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Abstract. We prove moderate deviations bounds for the number of triangles in a G(n,m)
random graph, complementing recent results of Goldschmidt et al.

The moderate deviations of triangle density in G(n,m) graphs change qualitatively be-
tween the regime of the central limit theorem and the regime of large deviations, with those
of Goldschmidt et al. extending the former and our results extending the latter; we also
conjecture a precise form of sharp change between the regimes.

Our results can be interpreted as finite size effects in phase transitions in constrained
edge-triangle graphs.

1. Introduction

We prove moderate deviations bounds for the number of triangles in a G(n,m) random
graph, deviations between those of Goldschmidt et al. [1] and large deviations addressed
earlier. For instance, with the notation that τ(G) is the triangle density of a G(n,m) graph
G where n → ∞ and m = p

(
n
2

)
+ O(1), for some 1/2 ≤ p < 1 that is fixed as n → ∞ and

n−3/4 � t� 1, we prove that

(1) Pr
(
τ(G) ≤ p3 − t

)
= exp

(
−

ln 1−p
p

2(1− 2p)
t2/3n2 + o(t2)

)
.

The number of triangles in a random graph is a fundamental and surprisingly important
random variable in the study of probabilistic combinatorics. The probabilistic behavior of
these triangle counts is at least partially responsible for the development of many important
methods related to concentration inequalities for dependent random variables, including
Janson’s inequality [2], the entropy method [3], martingale difference techniques in random
graphs, and others [4].

The traditional point of view, as exemplified by the seminal paper by Janson and Rućınski [5],
holds that the lower tail of the triangle count is easy to characterize while the upper tail
is hard. This view stems at least partly from the fact that most earlier works studied the
G(n, p) model, in which edges appear independently, each with probability p. In the G(n,m)
model, in which the number of edges is fixed at m, the situation is rather more subtle.
For example, one can easily see that under G(n, p), the number of triangles, T (G), satisfies
Var(T (G)) = Θ(n4), while under G(n,m), Var(T (G)) = Θ(n3). The distinction between the
two models – especially in the lower tail – becomes even more pronounced at larger devia-
tions. This can be intuitively explained by the fact that in G(n, p) one can easily “depress”
the triangle count simply by reducing the number of edges: a graph G with edge number
|E(G)| ≈ q

(
n
2

)
will typically have triangle density τ u q3, and the probability of seeing such
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a graph under G(n, p) is of the order exp(−Θ(n2(p− q)2)); it follows that under G(n, p) we
have

(2) Pr(τ(G) ≤ Eτ(G)− t) ≥ exp(−Ω(n2t2)).

Under G(n,m), large deficits in the triangle density are much rarer than they are in G(n, p).
At the scale of constant-order deficits, this was noticed in [6, 7], where it is proved that for
t = Θ(1) and G(n,m) with m = b1

2

(
n
2

)
c,

(3) Pr(τ(G) ≤ Eτ(G)− t) = exp(−Θ(n2t2/3)).

(They also found the exact leading-order term in the exponent.) Extensive numerical compu-
tations [6, 7] strongly suggest that the phenomenon is not limited to m ≈ 1

2

(
n
2

)
. At the other

end of the scale, a recent result of Goldschmidt et al. [1] showed that for n−3/2 � t � n−1

the lower triangle tail has a different behavior:

(4) Pr(τ(G) ≤ Eτ(G)− t) = exp(−Θ(n3t2)).

(Again, they also found the exact leading-order term in the exponent.) Since t ≤ Θ(n−3/2)
is within the range of the central limit theorem this leaves open the case of n−1 � t � 1.
Noting that the two exponential rates (namely n2t2/3 and n3t2) cross over at t = Θ(n−3/4)
it is natural to guess both

(5) Pr(τ(G) ≤ Eτ(G)− t) =

{
exp(−Θ(n3t2)) if t� n−3/4

exp(−Θ(n2t2/3)) if n−3/4 � t� 1.

As our main result we prove the second of these two cases, and conjecture the first. We also
prove some structural results on graphs with τ(G) ≤ Eτ(G) − ω(n−3/4). These structural
results provide a plausible explanation for the importance of t = Θ(n−3/4), namely that it is
the threshold at which a single large negative eigenvalue of the adjacency matrix becomes
responsible for almost all of the triangle deficit.

2. Context and references

For convenience we note some common asymptotics notation. We use f = o(g) or f � g
to mean lim |f(n)|/g(n) = 0, f = O(g) to mean lim sup f(n)/g(n) < ∞, f = Ω(g) to mean
lim inf f(n)/g(n) > 0, f = ω(g) or f � g to mean lim |f |/g = ∞, and f = Θ(g) to mean
both f = O(g) and f = Ω(g). The phrase “with high probability” means “with probability
converging to 1 as n→∞,” and we will also make use of probabilistic asymptotic notation:
“f = O(g) with high probability” means that for every ε > 0 there exists C > 0 with
lim sup Pr(f ≥ Cg) ≤ ε; “f = o(g) with high probability” means that for every ε > 0,
|f |/g ≤ ε with high probability; and analogously for Ω and ω.

We are studying the triangle density of G(n,m) graphs in the range τ(G) = p3 − t for
n−3/4 � t � 1. The case 0 ≤ t ≤ Ω(n−3/2) is within the range of the central limit theorem
(and it is covered by Janson’s more general work on subgraph statistics [8]). The range
n−3/2 � t� n−1 is studied by [1]; they showed that in this regime,

(6) Pr(τ(G) ≤ p3 − t) = exp

(
−t

2n3

2σ2
p

(1 + o(1))

)
,
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where σ2
p = Var(τ(G))/n3, which is of constant order. They also show an upper bound for

larger t: for n−3/2 � t� 1,

(7) Pr(τ(G) ≤ p3 − t) = exp
(
−Ω(t2n3)

)
.

We show that this is not tight for n−3/4 � t� 1. For example, we show that in this range,

(8) Pr(τ(G) ≤ p3 − t) = exp
(
−Θ(t2/3n2)

)
.

In the case p ≥ 1
2
, we also derive more detailed results: we identify the leading constant in

the exponent and prove some results on the spectrum of the adjacency matrix of G.

2.1. Related work on random graphs. Besides the work of [1], there is related work on
large deviation principles (LDPs) for more general statistics, and LDPs for sparser graphs,
notably in [9].

Moderate deviations in triangle count in G(n,m) can be seen from a different vantage based
on [10]. That paper follows a series of works on the asymptotics of ‘constrained’ random
graphs, in particular the asymptotics of G(n,m, t), graphs on n nodes constrained to have
m edges and t triangles. A large deviation principle, using optimization over graphons, a
variant of the seminal work [11] by Chatterjee and Varadhan, was used to prove various
features of phase transitions between asymptotic ‘phases’, phases illustrated by the entropy-
optimal graphons. (See also [12].) But in [10] numerical evidence showed that the transitions
could be clearly seen in finite systems, using constrained graphs with as few as 30 vertices.
From this perspective moderate deviations in triangle count can be understood as finite size
effects in a phase transition. Asymptotically, entropy goes through a sharp ridge as the edge
density/triangle density pair (ε, τ) passes through (ε, ε3) (Thms. 1.1,1.2 in [7]), and moderate
deviations quantify how the sharp ridge rounds off at finite node number, somewhat as an
ice cube freezing in water has rounded edges. The focus thus shifts to the infinite system,
where emergent phases are meaningful, away from G(n,m, t) or G(n,m).

2.2. Related work on random matrices. Since we are studying the spectrum of the
adjacency matrix, our methods mainly come from random matrix theory. Specifically, we
are interested in large deviations of eigenvalues of the random adjacency matrices coming
from our random graphs. The study of large deviations of eigenvalues is an active topic,
but the results we aim for are somewhat atypical. Traditionally, “large deviations” refers to
deviations on the order of the mean, so large deviations results for random matrices typically
consider the event that the largest eigenvalue of a symmetric n× n matrix with i.i.d. mean-
zero, variance-σ2 entries is of order α

√
n for α > 2σ; this is because the typical value of the

largest eigenvalue is of order 2σ
√
n. But because an eigenvalue of order nβ contributes n3β

to the triangle count, and since we are interested in triangle deviation of orders n9/4 through
n3, we will necessarily be interested in much larger eigenvalues.

Another difference in our work is that we consider several large eigenvalues simultaneously.
This is because we need to consider the possibility that the triangle count is affected by
several atypically large eigenvalues instead of just one.

In related work,
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• Guionnet and Husson [13] showed an LDP for the largest eigenvalue for a family of
random matrices that includes Rademacher matrices, which is essentially the case
that we consider when p = 1

2
.

• Augeri [14] showed an LDP for the largest eigenvalue for random matrices whose
entries have heavier-than-Gaussian tails.
• Battacharya and Ganguly [15] showed an LDP for the largest eigenvalue of an Erdős-

Rényi graph. Their setting differs from the others in that the random matrices they
consider are not centered (which makes a big difference when studying the largest
eigenvalue).
• Augeri, Guionnet, and Husson [16] showed an LDP for the largest eigenvalue for most

random matrices with subgaussian elements. This is essentially the same random
matrices that we consider, with the main difference being that they are looking at
eigenvalues of size Θ(

√
n).

3. Triangle counts

Our general setting is: we let A be the adjacency matrix of a G(n,m) graph, where n→∞
and m = p

(
n
2

)
+ O(1), for some p ∈ R that is fixed as n → ∞. We denote by τ(A) the

triangle density of A.

Theorem 1. If 1
2
≤ p < 1 and n−3/4 � t� 1 then

(9) Pr
(
τ(A) ≤ p3 − t

)
= exp

(
−

ln 1−p
p

2(1− 2p)
t2/3n2 + o(t2)

)

(with the convention that
ln 1−p

p

1−2p
= 2 when p = 1

2
). Moreover, conditioned on τ(A) ≤ p3 − t,

with high probability we have

(10) λ3
n(A) = −tn3(1− o(1))

and λ3
n−1(A) ≥ −o(tn3).

3.1. Centering the matrix. The main point of this section is that when considering the
lower tail for triangle counts in G(n,m) graphs, it suffices to look at eigenvalues of the
centered adjacency matrix. This might sound obvious, but there are two subtleties:

(1) It is important that we are looking at the lower tail, because the upper tail proba-
bilities are controlled by perturbations to the largest eigenvector; this is exactly the
eigenvector that gets destroyed when we center the adjacency matrix, so the eigen-
values of the centered adjacency matrix don’t give much information about the upper
tail probabilities.

(2) It is important that we are looking at G(n,m) and not G(n, p), because in G(n, p)
the entropically favorable way to reduce the triangle count is to reduce the number
of edges; again, this primarily affects the largest eigenvector and so is not related to
the centered adjacency matrix.
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Lemma 2. Let A be the adjacency matrix of a graph with n vertices and m edges. For any
p ∈ R,

(11) tr[(A− p1 + pI)3] = tr[A3]− p3n3 + p3n+ 6mp(np− 2p+ 1) + 3p3n(n− 1)− 3p
∑
i

d2
i ,

where di is the degree of vertex i. Or, if p = m/
(
n
2

)
, then

(12) tr[(A− p1 + pI)3] ≤ tr[A3]− p3n3 + p3n+ 6mp.

Note that if A is sampled from G(m,n) and p = m/
(
n
2

)
then EA = p1 − pI, and so the

quantity of interest in Lemma 2 is in fact the centered adjacency matrix A− EA.

Proof. We expand everything in gory detail:

tr[(A− p1 + pI)3]− tr[A3] + p3 tr[13]− p3 tr[I3]

= 3 tr[−pA21 + p2A12 + pA2I + p2AI2 + p312I − p31I2 − 2p2A1I]

= 3 tr[−pA21 + np2A1 + pA2 + p2A+ np31− p31− 2p2A1]

= 3(−p tr[A21] + 2(n− 2)p2m+ 2pm+ 0 + n2p3 − np3),

where we used the fact that tr[A1] is the sum of the entries of A and tr[A2] is the sum of
squares of entries of A; since A is an adjacency matrix, both of these are 2m. Finally,

(13) tr[A21] =
∑
i,k

(A2)ik =
∑
i,j,k

AijAjk =
∑
j

d2
j .

This proves the equality. For the inequality, Cauchy-Schwarz implies that
∑

i d
2
i ≥

1
n
(
∑

i di)
2 = 4m2

n
= 2mp(n− 1). After applying this inequality and rewriting 3p3n(n− 1) as

6p2m, we obtain the inequality. �

Combining Lemma 2 with the observation that, for A the adjacency matrix of a G(n,m)
graph, E tr[A3] = p3n3 +O(n2), we arrive at the following consequence:

Corollary 3. Let A be the adjacency matrix of a G(n,m) graph and let Ã = A − EA. For
any t ≥ 0,

(14) Pr(tr[A3] ≤ E tr[A3]− t) ≤ Pr(tr[Ã3] ≤ −t+O(n2))

For an inequality in the other direction, note that by the same argument as in Lemma 2,
as long as

∑
i d

2
i ≤ n3p2 +D, we have

(15) tr[(A− p1 + pI)3] = tr[A3]− p3n3 +O(D + n2).

Corollary 4. With the notation of Corollary 3, if D = Ω(n2) then

(16) Pr
(
tr[A3] ≤ E tr[A3]− t

)
≥ Pr

(
tr[Ã3] ≤ −t+O(D) and

∑
i

d2
i ≤ n3p2 +D

)
.
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4. Large deviations for eigenvalues of random matrices

In this section and beyond, we will let A denote a generic random matrix. The most
important such matrix is the centered adjacency matrix, previously denoted Ã or A− EA.

Definition 5. For a random variable ξ, its cumulant-generating function is

(17) Λξ(s) = lnE exp(sξ)

whenever the expectation exists; when the expectation does not exist, we set Λξ(s) = +∞.

Definition 6. The random variable ξ is subgaussian if there exists a constant C such that
Λξ(t) ≤ Ct2 for every t ∈ R.

Note that according to our definition, a subgaussian random variable has mean zero (since
if Λξ(t) is finite on a neighborhood of 0 then Λξ(0) = 0 and Λ′ξ(0) = Eξ, and so if Eξ is

non-zero then one cannot have Λξ(t) ≤ Ct2 on a neighborhood of 0). Note also that if Eξ = 0
and ‖ξ‖∞ <∞ then ξ is subgaussian.

Definition 7. For a function f : R → R, its Legendre transform is the function f ∗ : R →
R ∪ {+∞} defined by

(18) f ∗(y) = sup
x∈R
{xy − f(x)}

Some basic properties of the Legendre transform include:

• If f ≤ g then f ∗ ≥ g∗.
• If f is convex then f ∗∗ = f .
• If f(x) = cx2 then f ∗(x) = x2

4c
.

Our goal in this note is to establish large deviations principles for extreme eigenvalues and
singular values of random matrices. We will consider a symmetric n× n random matrix An
(or sometimes just A) having i.i.d. upper-diagonal entries and zero diagonal entries. The
letter ξ will always denote a random variable that is distributed as an upper-diagonal element
of A, and we will always assume that ξ is subgaussian. We write λi(A) for the eigenvalues of
A (in non-increasing order) and σi(A) for the singular values of A (in non-increasing order).

Theorem 8. Let ξ be a subgaussian random variable. For any integer k ≥ 1 and any
sequence mn satisfying

√
n� mn � n, the sequence

(19)
1

mn

(σ1(An), . . . , σk(An))

satisfies an LDP with speed m2
n and good rate function I : Rk

+ → [0,∞) given by

(20) I(x) =
|x|2

2
inf
s∈R

Λ∗(s)

s2
.

If we assume in addition that the function s 7→ Λ∗(s)
s2

achieves its infimum at some s ≥ 0,
then the sequence

(21)
1

mn

(λ1(An), . . . , λk(An))

satisfies an LDP with speed m2
n and the same good rate function I as above.
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In the case that Λ∗(s)
s2

saturates its infimum only at negative s, we are not able to show
an LDP for the eigenvalues. Note, however, that

∑
i σ

2
i (A) ≥

∑
i λ

2
i (A) and so our LDP for

singular values provides an upper bound: it implies, for example, that

(22)
1

m2
n

ln Pr

√∑
i

λ2
i (An) > mnt

 ≤ −t2
2

inf
s∈R

Λ∗(s)

s2
+ o(1)

On the other hand, we can also easily show the lower bound

(23)
1

m2
n

ln Pr

√∑
i

λ2
i (An) > mnt

 ≥ −t2
2

inf
s≥0

Λ∗(s)

s2
− o(1),

but the assumption that Λ∗(s)
s2

saturates its infimum only at negative s implies that these
bounds are non-matching.

There are natural examples (including the most relevant one to us, the case of Bernoulli
random variables with p ≥ 1

2
), where s−2Λ∗(s) is increasing for s ≥ 0. In this case,

(24) inf
s≥0

s−2Λ∗(s) = lim
s→0

s−2Λ∗(s) =
1

2
(Λ∗)′′(0) =

1

2Eξ2
,

and so our lower bound (for simplicity, focussing only on the case k = 1) becomes

(25)
1

m2
n

ln Pr (λ1(An) > mnt) ≥ −
t2

4Eξ2
− o(1).

When ξ has a Gaussian distribution, this turns out to be sharp, but we show that it is not
sharp in general.

Theorem 9. In the setting of Theorem 8, if Eξ3 < 0 and lims→∞ s
−2Λ(s) = 0 then there

exists some η > 0 such that for any t > 0,

(26) − lim
n→∞

1

m2
n

ln Pr (λ1(An) > mnt) > −(1− η)
t2

4Eξ2
.

In particular, the assumptions of Theorem 9 are satisfied for the (centered) Bernoulli
random variable with p > 1

2
.

For our applications to random graphs, we require a version of Theorem 8 for random
bits chosen without replacement. Specifically, we consider the Erdős-Rényi random graphs
G(n,m), where m is an integer satisfying |m− p

(
n
2

)
| = O(1) (and p ∈ (0, 1) is fixed). If An

is the centered adjacency matrix of G(n, p) then it is covered by Theorem 8, where ξ is the
random variable taking the values −p and 1− p with probabilities 1− p and p respectively.
In this case, we have

(27) Λ∗ξ(s) = D(p+ s, p) := (p+ s) ln
p+ s

p
+ (1− p− s) ln

1− p− s
1− p

,

with the understanding that Λ∗ξ(s) = +∞ whenever p + s 6∈ (0, 1). It is not hard to check

that
Λ∗ξ(s)

s2
achieves its infimum at some s ≥ 0 if and only if p ≤ 1

2
. Moreover, the conclusions

of Theorem 8 remain true for the G(n,m) model.
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Theorem 10. Fix p ∈ (0, 1) and let An be the centered adjacency matrix of a G(n,m)
random graph. For any integer k ≥ 1 and any sequence mn satisfying

√
n � mn � n, the

sequence

(28)
1

mn

(σ1(An), . . . , σk(An))

satisfies an LDP with speed m2
n and good rate function I : Rk

+ → [0,∞) given by I(x) =
|x|2
2
· ln 1−p

p

1−2p
(or I(x) = |x|2 when p = 1

2
).

If, in addition, p ≤ 1
2

then the sequence

(29)
1

mn

(λ1(An), . . . , λk(An))

also satisfies an LDP with the same speed and rate function.

5. Some preliminaries

Most of this work is concerned with handling the triangle-count contribution of very
negative eigenvalues, but we also need to show that there is no significant contribution from
the rest. For this, we will use a deviation inequality from [17]:

Theorem 11. Assume that ‖ξ‖∞ <∞, and let f : R→ R be a 1-Lipschitz, convex function.
Define Xn = 1

n

∑n
i=1 f(n−1/2λi(An)). Then there is a universal constant C < ∞ such that

for any δ � n−1,

(30) Pr(|Xn − EXn| ≥ δ) ≤ C exp

(
− n2δ2

C‖ξ‖2
∞

)
.

Corollary 12. If ‖ξ‖∞ <∞ then

(31) Pr(An has o(n) positive eigenvalues) = exp(−Ω(n2)).

Proof. At the cost of increasing the constant C, Theorem 11 also applies to functions f that
are the difference of two 1-Lipschitz, convex functions (because we can apply Theorem 11 to
each of the constituent functions and then apply a union bound). Consider the function

(32) f(x) =


0 x < 0

x 0 ≤ x < 1

1 x ≥ 1.

Then f(x) = 1
2
|x + 1| − 1

2
|x| is the difference of two 1-Lipschitz, convex functions. Since

f is bounded and f(x) = 0 for x ≤ 0, it follows that if only o(n) of the eigenvalues of An
are positive then Xn = o(1) (where Xn = 1

n

∑
f(n−1/2λi(An)) as in Theorem 11. On the

other hand, EXn converges to a non-zero constant (call it c) because the empirical measure
of n−1/2An converges weakly to the semicircle law [18]. Hence,

Pr(An has o(n) positive eigenvalues) ≤ Pr(|Xn − EXn| ≥ c− o(1))

≤ exp(−Ω(n2))

by Theorem 11. �
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6. Upper bound

The main observation is that in the regime we are interested in (namely, eigenvalues or
singular values of order ω(

√
n), the probability of large eigenvalues can be controlled by a

union bound over the potential eigenvectors.

Let Mk be the set of n× n matrices with rank at most k and Frobenius norm at most 1.
Let M+

k ⊂Mk consist of those matrices that are symmetric and positive semidefinite.

Lemma 13. For any symmetric matrix A,

(33)

(
k∑
i=1

max{0, λi(A)}2

)1/2

= sup
M∈M+

k

〈A,M〉.

For any matrix A,

(34)

(
k∑
i=1

σi(A)2

)1/2

= sup
M∈Mk

〈A,M〉.

Proof. Let UDUT = A be an eigen-decomposition of A (where D is diagonal and U is
orthogonal), and let D̃ be D but with all but the kth-largest diagonal entries set to zero.
Define

(35) M =
UD̃UT

‖D̃‖F
=

UD̃UT(∑k
i=1 λi(A)2

)1/2
.

Then M ∈ M+
k and 〈A,M〉 = ‖D̃‖F =

(∑k
i=1 λi(A)2

)1/2

. This proves one direction of the

first claim.

For the other direction, take any M ∈M+
k , and decompose A as A+−A−, where A+ and

A− are positive semi-definite and the non-zero eigenvalues of A+ are the positive eigenvalues
of A. Then

(36) 〈A,M〉 ≤ 〈A+,M〉 ≤ ‖A+‖F‖M‖F ≤

√√√√ k∑
i=1

λi(A+)2 =

√√√√ k∑
i=1

λi(A)2.

This proves the first claim. The proof of the second claim is identical, but uses a singular
value decomposition instead of an eigen-decomposition. �

Hence, in order to prove the upper bounds in Theorem 8, it suffices to control

(37) Pr

(
sup

M∈M+
k

〈A,M〉 > tnα

)
.

The first step is to replace the supremum with a finite maximum.
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6.1. The net argument.

Definition 14. For a subset N of a metric space (X, d), we say that N is an ε-net of X if
for every x ∈ X there exists y ∈ N with d(x, y) ≤ ε.

Lemma 15. Let N ⊂ Mk be an ε-net (with respect to ‖ · ‖F ) for ε < 1
2
. Then for any

symmetric matrix A,

(38) sup
M∈Mk

〈A,M〉 ≤ 1

1− 2ε
sup
N∈N
〈A,N〉.

Proof. Fix M ∈Mk, and choose N ∈ N with ‖N −M‖F ≤ ε. Note that N −M has rank at
most 2k, and it has at most k positive eigenvalues and k negative eigenvalues. Letting εM0

and εM1 be the positive and negative parts of N −M , we have ‖M0‖F ≤ ‖N −M‖F/ε ≤ 1
and (similarly ‖M1‖F ≤ 1). In other words, we can decompose

(39) M = N + εM0 + εM1

with N ∈ N and M0,M1 ∈ Mk. We continue this construction recursively: for every finite
binary string v and matrix Mv ∈Mk, we can find Nv ∈ N and Mv0,Mv1 ∈Mk such that

(40) Mv = Nv + εMv0 + εMv1.

Recursing this construction m levels, it follows that (with Sm being the set of binary strings
of length m and |v| denoting the length of the string v)

(41) M =
m−1∑
`=0

∑
v∈S`

ε−|v|Nv + ε−m
∑
v∈Sm

Mv.

Since |Sm| = 2m and each Mv has ‖Mv‖F ≤ 1, the remainder term converges to zero and we
can continue this construction to the limit:

(42) M =
∞∑
`=0

∑
v∈S`

ε−|v|Nv,

where the outer sum converges in Frobenius norm.

Taking the inner product with A, note that Cauchy-Schwarz and the convergence of the
sum imply that the inner product and summation can be exchanged:

(43) 〈M,A〉 =
∞∑
`=0

∑
v∈S`

ε−|v|〈Nv, A〉 ≤
∞∑
`=0

|S`|ε−` sup
N∈N
〈N,A〉 =

1

1− 2ε
sup
N∈N
〈N,A〉.

�

The construction in Lemma 15 approximates the supremum over M ∈ Mk, which is
enough for most of what we will do. In some cases, we will want the supremum over
M ∈M+

k instead, but that can be handled also:

Lemma 16. Let N ⊂Mk and N+ ⊂M+
k be ε-nets (with respect to ‖ · ‖F ) for ε < 1

2
Then

for any symmetric matrix A,

(44) sup
M∈M+

k

〈A,M〉 ≤ sup
N+∈N+

〈A,N+〉+
2ε

1− 2ε
sup
N∈N
〈A,N〉.
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Proof. Fix M ∈M+
k and choose M0 ∈ N+ such that ‖M0−M‖F ≤ ε. Then M0−M

ε
has rank

at most 2k and Frobenius norm at most 1. Hence, we can write M0−M = εN0 + εN1, where
N0, N1 ∈Mk. It follows that

(45) 〈A,M〉 = 〈A,M0〉+ ε〈A,N0〉+ ε〈A,N1〉,
and we conclude by applying Lemma 15 to 〈A,N0〉 and 〈A,N1〉. �

We have shown that to approximate the supremum it suffices to take a good enough net.
In order to put this together with a union bound, we need a bound on the size of a good net.
Our starting point is the following basic bound in Euclidean space [19, Corollary 4.2.13]

Lemma 17. The unit Euclidean ball in Rd admits an ε-net (with respect to the Euclidean
metric) N satisfying |N | ≤ (3/ε)d.

Corollary 18. There is a constant C such that for any 0 < ε < 1, there is an ε-net (with
respect to Frobenius norm) for Mk of size at most (C/ε)2nk and an ε-net for M+

k of size at
most (C/ε)k.

Proof. Let Ñ be an (ε/2)-net for the set of n × k matrices with Frobenius norm at most
one. Since this space is isometric to Rnk with the Euclidean norm, Lemma 17 implies that
we can choose such a Ñ with |Ñ | ≤ (C/ε)nk. Now let N = {XY T : X, Y ∈ Ñ}. Then
|N | ≤ |Ñ |2 ≤ (C/ε)2nk.

It remains to show that N is an ε-net. Since ‖XY T‖F ≤ ‖X‖F‖Y ‖F , it follows that every
N ∈ N has ‖N‖F ≤ 1; also, each N ∈ N clearly has rank at most k. Now choose an
arbitrary M ∈ Mk and write M = ABT for n × k matrices A and B of Frobenius norm
at most 1 (for example, this can be done using a singular value decomposition). Choose
X, Y ∈ Ñ with ‖X − A‖F ≤ ε

2
and ‖Y −B‖F ≤ ε

2
. Then

‖XY T −M‖F ≤ ‖XY T − AY T‖F + ‖AY T − ABT‖F
≤ ‖X − A‖F + ‖Y T −BT‖F
≤ ε.

To construct an ε-net of M+
k , take Ñ be as above and let N = {XXT : X ∈ Ñ}. Then

|N | ≤ |Ñ |, and the proof that N is an ε-net of M+
k is essentially the same as the proof

above, the only change being that every M ∈M+
k can be written as M = AAT for an n× k

matrix A of Frobenius norm at most 1. �

Applying a union bound over these nets gives the main result of this section: singular
values and eigenvalues of A can be controlled in terms of the deviations of linear functions
of A. The main point here is that (as we will show in the next section) if t�

√
n then the

O(nk ln 1
ε
) terms are negligible compared to the other terms.

Proposition 19. Let A be a symmetric n × n random matrix with i.i.d. entries. For any
integer k ≥ 1, any 0 < ε < 1

2
, and any t > 0,

(46) ln Pr

(
k∑
i=1

σ2
i (A) > t

)
≤ sup

M∈Mk

ln Pr (〈A,M〉 ≥ (1− 2ε)t) +O(nk ln
1

ε
).
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If, in addition, ‖ξ‖∞ <∞ then

ln Pr

(
k∑
i=1

λ2
i (A) > t

)
≤ sup

M+∈M+
k

ln Pr
(
〈A,M+〉 ≥ (1−

√
ε)t
)

+ sup
M∈Mk

ln Pr

(
〈A,M〉 ≥ 1− 2ε

2
√
ε
t

)
+O(nk ln

1

ε
) +O(n2)

Proof. For the first inequality, let N be an ε-net for Mk according to Corollary 18. By
Lemma 13 and Lemma 15

Pr

(
k∑
i=1

σ2
i (A) > t

)
= Pr

(
sup

M∈Mk

〈A,M〉 > t

)
≤ Pr

(
max
N∈N
〈A,N〉 > (1− 2ε)t

)
.

By a union bound,

Pr

(
max
N∈N
〈A,N〉 > (1− 2ε)t

)
≤
∑
N∈N

Pr (〈A,N〉 > (1− 2ε)t)

≤ |N | sup
M∈Mk

Pr (〈A,M〉 > (1− 2ε)t) ,

which, by our bound on |N |, completes the proof of the first claim.

The second claim is similar: by Lemma 16, supM+∈M+
k
〈A,M+〉 > t implies that either

maxN+∈N+〈A,N+〉 > (1−
√
ε)t or maxN∈N 〈A,N〉 > 1−2ε

2
√
ε
t. Hence,

Pr

(
sup

M+∈Mk

〈A,M+〉 > t

)

≤ Pr

(
max

N+∈N+
〈A,N+〉 > (1−

√
ε)t

)
+ Pr

(
max
N∈N
〈A,N〉 > 1− 2ε

2
√
ε
t

)
,

and applying the union bound as before yields

ln Pr

(
sup

M+∈Mk

〈A,M+〉 > t

)
≤ sup

M+∈M+
k

ln Pr
(
〈A,M+〉 ≥ (1−

√
ε)t
)

+ sup
M∈Mk

ln Pr

(
〈A,M〉 ≥ 1− 2ε

2
√
ε
t

)
+O(nk ln

1

ε
).

To complete the proof, we apply Lemma 13 along with the fact, by Corollary 12, that with
probability at least exp(−Ω(n2)), A has at least k positive eigenvalues. �

Note that we will not actually use the second part of Proposition 19. We mention it only
to point out that since

(47) sup
M+∈M+

k

ln Pr
(
〈A,M+〉 ≥ t

)
≤ sup

M∈Mk

ln Pr (〈A,M〉 ≥ t) ,
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we can in principle get a better bound on the eigenvalues than for the singular values. The
issue is that we do not know how to exploit the additional information that we are testing
A against a positive semidefinite matrix.

6.2. Hoeffding-type argument. Using a Hoeffding-type argument, we can get a sharp
upper bound on

(48) sup
M∈Mk

ln Pr (〈A,M〉 ≥ t)

for any k and any t (in fact, the sharp upper bound turns out not to depend on k).

Lemma 20. If ξ is subgaussian then

(49) 4 sup
s∈R

Λξ(s)

s2
=

(
inf
s∈R

Λ∗ξ(u)

u2

)−1

<∞.

Proof. The fact that sups∈R
Λ(s)
s2

<∞ is the definition of subgaussianity. To show the claimed

identity, let L = supt∈R
Λξ(t)

t2
and define ML(s) = Ls2. Clearly, Λ(s) ≤ ML(s) for all s ∈ R.

It follows that Λ∗(u) ≥M∗
L(u) = u2

4L
; in other words,

(50)
Λ∗(u)

u2
≥ M∗

L(u)

u2
=

1

4L

for all u. This shows that

(51) 4 sup
s∈R

Λ(s)

s2
≥
(

inf
u∈R

Λ∗(u)

u2

)−1

.

For the other direction, suppose that for some L′ we have Λ∗(u) ≥ u2

4L′
= M1/(4L)′(u) for every

u. Then (since Λ is convex) Λ(t) = Λ∗∗(t) ≤M∗
1/(4L′)(t) = L′t2 for every t. The definition of

L ensures that L′ ≥ L, and this shows the other direction of the claim. �

Proposition 21. Let ξ be a random variable with globally finite moment-generating function,
and define

(52) Λ(s) = lnE exp(sξ)

to be the cumulant-generating function of ξ. Let A be a symmetric random matrix with zero
diagonal, and with upper-diagonal elements distributed independently according to ξ. Define

`∗ = sups>0
Λ(s)
s2

. Then

(53) sup
‖M‖F≤1

Pr(〈A,M〉 > t) ≤ exp

(
− t2

8 sups>0
Λ(s)
s2

)
= exp

(
−t

2

2
inf
s>0

Λ∗(s)

s2

)
.

Proof. Since 〈A,M〉 = 〈A, (M + MT )/2〉 and since ‖(M + MT )/2‖F ≤ ‖M‖F , it suffices
to consider only symmetric matrices M . Let m = n

n−1
2 and let ξ1, . . . , ξm be the upper-

diagonal elements of A, in any order. Let ‖M‖ ≤ 1 be symmetric, with upper-diagonal
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entries a1, . . . , am. Then 〈A,M〉 = 2
∑m

i=1 aiξi, and so (for any s > 0)

Pr(〈A,M〉 > t) = Pr
(∑

aiξi > t/2
)

= Pr
(
es

∑
aiξi > est/2

)
≤ e−st/2Ees

∑
aiξi

= exp

(∑
i

Λ(sai)− st/2

)
,

where the inequality follows from Markov’s inequality. Now,
∑m

i=1 a
2
i ≤ 1

2
‖M‖2

F ≤ 1
2
, and so

if we set `∗ = supr>0
Λ(r)
r2

then

(54)
∑
i

Λ(sai) =
∑
i

Λ(sai)

(sai)2
(sai)

2 ≤ s2
∑
i

`∗a2
i ≤

s2`∗

2
.

Hence,

(55) Pr(〈A,M〉 > t) ≤ exp

(
s2`∗

2
− st

2

)
,

and the first claim follows by optimizing over s.

The second claim follows immediately from Lemma 20. �

Putting Proposition 21 together with Proposition 19, we arrive at the following upper
bound for singular values:

Corollary 22. Let A be a symmetric n×n random matrix with i.i.d. upper diagonal entries.
Assuming that the entries are subgaussian and have cumulant-generating function Λ, let

L = infs∈R
Λ∗(s)
s2

. Then for any integer k and any t > 0, if t2L > 2nk then

(56) ln Pr


√√√√ k∑

i=1

s2
i (A) > t

 ≤ −t2L
2

+O

(
nk ln

t2L

nk

)
.

Proof. We combine Proposition 21 and Proposition 19, setting ε = nk
t2L

(which is less than 1
2

by our assumption on C). This yields an upper bound of

(57) − t2L

2
+O

(
nk + nk ln

t2L

nk

)
,

and the nk term can be absorbed in the final term. �

6.3. Lower bound. In this section, we give a lower bound that matches the upper bound
of Corollary 22 whenever

√
n � t � n. The starting point is the lower bound of Cramér’s

theorem [20, Theorem 27.3]

Theorem 23. Let ξ be a mean-zero random variable with everywhere-finite cumulant-generating
function Λξ. Let ξ1, . . . , ξm be independent copies of ξ. Then

(58)
1

m
ln Pr

(
m∑
i=1

ξi > mt

)
→ −Λ∗(t)
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as m→∞.

Proposition 24. In the setting of Corollary 22, suppose in addition that the function s 7→
s−2Λ∗(s) achieves its minimum at some finite s ∈ R. Then for any 1� t� n2 and for any
w1, . . . , wk > 0, we have

(59) ln Pr

(
k∑
i=1

wiσi(An) > |w|
√
t

)
≥ −tL

2
− o(t).

If s 7→ s−2Λ∗(s) achieves its minimum at some s ≥ 0, then for any 1� t� n2 and for any
w1, . . . , wk > 0, we have

(60) ln Pr

(
k∑
i=1

wiλi(An) > |w|
√
t

)
≥ −tL

2
− o(t).

Choosing an arbitrary w1, . . . , wk and applying the Cauchy-Schwarz inequality, Proposi-
tion 24 implies the same lower bounds on ln Pr(

∑
i σ

2
i (An) >

√
t) and ln Pr(

∑
i λ

2
i (An) >

√
t).

In particular, it really is a lower bound that matches the upper bound of Corollary 22.

Proof. Fix t and assume that Λ∗(s)
s2

achieves its minimum at s∗ ∈ R. Actually, we will
assume s∗ 6= 0; the case s∗ = 0 is easily handled by replacing s∗ with ε > 0 everywhere,
and then sending ε → 0. Fix w1, . . . , wk and assume

∑
iw

2
i = t; because the statement

of the proposition is homogeneous in w, this is without loss of generality. Now choose the
smallest integers `1, . . . , `k so that `i − 1 ≥ wi

s∗
. We write |`|2 for

∑
i `

2
i , and note that

|`|2 ≥ 1
s2∗

∑
iw

2
i = t

s2∗
, meaning that 1� |`|2 � n2.

Let M be a block-diagonal matrix, whose non-zero entries are all equal to s∗, appearing
in blocks of size `i× `i for i = 1, . . . , k. (The fact that

∑
i `i ≤

√
k|`| � n implies that these

blocks do indeed fit into an n × n matrix.) Then M has rank k, and the singular values of
M are s∗`i for i = 1, . . . , k; note that our choices of `i ensure that wi ≤ σi(M) ≤ wi + 2s∗.

Moreover, if we set m =
∑

i
`i(`i−1)

2
(which is also an integer, and counts the number of

non-zero upper-diagonal elements of M) then 〈A,M〉 is equal in distribution to 2s∗
∑m

i=1 ξi.
Hence,

(61) Pr (〈A,M〉 > t) = Pr

(
sgn(s∗)

m∑
i=1

ξi >
t

2|s∗|

)
.

Now, m = 1
2
|`|2 − 1

2

∑
i `i, while on the other hand

(62)
t

s2
∗

=

∑
iw

2
i

s2
∗
≤
∑
i

(`i − 1)2 = |`|2 − 2
∑
i

`i + 2k.
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Since
∑

i `i ≥ |`| � 1, we have t
2s2∗
≤ m for sufficiently large n. Going back to our probability

estimates, we have

ln Pr (〈A,M〉 > t) = ln Pr

(
sgn(s∗)

m∑
i=1

ξi >
t

2|s∗|

)

≥ ln Pr

(
sgn(s∗)

m∑
i=1

ξi > m|s∗|

)
= −mΛ∗(s∗) + o(m)

= −tΛ
∗(s∗)

2s2
∗
− o(t),

where the second-last equality follows by Cramér’s theorem (applied to the random variables
−ξi in case s∗ < 0). By the Cauchy-Schwarz inequality we have

(63) 〈A,M〉 ≤
k∑
i=1

σi(A)σi(M) ≤
k∑
i=1

σi(A)(wi + 2s∗)

≤
k∑
i=1

σi(A)wi + 2s∗
√
k

√√√√ k∑
i=1

σ2
i (A),

and hence

(64) Pr (〈A,M〉 > t) ≤ Pr

(
k∑
i=1

σi(A)wi > t− t2/3
)

+ Pr

(
k∑
i=1

σ2
i (A) >

t4/3

4s2
∗k

)
.

By Corollary 22, the second probability is of order exp(−Ω(t4/3)), and hence

(65) ln Pr

(
k∑
i=1

σi(A)wi > t− t2/3
)
≥ (1− o(1)) ln Pr (〈A,M〉 > t) ≥ −tΛ

∗(s∗)

2s2
∗
− o(t).

Substituting in t in place of t− t2/3, the extra error term can be absorbed in the o(t) term.
This proves the first claim.

For the second claim, simply note that if s∗ > 0 then the matrix M is positive semi-definite.
Denoting λ+

i (A) = max{0, λi(A)}, we replace (63) by

〈A,M〉 ≤
k∑
i=1

λ+
i (A)λi(M) ≤

k∑
i=1

λ+
i (A)(wi + 2s∗)

≤
k∑
i=1

λ+
i (A)wi + 2s∗

√
k

√√√√ k∑
i=1

σ2
i (A),

and the rest of the proof proceeds as before. �

There are a few extra useful facts that we can extract from the proof of Proposition 24,
namely that we have explicit candidates for extremal eigenvectors and singular vectors.
We will state these just for the smallest eigenvector, but of course they also hold in other
situations.
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Corollary 25. Assume that s 7→ s−2Λ∗(s) achieves its minimum at some s∗ ≥ 0. For

1� t� n2, let ` = b
√
t/s∗c and define v ∈ Rn by v1, . . . , v` = s

1/2
∗ t−1/4 and v`+1, · · · , vn = 0.

Then |v| ≤ 1 and

(66) ln Pr(vTAnv ≥
√
t) ≥ −tL

2
− o(t).

Moreover, if ṽ = v −
∑
i vi
n

1 then |ṽ| ≤ 1 + o(1) and

(67) ln Pr(ṽTAnṽ ≥
√
t) ≥ −tL

2
− o(t).

Proof. The first claim is immediate from the proof of Proposition 24, because the M that
we constructed in that proof is exactly vvT .

For the second claim, note that |v − ṽ| = O(t1/4n−1/2) = o(1). It follows that ‖vvT −
ṽṽT‖F = o(1), and then Hoeffding’s inequality implies that

�(68) ln Pr(|ṽTAnṽ − vTAnv| ≥
√
t) ≤ −ω(t).

6.4. The LDP. Putting together Corollary 22 and Proposition 24, we complete the proof
of the LDP (Theorem 8). Take a sequence mn satisfying

√
n � mn � n, and set X =

1
mn

(σ1(An), . . . σk(An)). Let E ⊂ Rk be any closed set, and let t = infx∈E |x|. Then
1
mn

(σ1(An), . . . , σk(An)) ∈ E implies that
∑
σ2
i (An) > m2

nt
2. By Corollary 22,

ln Pr (X ∈ E) ≤ ln Pr

(
k∑
i=1

σ2
i (An) > m2

nt
2

)

≤ −m
2
nt

2L

2
+O

(
n ln

m2
n

n

)
= −m

2
nt

2L

2
+ o(m2

n).

On the other hand, if E ⊂ Rk is open, then choose any w ∈ E. Since E is open, there is
some ε > 0 so that if 〈x,w〉 ≥ |w|2 and |x|2 ≤ |w|2 + ε then x ∈ E. Now, Proposition 24
implies that

(69) ln Pr
(
〈X,w〉 ≥ |w|2

)
= ln Pr

(∑
i

σi(An)wi ≥ mn|w|2
)
≥ −m

2
n|w|2L

2
− o(m2

n)

On the other hand, Corollary 22 implies that

ln Pr
(
|X|2 > |w|2 + ε

)
= ln Pr

(∑
i

σ2
i (An) ≥ m2

n(|w|2 + ε)

)

≤ −m
2
n(|w|2 + ε)L

2
− o(m2

n).

In particular, Pr(|X|2 > |w|2 + ε) is dominated by Pr(〈X,w〉 ≥ |w|2), implying that

(70) ln Pr(X ∈ E) ≥ ln Pr
(
〈X,w〉 ≥ |w|2 and |X|2 ≤ |w|2 + ε

)
≥ −m

2
n|w|2L

2
− o(m2

n).

Since this holds for arbitrary w ∈ E, it implies the lower bound in the LDP.
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The second part of Theorem 8 follows the exact same argument, only it uses the second
part of Proposition 24.

6.5. The case of G(m,n). We next consider the case of Theorem 10. The first observation
is that if p ≤ 1

2
if and only if Λ∗(s)/s2 achieves its minimum at some non-negative s.

Lemma 26. If ξ = −p with probability 1− p and ξ = 1− p with probability p then Λ∗ (the
convex conjugate of ξ’s cumulant generating function) satisfies

(71) inf
s∈R

Λ∗(s)

s2
=

ln 1−p
p

1− 2p
,

and the minimum is uniquely attained at s = 1− 2p.

Proof. We recall that Λ∗(s) = D(p+ s, p) where

(72) D(q, p) = q ln
q

p
+ (1− q) ln

1− q
1− p

(with the convention that D(q, p) = +∞ for q 6∈ (0, 1)). Note that D(q, p) is non-negative,
convex, and has a double-root at q = p. Fix p and define

(73) L(q) =
D(q, p)

(q − p)2
=

Λ∗(q − p)
(q − p)2

(defined by continuity at q = p); our task is then to minimize L. We compute

(74) L′(q) = −
(p+ q) ln q

p
+ (2− p− q) ln 1−q

1−p

(q − p)3
=: − F (q)

(q − p)3
.

Then

F ′(q) = ln
q

p
− ln

1− q
1− p

+
p

q
− 1− p

1− q

F ′′(q) = (q − p)
(

1

q2
− 1

(1− q)2

)
.

In particular, F ′′ has exactly two roots on (0, 1): at q = 1
2

and at q = p (counting with

multiplicity in case p = 1
2
). It follows that F has at most 4 roots on (0, 1). On the other

hand, we can easily see that F (p) = F ′(p) = F ′′(p) = F (1 − p) = 0. Hence, F (q) has a
triple-root at q = p and a single root at q = 1− p, and no other roots. Since q = p is only a
triple-root, L′(p) 6= 0, and it follows that q = 1− p is the only root of L′(q). It follows that
L(q) is minimized at either q = 0, q = 1, or q = 1 − p. The possible minimum values are
therefore

(75) x := p−2 ln
1

1− p
, y := (1− p)−2 ln

1

p
, or z :=

ln 1−p
p

1− 2p
.

We will show that z is the smallest one. By symmetry in p and 1− p, it suffices to show
that z ≤ x for all p. Now,

(76) p2(1− 2p)(z − x) = p2 ln
1− p
p

+ (1− 2p) ln(1− p) = (1− p)2 ln(1− p)− p2 ln p.



MODERATE DEVIATIONS IN TRIANGLE COUNT 19

Let f(p) = (1 − p)2 ln(1 − p) − p2 ln p, and we need to show that f(p) < 0 for 0 < p < 1
2

and f(p) > 0 for 1
2
< p < 1. In fact, since f(p) = −f(1− p), it suffices to show only one of

these. Finally, note that f(0) = f(1
2
) = 0, and f ′′(p) > 0 for 0 < p < 1

2
, and it follows that

f(p) < 0 for 0 < p < 1
2
. �

To complete the proof of Theorem 10, it is enough to show that the upper bound of
Corollary 22 and the lower bound of Proposition 24 still hold in this setting; then the proof
of the LDP proceeds exactly as in the proof of Theorem 8. Checking Corollary 22 is trivial:
recalling that An is the centered adjacency matrix of G(n,m) for |m− p

(
n
2

)
| = O(1), we let

Ãn be the centered adjacency matrix of G(n, p). Note that the distribution of An is equal to
the distribution of Ãn, conditioned on the event that Ãn has exactly m positive entries on
the upper diagonal; call this event E. By Stirling’s approximation, Pr(E) = Ω(n−1), and it
follows that for any event F ,

(77) Pr(An ∈ F ) = Pr(Ãn ∈ F | E) ≤ Pr(An ∈ F )

Pr(E)
≤ O(nPr(Ãn ∈ F )).

In other words, ln Pr(An ∈ F ) ≤ ln Pr(Ãn ∈ F ) + O(lnn), and so Corollary 22 immediately
implies the same upper bound for G(n,m).

For the lower bound, we need to look into the proof of Proposition 24. Recall that
in the proof of Proposition 24, we constructed a matrix M with O(t) = o(n2) non-zero
entries, all of which had the same value. For the G(n, p) adjacency matrix Ãn, 〈Ãn,M〉
has a (scaled and translated) binomial distribution; for the G(n,m) adjacency matrix An,
〈An,M〉 has a (scaled and translated) hypergeometric distribution. Now, if Hk,n,q denotes a
hypergeometric random variable with population size n, k successes, and q trials; and if Bp,q

denotes a binomial random variable with success probability p and q trials; then one easily
shows using Stirling’s approximation that

(78) | ln Pr(Hk,n,q = r)− ln Pr(Bk/n,q = r)| = O(q2/n).

In the setting of Proposition 24, the number of trials q is the number of non-zero elements
in M , and since q2/n = O(t2/n) = o(t), we have

(79) ln Pr(〈An,M〉 > t) ≥ ln Pr(〈Ãn,M〉 > t)− o(t).

With this lower bound, we can follow the rest of the proof of Proposition 24 to complete the
proof of Theorem 10.

7. Proof of Theorem 9

Next, we consider the case that Λ∗(s)
s2

does not achieve its infimum at any s > 0, and we
construct an example showing that taking s→ 0 does not yield the sharp bound. The basic
idea is to use the first part of Lemma 13, by producing a positive semi-definite matrix M
and giving a lower bound on the tails of 〈A,M〉. The main challenge is to find a good matrix
satisfying the positive definiteness constraint: in Proposition 24 we chose a matrix taking

only one non-zero value, specifically, s∗ ∈ argmin Λ∗(s)
s2

. The issue, of course, is that if s∗
is negative then such matrix cannot be positive semi-definite. Instead, we will construct a
rank-1 matrix taking four different non-zero values.
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Consider a sequence a1, . . . , an whose non-zero elements takem different values, αb1, . . . , αbm,
with αbi repeated m̃i = βmi(1 + o(1)) times respectively (the addition of the error term just
allows us to deal with the fact that matrices have integer numbers of rows and columns).
We will think of mi and bi as being fixed, while α and β depend on the tail bound that we
want to show, with α being small and β being large. Then for any t =

∑m
i=1 ti,

(80) Pr

(∑
i

aiξi > t

)
≥

m∏
i=1

Pr

dm̃ie∑
j=1

ξj > t/(αbi)


and so Theorem 23 implies that if ti

αβmibi
= Θ(1) then

(81) ln Pr

(∑
i

aiξi > t

)
≥ −β

∑
i

miΛ
∗
(

ti
αβmibi

)
− o

(
β
∑
i

mi

)
Our goal will be to choose the parameters mi, bi, α, β, and ti to make the right hand side
large. First, we will treat mi and bi as given, and optimize over ti, α, and β. We will enforce
the constraints

∑
i ti = t and

∑
i a

2
i = α2β

∑
imib

2
i = 2.

Define

β = t2
∑

imib
2
i

2 (
∑

imibiΛ′(bi))
2

α = 2

(
β
∑
i

mib
2
i

)−1/2

=

∑
imibiΛ

′(bi)

t
∑

imib2
i

ti = αβmibiΛ
′(bi).

With these choices, we have

(82) α2β =
2∑
imib2

i

,

meaning that

(83)
∑
i

a2
i = α2β

∑
i

mib
2
i = 2

and

(84)
∑
i

ti = αβ
∑
i

mibiΛ
′(bi) = t.

(These turn out to be the optimal choices of α, β, and t, although we do not need to show
this, since any choice will give us a bound.) Plugging these parameters into (81), we obtain

(85) ln Pr

(∑
i

aiξi > t

)
≥ −t

2

2
·
∑

imib
2
i ·
∑

imiΛ
∗(Λ′(bi))

(
∑

imibiΛ′(bi))
2 − o(t2),

where the o(t2) term depends on the parameters mi and bi.
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Next, we will define the parameters mi and bi. Take ε, δ > 0, and define

m1 =
1

ε2
b1 = ε

m2 = 2
ε

δ3
b2 = −δ

m3 =
ε4

δ6
b3 =

δ2

ε
,

and note that it is possible to define a positive semi-definite integral kernel taking the value
bi/2 on a set of measure 2mi, simply by starting with a function taking the values

√
ε and

−δ/
√
ε on sets of size 1/ε and ε/δ3 respectively, and then taking the outer product of that

function with itself. It follows that if ε and δ are fixed and β is large (and α is arbitrary),
then we can define a rank-1 p.s.d. matrix (M , say) with (1 + o(1))2βmi entries taking the

value αbi/2; note that ‖M‖2
F = 1+o(1)

2
αβ2

∑
imi = 1 + o(1). Since A is a symmetric matrix

with ξ on the upper diagonal, this will yield

(86) 〈A,M〉 =
∑
i

aiξi

where (ai) is a sequence containing (1 + o(1))βmi copies of αbi.

We will first choose a small δ and then choose a smaller ε. The error terms in the following
analysis are taking this into account, so for example we may write ε2δ−k = o(ε) no matter
how large k is. Our next task is to compute the various expressions in (85), in terms of ε
and δ. Before doing so, we observe some basic properties of the Legendre transform.

Lemma 27. Assume that f is convex and differentiable and limx→∞
f(x)
x2

= 0. Then limx→∞
f∗(f ′(x))

x2
=

0.

Proof. Fix x and let y = f ′(x). By the definition of f ∗, we can write

(87) f ∗(y) = sup
z
{zy − f(z)},

and note that the supremum is attained at x = z (because the derivative is zero, and the
expression being supremized is concave). Hence,

(88) f ∗(f ′(x)) = xf ′(x)− f(x).

Convexity of f implies that f ′ is non-decreasing, and so f(x) = o(x2) implies that f ′(x) =
o(x) as x→∞. Hence, f ∗(f ′(x)) = xf ′(x)− f(x) = o(x2). �

Lemma 28. If f is convex with f(0) = f ′(0) = 0 and f ′′(0) > 0, and if both f and f ∗ are
C4 in a neighborhood of 0, then

(89) f ∗(f ′(ε)) = f ′′(0)
ε2

2
+ ((f ∗)′′′(0)(f ′′)3(0) + 3f ′′′(0))

ε3

6
+O(ε4)

as ε→ 0

Proof. This is nothing but Taylor’s theorem and a computation. Setting g = f ∗, we compute

(90)
d

dε
g(f ′(ε)) = g′(f ′(ε))f ′′(ε),
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and then

(91)
d2

dε2
g(f ′(ε)) = g′′(f ′(ε))(f ′′(ε))2 + g′(f ′(ε))f ′′′(ε),

and finally

(92)
d3

dε3
g(f ′(ε)) = g′′′(f ′(ε))(f ′′(ε))3 + 3g′′(f ′(ε))f ′′(ε)f ′′′(ε) + g′(f ′(ε))f ′′′′(ε).

Our assumptions on f ensure that g′(0) = 0, and hence the first-order term vanishes, the
second-order term at ε = 0 becomes

(93) g′′(0)(f ′′(0))2,

and the third-order term at ε = 0 becomes

(94) g′′′(0)(f ′′(0))3 + 3g′′(0)f ′′(0)f ′′′(0).

Finally, note that g′′(0)f ′′(0) = 1. �

Note that Λ satisfies the assumptions on f in Lemmas 27 (because we assumed that
Λ(s) = o(s2)) and 28 (because every cumulant-generating function defined on a neighborhood
of zero is C∞ in a neighborhood of zero). Note that Λ and Λ∗ both have a second-order root
at zero. Define

(95) L = Λ′′(0) > 0.

Expanding out the parameters in (85), we have

(96)
∑
i

mib
2
i = 1 + 2

ε

δ
+
ε2

δ2

for the first term in the numerator. The second term in the numerator is∑
i

miΛ
∗(Λ′(bi)) =

1

ε2
(Λ∗ ◦ Λ′)(ε) + 2

ε

δ3
(Λ∗ ◦ Λ′)(−δ) +

ε4

δ6
(Λ∗ ◦ Λ′)(δ2/ε).

According to Lemma 27 and our assumptions on Λ, the last term is o(ε2). Applying
Lemma 28 to the other terms, we have∑

i

miΛ
∗(Λ′(bi)) =

L

2
+M

ε

6
+ L

ε

δ
−M ε

3
+O(ε2 + εδ)

=
L

2

(
1 +

2ε

δ

)
−M ε

6
+O(ε2 + εδ),

where

(97) M = (Λ∗)′′′(0)L3 + 3Λ′′′(0).
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For the denominator in (85), we ignore the i = 3 contribution, giving a lower bound of∑
i

miΛ
′(bi) ≥

Λ′(ε)

ε
− 2

εΛ′(−δ)
δ2

= Λ′′(0) +
ε

2
Λ′′′(0) +O(ε2) + 2

ε

δ
Λ′′(0)− εΛ′′′(0) +O(εδ)

= L
(

1 + 2
ε

δ

)
− ε

2
Λ′′′(0) +O(ε2 + εδ).

Putting everything together,∑
imiΛ

′(bi) ·
∑

imiΛ
∗(Λ′(bi))

(
∑

imiΛ′(mi))
2

=

(
1 + 2ε

δ
+O(ε2)

) (
L
2

(
1 + 2ε

δ

)
− εM

6
+O(ε2 + εδ)

)(
L
(
1 + 2ε

δ

)
− εΛ′′′(0)

2
+O(ε2 + εδ)

)2

=
L
2
− εM

6
+O(ε2 + εδ)

L2 − εLΛ′′′(0) +O(ε2 + εδ)

=
1

2L
− εM

6L2
+
εΛ′′′(0)

2L2
+O(ε2 + εδ)

=
1

2L
− ε(Λ∗)′′′(0)L

6
+O(ε2 + εδ),

and in particular it is possible to choose δ and ε so that this quantity is at most (1 − η) 1
2L

for some η > 0.

Going back to (85) and recalling that the sequence ai can be realized as the elements of a
rank-1 p.s.d. matrix, M say, with ‖M‖F = 1 + o(1), we have shown that

(98) ln Pr(λ1(An) > t) ≥ ln Pr(〈A,M〉 > t‖M‖F ) ≥ −(1− η)
t2

4L
− o(t2).

Replacing t by mnt and recalling that L = Λ′′(0) = Eξ2 completes the proof of Theorem 9.

8. Back to triangle counts

Our eigenvalue LDP (Theorem 1) allows us to control the triangle-count contribution
from a constant number of very extreme eigenvalues, but in order to fully characterize the
behavior of the triangle-count, we need to handle the other eigenvalues also. We will do
this in two steps: we use Theorem 11 to control the contribution of the bulk eigenvalues,
and then Corollary 22 to show that the triangle count cannot be determined by ω(1) largish
eigenvalues. Bear in mind that we will be applying our eigenvalue LDP to EA − A, where
A is the adjacency matrix, because Theorem 10 is for the positive eigenvalues of centered
matrices, and we are interested in the negative eigenvalues here.

8.1. The contribution of the bulk. We consider two functions f1 and f2, where

(99) f1(x) =


0 if x < 0

x3 if 0 ≤ x <
√
K

3Kx− 2K3/2 if x ≥
√
K
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and f2(x) = −f1(−x). Then both f1 and f2 are 3K-Lipschitz functions; also, f1 is convex
and f2 is concave.

The following lemma is the main technical result of this section. Essentially, it says that
changing the triangle-count using non-extreme eigenvalues carries a substantial entropy cost.

Lemma 29. Let An be the centered adjacency matrix of a G(n,m) graph. There is a universal
constant C such that if K ≥ C then

(100) Pr

 ∑
i:λi(An)≥−

√
Kn

λ3
i (An) < −δ −O(n2)

 ≤ exp

(
−Ω

(
δ2

n3K2

))
.

Proof. We will prove the claim when An is the centered adjacency matrix of a G(n, p) graph,
with p = m/

(
n
2

)
. The result for G(n,m) follows from the fact that a G(n,m) graph can be

obtained by starting from G(n, p) and conditioning on the (probability Ω(1/n)) event that
there are exactly m edges.

Note that

(101) f1(x) + f2(x) ≤

{
0 if x < −

√
K

x3 if x ≥ −
√
K.

Hence,

(102)
∑
i

(f1 + f2)(n−1/2λi(An)) ≤ n−3/2
∑

i:λi(An)≥−
√
Kn

λ3
i (An).

Since −f2 is convex, Theorem 11 applies to both f1 and f2, giving
(103)

Pr

(
1

n
tr[(f1 + f2)(n−1/2An)] ≤ 1

n
E tr[(f1 + f2)(n−1/2An)]− s

)
≤ 2 exp(−Ω(n2s2/K2))

whenever s = ω(K/n). From the inequality above, we also have
(104)

Pr

 ∑
i:λi(An)≥−

√
Kn

λ3
i (An) ≤ n3/2E tr(f1 + f2)(n−1/2An)− s

 ≤ 2 exp

(
−Ω

(
s2

K2n3

))
.

It remains to control E tr[(f1 + f2)(n−1/2An)]; specifically, we want to show that E tr(f1 +
f2)(n−1/2An) is close to n−3/2E tr(A3

n) (which is O(
√
n)). But note that

| tr[(f1 + f2)(n−1/2An)− n−3/2A3
n]|

≤ n−3/2
∑

i:|λi|>
√
Kn

|λi(An)|3 ≤ n−1/2|s1(An)|31{|s1(An)|>
√
Kn},



MODERATE DEVIATIONS IN TRIANGLE COUNT 25

where s1(An) is the largest singular value of An. But Proposition 21 implies that if K is
sufficiently large then E[|s1(An)|31{|s1(An)|>

√
Kn}] ≤ exp(−Ω(

√
n)). Hence,

(105)

Pr

 ∑
i:λi(An)≥−

√
Kn

λ3
i (An) ≤ n3/2E tr(A3

n)− s− exp(−Ω(
√
n))

 ≤ 2 exp

(
−Ω

(
s2

K2n3

))
.

Finally, note that E tr(A3
n) = O(n2). �

We will be interested in applying Lemma 29 when δ � n9/4. In this case, the O(n2) term
becomes negligible and the probability bound is at most exp(−ω(n3/2)).

8.2. Many large negative eigenvalues. There is one situation that we still need to handle:
the possibility that there are ω(1) eigenvalues smaller than −Ω(

√
n), and ω(1) of these

eigenvalues contribute to the triangle count.

The first observation is that although Corollary 22 is written for a fixed number of sin-
gular values, it can be easily transferred to an inequality for singular values above a certain
threshold.

Corollary 30. With the notation of Corollary 22, if si = si(A) are the singular values of A
then

(106) ln Pr

√ ∑
si>
√
Kn

s2
i ≥ t

 ≤ −t2L
2

+O

(
t2

K
lnK

)

The same bound holds if A is the centered adjacency matrix of a G(n,m) graph.

Proof. Set k = dt2/(Kn)e and observe that if s1, . . . , sk ≥
√
Kn then

∑k
i=1 s

2
i ≥ t. Hence,

we either have

(107)
∑

si>
√
Kn

s2
i ≤

k∑
i=1

s2
i ,

or else
∑k

i=1 s
2
i ≥ t. It follows that

(108) ln Pr

√ ∑
si>
√
Kn

s2
i ≥ t

 ≤ ln Pr


√√√√ k∑

i=1

s2
i ≥ t

 ,

and we conclude by applying Corollary 22 with our choice of k.

Finally, if A is the centered adjacency matrix of a G(n,m) graph then we use the same
argument that was used to extend Corollary 22 to the G(n,m) case, namely that a G(n,m)
graph can be obtained by conditioning a G(n, p) graph on an event of Ω(n−1) probability. �
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8.3. The upper bound in Theorem 1. Let A be the adjacency matrix of a G(n,m) graph

and recall that τ(A) = tr[A3]
n(n−1)(n−2)

= tr[A3]
n3 +O(1/n). Let Ã = A− EA; by Corollary 3,

(109) Pr(τ(A) ≤ p3 − t) = Pr(tr[A3] ≤ n3p3 − n3t+O(n2)) ≤ Pr(tr[Ã3] ≤ −n3t+O(n2)).

Writing out tr[Ã3] =
∑

i λ
3
i (Ã), choose K = ω(1) and ε = o(1) such that K/ε = o(n1/2t2/3).

Applying Lemma 29 gives

(110) Pr

 ∑
i:λi≥−

√
Kn

λ3
i (Ã) < −εtn3

 ≤ exp

(
−Ω

(
ε2t2n3

K2

))
= exp(−ω(n2t2/3))

On the other hand, Jensen’s inequality implies that

(111)

∣∣∣∣∣∣
∑

i:λi<−
√
Kn

λ3
i

∣∣∣∣∣∣ ≤
 ∑
i:λi<−

√
Kn

λ2
i

3/2

≤

 ∑
i:si>

√
Kn

s2
i

3/2

,

where λi = λi(Ã) and si = si(Ã). By Corollary 30 (and taking into account the fact that
ε = o(1) and K = ω(1)),

Pr

 ∑
i:λi<−

√
Kn

λ3
i (Ã) < −(1− ε)tn3

 ≤ Pr

√ ∑
i:si>

√
Kn

s2
i > (1− ε)1/3t1/3n


≤ exp

(
−L

2
t2/3n2 + o(t2/3n2)

)
.

Combined with (110), this yields

(112) ln Pr
(

tr[Ã3] ≤ −tn3
)
≤ −Lt

2/3n2

2
(1 + o(1)).

Now we apply (109), noting that n3t = ω(n2), and so n3t+O(n2) = n3t(1 + o(1)), to get

(113) ln Pr(τ(A) ≤ p3 − t) ≤ −Lt
2/3n2

2
(1 + o(1)).

Corollary 31. Conditioned on τ(A) ≤ p3 − t,
∑

i:λi≤−Ω(
√
n) λ

3
i (Ã) ≤ −tn3(1 − o(1)) with

high probability.

The other piece of information we can extract from our proof is that the vertex degrees of
a triangle-deficient graph are close to constant.

Corollary 32. Conditioned on τ(A) ≤ p3−t, if d1, . . . , dn are the vertex degrees of the graph
then with high probability

(114)
∑
i

(di − pn)2 = o(tn3).

Proof. Since
∑

i di = 2m = n2p+O(n), we have
∑

i(di−pn)2 =
∑

i d
2
i −p2n3 +O(n2). Going

back to the proof of Lemma 2, we have

(115) tr[Ã3] ≤ tr[A3]− p3n3 − 3p
∑
i

(di − pn)2 +O(n2).
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It follows that

(116) Pr(τ(A) ≤ p3 − t) ≤ Pr

(
tr[Ã3] ≤ −tn3 − 3p

∑
i

(di − pn)2 +O(n2)

)
.

Hence, if tn3 � n2 then

ln Pr

(
τ(A) ≤ p3 − t and

∑
i

(di − pn)2 ≥ εtn3

)
≤ ln Pr

(
tr[Ã3] ≤ −tn3(1 + Ω(ε))

)
≤ −Lt

2/3n2

2
(1 + Ω(ε)).

In particular,

(117) Pr

(
τ(A) ≤ p3 − t and

∑
i

(di − pn)2 ≥ εtn3

)
= o

(
Pr
(
τ(A) ≤ p3 − t

))
,

and claim follows. �

8.4. The lower bound in Theorem 1. In showing the lower bound of Theorem 1, we
need to apply Corollary 4 (instead of Corollary 3 as in the upper bound), and therefore we
need to control tr[Ã3] and

∑
i d

2
i simultaneously. To do this, take v and ` as in Corollary 25

(applied with t = t2/3n2). Now, let ξ1, . . . , ξ(n2)
be some ordering of the upper diagonal of Ã,

ordered so that the first ξ1, . . . , ξ(`2)
correspond to the upper diagonal of the upper-left `× `

principal submatrix. Then 〈Ã, vvT 〉 = 2
∑(`2)

i=1 v
2
1ξi, and so conditioning on 〈Ã, vvT 〉 < −t1/3n

is equivalent to conditioning on
∑q

i=1 ξi < −
t1/3n
2v21

(where we have set q =
(
`
2

)
).

Let Ω be the event that 〈Ã, vvT 〉 ≤ −t1/3n. To prove the lower bound of Theorem 1, we
show three properties:

(1) ln Pr(Ω) ≥ − t2/3n2L
2

(1 + o(1)).
(2) Conditioned on Ω,

∑
i d

2
i = n3p2 +O(n2) with high probability.

(3) Conditioned on Ω, tr[Ã3] ≤ −tn3(1− o(1)) with high probability.

Once these three properties are shown, the lower bound of Theorem 1 will follow easily
from Lemma 4, because by setting D = O(n2), the three properties above imply that

(118) Pr

(
tr[Ã3] ≤ −tn3 +O(D) and

∑
i

d2
i ≤ n3p2 +O(D)

)
= −t

2/3n2L

2
(1 + o(1)).

Note that the first property follows immediately from Corollary 25.

Lemma 33. The second property is true: conditioned on Ω,
∑

i d
2
i = n3p2 +O(n2) with high

probability.
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Proof. Recall that q =
(
`
2

)
= Θ(t1/3n), and it follows that conditioned on

∑q
i=1 ξi < −

t1/3n
2v21

we have
∑q

i=1 ξi = −(1 + o(1)) t
1/3n
2v21

with high probability. Now for any s = (1 + o(1)) t
1/3n
2v21

, if

we condition on
∑q

i=1 ξi = −s then the distribution of A is determined: there are qp− s =

p
(
`
2

)
−Θ(t1/3n) edges uniformly distributed without replacement among the first ` vertices,

and m−qp+s edges uniformly distributed in the rest of the graph. In particular, conditioned
on this event each of the first ` vertices has expected degree

(119) p(`− 1)−Θ(t1/3n`−1) + p(n− `) + Θ(t1/3) = p(n− 1)−Θ(t1/6n1/2)

where the first two terms on the left express the expected number of edges between our vertex
and the other first-` vertices, and the remaining two terms express the expected number of
edges between our vertex and the other n− ` vertices. Similarly, the expected degree of the
other n− ` vertices is

(120) p(n− 1) + Θ(t1/3).

These degrees are concentrated around their expectations (since the degrees of the last n− `
vertices has a hypergeometric distribution, and the degrees of the first ` vertices can be
written as the sum of two independent hypergeometric variables), with variance O(n). It
follows that with high probability (still conditioned on

∑q
i=1 ξi = −s),

∑
i

(di − pn)2 ≤ 2
∑̀
i=1

(
(di − Edi)2 + (Edi − pn)2

)
+

n∑
i=`+1

(di − pn)2

= O(n2) +O(t1/3n2) +O(n2)

= O(n2).

�

Lemma 34. The third property is true: conditioned on Ω, tr[Ã3] ≤ −tn3(1−o(1)) with high
probability.

Proof. Conditioned on Ω, we have λn(Ã) ≤ −t1/3n(1−o(1)), and so it suffices to show that the
contribution of the other eigenvalues is negligible. Note that the upper bound of Theorem 1,

together with the fact that ln Pr(Ω) ≥ − t2/3n2L
2

(1 − o(1)), implies that conditioned on Ω,

‖Ã‖ ≤ t1/3n(1 + o(1)). Hence,

tr[(Ã+ t1/3nvvT )3] = tr[Ã3] + t1/3nvT Ã2v + t2/3n2vT Ãv − tn3

≥ tr[Ã3]− tn3(1 + o(1))(121)

with high probability on Ω. Let B̃ = Ã + t1/3nvvT . The basic idea is that B̃ contains off-
diagonal entries that are almost independent and almost mean-zero, and therefore E tr[B̃3]
can be easily computed. The most tedious part is just to check that the off-diagonal entries
of B̃ have mean sufficiently small.

Recall from the previous proof that it suffices to prove the claim conditioned on
∑

i ξi = s

for any s = (1 + o(1)) t
1/3n
2v21

; call this event Ωs. Recall that ` = v−2
1 + O(1), and so qv4

1 =
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`
2

)
v4

1 = 1
2

+O(v4
1) = 1

2
+O(t−2/3n−2). On Ωs, therefore, we have

q∑
i=1

ξi + t1/3nv2
1 = s+ qt1/3nv2

1

= −(1 + o(1))
t1/3n

2v2
1

+
t1/3n

2v2
1

+O(t−1/3n−1)

= O(t−1/3n−1).

In particular, if ωi are the upper-diagonal entries of the matrix B̃ (ordered the same way as
ξi), then

• for 1 ≤ i ≤ q, E[ωi | Ωs] = O(q−1t−1/3n−1) = O(t−2/3n−2), and
• for q < i ≤

(
n
2

)
, E[ωi | Ωs] = E[ξi | Ωs] = O(t1/3n−1).

Hence, all off-diagonal entries of B̃ have expectation (conditioned on Ωs) o(n
−1).

Let bij be the entries of B̃. These are not independent given Ωs; they are determined
by sampling without replacement among the entries of the first ` × ` submatrix, and then
again by sampling without replacement among the remaining entries. However, the bij are
almost independent in the sense that E[br1i1,j1b

r2
i2,j2

br3i3,j3 ] = (1 + o(1))E[br1i1,j1 ]E[br2i2,j2 ]E[br3i3,j3 ] for

any fixed choice of entries and exponents. Also, the diagonal entries of B̃ are uniformly
bounded.

(122) E[tr[B̃3 | Ωs] =
∑
i,j,k

E[bi,jbj,kbk,i] = O(n),

with the dominant contribution coming from the terms with i = j = k. By Markov’s
inequality and the fact that n = o(tn3), it follows that tr[B̃3] = o(tn3) with high probability
conditioned on Ωs. Going back to (121), the claim follows. �

8.5. The two extreme eigenvalues. In proving the upper bound on Pr(τ(A) ≤ p3−t), we
applied the inequality

∑
i |ai|3 ≤ (

∑
i a

2
i )

3/2 to the collection of most-negative eigenvalues.
In order to understand how these most negative eigenvalues are actually distributed, observe
that in order for the inequality above to be an equality, all but one of the terms in the sum
must be zero. Made quantitative, this observation implies that in order for our probability
upper bound to be tight, the smallest eigenvalue must dominate the others.

Lemma 35. Let a1, . . . be a sequence of non-negative numbers, in non-increasing order. If

(123)
∑
i≥2

a3
i ≥ ε‖a‖3

3

then

(124) ‖a‖2
2 ≥ (1 + ε)1/3‖a‖2/3

3 .

Proof. For c > b > 0,

(125) (b2 + c2)3 − (b3 + c3)2 = 3b2c2(b2 + c2)− 2b3c3 ≥ 4b3c3 ≥ b3

c3
(b3 + c3)2,
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or in other words,

(126) b3 + c3 ≤ 1(
1 + b3

c3

)1/2
(b2 + c2)3/2.

Applying this with c = a1 and b =
(∑

i≥2 a
3
i

)1/3
, note that our assumptions imply that

b3/c3 ≥ ε, and so

(127) ‖a‖3
3 ≤

1√
1 + ε

(
a2

1 +
(∑
i≥2

a3
i

)2/3
)3/2

≤ 1√
1 + ε

(∑
i≥1

a2
i

)3/2

,

where the final inequality follows from Jensen’s inequality. �

Applying Lemma 35 to the most negative eigenvalues of Ã allows us to show that the
eigenvalues of Ã satisfy the claims that Theorem 1 makes for the eigenvalues of A.

Corollary 36. In the setting of Theorem 1, for any ε > 0, conditioned on τ(A) ≤ p3− t we
have

(128) λ3
n(Ã) ≤ −(1− ε)tn3 and λ3

n−1(Ã) ≥ −εtn3

with high probability.

Proof. Let S = {i : λi(Ã) ≤ −Ω(
√
n)}. By Corollary 31, for any δ > 0, conditioned on

τ(A) ≤ p3 − t we have

(129)
∑
i∈S

λ3
i (Ã) ≤ −(1− δ)tn3

with high probability. On this event, we either have λ3
n(Ã) ≤ −(1−δ−ε)tn3 or

∑
i∈S\{n} λ

3
i (Ã) ≤

−εtn3. We will show that for some δ = Ω(ε),

(130) Pr

∑
i∈S

λ3
i (Ã) ≤ −(1− δ)tn3 and

∑
i∈S\{n}

λ3
i (Ã) ≤ −εtn3


is much smaller than Pr(τ(A) ≤ p3 − t); this will imply the claim.

Indeed, applying Lemma 35 to the sequence of |λi| for i ∈ S, we see that if

(131)
∑
i∈S

λ3
i (Ã) ≤ −(1− δ)tn3 and

∑
i∈S\{n}

λ3
i (Ã) ≤ −εtn3

then

(132)
∑
i∈S

λ2
i (Ã) ≥ (1 + ε)1/3(1− δ)t2/3n2 ≥ (1 + Ω(ε))t2/3n2,

where the last inequality follows by choosing a sufficiently small δ = Ω(ε). But Corollary 30
implies that

Pr

(∑
i∈S

λ2
i (Ã) ≥ (1 + Ω(ε))t2/3n2

)
≤ exp

(
−(1 + Ω(ε))(1− o(1))

t2/3n2L

2

)
= o(Pr(τ(A) ≤ p3 − t)),
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where the final bound follows from the lower bound of Theorem 1. �

To complete the proof of Theorem 1, we need to pass from the eigenvalues of Ã to the
eigenvalues of A, recall that A = Ã+ p1− pI. Since p1 ≥ 0, we have

(133) λn−1(A) ≥ λn−1(Ã)− p,

and so λn−1(Ã) ≥ −o(tn3) implies the same for λn−1(A). For λn, we have λn(A) ≤ λn(Ã+p1)
and so it remains to take care of the p1 term.

Let v be an eigenvector with eigenvalue λn(Ã) satisfying |v|2 = 1. Then |〈v, Ã1〉| =
|λn(Ã)||〈v,1〉|; conditioned on τ(A) ≤ p3−t, this is (1+o(1))tn3|〈v,1〉| with high probability.
On the other hand Ã1 = (A − p1 + pI)1 = d − p(n − 1)1, where d whose entries are the
vertex degrees. By Corollary 32, conditioned on τ(A) ≤ p3 − t we have |d− pn1|2 = o(tn3),
and since |1|2 = n = o(tn3), we also have |Ã1|2 = |d− p(n− 1)1|2 = o(tn3). Hence,

(134) (1 + o(1))tn3|〈v,1〉| = |〈v, Ã1〉| ≤ |Ã1| = o(tn3),

and it follows that |〈v,1〉| = o(1). Finally, note that

(135) vT (Ã+ p1)v = vT Ãv + p|〈v,1〉|2 = λn(Ã) + o(1),

and so by Rayleigh’s criterion it follows that λn(Ã+ p1) ≤ λn(Ã) + o(1). This completes the
proof of Theorem 1.
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