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The D’Alembert—Lagrange Principle and the theory of ideal constraints play the central role in
theoretical mechanics. In this article, we address this theory in terms of modern differential geometry
and tensor analysis. This article is purely methodological.

The traditional presentation of these questions are contained, for example, in [1]. We use the
apparatus of differential geometry [2].

I. FUNCTIONS ON A TANGENT BUNDLE

Let Y be a smooth s-dimensional manifold with local coordinates y = (y*,...,v*) and let TY be
its tangent bundle with local coordinates (y,9) = (y',...,¥%, %', ...,9%). In what follows, all objects
(manifolds, mappings, and tensor fields) are assumed C*°-smooth.

Introduce the function £ : (¢1,t2) x TY — R, L = L(t,y,7).

Definition 1. The set of functions
B i oL B oL
Cdtogt Oyt

[£]s
is called the Lagrangian derivative of L.

The Lagrangian derivative is linear and possesses the following property: For every function f :
(t1,t2) x Y — R the identity holds:

a| _ ;_df _of | Of .
[dtL_O’ T=%= o Tag¥
Let X be a smooth r-dimensional manifold with local coordinates x = (x!,...,27),r < s. Denote by

@ (t1,t2) x X = Y, 9" = ©i(t, ) a mapping that is an embedding for every fixed t. An embedding is
a mapping such that for every ¢ the image M (t) = ¢(t, X) C Y is a smooth manifold; and, moreover,
in a neighborhood of every point y € M(t) of Y there exist some local coordinates z!,..., z* (they
smoothly depend on ¢) such that M (¢) is given by the system of equations

0
z' =0, l=1,...,s—r; rang—w:r.

ox
Theorem 1. The next formulas hold:

¢’
i [L]; = [L];,
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THE D’ALEMBERT—LAGRANGE PRINCIPLE 593

where L : (t1,t2) x TX — Ris determined by the formula

. op ., O
L(t,x, ) :£<t,g0(t,x),a—§xl+a—f>. (1)

In particular, the Lagrangian derivative behaves like a covector field regarding the coordinate
changesonY.

Proof. Calculate the derivatives:
oL oL o™ oL <8290m .l 82g0m>

oz oym 0n oy \odozr” | otox

d 0L d(OL ™\ o™ (d IL oL ([ 0*p™ A D?pm
dt 9zt dt\ oy™ oxt ) Oxt \ dt o™ Oym \ Ozloxi otoxt )’

Theorem 1 is proved. O

I

Theorem 2. [f the quadratic form with the matrix

0’L .
is positive-definite for all (t,y,y) € (t1,t2) x TY then the quadratic form with the matrix
2
L
%(t,x,a‘c) is also positive-definite for all (t,x,%) € (t1,t2) x T X.

Proof. Indeed,
’L 9L % opP
0ikozs — Oyroyp Oz Oxd

The matrix
Vo L 050
KT 0yiogp Oxk 9

is positive-definite since it is the Gramian matrix of the vectors

(08 o
P\ oLk ok

with respect to the inner product given by (2).
Theorem 2 is proved. O

2. THE COVARIANT VERSION OF THE D’ALEMBERT—-LAGRANGE PRINCIPLE

Hereinafter, we consider that the quadratic form with matrix (2) is positive-definite.
Consider the following system of differential equations:

[E]i:E(t7y7y)7 izl,...,S. (3)

The function L is called the Lagrangian function of (3).

The functions on the right side are called active forces, and they are supposed given. The functions
F; and L as well are defined on the extended phase space (¢1,t2) x TY and are transformed according
to the covector law.

System (3) is the system of differential equations of order 2s for y(¢). On the assumption made
about (2), this system is solvable for §j. The phase space of system (3) is TY. The maniiold Y is called
the configurational space of (3).
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094 ZUBELEVICH

Introduce the 1-forms w? = widy’, g =1,...,v < s, in Y. It means that {w?(t,y)} behave as the
j j

components of a covector field under changes of the coordinates on the manifold Y. Wherein the
coordinate changes either do not depend on time or time is considered as a parameter.

We assume that rang (wi(¢,y)) = v, (t,y) € (t1,t2) x Y. This condition means that the 1-forms w4
are linearly independent on each tangent space T,Y" for every t.
Introduce more functions:

Ity 9) = Wi (L y)g + B y). (4)
The equations
¢q(t7y7y):07 q:]‘7"'7y7 (5)

are called the equations of differential constraints, and they define in the extended phase space of the
system (3) some smooth submanifold

W C (t1,t2) x TY, dimW =2s+1—v.
The connection of W with the system itself is explained by the following definitions:
Definition 2. The subspace
Al(t,y) = {5y = (6y',...,00%) € T,Y | wg(t,y)dyj =0,qg= 1,...,V} (6)

is called the space of virtual displacements. The elements of this space are called the virfual
displacements.

Then dim A(t,y) = s — v is called the number of degrees of freedom of the system.

Definition 3. Assume that we can choose some R; forces that are defined on (¢1,¢2) x T'Y so that
(1) W turns out to be the invariant manifold of the system

(2) the equality

Ri(t,y,4)oy" =0 (8)
holds for every vector 0y € A(t,y).
In this case we say that the ideal constraints (5) are imposed on (3) or the system with ideal
constraints is given.
The forces R; are called the reactions of ideal constraints. If there is no constraints then

A(t,y) = TyK W = (tl,tg) X TK RZ =0.

Remark. In a system with ideal constraints we are interested in the dynamics of (7) only on W.
Therefore, the behavior of the forces Fj and Ry outside W does not matter. However, in problems of
mechanics, these forces turn out to be naturally determined all over the whole extended phase space
(t1,t2) x TY . Ii these forces are initially given on W then they can be extended to smooth functions on
(t1,t2) x TY. Of course, it is nonunique continuation but this does not influence the dynamics of the
system on W.

Often constraint equations are of the form f9(¢t,y) =0, g =1,...,v. These constraints are called
geometric. They are reduced to the form (5) by time differentiation:
of1  ofe .
—- —t = =1,...,v. 9
8t —"_ ayZ y 07 q 7 71/ ( )

Definition 4. If there is a set of functions f1,..., f such that W is defined by (9) then the constraints
(5) are called holonomic. Otherwise, the constraints are nonholonomic.

The next is a direct corollary of (7) and (8):
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Theorem 3. Suppose that (3) is the system with ideal constraints (5) and y(t) is a solution
of (7). Then y(t) satisfies the equation
([£)i = Fi)oy' =0 (10)
forall 6y € A(t,y(t)).
Equation (10) is called the general dynamic equation.
Theorem 4. For every sets of the forces Fy, and the initial conditions
(t07y07y0)€W (11)
there exists a unique y(t) such that

(1) y(to) = yo and y(to) = Yo;
(2) y(t) satisfies (5);
(3) y(t) satisfies (10) for all 6y € A(t,y(t)).

Proof. Suppose first that for each initial condition (11) the specified function y(¢) exists, and prove its
uniqueness.

Lemma 1 (3] Let E be a vector space, and let u,uy,...,u; : E — R be some linear functionals.
If
l
ﬂ ker u;, C keru
k=1
then there are reals \1, ..., \; such that

l
U = Z AU
k=1

From this lemma together with (6) and (10) for ¢ = ¢y we obtain
[£]: (t0, 90, 90, §i(to)) — Fi(to, yo, 50) = Mjw (to, yo)- (12)

Let us show that as A; you can take functions from COO((tl, ta) X TY); moreover, the restrictions A;|w
are uniquely defined. We denote the inverse matrix to (2) by ¢"/ (¢, y, ). Then (12) takes the form

i (t0) = 9" (to, Yo, 90)wk (to, Yo) Mk + 13 (to, Yo, 9o)- (13)

Here and below, uf; are some given smooth functions.
Let us differentiate (5): wj (o, y0)i (to) = ud(to, Yo, o). Inserting here 3 from (13), we find that

wggijwf)\k = ug(to,yo,yo). (14)
We obtained a system of linear algebraic equations for Ag. The matrix of this system wggijwf is
nondegenerate since this is the Gramian matrix of vectors £4 = (w{,...,w{) with respect to the inner
product g¥.

Hence, A\ = A\k(to, Yo, ¥o) is uniquely found from (14).

Since the functions in (14), are defined on the whole extended phase space (t1,t2) x TY, we can
consider the functions Ag also defined on the whole extended phase space. However, since (14) was
derived only for initial conditions (11), A\x are uniquely determined only on W. Thus, y(t) satisfies the
equation

L]; — Fy = M(t,y, 9)w!. (15)

Note that (15) is called the Lagrange equation with multipliers. The uniqueness of y(t) follows from
the Cauchy Theorem of the existence and uniqueness of solution to (15).

By the construction, ¢ is the first integral of (15); therefore, the existence also follows from the
Cauchy Theorem.

The proof of Theorem 4 is complete. O
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As the consequence we obtain the following

Theorem b5 (release from principal bundles). For every set of forces F; there is a set of reactions R;
such that (8) is completed for all virtual displacements and W is an invariant manifold for (7).
Moreover, narrowing R;|w is defined unambiguously. The reactions can be taken as

Ri(t,y,9) = N(t, v, 9)w] (t,y).

Theorems 3—5 present the d’Alembert—Lagrange Principle.

3. REDUCTION OF A SYSTEM WITH GEOMETRIC CONSTRAINTS

Suppose that in addition to the differential constraints (5) the geometric constraints are put on the
system:

fz(t7y):07 2.217"'?#7 /‘L+U<s; (16)
and the differential forms
i . Of . :
w', 5f3::8—fldyl, i=1,...,v, j=1,..., (17)
are linearly independent everywhere. From (16) we have the differential constraints
aft  af |
) = =1,...,p. 18

We will consider (3) with ideal constraints (5) and (18). Now, W is given by (5) and (18). Let us
remind that, by the definition of a system with ideal constraints, W is the invariant manifold of (7).
If we narrow (7) on W then f* become the first integrals of the so-obtained the narrowing system.
The space of virtual displacements has the form
of

J
A(t,y) = {5y6TyY | wg(t,y)éykzo, 8—y15yl:0, j=1,..., 4, qzl,...,u}.

For every fixed ¢t system of equations (16) defines in Y a submanifold of dimension r = s — . Denote
this manifold by M (¢). We will assume that this manifold is the embedding image ¢(¢, ) of some r-
dimensional manifold X in Y:

gp(t,X) = M(t)> fi(tv So(t’x)) =0.

In what follows, we will use the theory and notations of Section 1.
In mechanics, the local coordinates = on the manifold X are called the generalized coordinates, and

SN 890k(t7$) 890(1:733) -k 890(1:733)
Qz(t,ﬂj',l’) - TF/&’ t,gD(t,ZE), 8$k x ot
are called the generalized forces. Further we will not use this term and continue to call Q; the active
forces.
Introduce the functions

Ve(t,x, ) :Qg’(t,x)m'j—kBq(t,m), g=1,...,v, (19)

where
Op™(t, x) O (t, )
q_ q q_ 34 q
Q; oo Wulte(t2)),  BT= Bt 0t ) +wjlt, et 2) =5 —

Formulas (19) are obtained by insertion of y = (¢, x) into (4). Thus, for fixed ¢ the differential forms
Q1 = Q?d:rj are the result of the operation “pull-back” applied to the narrowing of the forms w? on M (t).

Theorem 6. The differential forms Q2 are linearly independent for all (t,x).
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Proof. Since ¢ is an embedding, the linear operator

dp '—8—Q0

m
= T X — Ty, M(t) = ﬂ ker § f7

j=1
is an isomorphism.
Assume that there is a nontrivial linear combination of Q¢ that is equal to zero
A2 = Awlodp =0,

and not all A, are zeros. But this means that

w
ﬂ ker 0f7 C ker(\w?).
j=1

Therefore, A\,w? is the linear combination of the forms §f7. However, this is impossible for the indepen-
dent forms (17).

Theorem 6 is proved. O

Thus, we will consider the system with the configurational space X, Lagrangian (1), active forces Q;,
and ideal constraints

Vi(t,x,z) =0, g=1,...,v. (20)
The corresponding virtual displacement space has the form
At z) = {0z € T, X | Qg(t,x)éazj =0,qg=1,...,v}.

The number of degrees of freedom of this system is equal tor —v =s —v — p.
By Theorem 2, for the general equation of dynamics

([L); — Qi)dx" = 0, oz € A(t,x), (21)

with constraints (20). Theorem 4 and 5 hold from which the generalized forces of reactions of the ideal
constraints are recovered, and so Theorem 3 is proved.

If the differential constraints (20) are absent and there are only constraints (16), i.e. A(t,z) = T, X
then (21) turns out to the Lagrange equation of the second kind [L]; —Q; =0, i=1,...,r, on the
manifold X.

Note that 0 : A(t,z) — A(t, p(t,x)) is the isomorphism.
By Theorem 1,
T 890i(t7x)

5 o, ox € A(t, ).

(L] — Fy)sy' = ([L]; — Q)éx?, 6y
From this formula we derive

Theorem 7. If some function x(t) is a solution of (20), (21) for all z € A(t,xz(t)) then y(t) =
o(t,x(t)) is the solution of (5), (10), and (16) for all oy € A(t,y(t)).

Conversely, suppose that y(t) is the solution of the system of equations for all §y € A(¢,y(t)). Since
for every t the mapping ¢ is the diffeomorphism to the corresponding image; therefore, the equation

y(t) = o(t,z) (22)

determines z = x(t) uniquely, and z(t) is a smooth function. In fact, select a subsystem of r functionally
independent equations from (22) and apply to it the Implicit Function Theorem.

Theorem 8. /] y(t) is a solution to (5), (10), and (16) for all éy € A(t

,y(t)) then there exists
a unique function x(t) that is the solution of (20), (21) for all §z € A(t,xz(t))

and y(t) = o(t, z(t)).
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598 ZUBELEVICH

4. THE D’ALEMBERT—-LAGRANGE PRINCIPLE
FOR A SYSTEM OF MATERIAL POINTS

Consider a system of the material points of masses mg,...,my with the position vectors
ri,...,ry with respect to some inertial coordinate system XY Z. Represent the position vector as
v = (X, Y, Zi).

Assume that at every point my, the force

Fk:Fk(t,l‘1,...,I'N,I"l,---,l"N), k=1,...,N,
acts so that the motion equations of the whole system of mass points are of the form
myi, = Fy, k=1,...,N. (23)
The functions F; are defined on (¢1,t2) x TY, where T'Y is the tangent bundle of some domain
Y c R3V, (r,...,ry) €Y.

Note that TY =Y x R3V,
Thus, the configurational space of the system is the domain Y with the coordinates

y:(ylﬂ"'ays):(X17E7Z17”’7XN7YN72N)7 8:3N7
respectively; and
F. = (FX,FY,F?), (Fy,....Fy) = (F{,F),F?, dots, Fx ,F), FZ).

System (23) can be rewritten in the form (3):

d oT T
Bl k=1.....N
dt OF,  Ory, ko Tt

where

1 N
T g S mlk
=3

is the kinetic energy of the system.
Thus, we can apply the above developed theory for studying (23).
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