Quantization of polynomial minimal surfaces II

Jens Hoppe

Abstract

Non-commutative analogues of a class of infinitely extended 2 dimensional time-dependent surfaces that sweep out in space time 3 -manifolds of vanishing mean curvature, and are described by polynomial equations, are constructed.

As found in [1]

$$
\begin{align*}
& x=\frac{\sqrt{2}}{\tau} \sqrt{\mu^{2}+\varepsilon} \cos \varphi=\frac{\sqrt{2}}{\tau} \bar{x}(\mu, \varphi)=R(\tau, \mu) \cos \varphi \\
& y=\frac{\sqrt{2}}{\tau} \sqrt{\mu^{2}+\varepsilon} \sin \varphi=\frac{\sqrt{2}}{\tau} \bar{y}(\mu, \varphi)=R(\tau, \mu) \sin \varphi \tag{1}\\
& \zeta:=t-z=\frac{-\mu^{2}-\frac{\varepsilon}{3}}{\tau^{3}}=\frac{-1}{\tau^{3}} \bar{\zeta}, \tau=\frac{t+z}{2},
\end{align*}
$$

satisfying

$$
\begin{align*}
\ddot{x} & =\{\{x, y\}, y\}, \ddot{y}=\{\{y, x\}, x\} \\
\ddot{\zeta} & =\{\{\zeta, x\}, x\}+\{\{\zeta, y\}, y\}(=: \Delta \zeta) \tag{2}\\
\ddot{\tau} & =\Delta \tau(=0)
\end{align*}
$$

(where $\{f, g\}:=\frac{\partial f}{\partial \mu} \frac{\partial g}{\partial \varphi}-\frac{\partial g}{\partial \mu} \frac{\partial f}{\partial \varphi}$ and $\cdot=\frac{\partial}{\partial \tau}$), and resulting from a separation Ansatz for

$$
\begin{equation*}
\ddot{R}=R\left(R R^{\prime}\right)^{\prime} \tag{3}
\end{equation*}
$$

and solving

$$
\begin{equation*}
\{\{\bar{x}, \bar{y}\}, \bar{y}\}=\bar{x},\{\{\bar{y}, \bar{x}\}, \bar{x}\}=\bar{y} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta^{\prime}=\dot{R} R^{\prime}, \quad 2 \dot{\zeta}=\dot{R}^{2}+R^{2} R^{\prime 2} \tag{5}
\end{equation*}
$$

as well as parametrizing

$$
\begin{equation*}
\left(t^{2}+x^{2}+y^{2}-z^{2}\right)(t+z)^{2}=\frac{16}{3} \varepsilon \in \mathbb{R} \tag{6}
\end{equation*}
$$

describe 3 manifolds Σ_{3} of vanishing mean curvature in $\mathbb{R}^{1,3}$ (see [5], [6] for other polynomial ones). As (4) may be written as

$$
\begin{equation*}
\{\bar{x}, \bar{y}\}=\bar{\mu},\{\bar{y}, \bar{\mu}\}=-\bar{x},\{\bar{\mu}, \bar{x}\}=-\bar{y} \tag{7}
\end{equation*}
$$

it is easy to see that hermitean operators X, Y, H satisfying

$$
\begin{equation*}
[X, Y]=i H,[Y, H]=-i X,[H, X]=-i Y \tag{8}
\end{equation*}
$$

(i.e. representations of $s o(1,2)$; note that these do not necessarily have to give rise to group-representations, in contrast to (5.29) of [4]; so, e.g., k in $\left({ }^{* *}\right)$ on p. 27 of [3] need not be restricted to half-integers; any $k>0$ would do) via $X_{1}:=\frac{\sqrt{2}}{\tau} X, X_{2}:=\frac{\sqrt{2}}{\tau} Y$ will then solve the 'membrane-matrix-model' [2] equations

$$
\begin{equation*}
\ddot{X}_{i}=-\left[\left[X_{i}, X_{j}\right], X_{j}\right], \sum_{i=1}^{2}\left[X_{i}, \dot{X}_{i}\right]=0 . \tag{9}
\end{equation*}
$$

Just as

$$
\begin{equation*}
\bar{\mu}^{2}-\bar{x}^{2}-\bar{y}^{2}=-\varepsilon, \tag{10}
\end{equation*}
$$

the left hand side being a Casimir function of (7), $H^{2}-X^{2}-Y^{2}=$ $-Q=-C_{2}$ will be the standard Casimir operator, i.e. for irreducible representations of (8) (cp. [4], [3]) be proportional to the identity. Note that $\varepsilon<0, \mu \geqslant \sqrt{-\varepsilon}$ will correspond to Σ_{3} being time-like. Interestingly ζ, which in the classical theory is needed to (re)construct Σ_{3} (once x and y are known) and usually difficult to 'quantize' (leading to the non-commutative 'membrane-matrix-model' often believed to not be Lorentz-invariant), in the above example does satisfy

$$
\begin{equation*}
\ddot{\hat{\zeta}}=-[[\hat{\zeta}, X], X]-[[\hat{\zeta}, Y], Y]=: \hat{\Delta} \zeta \tag{11}
\end{equation*}
$$

for the obvious choice

$$
\begin{equation*}
\hat{\zeta}:=\frac{-1}{\tau^{3}}\left(H^{2}+\frac{\varepsilon}{3}\right)=\frac{-1}{\tau^{3}}\left(X^{2}+Y^{2}-\frac{2}{3} \varepsilon\right) \tag{12}
\end{equation*}
$$

just as X and Y (and τ) do, so that one may think of

$$
\begin{align*}
X^{0} & =T=\tau+\frac{\hat{\zeta}}{2} \tag{13}\\
\text { and } \quad X^{3} & =Z=\tau-\frac{\hat{\zeta}}{2}
\end{align*}
$$

as the quantizations of t and z in this model (and could try to let Lorentz-transformations act on $\left.X^{\mu}=\left(X^{0}, X^{1}, X^{2}, X^{3}\right)\right)$.

Acknowledgement. I thank R.Lautenbacher for his interest, and confirming that the class of representations of (8) that one can take is not restricted to the usual list (of $S O(1,2)$ representations, derived long ago by V.Bargmann [4])

References

[1] J.Hoppe, Some Classical Solutions of Membrane Equations in 4 Space-Time Dimensions, Phys.Lett.B 3211994
[2] J.Hoppe, Quantum theory of a massless relativistic surface, Ph.D. thesis, MIT 1982 http://dspace.mit.edu/handle/1721.1/15717,
[3] J.Hoppe, Lectures on Integrable Systems, Springer 1992
[4] V.Bargmann, Irreducible Unitary Representations of the Lorentz Group, Annals of Mathematics, Vol.48, \#3, July 1947
[5] J.Hoppe, Exact algebraic M(em)brane solutions, arXiv:2107.00569
[6] J.Hoppe, On the quantization of some polynomial minimal surfaces, arXiv:2107.03319

Braunschweig University, Germany
E-mail address: jens.r.hoppe@gmail.com

