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Abstract. We establish the existence in the sense of sequences of solutions for certain
systems of integro-differential equations which involve the drift terms and the square root of
the one dimensional negative Laplace operator, on the whole real line or on a finite interval
with periodic boundary conditions in the corresponding H2 spaces. The argument is based on
the fixed point technique when the elliptic systems contain first order differential operators
with and without Fredholm property. It is proven that, under the reasonable technical
conditions, the convergence in L1 of the integral kernels yields the existence and convergence
in H2 of the solutions. We emphasize that the study of the systems is more complicated
than of the scalar case and requires to overcome more cumbersome technicalities.
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1 Introduction

Let us recall that a linear operator L acting from a Banach space E into another Banach
space F satisfies the Fredholm property if its image is closed, the dimension of its kernel
and the codimension of its image are finite. Consequently, the problem Lu = f is solvable
if and only if φi(f) = 0 for a finite number of functionals φi from the dual space F ∗. Such
properties of the Fredholm operators are broadly used in many methods of the linear and
nonlinear analysis.

Elliptic equations in bounded domains with a sufficiently smooth boundary satisfy the
Fredholm property if the ellipticity condition, proper ellipticity and Lopatinskii conditions
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are fulfilled (see e.g. [1], [9], [23], [26]). This is the main result of the theory of linear
elliptic problems. In the situation of unbounded domains, these conditions may not be
sufficient and the Fredholm property may not be satisfied. For instance, the Laplace operator,
Lu = ∆u, in Rd fails to satisfy the Fredholm property when considered in Hölder spaces,
L : C2+α(Rd) → Cα(Rd), or in Sobolev spaces, L : H2(Rd) → L2(Rd).

Linear elliptic equations in unbounded domains satisfy the Fredholm property if and only
if, in addition to the conditions listed above, the limiting operators are invertible (see [27]).
In some trivial cases, the limiting operators can be constructed explicitly. For example, if

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R,

where the coefficients of the operator have limits at infinity,

a± = lim
x→±∞

a(x), b± = lim
x→±∞

b(x), c± = lim
x→±∞

c(x),

the limiting operators are given by:

L±u = a±u
′′ + b±u

′ + c±u.

Since the coefficients are constants, the essential spectrum of the operator, that is the set
of complex numbers λ for which the operator L− λ does not satisfy the Fredholm property,
can be explicitly found by means of the Fourier transform:

λ±(ξ) = −a±ξ
2 + b±iξ + c±, ξ ∈ R.

The invertibility of the limiting operators is equivalent to the condition that the origin does
not belong to the essential spectrum.

In the case of general elliptic equations, the same assertions hold true. The Fredholm
property is satisfied if the essential spectrum does not contain the origin or if the limiting
operators are invertible. However, such conditions may not be explicitly written.

In the case of non-Fredholm operators the usual solvability relations may not be appli-
cable and the solvability conditions are, in general, not known. There are certain classes
of operators for which the solvability conditions are obtained. We illustrate them with the
following example. Consider the equation

Lu ≡ ∆u+ au = f (1.1)

in Rd, where a is a positive constant. Such operator L coincides with its limiting operators.
The homogeneous problem has a nontrivial bounded solution. Thus, the Fredholm property
is not satisfied. However, since the operator has constant coefficients, we can apply the
Fourier transform and find the solution explicitly. The solvability conditions can be formu-
lated as follows. If f ∈ L2(Rd) and xf ∈ L1(Rd), then there exists a solution of this problem
in H2(Rd) if and only if

(
f(x),

eipx

(2π)
d
2

)

L2(Rd)

= 0, p ∈ Sd√
a a.e.

2



(see [34]). Here Sd√
a
denotes the sphere in Rd of radius

√
a centered at the origin. There-

fore, though the operator fails to satisfy the Fredholm property, the solvability relations are
formulated analogously. However, this similarity is only formal because the range of the
operator is not closed.

In the case of the operator with a scalar potential,

Lu ≡ ∆u+ a(x)u = f,

the Fourier transform is not directly applicable. Nevertheless, the solvability conditions in R3

can be obtained by a rather sophisticated application of the theory of self-adjoint operators
(see [31]). As before, the solvability relations are formulated in terms of the orthogonality
to the solutions of the homogeneous adjoint equation. There are several other examples of
linear elliptic non Fredholm operators for which the solvability relations can be derived (see
[13], [17], [27], [28], [31], [33], [34]).

The solvability conditions play a significant role in the analysis of the nonlinear elliptic
equations. In the case of non-Fredholm operators, in spite of some progress in the understand-
ing of the linear problems, there exist only few examples where the nonlinear non-Fredholm
operators are analyzed (see [8], [12], [15], [32], [34], [37]). The article [10] is devoted to
the studies of the finite and infinite dimensional attractors for evolution equations of math-
ematical physics. The large time behavior of solutions of a class of fourth-order parabolic
equations defined on unbounded domains using the Kolmogorov ε-entropy as a measure was
studied in [11]. In [18] the authors consider the attractor for a nonlinear reaction-diffusion
system in an unbounded domain in R3. The articles [19] and [25] deal with the understand-
ing of the Fredholm and properness properties of the quasilinear elliptic systems of second
order and of the operators of this kind on RN . In [20] the authors establish the exponential
decay and investigate the Fredholm properties in second order quasilinear elliptic systems.
In the present work we consider another class of stationary nonlinear systems of equations
for which the Fredholm property may not be satisfied:

−
√

− d2

dx2
uk+bk

duk

dx
+akuk+

∫

Ω

Gk(x−y)Fk(u1(y), u2(y), ..., uN(y), y)dy = 0, x ∈ Ω, (1.2)

where ak ≥ 0, bk ∈ R, bk 6= 0 are the constants, 1 ≤ k ≤ N, N ≥ 2 and Ω ⊆ R. Here and
throughout the article the vector function

u := (u1, u2, ..., uN)
T ∈ RN . (1.3)

The nonlocal operator

√
− d2

dx2
: H1(Ω) → L2(Ω) is defined by means of the spectral calcu-

lus and is actively used, for example in the studies of the superdiffusion problems (see e.g.
[35], [36] and the references therein). Superdiffusion can be described as a random process
of particle motion characterized by the probability density distribution of the jump length.
The moments of this density distribution are finite in the case of the normal diffusion, but
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this is not the case for the superdiffusion. Asymptotic behavior at the infinity of the prob-
ability density function determines the value of the power of the negative Laplace operator
(see [24]). For the simplicity of the presentation we restrict ourselves to the one dimensional
situation (the multidimensional cases are more technical and will be considered in our forth-
coming article). The study of the solvability of the integro- differential system (1.2) is more
complicated than in the single nonlocal equation case covered in [16]. It requires the use of
the Sobolev spaces for the vector functions, which is more cumbersome, especially in the sit-
uation on the finite interval with periodic boundary conditions, where we use the constrained
subspaces. Moreover, in the argument in our system case we use the auxiliary expressions
(5.4), (5.10), (5.27), (5.32) depending on the additional index 1 ≤ k ≤ N, N ≥ 2, which is an
extra technicality. In the population dynamics the integro-differential equations describe the
models with the intra-specific competition and the nonlocal consumption of resources (see
e.g. [2], [4]). We use the explicit form of the solvability conditions and study the existence
of solutions of this nonlinear system. The studies of the solutions of the integro-differential
problems with the drift terms are crucial for the understanding of the emergence and propa-
gation of patterns in the theory of speciation (see [29]). The solvability of the linear equation
containing the Laplacian with the transport term was considered in [33], see also [5]. In
the situation when the drift terms are absent, namely when bk = 0, 1 ≤ k ≤ N , the system
analogous to (1.2) was discussed in [36] (see also [35]). Verification of biomedical processes
with anomalous diffusion, transport and interaction of species was accomplished in [14].
Existence of nontrivial steady states for populations structured with respect to space and a
continuous trait was established in [3]. Trend to equilibrium for reaction-diffusion systems
arising from complex balanced chemical reaction networks was studied in [7].

2 Formulation of the results

The technical assumptions of the present article will be analogical to the ones of [16],
adapted to the work with vector functions. It is also more difficult to perform the analysis in
the Sobolev spaces for vector functions, especially in the system on our finite interval with
periodic boundary conditions when the constraints are imposed on some of the components.
The nonlinear part of problem (1.2) will satisfy the following regularity conditions.

Assumption 1. Let 1 ≤ k ≤ N . Functions Fk(u, x) : RN × Ω → R are satisfying the
Caratheodory condition (see [22]), so that

√√√√
N∑

k=1

F 2
k (u, x) ≤ K|u|RN + h(x) for u ∈ RN , x ∈ Ω (2.1)

with a constant K > 0 and h(x) : Ω → R+, h(x) ∈ L2(Ω). Furthermore, they are Lipschitz
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continuous functions, so that for any u(1),(2) ∈ RN , x ∈ Ω:
√√√√

N∑

k=1

(Fk(u(1), x)− Fk(u(2), x))2 ≤ L|u(1) − u(2)|RN , (2.2)

with a constant L > 0.

Here and further down the norm of a vector function given by (1.3) is:

|u|RN :=

√√√√
N∑

k=1

u2
k.

The work [6] deals with the solvability of a local elliptic problem in a bounded domain in
RN . The nonlinear function involved there was allowed to have a sublinear growth. In order
to establish the solvabity of (1.2), we will use the auxiliary system with 1 ≤ k ≤ N , namely

√
− d2

dx2
uk − bk

duk

dx
− akuk =

∫

Ω

Gk(x− y)Fk(v1(y), v2(y), ..., vN(y), y)dy, (2.3)

where ak ≥ 0, bk ∈ R, bk 6= 0 are the constants. Let us denote

(f1(x), f2(x))L2(Ω) :=

∫

Ω

f1(x)f̄2(x)dx, (2.4)

with a slight abuse of notations when these functions are not square integrable, like for
instance those involved in orthogonality relations (5.6) below. Indeed, if f1(x) ∈ L1(Ω) and
f2(x) ∈ L∞(Ω), then the integral in the right side of (2.4) is well defined. In the first part of
the article we consider the situation on the whole real line, Ω = R, so that the appropriate
Sobolev space is equipped with the norm

‖φ‖2H2(R) := ‖φ‖2L2(R) +

∥∥∥∥
d2φ

dx2

∥∥∥∥
2

L2(R)

. (2.5)

Then for a vector function given by (1.3), we have

‖u‖2H2(R,RN ) :=
N∑

k=1

‖uk‖2H2(R) =
N∑

k=1

{
‖uk‖2L2(R) +

∥∥∥∥
d2uk

dx2

∥∥∥∥
2

L2(R)

}
. (2.6)

We also use the norm

‖u‖2L2(R,RN ) :=
N∑

k=1

‖uk‖2L2(R).

By means of Assumption 1 above, we are not allowed to consider the higher powers of our
nonlinearities, than the first one. This is restrictive from the point of view of the applications.
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But this guarantees that our nonlinear vector function is a bounded and continuous map
from L2(Ω,RN ) to L2(Ω,RN). The main issue for our system of equations above is that in
the absence of the drift terms we were dealing with the self-adjoint, non Fredholm operators

√
− d2

dx2
− ak : H1(R) → L2(R), ak ≥ 0,

which was the obstacle to solve our system (see [35], [36]). The similar situations but in
linear problems, both self- adjoint and non self-adjoint containing the differential operators
without the Fredholm property have been treated extensively in recent years (see [27], [28],
[31], [33], [34]). However, the situation is different when the constants in the drift terms
bk 6= 0. For 1 ≤ k ≤ N , the operators

La, b, k :=

√
− d2

dx2
− bk

d

dx
− ak : H1(R) → L2(R), (2.7)

with ak ≥ 0 and bk ∈ R, bk 6= 0 contained in the left side of the system of equations (2.3)
are non-selfadjoint. By means of the standard Fourier transform, it can be trivially obtained
that the essential spectra of such operators La, b, k are given by

λa, b, k(p) = |p| − ak − ibkp, p ∈ R.

Clearly, for ak > 0 the operators La, b, k satisfy the Fredholm property, since their essential
spectra do not contain the origin. But when ak = 0, our operators La, b, k fail to satisfy the
Fredholm property because the origin belongs to their essential spectra. We establish that
under the reasonable technical conditions system (2.3) defines a map Ta, b : H2(R,RN) →
H2(R,RN), which is a strict contraction.

Theorem 1. Let Ω = R, N ≥ 2, 1 ≤ l ≤ N − 1, 1 ≤ k ≤ N, bk ∈ R, bk 6= 0 and
Gk(x) : R → R, Gk(x) ∈ W 1,1(R) and Assumption 1 holds.

I) Let ak > 0 for 1 ≤ k ≤ l.

II) Let ak = 0 for l+1 ≤ k ≤ N , additionally xGk(x) ∈ L1(R), orthogonality conditions (5.6)
hold and 2

√
πNa, bL < 1, where Na, b is defined in (5.5) below. Then the map v 7→ Ta,bv = u

on H2(R,RN) defined by system (2.3) has a unique fixed point v(a,b), which is the only solution
of the system of equations (1.2) in H2(R,RN).

The fixed point v(a,b) is nontrivial provided that for a certain 1 ≤ k ≤ N the intersection of

supports of the Fourier transforms of functions suppF̂k(0, x) ∩ suppĜk is a set of nonzero
Lebesgue measure in R.

Note that in the case I) of the theorem above, when ak > 0, as distinct part I) of Assumption
2 of [36] describing the problem without the drift term, the orthogonality conditions are
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not needed. Let us introduce the sequence of approximate systems of equations related to
problem (1.2) on the whole real line, namely

−
√

− d2

dx2
u
(m)
k + bk

du
(m)
k

dx
+ aku

(m)
k +

+

∫ ∞

−∞
Gk,m(x− y)Fk(u

(m)
1 (y), u

(m)
2 (y), ..., u

(m)
N (y), y)dy = 0 (2.8)

with the constants ak ≥ 0, bk ∈ R, bk 6= 0, 1 ≤ k ≤ N and m ∈ N. Each sequence of kernels
{Gk,m(x)}∞m=1 tends to Gk(x) as m → ∞ in the appropriate function spaces discussed below.
We establish that, under the given technical conditions, each of systems of equations (2.8)
has a unique solution u(m)(x) ∈ H2(R,RN), limiting system (1.2) possesses a unique solution
u(x) ∈ H2(R,RN), and u(m)(x) → u(x) in H2(R,RN) as m → ∞. This is the so-called
existence of solutions in the sense of sequences. In such case, the solvability conditions can
be formulated for the iterated kernels Gk,m. They yield the convergence of the kernels in
terms of the Fourier transforms (see the Appendix) and, consequently, the convergence of
the solutions (Theorems 2, 4). The analogical ideas in the sense of the standard Schrödinger
type operators were exploited in [13], [30]. Our second main statement is as follows.

Theorem 2. Let Ω = R, N ≥ 2, 1 ≤ l ≤ N − 1, 1 ≤ k ≤ N, bk ∈ R, bk 6= 0, m ∈
N, Gk,m(x) : R → R, Gk,m(x) ∈ W 1,1(R), so that Gk,m(x) → Gk(x) in W 1,1(R) as m → ∞.
Let Assumption 1 hold.

I) Let ak > 0 for 1 ≤ k ≤ l.

II) Let ak = 0 for l + 1 ≤ k ≤ N . Assume that xGk,m(x) ∈ L1(R), xGk,m(x) → xGk(x)
in L1(R) as m → ∞, orthogonality conditions (5.12) are valid along with upper bound
(5.13). Then each system (2.8) possesses a unique solution u(m)(x) ∈ H2(R,RN), and
limiting problem (1.2) admits a unique solution u(x) ∈ H2(R,RN), so that u(m)(x) → u(x)
in H2(R,RN) as m → ∞.

The unique solution u(m)(x) of each system (2.8) is nontrivial provided that for a certain 1 ≤
k ≤ N the intersection of supports of the Fourier images of functions suppF̂k(0, x)∩suppĜk,m

is a set of nonzero Lebesgue measure in R. Similarly, the unique solution u(x) of limiting

system (1.2) does not vanish identically on the real line if suppF̂k(0, x) ∩ suppĜk is a set of
nonzero Lebesgue measure in R for some 1 ≤ k ≤ N .

The second part of the article is devoted to the studies of the analogical system of equations
on the finite interval Ω = I := [0, 2π] with periodic boundary conditions. The appropriate
function space is given by

H2(I) = {v(x) : I → R | v(x), v′′(x) ∈ L2(I), v(0) = v(2π), v′(0) = v′(2π)}.
We aim at uk(x) ∈ H2(I), 1 ≤ k ≤ l. For the technical purposes, we will use the following
auxiliary constrained subspace

H2
0 (I) = {v(x) ∈ H2(I) | (v(x), 1)L2(I) = 0}, (2.9)
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which is a Hilbert space as well (see e.g. Chapter 2.1 of [21]). The aim is to have uk(x) ∈
H2

0 (I), l + 1 ≤ k ≤ N . Similarly,

H1
0 (I) = {v(x) ∈ H1(I) | (v(x), 1)L2(I) = 0}.

The resulting space used to establish the existence in the sense of sequences of solutions
u(x) : I → RN of system (1.2) will be the direct sum of the spaces given above, namely

H2
c (I,R

N) = ⊕l
k=1H

2(I)⊕N
k=l+1 H

2
0 (I).

The corresponding Sobolev norm is given by

‖u‖2H2
c (I,R

N ) :=

N∑

k=1

{‖uk‖2L2(I) + ‖u′′
k‖2L2(I)},

with u(x) : I → RN . Another useful norm is

‖u‖2L2(I,RN ) :=
N∑

k=1

‖uk‖2L2(I).

We establish that system (2.3) in this case defines a map τa,b : H2
c (I,R

N) → H2
c (I,R

N).
This map will be a strict contraction under the stated technical conditions.

Theorem 3. Let Ω = I, N ≥ 2, 1 ≤ l ≤ N − 1, 1 ≤ k ≤ N, bk ∈ R, bk 6= 0

and Gk(x) : I → R, Gk(x) ∈ C(I),
dGk(x)

dx
∈ L1(I), Gk(0) = Gk(2π), Fk(u, 0) = Fk(u, 2π)

for u ∈ RN and Assumption 1 holds.

I) Let ak > 0 for 1 ≤ k ≤ l.

II) Let ak = 0 for l+1 ≤ k ≤ N , orthogonality relations (5.29) hold and 2
√
πNa, bL < 1 with

Na, b defined in (5.28). Then the map τa,bv = u on H2
c (I,R

N) defined by system of equations
(2.3) has a unique fixed point v(a,b), the only solution of system (1.2) in H2

c (I,R
N).

The fixed point v(a,b) is nontrivial on the interval I provided that the Fourier coefficients
Gk,nFk(0, x)n 6= 0 for some 1 ≤ k ≤ N and a certin n ∈ Z.

Remark 1. We use the constrained subspace H2
0 (I) in the direct sum of spaces H2

c (I,R
N),

such that the Fredholm operators

√
− d2

dx2
− bk

d

dx
: H1

0 (I) → L2(I) for l + 1 ≤ k ≤ N have

the trivial kernels.

To show the existence in the sense of sequences of solutions for our integro-differential system
of equations on the interval I, we consider the sequence of approximate systems, similarly to
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the situation on the whole real line with m ∈ N, 1 ≤ k ≤ N and the constants ak ≥ 0, bk ∈
R, bk 6= 0, so that

−
√

− d2

dx2
u
(m)
k + bk

du
(m)
k

dx
+ aku

(m)
k +

+

∫ 2π

0

Gk,m(x− y)Fk(u
(m)
1 (y), u

(m)
2 (y), ..., u

(m)
N (y), y)dy = 0. (2.10)

The final main statement of the article is as follows.

Theorem 4. Let Ω = I, N ≥ 2, 1 ≤ l ≤ N − 1, 1 ≤ k ≤ N, bk ∈ R, bk 6= 0, m ∈ N,

Gk,m(x) : I → R, Gk,m(0) = Gk,m(2π), Gk,m(x) ∈ C(I),
dGk,m(x)

dx
∈ L1(I),

so that

Gk,m(x) → Gk(x) in C(I),
dGk,m(x)

dx
→ dGk(x)

dx
in L1(I) as m → ∞,

Fk(u, 0) = Fk(u, 2π) for u ∈ RN . Let Assumption 1 hold.

I) Let ak > 0 for 1 ≤ k ≤ l.

II) Let ak = 0 for l+1 ≤ k ≤ N . Assume that orthogonality relations (5.34) are valid along
with upper bound (5.35). Then each system (2.10) possesses a unique solution u(m)(x) ∈
H2

c (I,R
N) and the limiting system of equations (1.2) has a unique solution u(x) ∈ H2

c (I,R
N),

so that u(m)(x) → u(x) in H2
c (I,R

N) as m → ∞.

The unique solution u(m)(x) of each system of equations (2.10) does not vanish identically on
the interval I provided that the Fourier coefficients Gk,m,nFk(0, x)n 6= 0 for some 1 ≤ k ≤ N

and a certain n ∈ Z. Similarly, the unique solution u(x) of limiting system (1.2) is nontrivial
on I if Gk,nFk(0, x)n 6= 0 for a certain 1 ≤ k ≤ N and some n ∈ Z.

Remark 2. In the work we deal with the real valued vector functions by means of the as-
sumptions on Fk(u, x), Gk,m(x) and Gk(x) contained in the integral terms of the approximate
and limiting systems of equations discussed above.

Remark 3. The significance of Theorems 2 and 4 of the article is the continuous dependence
of the solutions of our systems with respect to the integral kernels.

3 The Whole Real Line Case

Proof of Theorem 1. First we suppose that in the case of Ω = R for some v ∈ H2(R,RN)
there exist two solutions u(1),(2) ∈ H2(R,RN) of system (2.3). Then their difference w(x) :=
u(1)(x)− u(2)(x) ∈ H2(R,RN) will satisfy the homogeneous system of equations

√
− d2

dx2
wk − bk

dwk

dx
− akwk = 0, 1 ≤ k ≤ N.
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Since each operator La, b, k : H1(R) → L2(R) defined in (2.7) does not have any nontrivial
zero modes, w(x) vanishes identically in R.

Let us choose arbitrarily v(x) ∈ H2(R,RN) and apply the standard Fourier transform
(5.1) to both sides of system (2.3). Thus, we obtain

ûk(p) =
√
2π

Ĝk(p)f̂k(p)

|p| − ak − ibkp
, p2ûk(p) =

√
2π

p2Ĝk(p)f̂k(p)

|p| − ak − ibkp
, 1 ≤ k ≤ N, (3.1)

where f̂k(p) stands for the Fourier image of Fk(v(x), x). Evidently, we have the upper bounds

|ûk(p)| ≤
√
2πNa, b, k|f̂k(p)| and |p2ûk(p)| ≤

√
2πNa, b, k|f̂k(p)|, 1 ≤ k ≤ N.

Note that Na, b, k < ∞ by virtue of Lemma A1 of the Appendix without any orthogonality
conditions if ak > 0 and under orthogonality relation (5.6) for ak = 0. This allows us to
derive the estimate from above on the norm

‖u‖2H2(R,RN ) =
N∑

k=1

{‖ûk(p)‖2L2(R) + ‖p2ûk(p)‖2L2(R)} ≤ 4πN2
a, b

N∑

k=1

‖Fk(v(x), x)‖2L2(R) (3.2)

with Na, b defined in (5.5). Clearly, the right side of (3.2) is finite via inequality (2.1) of
Assumption 1 above since |v(x)|RN ∈ L2(R). Hence, for an arbitrary v(x) ∈ H2(R,RN)
there exists a unique solution u(x) ∈ H2(R,RN) of system (2.3) with its Fourier image given
by (3.1) and the map Ta,b : H

2(R,RN) → H2(R,RN) is well defined. This allows us to choose
arbitrary v(1),(2)(x) ∈ H2(R,RN), so that their images u(1),(2) = Ta,bv

(1),(2) ∈ H2(R,RN). By
means of (2.3), we have for 1 ≤ k ≤ N

√
− d2

dx2
u
(1)
k − bk

du
(1)
k

dx
− au

(1)
k =

∫ ∞

−∞
Gk(x− y)Fk(v

(1)
1 (y), v

(1)
2 (y), ..., v

(1)
N (y), y)dy, (3.3)

√
− d2

dx2
u
(2)
k − bk

du
(2)
k

dx
− au

(2)
k =

∫ ∞

−∞
Gk(x− y)Fk(v

(2)
1 (y), v

(2)
2 (y), ..., v

(2)
N (y), y)dy. (3.4)

We apply the standard Fourier transform (5.1) to both sides of systems (3.3) and (3.4). This
yields for 1 ≤ k ≤ N

û
(1)
k (p) =

√
2π

Ĝk(p)f̂
(1)
k (p)

|p| − ak − ibkp
, p2û

(1)
k (p) =

√
2π

p2Ĝk(p)f̂
(1)
k (p)

|p| − ak − ibkp
,

û
(2)
k (p) =

√
2π

Ĝk(p)f̂
(2)
k (p)

|p| − ak − ibkp
, p2û

(2)
k (p) =

√
2π

p2Ĝk(p)f̂
(2)
k (p)

|p| − ak − ibkp
.

Here f̂
(1)
k (p) and f̂

(2)
k (p) denote the Fourier transforms of Fk(v

(1)(x), x) and Fk(v
(2)(x), x)

respectively. Evidently, we have the upper bounds
∣∣∣û(1)

k (p)− û
(2)
k (p)

∣∣∣ ≤
√
2πNa, b, k

∣∣∣f̂ (1)
k (p)− f̂

(2)
k (p)

∣∣∣,

10



∣∣∣p2û(1)
k (p)− p2û

(2)
k (p)

∣∣∣ ≤
√
2πNa, b, k

∣∣∣f̂ (1)
k (p)− f̂

(2)
k (p)

∣∣∣,

where 1 ≤ k ≤ N . This allows us to derive the inequality for the norms

‖u(1) − u(2)‖2H2(R,RN ) ≤ 4πN2
a, b

N∑

k=1

‖Fk(v
(1)(x), x)− Fk(v

(2)(x), x)‖2L2(R).

Obviously, v
(1),(2)
k (x) ∈ H2(R) ⊂ L∞(R) due to the Sobolev embedding. By means of (2.2)

of Assumption 1 we easily derive

‖Ta,bv1 − Ta,bv2‖H2(R,RN ) ≤ 2
√
πNa, bL‖v1 − v2‖H2(R,RN ). (3.5)

The constant in the right side of (3.5) is less than via the one of our assumptions. By virtue
of the Fixed Point Theorem, there exists a unique vector function v(a,b) ∈ H2(R,RN), such
that Ta,bv

(a,b) = v(a,b). This is the only solution of the system of equations (1.2) inH2(R,RN).
Suppose v(a,b)(x) vanishes identically in R. This will be a contradiction to our assumption
that for some 1 ≤ k ≤ N the Fourier transforms of Gk(x) and Fk(0, x) are nontrivial on a
set of nonzero Lebesgue measure on the real line.

We turn our attention to establishing the existence in the sense of sequences of the solutions
for our system of integro-differential equation on R.

Proof of Theorem 2. By means of the result of Theorem 1 above, each system of equations
(2.8) admits a unique solution u(m)(x) ∈ H2(R,RN), m ∈ N. Limiting system (1.2) has a
unique solution u(x) ∈ H2(R,RN) by virtue of Lemma A2 below along with Theorem 1. We
apply the standard Fourier transform (5.1) to both sides of problems (1.2) and (2.8). This
gives us for 1 ≤ k ≤ N, m ∈ N

ûk(p) =
√
2π

Ĝk(p)ϕ̂k(p)

|p| − ak − ibkp
, û

(m)
k (p) =

√
2π

Ĝk,m(p)ϕ̂k,m(p)

|p| − ak − ibkp
. (3.6)

Here ϕ̂k(p) and ϕ̂k,m(p) denote the Fourier transforms of Fk(u(x), x) and Fk(u
(m)(x), x)

respectively. Evidently,

∣∣∣û(m)
k (p)− ûk(p)

∣∣∣ ≤
√
2π

∥∥∥∥
Ĝk,m(p)

|p| − ak − ibkp
− Ĝk(p)

|p| − ak − ibkp

∥∥∥∥
L∞(R)

|ϕ̂k(p)|+

+
√
2π

∥∥∥∥
Ĝk,m(p)

|p| − ak − ibkp

∥∥∥∥
L∞(R)

|ϕ̂k,m(p)− ϕ̂k(p)|.

Hence,

‖u(m)
k − uk‖L2(R) ≤

√
2π

∥∥∥∥
Ĝk,m(p)

|p| − ak − ibkp
− Ĝk(p)

|p| − ak − ibkp

∥∥∥∥
L∞(R)

‖Fk(u(x), x)‖L2(R)+

11



+
√
2π

∥∥∥∥
Ĝk,m(p)

|p| − ak − ibkp

∥∥∥∥
L∞(R)

‖Fk(u
(m)(x), x)− Fk(u(x), x)‖L2(R).

By means of inequality (2.2) of Assumption 1 above we arrive at

√√√√
N∑

k=1

‖Fk(u(m)(x), x)− Fk(u(x), x)‖2L2(R) ≤ L‖u(m)(x)− u(x)‖L2(R,RN ). (3.7)

Obviously, u
(m)
k (x), uk(x) ∈ H2(R) ⊂ L∞(R) for 1 ≤ k ≤ N, m ∈ N via the Sobolev

embedding. We derive

‖u(m)(x)− u(x)‖2L2(R,RN ) ≤ 4π

N∑

k=1

∥∥∥∥
Ĝk,m(p)

|p| − ak − ibkp
− Ĝk(p)

|p| − ak − ibkp

∥∥∥∥
2

L∞(R)

‖Fk(u(x), x)‖2L2(R)

+4π

[
N

(m)
a, b

]2
L2‖u(m)(x)− u(x)‖2L2(R,RN ),

so that via (5.13), we have ‖u(m)(x)− u(x)‖2L2(R,RN ) ≤

≤ 4π

ε(2− ε)

N∑

k=1

∥∥∥∥
Ĝk,m(p)

|p| − ak − ibkp
− Ĝk(p)

|p| − ak − ibkp

∥∥∥∥
2

L∞(R)

‖Fk(u(x), x)‖2L2(R).

Upper bound (2.1) of Assumption 1 above gives us that Fk(u(x), x) ∈ L2(R), 1 ≤ k ≤ N for
u(x) ∈ H2(R,RN). Thus,

u(m)(x) → u(x), m → ∞ (3.8)

in L2(R,RN) by means of the result of Lemma A2 of the Appendix. Clearly, for 1 ≤ k ≤
N, m ∈ N we have

p2ûk(p) =
√
2π

p2Ĝk(p)ϕ̂k(p)

|p| − ak − ibkp
, p2û

(m)
k (p) =

√
2π

p2Ĝk,m(p)ϕ̂k,m(p)

|p| − ak − ibkp
.

Hence, we obtain

∣∣∣p2û(m)
k (p)− p2ûk(p)

∣∣∣ ≤
√
2π

∥∥∥∥
p2Ĝk,m(p)

|p| − ak − ibkp
− p2Ĝk(p)

|p| − ak − ibkp

∥∥∥∥
L∞(R)

|ϕ̂k(p)|+

+
√
2π

∥∥∥∥
p2Ĝk,m(p)

|p| − ak − ibkp

∥∥∥∥
L∞(R)

|ϕ̂k,m(p)− ϕ̂k(p)|.

Using inequality (3.7), we arrive at

∥∥∥∥
d2u

(m)
k

dx2
− d2uk

dx2

∥∥∥∥
L2(R)

≤
√
2π

∥∥∥∥
p2Ĝk,m(p)

|p| − ak − ibkp
− p2Ĝk(p)

|p| − ak − ibkp

∥∥∥∥
L∞(R)

‖Fk(u(x), x)‖L2(R)+
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+
√
2π

∥∥∥∥
p2Ĝk,m(p)

|p| − ak − ibkp

∥∥∥∥
L∞(R)

L‖u(m)(x)− u(x)‖L2(R,RN ).

By virtue of the result of Lemma A2 of the Appendix along with (3.8), we establish that

d2u(m)

dx2
→ d2u

dx2
in L2(R,RN), m → ∞.

Definition (2.6) of the norm implies that u(m)(x) → u(x) in H2(R,RN) as m → ∞.
We suppose that the unique solution u(m)(x) of the system of equations (2.8) studied

above vanishes on the whole real line for some m ∈ N. This will contradict to our assumption
above that for some 1 ≤ k ≤ N the Fourier transforms of Gk,m(x) and Fk(0, x) are nontrivial
on a set of nonzero Lebesgue measure on the real line. The similar reasoning holds for the
unique solution u(x) of limiting system of equations (1.2).

4 The Problem on the Finite Interval

Proof of Theorem 3. Evidently, each operator contained in the left side of the system of
equations (2.3)

La, b, k :=

√
− d2

dx2
− bk

d

dx
− ak : H1(I) → L2(I), 1 ≤ k ≤ l (4.1)

with the constants ak > 0, bk ∈ R, bk 6= 0 is Fredholm, non-selfadjoint. Its set of eigenvalues
is given by

λa, b, k(n) = |n| − ak − ibkn, n ∈ Z. (4.2)

Its eigenfunctions are the standard Fourier harmonics
einx√
2π

, n ∈ Z. When ak = 0, we will

exploit the analogous ideas in the constrained subspace (2.9) instead of H2(I). Clearly,
the eigenvalues of each operator La, b, k are simple, as distinct from the analogical situation
without the drift term, when the eigenvalues corresponding to n 6= 0 are two-fold degenerate
(see [36]).

Let us suppose that for a certain v(x) ∈ H2
c (I,R

N) there exist two solutions u(1),(2)(x) ∈
H2

c (I,R
N) of system (2.3) with Ω = I. Then the vector function w(x) := u(1)(x)− u(2)(x) ∈

H2
c (I,R

N) will satisfy the homogeneous system of equations

√
− d2

dx2
wk − bk

dwk

dx
− akwk = 0, 1 ≤ k ≤ N.

Because the operator La, b, k : H1(I) → L2(I) with ak > 0 for 1 ≤ k ≤ l discussed above
does not have any nontrivial zero modes, we obtain that w(x) is trivial in I.

13



Let us choose an arbitrary v(x) ∈ H2
c (I,R

N) and apply the Fourier transform (5.23) to
system (2.3) studied on the interval I. This gives us

uk,n =
√
2π

Gk,nfk,n

|n| − ak − ibkn
, n2uk,n =

√
2π

n2Gk,nfk,n

|n| − ak − ibkn
, 1 ≤ k ≤ N, n ∈ Z, (4.3)

where fk,n := Fk(v(x), x)n. We easily obtain the estimates from above

|uk,n| ≤
√
2πNa, b, k|fk,n|, |n2uk,n| ≤

√
2πNa, b, k|fk,n|.

Clearly, Na, b, k < ∞ under the stated conditions via the result of Lemma A3 of the Ap-
pendix. Therefore,

‖u‖2H2
c (I,R

N ) =

N∑

k=1

[ ∞∑

n=−∞
|uk,n|2 +

∞∑

n=−∞
|n2uk,n|2

]
≤ 4πN 2

a, b

N∑

k=1

‖Fk(v(x), x)‖2L2(I) (4.4)

with Na, b defined in (5.28). Evidently, the right side of (4.4) is finite via inequality (2.1)
of Assumption 1 for |v(x)|RN ∈ L2(I). Thus, for an arbitrary v(x) ∈ H2

c (I,R
N) there exists

a unique u(x) ∈ H2
c (I,R

N), which satisfies system (2.3) and its Fourier image is given by
(4.3). Therefore, the map τa,b : H

2
c (I,R

N) → H2
c (I,R

N) is well defined.
We consider any v(1),(2)(x) ∈ H2

c (I,R
N), so that their images under the map mentioned

above u(1),(2) = τa,bv
(1),(2) ∈ H2

c (I,R
N). By means of (2.3), we have for 1 ≤ k ≤ N that

√
− d2

dx2
u
(1)
k − bk

du
(1)
k

dx
− aku

(1)
k =

∫ 2π

0

Gk(x− y)Fk(v
(1)
1 (y), v

(1)
2 (y), ..., v

(1)
N (y), y)dy, (4.5)

√
− d2

dx2
u
(2)
k − bk

du
(2)
k

dx
− aku

(2)
k =

∫ 2π

0

Gk(x− y)Fk(v
(2)
1 (y), v

(2)
2 (y), ..., v

(2)
N (y), y)dy, (4.6)

where ak ≥ 0, bk ∈ R, bk 6= 0 are the contants. By virtue of Fourier transform (5.23) applied
to both sides of the systems of equations (4.5) and (4.6), we easily derive for 1 ≤ k ≤ N, n ∈
Z that

u
(1)
k,n =

√
2π

Gk,nf
(1)
k,n

|n| − ak − ibkn
, u

(2)
k,n =

√
2π

Gk,nf
(2)
k,n

|n| − ak − ibkn
,

n2u
(1)
k,n =

√
2π

n2Gk,nf
(1)
k,n

|n| − ak − ibkn
, n2u

(2)
k,n =

√
2π

n2Gk,nf
(2)
k,n

|n| − ak − ibkn
,

with f
(j)
k,n := Fk(v

(j)(x), x)n, j = 1, 2. Thus,

|u(1)
k,n − u

(2)
k,n| ≤

√
2πNa, b|f (1)

k,n − f
(2)
k,n|, |n2(u

(1)
k,n − u

(2)
k,n)| ≤

√
2πNa, b|f (1)

k,n − f
(2)
k,n|.

Hence, we estimate the norm as

‖u(1) − u(2)‖2H2
c (I,R

N ) =

N∑

k=1

[ ∞∑

n=−∞
|u(1)

k,n − u
(2)
k,n|2 +

∞∑

n=−∞
|n2(u

(1)
k,n − u

(2)
k,n)|2

]
≤
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≤ 4πN 2
a, b

N∑

k=1

‖Fk(v
(1)(x), x)− Fk(v

(2)(x), x)‖2L2(I).

Evidently, v
(1),(2)
k (x) ∈ H2(I) ⊂ L∞(I), 1 ≤ k ≤ N by means of the Sobolev embedding.

Using inequality (2.2) of Assumption 1, we derive

‖τa,bv(1) − τa,bv
(2)‖H2

c (I,R
N ) ≤ 2

√
πNa, bL‖v(1) − v(2)‖H2

c (I,R
N ). (4.7)

The constant in the right side of estimate (4.7) is less than due to the one of our assumptions.
Then the Fixed Point Theorem gives us the existence and uniqueness of a vector function
v(a,b) ∈ H2

c (I,R
N) satisfying τa,bv

(a,b) = v(a,b). This is the only solution of system (1.2)
in H2

c (I,R
N). If we suppose that v(a,b)(x) vanishes identically in I, we will obtain the

contradiction to our condition that Gk,nFk(0, x)n 6= 0 for a certain 1 ≤ k ≤ N and some
n ∈ Z.

Let us turn our attention to establishing the final main result of the work.

Proof of Theorem 4. Obviously, the limiting kernels Gk(x), 1 ≤ k ≤ N are periodic as well
on our interval I (see the argument of Lemma A4 of the Appendix). Each system (2.10)
admits a unique solution u(m)(x) ∈ H2

c (I,R
N), m ∈ N by means of the result of Theorem 3

above. The limiting system of equations (1.2) has a unique solution u(x) ∈ H2
c (I,R

N) due
to Lemma A4 below along with Theorem 3.

We apply Fourier transform (5.23) to both sides of systems (1.2) and (2.10). This gives
us

uk,n =
√
2π

Gk,nϕk,n

|n| − ak − ibkn
, u

(m)
k,n =

√
2π

Gk,m,nϕ
(m)
k,n

|n| − ak − ibkn
, (4.8)

with 1 ≤ k ≤ N, n ∈ Z, m ∈ N. Here ϕk,n and ϕ
(m)
k,n stand for the Fourier images

of Fk(u(x), x) and Fk(u
(m)(x), x) respectively under transform (5.23). We have a trivial

estimate from above

|u(m)
k,n − uk,n| ≤

√
2π

∥∥∥∥
Gk,m,n

|n| − ak − ibkn
− Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

|ϕk,n|+

+
√
2π

∥∥∥∥
Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

|ϕ(m)
k,n − ϕk,n|.

Thus,

‖u(m)
k − uk‖L2(I) ≤

√
2π

∥∥∥∥
Gk,m,n

|n| − ak − ibkn
− Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

‖Fk(u(x), x)‖L2(I)+

+
√
2π

∥∥∥∥
Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

‖Fk(u
(m)(x), x)− Fk(u(x), x)‖L2(I).
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Inequality (2.2) of Assumption 1 above implies that
√√√√

N∑

k=1

‖Fk(u(m)(x), x)− Fk(u(x), x)‖2L2(I) ≤ L‖u(m)(x)− u(x)‖L2(I,RN ). (4.9)

Evidently, u
(m)
k (x), uk(x) ∈ H2(I) ⊂ L∞(I), 1 ≤ k ≤ N due to the Sobolev embedding.

Obviously,

‖u(m)(x)− u(x)‖2L2(I,RN ) ≤ 4π
N∑

k=1

∥∥∥∥
Gk,m,n

|n| − ak − ibkn
− Gk,n

|n| − ak − ibkn

∥∥∥∥
2

l∞

‖Fk(u(x), x)‖2L2(I)+

+4π
[
N (m)

a, b

]2
L2‖u(m)(x)− u(x)‖2L2(I,RN ).

Hence, we arrive at ‖u(m)(x)− u(x)‖2
L2(I,RN ) ≤

≤ 4π

ε(2− ε)

N∑

k=1

∥∥∥∥
Gk,m,n

|n| − ak − ibkn
− Gk,n

|n| − ak − ibkn

∥∥∥∥
2

l∞

‖Fk(u(x), x)‖2L2(I).

Evidently, Fk(u(x), x) ∈ L2(I), 1 ≤ k ≤ N for u(x) ∈ H2
c (I,R

N) via inequality (2.1) of
Assumption 1. By means of the result of Lemma A4 of the Appendix we derive that

u(m)(x) → u(x), m → ∞ (4.10)

in L2(I,RN). Clearly,

|n2u
(m)
k,n − n2uk,n| ≤

√
2π

∥∥∥∥
n2Gk,m,n

|n| − ak − ibkn
− n2Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

|ϕk,n|+

+
√
2π

∥∥∥∥
n2Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

|ϕ(m)
k,n − ϕk,n|.

Using (4.9) we arrive at

∥∥∥∥
d2u

(m)
k

dx2
− d2uk

dx2

∥∥∥∥
L2(I)

≤
√
2π

∥∥∥∥
n2Gk,m,n

|n| − ak − ibkn
− n2Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

‖Fk(u(x), x)‖L2(I)+

+
√
2π

∥∥∥∥
n2Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

L‖u(m)(x)− u(x)‖L2(I,RN ).

By virtue of Lemma A4 along with (4.10), we obtain that
d2u(m)

dx2
→ d2u

dx2
as m → ∞ in

L2(I,RN). Therefore, u(m)(x) → u(x) in the H2
c (I,R

N) norm as m → ∞.
Suppose that u(m)(x) is trivial in the interval I for a certain m ∈ N. This will yield

a contradiction to our assumption that Gk,m,nFk(0, x)n 6= 0 for a certain 1 ≤ k ≤ N and
some n ∈ Z. The analogical reasoning holds for the solution u(x) of the limiting system of
equations (1.2).
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5 Appendix

Let Gk(x) be a function, Gk(x) : R → R, for which we denote its standard Fourier transform
using the hat symbol as

Ĝk(p) :=
1√
2π

∫ ∞

−∞
Gk(x)e

−ipxdx, p ∈ R. (5.1)

Clearly,

‖Ĝk(p)‖L∞(R) ≤
1√
2π

‖Gk(x)‖L1(R) (5.2)

and Gk(x) =
1√
2π

∫ ∞

−∞
Ĝk(q)e

iqxdq, x ∈ R. By means of (5.2), we have

‖pĜk(p)‖L∞(R) ≤
1√
2π

∥∥∥∥
dGk(x)

dx

∥∥∥∥
L1(R)

. (5.3)

For the technical purposes we will use the auxiliary quantities

Na, b, k := max
{∥∥∥ Ĝk(p)

|p| − ak − ibkp

∥∥∥
L∞(R)

,

∥∥∥ p2Ĝk(p)

|p| − ak − ibkp

∥∥∥
L∞(R)

}
, (5.4)

where ak ≥ 0, bk ∈ R, bk 6= 0 are the constants, 1 ≤ k ≤ N, N ≥ 2. Under the assumptions
of Lemma A1 below, all the quantities (5.4) will be finite, so that

Na, b := max1≤k≤NNa, b, k < ∞. (5.5)

The auxiliary lemmas below are the adaptations of the ones proved in [16] in order to study
the single integro-differential equation with drift and superdiffusion, analogical to system
(1.2). Let us provide them for the convenience of the readers.

Lemma A1. Let N ≥ 2, 1 ≤ k ≤ N, bk ∈ R, bk 6= 0 and Gk(x) : R → R, Gk(x) ∈ W 1,1(R)
and 1 ≤ l ≤ N − 1.

a) Let ak > 0 for 1 ≤ k ≤ l. Then Na, b, k < ∞.

b) Let ak = 0 for l+1 ≤ k ≤ N and additionally xGk(x) ∈ L1(R). Then N0, b, k < ∞ if and
only if

(Gk(x), 1)L2(R) = 0 (5.6)

is valid.

Proof. First of all, it can be trivially checked that in both cases a) and b) of the lemma,
under our assumptions the expressions

p2Ĝk(p)

|p| − ak − ibkp
∈ L∞(R), 1 ≤ k ≤ N. (5.7)
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Evidently, the functions
p

|p| − ak − ibkp
are bounded and pĜk(p) ∈ L∞(R) via inequality

(5.3) above, which yields (5.7). We turn our attention to establishing the result of the part
a) of our lemma. Let us estimate the expressions

|Ĝk(p)|√
(|p| − ak)2 + b2kp

2
, 1 ≤ k ≤ l. (5.8)

Clearly, the numerator of (5.8) can be bounded from above via (5.2) and the denominator
in (5.8) can be trivially estimated below by a finite, positive constant, so that

∣∣∣∣
Ĝk(p)

|p| − ak − ibkp

∣∣∣∣ ≤ C‖Gk(x)‖L1(R) < ∞

as assumed. Here and below C will stand for a finite, positive constant. This implies that
under the given conditions, if ak > 0 we have Na, b, k < ∞. In the cases of ak = 0, we will
use that

Ĝk(p) = Ĝk(0) +

∫ p

0

dĜk(s)

ds
ds.

Thus,

Ĝk(p)

|p| − ibkp
=

Ĝk(0)

|p| − ibkp
+

∫ p

0
dĜk(s)

ds
ds

|p| − ibkp
. (5.9)

Using definition (5.1) of the standard Fourier transform, we easily obtain

∣∣∣∣
dĜk(p)

dp

∣∣∣∣ ≤
1√
2π

‖xGk(x)‖L1(R).

Hence, ∣∣∣∣
∫ p

0
dĜk(s)

ds
ds

|p| − ibkp

∣∣∣∣ ≤
‖xGk(x)‖L1(R)√

2π(1 + b2k)
< ∞

due to our assumptions. Therefore, the expression in the left side of (5.9) is bounded if and

only if Ĝk(0) = 0, which is equivalent to orthogonality relation (5.6).

We introduce the following technical expressions, which will help us to study systems (2.8).

N
(m)
a, b, k := max

{∥∥∥ Ĝk,m(p)

|p| − ak − ibkp

∥∥∥
L∞(R)

,

∥∥∥ p2Ĝk,m(p)

|p| − ak − ibkp

∥∥∥
L∞(R)

}
, (5.10)

where ak ≥ 0, bk ∈ R, bk 6= 0 are the constants, 1 ≤ k ≤ N, N ≥ 2 and m ∈ N. Under
the conditions of Lemma A2 below, expressions (5.10) will be finite. This will enable us to
define

N
(m)
a, b := max1≤k≤NN

(m)
a, b, k < ∞ (5.11)
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with m ∈ N. We have the following technical proposition.

Lemma A2. Let m ∈ N, N ≥ 2, 1 ≤ k ≤ N, bk ∈ R, bk 6= 0 and Gk,m(x) : R →
R, Gk,m(x) ∈ W 1,1(R), so that Gk,m(x) → Gk(x) in W 1,1(R) as m → ∞ and 1 ≤ l ≤ N − 1.

a) Let ak > 0 for 1 ≤ k ≤ l.

b) Let ak = 0 for l + 1 ≤ k ≤ N and in addition xGk,m(x) ∈ L1(R), so that xGk,m(x) →
xGk(x) in L1(R) as m → ∞ and

(Gk,m(x), 1)L2(R) = 0, m ∈ N (5.12)

is valid. Let in addition
2
√
πN

(m)
a, bL ≤ 1− ε (5.13)

for all m ∈ N as well with a certain fixed 0 < ε < 1. Then, for all 1 ≤ k ≤ N , we have

Ĝk,m(p)

|p| − ak − ibkp
→ Ĝk(p)

|p| − ak − ibkp
, m → ∞, (5.14)

p2Ĝk,m(p)

|p| − ak − ibkp
→ p2Ĝk(p)

|p| − ak − ibkp
, m → ∞ (5.15)

in L∞(R), so that

∥∥∥∥
Ĝk,m(p)

|p| − ak − ibkp

∥∥∥∥
L∞(R)

→
∥∥∥∥

Ĝk(p)

|p| − ak − ibkp

∥∥∥∥
L∞(R)

, m → ∞, (5.16)

∥∥∥∥
p2Ĝk,m(p)

|p| − ak − ibkp

∥∥∥∥
L∞(R)

→
∥∥∥∥

p2Ĝk(p)

|p| − ak − ibkp

∥∥∥∥
L∞(R)

, m → ∞. (5.17)

Furthermore,
2
√
πNa, bL ≤ 1− ε. (5.18)

Proof. By means of inequality (5.2), we easily obtain for 1 ≤ k ≤ N that

‖Ĝk,m(p)− Ĝk(p)‖L∞(R) ≤
1√
2π

‖Gk,m(x)−Gk(x)‖L1(R) → 0, m → ∞ (5.19)

due to the one of our assumptions. Evidently, (5.16) and (5.17) will trivially follow from the
statements of (5.14) and (5.15) respectively by virtue of the standard triangle inequality.

We use the fact that the functions
p

|p| − ak − ibkp
∈ L∞(R) along with the analog of

bound (5.3). This yields

∣∣∣∣
p2Ĝk,m(p)

|p| − ak − ibkp
− p2Ĝk(p)

|p| − ak − ibkp

∣∣∣∣ ≤ C‖p[Ĝk,m(p)− Ĝk(p)]‖L∞(R) ≤
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≤ C√
2π

∥∥∥∥
dGk,m(x)

dx
− dGk(x)

dx

∥∥∥∥
L1(R)

.

Thus,

∥∥∥∥
p2Ĝk,m(p)

|p| − ak − ibkp
− p2Ĝk(p)

|p| − ak − ibkp

∥∥∥∥
L∞(R)

≤ C√
2π

∥∥∥∥
dGk,m(x)

dx
− dGk(x)

dx

∥∥∥∥
L1(R)

→ 0

as m → ∞ via the one of our assumptions, so that (5.15) is valid. Let us establish (5.14) in
the situation a) when ak > 0. For that purpose we need to consider

|Ĝk,m(p)− Ĝk(p)|√
(|p| − ak)2 + b2kp

2
, 1 ≤ k ≤ l. (5.20)

Evidently, the denominator in fraction (5.20) can be bounded from below by a positive
constant and the numerator in (5.20) can be estimated from above by means of (5.19).
Hence,

∥∥∥∥
Ĝk,m(p)

|p| − ak − ibkp
− Ĝk(p)

|p| − ak − ibkp

∥∥∥∥
L∞(R)

≤ C‖Gk,m(x)−Gk(x)‖L1(R) → 0

as m → ∞ due to the one of the assumptions, so that (5.14) is valid in the case a) of the
lemma. Then we turn our attention to proving (5.14) in the situation b) when ak = 0. In
this case orthogonality conditions (5.12) are valid as assumed. We easily derive that the
analogical statements will hold in the limit. Evidently,

|(Gk(x), 1)L2(R)| = |(Gk(x)−Gk,m(x), 1)L2(R)| ≤ ‖Gk,m(x)−Gk(x)‖L1(R) → 0

as m → ∞ by virtue of the one of our assumptions. Thus,

(Gk(x), 1)L2(R) = 0, l + 1 ≤ k ≤ N (5.21)

is valid. Obviously, we have

Ĝk(p) = Ĝk(0) +

∫ p

0

dĜk(s)

ds
ds, Ĝk,m(p) = Ĝk,m(0) +

∫ p

0

dĜk,m(s)

ds
ds,

with l + 1 ≤ k ≤ N, m ∈ N. Formulas (5.21) and (5.12) imply that

Ĝk(0) = 0, Ĝk,m(0) = 0, l + 1 ≤ k ≤ N, m ∈ N.

Hence,
∣∣∣∣
Ĝk,m(p)

|p| − ibkp
− Ĝk(p)

|p| − ibkp

∣∣∣∣ =
∣∣∣∣

∫ p

0

[
dĜk,m(s)

ds
− dĜk(s)

ds

]
ds

|p| − ibkp

∣∣∣∣. (5.22)
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Using the definition of the standard Fourier transform (5.1) we easily derive

∣∣∣∣
dĜk,m(p)

dp
− dĜk(p)

dp

∣∣∣∣ ≤
1√
2π

‖xGk,m(x)− xGk(x)‖L1(R).

This allows us to obtain the estimate from above on the right side of (5.22) as

‖xGk,m(x)− xGk(x)‖L1(R)√
2π(1 + b2k)

,

such that
∥∥∥∥
Ĝk,m(p)

|p| − ibkp
− Ĝk(p)

|p| − ibkp

∥∥∥∥
L∞(R)

≤ ‖xGk,m(x)− xGk(x)‖L1(R)√
2π(1 + b2k)

→ 0, m → ∞

as assumed. Therefore, (5.14) is valid in the case b) of the lemma when ak = 0. Evidently,
under the stated conditions we have

Na, b, k < ∞, N
(m)
a, b, k < ∞, m ∈ N, 1 ≤ k ≤ N, ak ≥ 0, bk ∈ R, bk 6= 0

by means of the result of Lemma A1 above. We have inequalities (5.13). An trivial limiting
argument using (5.16) and (5.17) gives us (5.18).

Consider the function Gk(x) : I → R, so that Gk(0) = Gk(2π). Its Fourier transform on our
finite interval is given by

Gk,n :=

∫ 2π

0

Gk(x)
e−inx

√
2π

dx, n ∈ Z, (5.23)

such that Gk(x) =

∞∑

n=−∞
Gk,n

einx√
2π

. Obviously, the upper bound

‖Gk,n‖l∞ ≤ 1√
2π

‖Gk(x)‖L1(I) (5.24)

is valid. Evidently, if our function is continuous on the interval I, we have the estimate from
above

‖Gk(x)‖L1(I) ≤ 2π‖Gk(x)‖C(I). (5.25)

The upper bound

‖nGk,n‖l∞ ≤ 1√
2π

∥∥∥∥
dGk(x)

dx

∥∥∥∥
L1(I)

(5.26)

trivially comes from (5.24). Analogously to the whole real line case, we define

Na, b, k := max

{∥∥∥∥
Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

,

∥∥∥∥
n2Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

}
, (5.27)
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where ak ≥ 0, bk ∈ R, bk 6= 0 are the constants, 1 ≤ k ≤ N, N ≥ 2. Let N0, b, k denote
(5.27) when ak vanishes. Under the conditions of Lemma A3 below, the expressions Na, b, k

will be finite. This will enable us to introduce

Na, b := max1≤k≤NNa, b, k < ∞. (5.28)

We have the following elementary statement.

Lemma A3. Let N ≥ 2, 1 ≤ k ≤ N, bk ∈ R, bk 6= 0, 1 ≤ l ≤ N − 1 and

Gk(x) : I → R, Gk(x) ∈ C(I),
dGk(x)

dx
∈ L1(I), Gk(0) = Gk(2π).

a) Let ak > 0 for 1 ≤ k ≤ l. Then Na, b, k < ∞.

b) If ak = 0 for l + 1 ≤ k ≤ N then N0, b, k < ∞ if and only if the orthogonality relation

(Gk(x), 1)L2(I) = 0 (5.29)

holds.

Proof. It can be easily checked that in both cases a) and b) of our lemma under the given
conditions we have

n2Gk,n

|n| − ak − ibkn
∈ l∞, 1 ≤ k ≤ N. (5.30)

Clearly,
n

|n| − ak − ibkn
∈ l∞ and nGk,n ∈ l∞ via inequality (5.26) along with the one of the

stated assumptions. Hence (5.30) is valid.
Let us establish the statement of the part a) of the lemma. For that purpose, we need

to consider the expression

|Gk,n|√
(|n| − ak)2 + b2kn

2
, 1 ≤ k ≤ l. (5.31)

Evidently, the denominator in (5.31) can be easily bounded from below by a positive constant.
The numerator in (5.31) can be trivially estimated from above by means of (5.24) along with
(5.25). Hence, Na, b, k < ∞ in the case when ak > 0. Let us demonstrate the validity of the
result of the lemma in the situation when ak = 0. Obviously,

∣∣∣∣
Gk,n

|n| − ibkn

∣∣∣∣, l + 1 ≤ k ≤ N

is bounded if and only if Gk,0 = 0. This is equivalent to orthogonality condition (5.29). In
this case we easily arrive at for l + 1 ≤ k ≤ N that

∣∣∣∣
Gk,n

|n| − ibkn

∣∣∣∣ ≤
1√
2π|n|

‖Gk(x)‖L1(I)√
1 + b2k

≤
√
2π

‖Gk(x)‖C(I)√
1 + b2k

< ∞
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by virtue of (5.24) and (5.25) under our assumptions.

In order to study the systems of equations (2.10), we will use

N (m)
a, b, k := max

{∥∥∥∥
Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

,

∥∥∥∥
n2Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

}
, (5.32)

where ak ≥ 0, bk ∈ R, bk 6= 0 are the constants, 1 ≤ k ≤ N, N ≥ 2 and m ∈ N. Under
the assumptions of Lemma A4 below, we have that all N (m)

a, b, k < ∞. This will allow us to
introduce

N (m)
a, b = max1≤k≤NN (m)

a, b, k, m ∈ N. (5.33)

We conclude the work with the following auxiliary proposition.

Lemma A4. Let m ∈ N, N ≥ 2, 1 ≤ k ≤ N, bk ∈ R, bk 6= 0, 1 ≤ l ≤ N − 1 and

Gk,m(x) : I → R, Gk,m(x) ∈ C(I),
dGk,m(x)

dx
∈ L1(I), Gk,m(0) = Gk,m(2π),

and

Gk,m(x) → Gk(x) in C(I),
dGk,m(x)

dx
→ dGk(x)

dx
in L1(I)

as m → ∞.

a) Let ak > 0 for 1 ≤ k ≤ l.

b) Let ak = 0 for l + 1 ≤ k ≤ N and in addition

(Gk,m(x), 1)L2(I) = 0, m ∈ N. (5.34)

We also assume that
2
√
πN (m)

a, bL ≤ 1− ε (5.35)

is valid for all m ∈ N as well with some fixed 0 < ε < 1. Then, for all 1 ≤ k ≤ N , we have

Gk,m,n

|n| − ak − ibkn
→ Gk,n

|n| − ak − ibkn
, m → ∞, (5.36)

n2Gk,m,n

|n| − ak − ibkn
→ n2Gk,n

|n| − ak − ibkn
, m → ∞ (5.37)

in l∞, so that

∥∥∥∥
Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

→
∥∥∥∥

Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

, m → ∞, (5.38)

∥∥∥∥
n2Gk,m,n

|n| − ak − ibkn

∥∥∥∥
l∞

→
∥∥∥∥

n2Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

, m → ∞. (5.39)
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Furthermore, the estimate
2
√
πNa, bL ≤ 1− ε (5.40)

holds.

Proof. Obviously, under the stated assumptions, the limiting kernels Gk(x), 1 ≤ k ≤ N are
periodic as well. Indeed, we easily obtain

|Gk(0)−Gk(2π)| ≤ |Gk(0)−Gk,m(0)|+ |Gk,m(2π)−Gk(2π)| ≤ 2‖Gk,m(x)−Gk(x)‖C(I) → 0

as m → ∞ as assumed. Thus, Gk(0) = Gk(2π), 1 ≤ k ≤ N . By virtue of (5.24) along with
(5.25) we arrive at

‖Gk,m,n −Gk,n‖l∞ ≤ 1√
2π

‖Gk,m −Gk‖L1(I) ≤
√
2π‖Gk,m −Gk‖C(I) → 0, m → ∞ (5.41)

due to the one of our assumptions. It can be trivially checked that the statements of (5.36)
and (5.37) will imply (5.38) and (5.39) respectively via the triangle inequality. Using (5.26),
we obtain the estimate from above
∥∥∥∥

n2Gk,m,n

|n| − ak − ibkn
− n2Gk,n

|n| − ak − ibkn

∥∥∥∥
l∞

≤ 1√
2π

∥∥∥∥
n

|n| − ak − ibkn

∥∥∥∥
l∞

∥∥∥∥
dGk,m(x)

dx
−dGk(x)

dx

∥∥∥∥
L1(I)

,

which tends to zero as m → ∞ as assumed, so that (5.37) is valid. Let us establish (5.36)
in the situation a) when ak > 0. For that purpose, we need to treat

|Gk,m,n −Gk,n|√
(|n| − ak)2 + b2kn

2
, 1 ≤ k ≤ l. (5.42)

Obviously, the denominator of (5.42) can be bounded from below by a positive constant and
the numerator estimated from above via (5.41). This gives us (5.36) for ak > 0.

Let us demonstrate the validity of (5.36) in the case case b) when ak = 0. By means of
the one of the given assumptions, we have orthogonality conditions (5.34). It can be trivially
checked that the analogical relations holds in the limit. Indeed,

|(Gk(x), 1)L2(I)| = |(Gk(x)−Gk,m(x), 1)L2(I)| ≤ 2π‖Gk,m(x)−Gk(x)‖C(I) → 0, m → ∞

via the one of our assumptions. Thus,

(Gk(x), 1)L2(I) = 0, l + 1 ≤ k ≤ N.

This is equivalent to Gk,0 = 0, l+1 ≤ k ≤ N . Evidently, Gk,m,0 = 0, l+1 ≤ k ≤ N, m ∈ N

by virtue of orthogonality condition (5.34). Using (5.41), we easily obtain that

∣∣∣∣
Gk,m,n −Gk,n

|n| − ibkn

∣∣∣∣ ≤
√
2π‖Gk,m(x)−Gk(x)‖C(I)√

1 + b2k
.
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Since the norm in the right side of this estimate from above tends to zero as m → ∞, (5.36)
holds in the case when ak = 0 as well. Clearly, under the stated assumptions we have

Na, b, k < ∞, N (m)
a, b, k < ∞, m ∈ N, 1 ≤ k ≤ N, ak ≥ 0, bk ∈ R, bk 6= 0

by virtue of the result of our Lemma A3 above. We assume the validity of upper bound
(5.35). A simple limiting argument using (5.38) and (5.39) gives us (5.40).
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