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1. Introduction

The present work deals with the studies of the existence of stationary solutions of
the following system of integro-differential equations inRd, d = 4, 5

∂um

∂t
= −Dm(−∆)smum +

∫

Rd

Km(x− y)gm(u(y, t))dy + fm(x), (1.1)

where1 ≤ m ≤ N appearing in the cell population dynamics. Our method will
work in the range of the powers of the negative Laplacians given by

3

2
−

d

4
< sm < 1, 1 ≤ m ≤ N.

The space variablex in our problem is correspondent to the cell genotype, func-
tionsum(x, t) describe the cell density distributions for various groupsof cells as
functions of their genotype and time,

u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))
T .

1



The right side of the system of equations (1.1) describes theevolution of cell den-
sities by means of the cell proliferation, mutations and cell influx or efflux. The
anomalous diffusion terms with positive coefficientsDm correspond to the change
of genotype due to small random mutations, and the integral production terms de-
scribe large mutations. Functionsgm(u) denote the rates of cell birth which depend
onu (density dependent proliferation), and the kernelsKm(x− y) express the pro-
portions of newly born cells changing their genotype fromy to x. We assume that
they depend on the distance between the genotypes. The functionsfm(x) stand for
the influx or efflux of cells for different genotypes.

The operators(−∆)sm , 1 ≤ m ≤ N in problem (1.1) describe a particular case
of the anomalous diffusion actively treated in the context of various applications
in plasma physics and turbulence [7], [21], surface diffusion [14], [19], semicon-
ductors [20] and so on. The anomalous diffusion can be understood as a random
process of the particle motion characterized by the probability density distribution
of jump length. The moments of this density distribution arefinite in the case of the
normal diffusion, but this is not the case for the anomalous diffusion. The asymp-
totic behavior at the infinity of the probability density function determines the value
sm, 1 ≤ m ≤ N of the power of the negative Laplacian (see [18]). The operators
(−∆)sm , 1 ≤ m ≤ N are defined by means of the spectral calculus. We consider

the case of
3

2
−

d

4
< sm < 1, 1 ≤ m ≤ N in the present work. A similar system

with the standard Laplacians in the diffusion terms was studied recently in [29].
We note that the restriction on the powerssm, 1 ≤ m ≤ N here is due to the
solvability conditions of our problem.

Let us set here allDm = 1 and show the existence of solutions of the system of

equations for
3

2
−

d

4
< sm < 1

−(−∆)smum +

∫

Rd

Km(x− y)gm(u(y))dy + fm(x) = 0, (1.2)

with 1 ≤ m ≤ N, d = 4, 5. We treat the case when the linear part of this operator
does not satisfy the Fredholm property. As a consequence, the conventional meth-
ods of nonlinear analysis may not be applicable. We use the solvability conditions
for the non Fredholm operators along with the method of contraction mappings.

Consider the equation

−∆u + V (x)u− au = f, (1.3)

whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant and the
scalar potential functionV (x) is either zero identically or converges to0 at infinity.
For a ≥ 0, the essential spectrum of the operatorA : E → F corresponding to
the left side of problem (1.3) contains the origin. As a consequence, such operator
does not satisfy the Fredholm property. Its image is not closed, ford > 1 the di-
mension of its kernel and the codimension of its image are notfinite. The present
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work deals with the studies of certain properties of the operators of this kind. Note
that elliptic problems with non Fredholm operators were studied actively in recent
years. Approaches in weighted Sobolev and Hölder spaces were developed in [2],
[3], [4], [5], [6]. The Schrödinger type operators withoutFredholm property were
treated with the methods of the spectral and the scattering theory in [22], [26],
[32]. Nonlinear non Fredholm elliptic problems were studied in [27] and [28].
The significant applications to the theory of reaction-diffusion type equations were
developed in [9], [10]. The non Fredholm operators arise also when consider-
ing wave systems with an infinite number of localized traveling waves (see [1]).
In particular, whena = 0 the operatorA is Fredholm in some properly chosen
weighted spaces (see [2], [3], [4], [5], [6]). However, the case ofa 6= 0 is sig-
nificantly different and the approach developed in these articles cannot be applied.
Fredholm structures, topological invariants and their applications were discussed in
[11]. Front propagation equations with anomalous diffusion were studied largely in
recent years (see e.g. [23], [24]). The article [15] is devoted to the establishing
of the imbedding theorems and the studies of the spectrum of acertain pseudodif-
ferential operator. The form boundedness criterion for therelativistic Schrödinger
operator was established in [16]. A new type of integral equations related to the
co-area formula was considered in [17].

We setKm(x) = εmHm(x), whereεm ≥ 0, such that

ε := max1≤m≤Nεm, s := max1≤m≤Nsm (1.4)

with
3

2
−

d

4
< s < 1 and assume the following.

Assumption 1.1. Let 1 ≤ m ≤ N and
3

2
−

d

4
< sm < 1, whered = 4, 5. Let

fm(x) : R
d → R be nontrivial for a certainm. Let

fm(x) ∈ L1(Rd), (−∆)
3

2
−smfm(x) ∈ L2(Rd).

We assume also thatHm(x) : R
d → R, such that

Hm(x) ∈ L1(Rd), (−∆)
3

2
−smHm(x) ∈ L2(Rd).

Furthermore,

H2 :=

N∑

m=1

‖Hm(x)‖
2
L1(Rd) > 0

and

Q2 :=
N∑

m=1

‖(−∆)
3

2
−smHm(x)‖

2
L2(Rd) > 0.
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Let us choose here the space dimensionsd = 4, 5, which is related to the solv-
ability conditions for the linear Poisson type equation (4.1) stated in Lemma 4.1
below. For the applications, the space dimensions are not limited tod = 4, 5, since
the space variable here corresponds to the cell genotype butnot to the usual phys-

ical space. Ind = 1 our problem was treated in [31] with all0 < sm = s <
1

4
based on the solvability conditions for the analog of (4.1) on the real line. In two

dimensions our system was considered in [33] with0 < sm <
1

2
, 1 ≤ m ≤ N . In

d = 3 our problem was studied in [30] with all
1

4
< sm = s <

3

4
. As distinct from

the situations in the lower dimensionsd = 1, 2, in R
d, d = 3, 4, 5 we are able to

apply the Sobolev inequality for the fractional negative Laplacian (see Lemma 2.2
of [12], also [13]), namely

‖fm(x)‖
L

2d
d−6+4sm (Rd)

≤ csob‖(−∆)
3

2
−smfm(x)‖L2(Rd),

3

2
−

d

4
< sm < 1 (1.5)

with d = 4, 5 and1 ≤ m ≤ N . By means of the Assumption 1.1 above along with
the standard interpolation argument, we obtain that

fm(x) ∈ L2(Rd), d = 4, 5, 1 ≤ m ≤ N (1.6)

as well. We use the Sobolev spaces for the technical purposeswith 0 < s ≤ 1,
namely

H2s(Rd) := {φ(x) : Rd → R | φ(x) ∈ L2(Rd), (−∆)sφ ∈ L2(Rd)}, d = 4, 5

equipped with the norm

‖φ‖2H2s(Rd) := ‖φ‖2L2(Rd) + ‖(−∆)sφ‖2L2(Rd). (1.7)

For a vector vector function

u(x) = (u1(x), u2(x), ..., uN(x))
T ,

throughout the work we will use the norm

‖u‖2H3(Rd,RN ) := ‖u‖2L2(Rd,RN ) +

N∑

m=1

‖(−∆)
3

2um‖
2
L2(Rd), (1.8)

whered = 4, 5 and

‖u‖2L2(Rd,RN ) :=
N∑

m=1

‖um‖
2
L2(Rd).

Let us recall the Sobolev embedding inRd, d = 4, 5, namely

‖φ‖L∞(Rd) ≤ ce‖φ‖H3(Rd), (1.9)

4



wherece > 0 is the constant of the embedding. When all the nonnegative parame-
tersεm vanish, we obtain the linear Poisson type equations

(−∆)smum(x) = fm(x), 1 ≤ m ≤ N. (1.10)

By means of Lemma 4.1 below under the given conditions each problem (1.10)
possesses a unique solution

u0,m(x) ∈ H2sm(Rd),
3

2
−

d

4
< sm < 1, 1 ≤ m ≤ N,

and no orthogonality relations for the right side of (1.10) are necessary here. Clearly,

(−∆)
3

2u0,m(x) = (−∆)
3

2
−smfm(x) ∈ L2(Rd), 1 ≤ m ≤ N

due to Assumption 1.1. We obtain that each linear equation (1.10) admits a unique
solutionu0,m(x) ∈ H3(Rd). Thus

u0(x) := (u0,1(x), u0,2(x), ..., u0,N(x))
T ∈ H3(Rd,RN).

Let us look for the resulting solution of nonlinear system ofequations (1.2) as

u(x) = u0(x) + up(x) (1.11)

with
up(x) := (up,1(x), up,2(x), ..., up,N(x))

T .

Apparently, we easily derive the perturbative system of equations

(−∆)smup,m(x) = εm

∫

Rd

Hm(x− y)gm(u0(y) + up(y))dy, (1.12)

where1 ≤ m ≤ N,
3

2
−

d

4
< sm < 1 and introduce a closed ball in our Sobolev

space

Bρ := {u(x) ∈ H3(Rd,RN) | ‖u‖H3(Rd,RN ) ≤ ρ}, 0 < ρ ≤ 1. (1.13)

Let us look for the solution of system (1.12) as the fixed pointof the auxiliary
nonlinear problem

(−∆)smum(x) = εm

∫

Rd

Hm(x− y)gm(u0(y) + v(y))dy, 1 ≤ m ≤ N, (1.14)

with
3

2
−

d

4
< sm < 1 in ball (1.13). For a given vector functionv(y) this is a sys-

tem of equations with respect tou(x). The left side of (1.14) contains the operators
which do not satisfy the Fredholm property

(−∆)sm : H2sm(Rd) → L2(Rd). (1.15)
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The essential spectrum of (1.15) fills the nonnegative semi-axis [0,+∞). There-
fore, such operator does not have a bounded inverse. The similar situation appeared
in works [27] and [28] but as distinct from the present case, the problems stud-
ied there required orthogonality conditions. The fixed point technique was used
in [25] to estimate the perturbation to the standing solitary wave of the Nonlinear
Schrödinger (NLS) equation when either the external potential or the nonlinear term
in the NLS were perturbed but the Schrödinger operator involved in the nonlinear
equation there had the Fredholm property (see Assumption 1 of [25], also [8]). Let
us introduce the closed ball in the space ofN dimensions as

I := {z ∈ R
N | |z| ≤ ce‖u0‖H3(Rd,RN ) + ce}, d = 4, 5 (1.16)

and the closed ballDM in the space ofC2(I,RN) vector functions given by

{g(z) := (g1(z), g2(z), ..., gN(z)) ∈ C2(I,RN) | ‖g‖C2(I,RN ) ≤ M}, (1.17)

with M > 0. Here the norms

‖g‖C2(I,RN ) :=

N∑

m=1

‖gm‖C2(I), (1.18)

‖gm‖C2(I) := ‖gm‖C(I) +

N∑

n=1

∥∥∥∂gm
∂zn

∥∥∥
C(I)

+

N∑

n,l=1

∥∥∥ ∂2gm

∂zn∂zl

∥∥∥
C(I)

, (1.19)

where‖gm‖C(I) := maxz∈I |gm(z)|. We make the following technical assumption
on the nonlinear part of system (1.2).

Assumption 1.2. Let 1 ≤ m ≤ N . Assume thatgm(z) : RN → R, such that
gm(0) = 0 and∇gm(0) = 0. It is also assumed thatg(z) ∈ DM and it does not
vanish identically in the ballI.

We introduce the operatorTg, such thatu = Tgv, whereu is a solution of system
(1.14). Our first main proposition is as follows.

Theorem 1.3. Let Assumptions 1.1 and 1.2 hold. Then system (1.14) defines the
mapTg : Bρ → Bρ, which is a strict contraction for all

0 < ε ≤
ρ

M(‖u0‖H3(Rd,RN ) + 1)2
×

×

[
H2(‖u0‖H3(Rd,RN ) + 1)

8s
d
−2d

(d− 4s)(2π)4S

(
|Sd|

4S

) 4S
d

+Q2

]− 1

2

(1.20)

with ε, s andS defined in (1.4) and (2.6). The unique fixed pointup(x) of this map
Tg is the only solution of problem (1.12) inBρ.
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Apparently, the resulting solutionu(x) of system (1.2) given by (1.11) will not
be equal to zero identically because the influx/efflux termsfm(x) are nontrivial for
a certain1 ≤ m ≤ N and allgm(0) vanish as assumed. We will make use of the
following elementary lemma.

Lemma 1.4.LetR ∈ (0,+∞) andd = 4, 5. Consider the function

ϕ(R) := αRd−4s +
1

R4s
,

3

2
−

d

4
< s < 1, α > 0.

It achieves the minimal value atR∗ :=

(
4s

α(d− 4s)

) 1

d

, which is given by

ϕ(R∗) =

(
α

4s

) 4s
d

d

(d− 4s)
d−4s

d

.

Our second main statement is devoted to the continuity of thecumulative so-
lution of system (1.2) given by formula (1.11) with respect to the nonlinear vector
functiong. We will use the following positive technical expression

σ := M(‖u0‖H3(Rd,RN ) + 1)×

×

{
H2(‖u0‖H3(Rd,RN ) + 1)

8s
d
−2d

(d− 4s)(2π)4S

(
|Sd|

4S

) 4S
d

+Q2

} 1

2

. (1.21)

Theorem 1.5. Let j = 1, 2, the assumptions of Theorem 1.3 including inequality
(1.20) hold, so thatup,j(x) is the unique fixed point of the mapTgj : Bρ → Bρ,
which is a strict contraction for allε which satisfy (1.20) and the resulting solution
of system (1.2) withg(z) = gj(z) is

uj(x) := u0(x) + up,j(x). (1.22)

Then for all the values ofε satisfying inequality (1.20) the estimate

‖u1 − u2‖H3(Rd,RN ) ≤
εσ

M(1− εσ)
(‖u0‖H3(Rd,RN ) + 1)‖g1 − g2‖C2(I,RN ) (1.23)

is valid.

We turn our attention to the proof of our first main proposition.

2. The existence of the perturbed solution
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Proof of Theorem 1.3.We choose arbitrarily a vector functionv(x) ∈ Bρ and denote
the terms involved in the integral expressions in the right side of system (1.14) as

Gm(x) := gm(u0(x) + v(x)), 1 ≤ m ≤ N.

Let us use the standard Fourier transform throughout the article, namely

φ̂(p) :=
1

(2π)
d
2

∫

Rd

φ(x)e−ipxdx, d = 4, 5. (2.1)

Evidently, we have the estimate from above

‖φ̂(p)‖L∞(Rd) ≤
1

(2π)
d
2

‖φ(x)‖L1(Rd). (2.2)

Let us apply (2.1) to both sides of system (1.14). This gives us

ûm(p) = εm(2π)
d
2

Ĥm(p)Ĝm(p)

|p|2sm
, 1 ≤ m ≤ N, d = 4, 5.

Thus we have the expression for the norm as

‖um‖
2
L2(Rd) = (2π)dε2m

∫

Rd

|Ĥm(p)|
2|Ĝm(p)|

2

|p|4sm
dp, 1 ≤ m ≤ N (2.3)

with d = 4, 5. As distinct from articles [27] and [28] with the standard Laplace
operator in the diffusion term, here we do not try to control the norms

∥∥∥∥∥
Ĥm(p)

|p|2sm

∥∥∥∥∥
L∞(Rd)

, 1 ≤ m ≤ N.

Instead, we estimate the right side of (2.3) using the analogof inequality (2.2) ap-
plied to functionsHm andGm with R ∈ (0,+∞) as

(2π)dε2m

[ ∫

|p|≤R

|Ĥm(p)|
2|Ĝm(p)|

2

|p|4sm
dp+

∫

|p|>R

|Ĥm(p)|
2|Ĝm(p)|

2

|p|4sm
dp
]
≤

≤ ε2m‖Hm‖
2
L1(Rd)

{
|Sd|

(2π)d
‖Gm(x)‖

2
L1(Rd)

Rd−4sm

d− 4sm
+

‖Gm(x)‖
2
L2(Rd)

R4sm

}
. (2.4)

Here and throughout the articleSd denotes the unit sphere in ourd dimensional
space centered at the origin and|Sd| its Lebesgue measure. By virtue of norm
definition (1.8) along with the triangle inequality and using the fact thatv(x) ∈ Bρ,
we easily obtain

‖u0 + v‖L2(Rd,RN ) ≤ ‖u0‖H3(Rd,RN ) + 1, d = 4, 5.
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Sobolev embedding (1.9) implies that

|u0 + v| ≤ ce(‖u0‖H3(Rd,RN ) + 1).

Let the dot denote the scalar product of two vectors inR
N . Evidently,

Gm(x) =

∫ 1

0

∇gm(t(u0(x) + v(x))).(u0(x) + v(x))dt, 1 ≤ m ≤ N.

Using the ballI defined in (1.16) we easily derive

|Gm(x)| ≤ supz∈I |∇gm(z)||u0(x) + v(x)| ≤ M |u0(x) + v(x)|.

Hence,

‖Gm(x)‖L2(Rd) ≤ M‖u0 + v‖L2(Rd,RN ) ≤ M(‖u0‖H3(Rd,RN ) + 1).

Apparently, fort ∈ [0, 1] and1 ≤ m, j ≤ N , we can express

∂gm

∂zj
(t(u0(x) + v(x))) =

∫ t

0

∇
∂gm

∂zj
(τ(u0(x) + v(x))).(u0(x) + v(x))dτ.

This yields

∣∣∣∂gm
∂zj

(t(u0(x) + v(x)))
∣∣∣ ≤ supz∈I

∣∣∣∇∂gm

∂zj

∣∣∣|u0(x) + v(x)| ≤

≤
N∑

n=1

∥∥∥ ∂2gm

∂zn∂zj

∥∥∥
C(I)

|u0(x) + v(x)|.

Thus,

|Gm(x)| ≤ |u0(x)+v(x)|

N∑

n,j=1

∥∥∥ ∂2gm

∂zn∂zj

∥∥∥
C(I)

|u0,j(x)+vj(x)| ≤ M |u0(x)+v(x)|2,

such that

‖Gm(x)‖L1(Rd) ≤ M‖u0 + v‖2L2(Rd,RN ) ≤ M(‖u0‖H3(Rd,RN ) + 1)2. (2.5)

This enables us to obtain the upper bound for the right side of(2.4) as

ε2mM
2‖Hm‖

2
L1(Rd)(‖u0‖H3(Rd,RN ) + 1)2×

×

{
|Sd|(‖u0‖H3(Rd,RN ) + 1)2Rd−4sm

(2π)d(d− 4sm)
+

1

R4sm

}
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with R ∈ (0,+∞). Lemma 1.4 gives us the minimal value of the expression above.
Therefore,‖um‖

2
L2(Rd) ≤

≤ εm
2M2‖Hm‖

2
L1(Rd)(‖u0‖H3(Rd,RN ) + 1)2+

8sm
d

(
|Sd|

4sm

) 4sm
d

d

(d− 4sm)(2π)4sm
.

Let us define

(
|Sd|

4S

) 4S
d

1

(2π)4S
:= max1≤m≤N

(
|Sd|

4sm

) 4sm
d

1

(2π)4sm
, (2.6)

where
3

2
−

d

4
< S < 1. Thus

‖u‖2L2(Rd,RN ) ≤ ε2M2H2(‖u0‖H3(Rd,RN ) + 1)2+
8s
d

d

d− 4s

(
|Sd|

4S

) 4S
d

1

(2π)4S
. (2.7)

Clearly, (1.14) yields

(−∆)
3

2um(x) = εm(−∆)
3

2
−sm

∫

Rd

Hm(x− y)Gm(y)dy, 1 ≤ m ≤ N,

where
3

2
−

d

4
< sm < 1. By means of the analog of upper bound (2.2) applied to

functionGm along with (2.5) we arrive at

‖(−∆)
3

2um‖
2
L2(Rd) ≤ ε2m‖Gm‖

2
L1(Rd)‖(−∆)

3

2
−smHm‖

2
L2(Rd) ≤

≤ ε2M2(‖u0‖H3(Rd,RN ) + 1)4‖(−∆)
3

2
−smHm‖

2
L2(Rd).

Hence,
N∑

m=1

‖(−∆)
3

2um‖
2
L2(Rd) ≤ ε2M2(‖u0‖H3(Rd,RN ) + 1)4Q2. (2.8)

Therefore, by virtue of the definition of the norm (1.8) alongwith inequalities (2.7)
and (2.8) we derive the estimate from above for the norm‖u‖H3(Rd,RN ) as

εM(‖u0‖H3(Rd,RN ) + 1)2×

×

[
H2(‖u0‖H3(Rd,RN ) + 1)

8s
d
−2d

(d− 4s)(2π)4S

(
|Sd|

4S

) 4S
d

+Q2

] 1

2

≤ ρ (2.9)
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for all values ofε which satisfy (1.20), such thatu(x) ∈ Bρ as well. Suppose for a
certainv(x) ∈ Bρ there exist two solutionsu1,2(x) ∈ Bρ of system (1.14). Clearly,
their differencew(x) := u1(x)− u2(x) ∈ L2(Rd,RN) satisfies

(−∆)smwm(x) = 0,
3

2
−

d

4
< sm < 1, 1 ≤ m ≤ N.

Because each operator(−∆)sm considered on the wholeRd does not possess any
nontrivial square integrable zero modes,w(x) vanishes identically inRd. Therefore,
problem (1.14) defines a mapTg : Bρ → Bρ for all ε satisfying inequality (1.20).

Our goal is to demonstrate that this map is a strict contraction. Let us choose
arbitrarily v1,2(x) ∈ Bρ. According to the argument aboveu1,2 := Tgv1,2 ∈ Bρ as
well if ε satisfies (1.20). Evidently, by means of (1.14) we obtain for1 ≤ m ≤ N

(−∆)smu1,m(x) = εm

∫

Rd

Hm(x− y)gm(u0(y) + v1(y))dy, (2.10)

(−∆)smu2,m(x) = εm

∫

Rd

Hm(x− y)gm(u0(y) + v2(y))dy (2.11)

with all
3

2
−

d

4
< sm < 1. We introduce

G1,m(x) := gm(u0(x) + v1(x)), G2,m(x) := gm(u0(x) + v2(x)), 1 ≤ m ≤ N

and apply the standard Fourier transform (2.1) to both sidesof systems (2.10) and
(2.11). This yields

û1,m(p) = εm(2π)
d
2

Ĥm(p)Ĝ1,m(p)

|p|2sm
, û2,m(p) = εm(2π)

d
2

Ĥm(p)Ĝ2,m(p)

|p|2sm
.

Apparently,

‖u1,m − u2,m‖
2
L2(Rd) = ε2m(2π)

d

∫

Rd

|Ĥm(p)|
2|Ĝ1,m(p)− Ĝ2,m(p)|

2

|p|4sm
dp. (2.12)

Obviously, the right side of (2.12) can be estimated from above using inequality
(2.2) as

ε2m(2π)
d

[∫

|p|≤R

|Ĥm(p)|
2|Ĝ1,m(p)− Ĝ2,m(p)|

2

|p|4sm
dp+

+

∫

|p|>R

|Ĥm(p)|
2|Ĝ1,m(p)− Ĝ2,m(p)|

2

|p|4sm
dp

]
≤ ε2‖Hm‖

2
L1(Rd)×

×

{
‖G1,m(x)−G2,m(x)‖

2
L1(Rd)

(2π)d
|Sd|Rd−4sm

d− 4sm
+

‖G1,m(x)−G2,m(x)‖
2
L2(Rd)

R4sm

}

11



with R ∈ (0,+∞). Evidently, we have the identity for1 ≤ m ≤ N

G1,m(x)−G2,m(x) =

∫ 1

0

∇gm(u0(x) + tv1(x) + (1− t)v2(x)).(v1(x)− v2(x))dt.

Apparently, fort ∈ [0, 1]

‖v2(x) + t(v1(x)− v2(x))‖H3(Rd,RN ) ≤ t‖v1(x)‖H3(Rd,RN )+

+(1− t)‖v2(x)‖H3(Rd,RN ) ≤ ρ,

which implies thatv2(x) + t(v1(x)− v2(x)) ∈ Bρ. Hence,

|G1,m(x)−G2,m(x)| ≤ supz∈I |∇gm(z)||v1(x)− v2(x)| ≤ M |v1(x)− v2(x)|,

so that

‖G1,m(x)−G2,m(x)‖L2(Rd) ≤ M‖v1 − v2‖L2(Rd,RN ) ≤ M‖v1 − v2‖H3(Rd,RN ).

Clearly, we can express
∂gm

∂zj
(u0(x) + tv1(x) + (1− t)v2(x)) for 1 ≤ m, j ≤ N as

∫ 1

0

∇
∂gm

∂zj
(τ [u0(x) + tv1(x) + (1− t)v2(x)]).[u0(x) + tv1(x) + (1− t)v2(x)]dτ.

Therefore, fort ∈ [0, 1]

∣∣∣∂gm
∂zj

(u0(x) + tv1(x) + (1− t)v2(x))
∣∣∣ ≤

≤
N∑

n=1

∥∥∥∥∥
∂2gm

∂zn∂zj

∥∥∥∥∥
C(I)

(|u0(x)|+ t|v1(x)| + (1− t)|v2(x)|).

Hence, we obtain the upper bound forG1,m(x) − G2,m(x) in the absolute value
given by

M |v1(x)− v2(x)|
(
|u0(x)|+

1

2
|v1(x)| +

1

2
|v2(x)|

)
.

By means of the Schwarz inequality we derive the estimate from above for the norm
‖G1,m(x)−G2,m(x)‖L1(Rd) as

M‖v1 − v2‖L2(Rd,RN )

(
‖u0‖L2(Rd,RN ) +

1

2
‖v1‖L2(Rd,RN ) +

1

2
‖v2‖L2(Rd,RN )

)
≤

≤ M‖v1 − v2‖H3(Rd,RN )(‖u0‖H3(Rd,RN ) + 1). (2.13)

12



Therefore, we arrive at the upper bound for the norm‖u1,m(x) − u2,m(x)‖
2
L2(Rd)

given by

ε2‖Hm‖
2
L1(Rd)M

2‖v1 − v2‖
2
H3(Rd,RN )

{(‖u0‖H3(Rd,RN ) + 1)2|Sd|Rd−4sm

(2π)d(d− 4sm)
+

1

R4sm

}
.

We minimize the expression above overR ∈ (0,+∞) by means of our Lemma 1.4,
such that

‖u1,m(x)− u2,m(x)‖
2
L2(Rd) ≤ ε2‖Hm‖

2
L1(Rd)M

2‖v1 − v2‖
2
H3(Rd,RN )×

×(‖u0‖H3(Rd,RN ) + 1)
8sm
d

(
|Sd|

4sm

) 4sm
d

d

(2π)4sm(d− 4sm)
.

Thus,
‖u1(x)− u2(x)‖

2
L2(Rd,RN ) ≤ ε2H2M2‖v1 − v2‖

2
H3(Rd,RN )×

×(‖u0‖H3(Rd,RN ) + 1)
8s
d

d

(2π)4S(d− 4s)

(
|Sd|

4S

) 4S
d

. (2.14)

By means of formulas (2.10) and (2.11) with1 ≤ m ≤ N we have

(−∆)
3

2 (u1,m(x)−u2,m(x)) = εm(−∆)
3

2
−sm

∫

Rd

Hm(x−y)[G1,m(y)−G2,m(y)]dy.

Upper bounds (2.2) and (2.13) give us‖(−∆)
3

2 (u1,m(x)− u2,m(x))‖
2
L2(Rd) ≤

≤ ε2‖G1,m −G2,m‖
2
L1(Rd)‖(−∆)

3

2
−smHm‖

2
L2(Rd) ≤

≤ ε2M2‖v1 − v2‖
2
H3(Rd,RN )(‖u0‖H3(Rd,RN ) + 1)2‖(−∆)

3

2
−smHm‖

2
L2(Rd).

Hence,
∑N

m=1 ‖(−∆)
3

2 (u1,m(x)− u2,m(x))‖
2
L2(Rd) ≤

≤ ε2M2‖v1 − v2‖
2
H3(Rd,RN )(‖u0‖H3(Rd,RN ) + 1)2Q2. (2.15)

Inequalities (2.14) and (2.15) yield that the norm‖u1 − u2‖H3(Rd,RN ) can be esti-
mated from above by the expressionεM(‖u0‖H3(Rd,RN ) + 1)×

×

{
H2(‖u0‖H3(Rd,RN ) + 1)

8s
d
−2d

(d− 4s)(2π)4S

(
|Sd|

4S

) 4S
d

+Q2

} 1

2

‖v1 − v2‖H3(Rd,RN ). (2.16)

It can be easily verified that for all values ofε satisfying (1.20) the constant in the
right side of (2.16) is less than one, such that the mapTg : Bρ → Bρ defined by
system (1.14) is a strict contraction. Its unique fixed pointup(x) is the only solution

13



of problem (1.12) in the ballBρ. The cumulativeu(x) ∈ H3(Rd,RN) given by
(1.11) is a solution of system (1.2). Evidently, by means of (2.9)up(x) tends to zero
in theH3(Rd,RN) norm asε → 0.

We proceed to the proof of the second main statement of the article.

3. The continuity of the resulting solution

Proof of Theorem 1.5.Obviously, for all the values ofε satisfying (1.20)

up,1 = Tg1up,1, up,2 = Tg2up,2,

so that
up,1 − up,2 = Tg1up,1 − Tg1up,2 + Tg1up,2 − Tg2up,2.

Hence,

‖up,1−up,2‖H3(Rd,RN ) ≤ ‖Tg1up,1−Tg1up,2‖H3(Rd,RN )+‖Tg1up,2−Tg2up,2‖H3(Rd,RN ).

Upper bound (2.16) yields

‖Tg1up,1 − Tg1up,2‖H3(Rd,RN ) ≤ εσ‖up,1 − up,2‖H3(R2,RN )

with σ defined in (1.21). We haveεσ < 1 since the mapTg1 : Bρ → Bρ is a strict
contraction under our assumptions. Therefore,

(1− εσ)‖up,1 − up,2‖H3(Rd,RN ) ≤ ‖Tg1up,2 − Tg2up,2‖H3(Rd,RN ). (3.1)

Apparently, for the fixed pointTg2up,2 = up,2. Let us denoteξ(x) := Tg1up,2. For
1 ≤ m ≤ N , we arrive at

(−∆)smξm(x) = εm

∫

Rd

Hm(x− y)g1,m(u0(y) + up,2(y))dy, (3.2)

(−∆)smup,2,m(x) = εm

∫

Rd

Hm(x− y)g2,m(u0(y) + up,2(y))dy, (3.3)

with all
3

2
−

d

4
< sm < 1. Let us introduce

G1,2,m(x) := g1,m(u0(x) + up,2(x)), G2,2,m(x) := g2,m(u0(x) + up,2(x)).

We apply the standard Fourier transform (2.1) to both sides of formulas (3.2) and
(3.3). This yields

ξ̂m(p) = εm(2π)
d
2

Ĥm(p)Ĝ1,2,m(p)

|p|2sm
, ûp,2,m(p) = εm(2π)

d
2

Ĥm(p)Ĝ2,2,m(p)

|p|2sm
,
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such that‖ξm(x)− up,2,m(x)‖
2
L2(Rd) =

= ε2m(2π)
d

∫

Rd

|Ĥm(p)|
2|Ĝ1,2,m(p)− Ĝ2,2,m(p)|

2

|p|4sm
dp. (3.4)

Let us obtain the upper bound on the right side of (3.4) using (2.2) as

ε2m(2π)
d

[∫

|p|≤R

|Ĥm(p)|
2|Ĝ1,2,m(p)− Ĝ2,2,m(p)|

2

|p|4sm
dp+

+

∫

|p|>R

|Ĥm(p)|
2|Ĝ1,2,m(p)− Ĝ2,2,m(p)|

2

|p|4sm
dp

]
≤ ε2‖Hm‖

2
L1(Rd)×

×

{
|Sd|

(2π)d

‖G1,2,m −G2,2,m‖
2
L1(Rd)R

d−4sm

d− 4sm
+

‖G1,2,m −G2,2,m‖
2
L2(Rd)

R4sm

}

with R ∈ (0,+∞). Obviously, we can represent

G1,2,m(x)−G2,2,m(x) =

∫ 1

0

∇[g1,m−g2,m](t(u0(x)+up,2(x))).(u0(x)+up,2(x))dt,

such that

|G1,2,m(x)−G2,2,m(x)| ≤ ‖g1,m − g2,m‖C2(I)|u0(x) + up,2(x)|.

This implies

‖G1,2,m −G2,2,m‖L2(Rd) ≤ ‖g1,m − g2,m‖C2(I)‖u0 + up,2‖L2(Rd,RN ) ≤

≤ ‖g1,m − g2,m‖C2(I)(‖u0‖H3(Rd,RN ) + 1).

Let us make use of another representation formula with1 ≤ j ≤ N andt ∈ [0, 1],
namely

∂

∂zj
(g1,m − g2,m)(t(u0(x) + up,2(x))) =

=

∫ t

0

∇
[ ∂

∂zj
(g1,m − g2,m)

]
(τ(u0(x) + up,2(x))).(u0(x) + up,2(x))dτ.

Therefore, ∣∣∣ ∂

∂zj
(g1,m − g2,m)(t(u0(x) + up,2(x)))

∣∣∣ ≤

≤

N∑

n=1

∥∥∥∥∥
∂2(g1,m − g2,m)

∂zn∂zj

∥∥∥∥∥
C(I)

|u0(x) + up,2(x)|.
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Hence,

|G1,2,m(x)−G2,2,m(x)| ≤ ‖g1,m − g2,m‖C2(I)|u0(x) + up,2(x)|
2,

so that

‖G1,2,m −G2,2,m‖L1(Rd) ≤ ‖g1,m − g2,m‖C2(I)‖u0 + up,2‖
2
L2(Rd,RN ) ≤

≤ ‖g1,m − g2,m‖C2(I)(‖u0‖H3(Rd,RN ) + 1)2. (3.5)

This enables us to derive the upper bound for the norm‖ξm − up,2,m‖
2
L2(Rd) as

ε2‖Hm‖
2
L1(Rd)(‖u0‖H3(Rd,RN ) + 1)2×

×‖g1,m − g2,m‖
2
C2(I)

[
(‖u0‖H3(Rd,RN ) + 1)2

|Sd|Rd−4sm

(2π)d(d− 4sm)
+

1

R4sm

]
.

Let us minimize this expression overR ∈ (0,+∞) using Lemma 1.4. We arrive at
the estimate from above‖ξm(x)− up,2,m(x)‖

2
L2(Rd) ≤

≤ ε2‖Hm‖
2
L1(Rd)(‖u0‖H3(Rd,RN ) + 1)2+

8sm
d

(
|Sd|

4sm

) 4sm
d d‖g1,m − g2,m‖

2
C2(I)

(2π)4sm(d− 4sm)
.

Therefore,‖ξ(x)− up,2(x)‖
2
L2(Rd,RN ) ≤

≤ ε2H2(‖u0‖H3(Rd,RN ) + 1)2+
8s
d

d‖g1 − g2‖
2
C2(I,RN )

(d− 4s)(2π)4S

(
|Sd|

4S

) 4S
d

.

Formulas (3.2) and (3.3) with1 ≤ m ≤ N yield

(−∆)
3

2 ξm(x) = εm(−∆)
3

2
−sm

∫

Rd

Hm(x− y)G1,2,m(y)dy,

(−∆)
3

2up,2,m(x) = εm(−∆)
3

2
−sm

∫

Rd

Hm(x− y)G2,2,m(y)dy.

By means of (2.2) and (3.5) the norm‖(−∆)
3

2 (ξm(x) − up,2,m(x))‖
2
L2(Rd) can be

estimated from above by

ε2‖G1,2,m −G2,2,m‖
2
L1(Rd)‖(−∆)

3

2
−smHm‖

2
L2(Rd) ≤

≤ ε2‖g1,m − g2,m‖
2
C2(I)(‖u0‖H3(Rd,RN ) + 1)4‖(−∆)

3

2
−smHm‖

2
L2(Rd).

Thus,
N∑

m=1

‖(−∆)
3

2 (ξm(x)− up,2,m(x))‖
2
L2(Rd) ≤

≤ ε2‖g1 − g2‖
2
C2(I,RN )(‖u0‖H3(Rd,RN ) + 1)4Q2.
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Hence, we arrive at‖ξ(x)− up,2(x)‖H3(Rd,RN ) ≤ ε‖g1 − g2‖C2(I,RN )×

×(‖u0‖H3(Rd,RN ) + 1)2

[
H2(‖u0‖H3(Rd,RN ) + 1)

8s
d
−2d

(d− 4s)(2π)4S

(
|Sd|

4S

) 4S
d

+Q2

] 1

2

.

By virtue of (3.1), the norm‖up,1 − up,2‖H3(Rd,RN ) can be bounded from above by

ε

1− εσ
(‖u0‖H3(Rd,RN ) + 1)2×

×

[
H2(‖u0‖H3(Rd,RN ) + 1)

8s
d
−2d

(d− 4s)(2π)4S

(
|Sd|

4S

) 4S
d

+Q2

] 1

2

‖g1 − g2‖C2(I,RN ).

We use formulas (1.21) and (1.22) to complete the proof of ourtheorem.

4. Auxiliary results

Let us formulate the solvability conditions for the linear Poisson type equation
with a square integrable right side

(−∆)su = f(x), x ∈ R
d, d = 4, 5, 0 < s < 1. (4.1)

This proposition was established in the one of the previous articles (see the part d)
of Theorem 1.1 of [32]) by applying the standard Fourier transform (2.1) to both
sides of problem (4.1).

Lemma 4.1. Let 0 < s < 1, f(x) : Rd → R, d = 4, 5 and f(x) ∈ L1(Rd) ∩
L2(Rd). Then problem (4.1) possesses a unique solutionu(x) ∈ H2s(Rd).

Note that in the lemma above we establish the solvability of equation (4.1) in
H2s(Rd), d = 4, 5 for all values of the power of the negative Laplacian0 < s < 1
and no orthogonality conditions are imposed on the right sidef(x).
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