s))ds≪
∫ t

0

f(s, w∗(s))ds.

And thus

w(t) ≪ x̂+

∫ t

0

f(s, w(s))ds≪ x̂+

∫ t

0

f(s, w∗(s))ds.

The last estimate holds for all w ∈W . This implies

w∗(t) ≪ x̂+

∫ t

0

f(s, w∗(s))ds

and w∗ ∈ S. Therefore w∗ is an upper bound for W . Thus each chain of S has an
upper bound. By the Zorn lemma S has a maximal element, say x(t). Therefore
one obtains

x(·) ≺ Φ(x(·)) ∈ S =⇒ x(·) = Φ(x(·))
and this maximal element is the desired solution to problem (2.2).

The theorem is proved.

3.3. Proof of Theorem 2. Recall that a function w : IT → R is absolutely
continuous iff it can be presented in the form

w(t) =

∫ t

0

p(s)ds, p ∈ L1(IT ).

In this case the classical derivative ẇ exists for almost all t and

ẇ(t) = p(t) almost everywhere.

From lemma 5 we know that f(·, x(·)) ∈ L1(IT , E). Thus

(ψ, x(t)) = (ψ, x̂) +
(
ψ,

∫ t

0

f(s, x(s))ds
)
= (ψ, x̂) +

∫ t

0

(
ψ, f(s, x(s))

)
ds

is an absolutely continuous function and

(ψ, x(t+ h))− (ψ, x(t))

h
=

(
ψ,
x(t+ h)− x(t)

h

)
, h ̸= 0. (3.4)

For almost all t one has

d

dt
(ψ, x(t)) =

(
ψ, f(t, x(t))

)
. (3.5)

The space E is separable so that E′′ is also separable and thus E′ is separable.
Let Ψ ⊂ E′ be a countable dense set.
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Repeating the argument above we obtain f(t, x(t)) ∈ [f(t, x∗), C] and for any
i and for almost all t we have∥∥∥ 1

h

∫ t+h

t

f(s, x(s))ds
∥∥∥
i
≤ 1

|h|

∣∣∣ ∫ t+h

t

∥f(s, x(s))∥ids
∣∣∣

≤ 1

|h|

∣∣∣ ∫ t+h

t

c̃i
(
∥f(s, x∗) + C∥i + ∥f(s, x∗)− C∥i′

)
ds
∣∣∣ ≤ ci(t). (3.6)

Here c̃i is a positive constant.
Let Θψ be a set of values t ∈ IT for those formula (3.5) does not hold. The

measure of Θψ is equal to zero so that the measure of a set

Θ =
⋃
ψ∈Ψ

Θψ

equals zero as well.
By the same reason a set

Θ̃ = Θ ∪ {t for those formula (3.6) does not hold}
is of measure zero too.

Introduce a set I ′T = IT \Θ̃. Consider an element

Xt,h =
x(t+ h)− x(t)

h

as a linear function on E′.
For each t ∈ I ′ one therefore obtains ∥Xt,h∥i ≤ ci(t).
Fix t ∈ I ′T . From formula (3.4) for any ψ ∈ Ψ one gets

(ψ,Xt,h) →
d

dt
(ψ, x(t)), h→ 0.

From the Banach-Steinhaus theorem [3] it follows that the limit

(q(t), ψ) = lim
h→0

(ψ,Xt,h)

exists for all ψ ∈ E′. For each t ∈ I ′T the function q(t) ∈ E′′. By reflexivity of E
we can regard this as q(t) ∈ E and put ẋ = q.

The theorem is proved.
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