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Abstract. Non–commutative analogues of a class of infinitely ex-
tended 2 dimensional time–dependent surfaces that sweep out in
space time 3–manifolds of vanishing mean curvature, and are de-
scribed by polynomial equations, are constructed.

As found in [1]

x =

√
2

τ

√
µ2 + ε cosϕ =

√
2

τ
x̄(µ, ϕ) = R(τ, µ) cosϕ

y =

√
2

τ

√
µ2 + ε sinϕ =

√
2

τ
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satisfying

ẍ = {{x, y}, y}, ÿ = {{y, x}, x}
ζ̈ = {{ζ, x}, x}+ {{ζ, y}, y} (=: ∆ζ)

τ̈ = ∆τ(= 0)

(2)

(where {f, g} := ∂f
∂µ

∂g
∂ϕ
− ∂g

∂µ
∂f
∂ϕ

and · = ∂
∂τ

), and resulting from a sepa-

ration Ansatz for

(3) R̈ = R(RR′)′,

and solving

(4) {{x̄, ȳ}, ȳ} = x̄, {{ȳ, x̄}, x̄} = ȳ

and

(5) ζ ′ = ṘR′, 2ζ̇ = Ṙ2 +R2R′2,

as well as parametrizing

(6) (t2 + x2 + y2 − z2)(t+ z)2 =
16

3
ε ∈ R,

describe 3 manifolds Σ3 of vanishing mean curvature in R1,3 (see [5],
[6] for other polynomial ones). As (4) may be written as

(7) {x̄, ȳ} = µ̄, {ȳ, µ̄} = −x̄, {µ̄, x̄} = −ȳ
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it is easy to see that hermitean operators X, Y,H satisfying

(8) [X, Y ] = iH, [Y,H] = −iX, [H,X] = −iY

(i.e. representations of so(1, 2); note that these do not necessarily have
to give rise to group–representations, in contrast to (5.29) of [4]; so,
e.g., k in (**) on p.27 of [3] need not be restricted to half–integers;

any k > 0 would do) via X1 :=
√
2
τ
X, X2 :=

√
2
τ
Y will then solve the

‘membrane–matrix–model’ [2] equations

(9) Ẍi = −
[
[Xi, Xj], Xj

]
,

2∑
i=1

[Xi, Ẋi] = 0.

Just as

(10) µ̄2 − x̄2 − ȳ2 = −ε,

the left hand side being a Casimir function of (7), H2 − X2 − Y 2 =
−Q = −C2 will be the standard Casimir operator, i.e. for irreducible
representations of (8) (cp. [4], [3]) be proportional to the identity.
Note that ε < 0, µ >

√
−ε will correspond to Σ3 being time–like.

Interestingly ζ, which in the classical theory is needed to (re)construct
Σ3 (once x and y are known) and usually difficult to ‘quantize’ (leading
to the non–commutative ‘membrane–matrix–model’ often believed to
not be Lorentz–invariant), in the above example does satisfy

(11)
¨̂
ζ = −

[
[ζ̂ , X], X

]
−
[
[ζ̂ , Y ], Y

]
=: ∆̂ζ

for the obvious choice

(12) ζ̂ :=
−1

τ 3
(H2 +

ε

3
) =
−1

τ 3
(X2 + Y 2 − 2

3
ε),

just as X and Y (and τ) do, so that one may think of

X0 = T = τ +
ζ̂

2

and X3 = Z = τ − ζ̂

2

(13)

as the quantizations of t and z in this model (and could try to let
Lorentz–transformations act on Xµ = (X0, X1, X2, X3)).
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