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OLEG SAFRONOV

Abstract. We consider the Schrödinger operator perturbed by a random complex-valued
potential. For this operator, we consider its eigenvalues situated in the unit disk. We obtain
an estimate on the rate of accumulation of these eigenvalues to the positive half-line.

1. Introduction. Main results

In this paper, we study the behavior of eigenvalues of the operator H = −∆ + V acting on
a Hilbert space L2(Rd). The potential V is assumed to be a complex-valued function of the
form

V (x) =
∑
n∈Zd

ωnvnχ(x− n), vn ∈ C, x ∈ Rd,

where ωn are independent random variables taking values in the interval [−1, 1] and χ is the
characteristic function of the unit cube [0, 1)d.

The probability space in our theorems is the set Σ of all infinite sequences ω = {ωn}n∈Zd .
The probability measure is defined on Σ as the infinite product of corresponding measures on
intervals [−1, 1]. Since ωn can be viewed as a function on Σ whose value is equal to the n-th
coordinate of ω, its expectation E[ωn] can be viewed as an integral over Σ. We impose the
condition

E[ωn] = 0

on ωn guaranteeing oscillations of V . The coefficients vn do not have to be real.
To formulate the main result, we set

Ṽ (x) =
∑
n∈Zd
|vn|χ(x− n).

Note that Ṽ is a non-negative function such that |V | 6 Ṽ .

Theorem 1.1. Let d > 3, let 0 < R0 6 1, and let 1 < ν < q < 2. Then the eigenvalues λj of
the operator −∆ + V satisfy

E
[ ∑
|λj |<R2

0

Im
√
λj|λj|(q−1)/2

]
6 C|R0|q−ν

(∫
Rd
|Ṽ (x)|pdx

)2

, (1.1)

with

p =
d

2
+

d− q
2(d− 2)

. (1.2)

It is assumed that Im
√
λj > 0. The constant C in (1.1) depends only on d, ν and q.
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It is known that, if vn ∈ R, then the eigenvalues λj obey the Lieb-Thirring estimate (see
[11], [16], and [17])∑

j

|λj|γ 6 C

∫
Rd
|V (x)|d/2+γ dx, V = V̄ , d > 3, γ > 0. (1.3)

Theorem 1.1 alows one to consider real potentials V for which the right hand side of (1.3) is
infinite, while the left hand side is finite almost surely. Indeed, let 1 < 2γ = q < d/(d − 1).
Then the parameter p in (1.2) satisfies the inequality

p > d/2 + γ. (1.4)

Similar results for real random potentils V = V̄ were obtained earlier in [18]. However,
there is a big difference between Theorem 1.1 and the results of [18], since the only point of
accumulation of eigenvalues of the operator H in the case considered by the authors of [18] is
the point λ = 0. When one studies complex-valued potentials, the fact that the eigenvalues λj
might accumulate to points other than λ = 0 should not be excluded. Examples of decaying
complex potentials V such that eigenvalues ofH = −∆+V accumulate to points of the positive
real line R+ are constructed in [1]. Because of the difference between the cases of real and
complex potentials, it would be more appropriate to ask what new information Theorem 1.1
provides compared to [6] and [8], rather than realize that this theorem does not follow from
the Lieb-Thirring estimate even in the selfadjoint case.

The related result of [8] says that there is a constant C that depends on d, p and γ such
that ∑

j

dist(λj,R+)|λj|γ−1 6 C
(∫

Rd
|V |pdx

)2γ/(2p−d)

,

under conditions on γ and p implying that p < γ+d/2. One can now refer to (1.4) to conclude
that our results do give new information about the distribution of eigenvalues in the complex
plane.

The same conclusion could be made by an analysis of the results of [6], where the eigenvalues
in the disk DV = {z ∈ C : |z|p−d/2 6 Cp,d

∫
|V |pdx} are considered separately from the rest

of the eigenvalues (here p > d/2). The author of [6] proves that under some restrictions on p,( ∑
λj∈DV

dist(λj,R+)γ
)σ

6 C

∫
Rd
|V |pdx, (1.5)

for γ equal either to p or 2p − d + ε. The constants C > 0 and σ > 0, depending only on d
and p in the first case, also depend on ε > 0 in the second. In its turn, ε > 0 belongs to the
interval whose size depends on p. The observation we make is that p < γ + d/2 in (1.5). On
the other hand, in deterministic results, p simply can not be larger than γ + d/2.

The next statement is an improvement of Theorem 1.1 for 3 6 d 6 5.

Theorem 1.2. Let 3 6 d 6 5 and let 0 < R0 6 1. Assume that τ1 satisfies

0 6
((d

2
+

(η − 1)(d+ 1)

7d
+

d− η
2(d− 2)

)
− 2
)
τ1 6

(ν − 1)(d+ 1)

7d
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with η and ν such that 1 < ν < η < 2. If d = 3, then we assume additionally that 8ν+9η < 26.
Let p, q and r be the numbers defined by

p =
d

7τ1

,
1

q
=

1− θ
p

+
θ

2
, and

1

r
=

1− θ
2p

+
θ

2
,

where θ is the solution of the equation

τ1(1− θ) +
θ

2

(d
2

+
d− η

2(d− 2)

)
= 1.

Then the eigenvalues λj of the operator −∆ + V satisfy

E
[ ∑
|λj |6R2

0

Im
√
λj|λj|(σ−1)/2

]
6 Cτ1,σ|R0|σ−θqν/2

(∫
Rd
|Ṽ (x)|rdx

)2q/r

, σ > θqν/2.

Besides its dependence on d, the constant Cτ1,σ in this inequality depends on a choice of the
parameters τ1 and σ.

Theorem 1.2 gives new information about eigenvaues of H. Even in the case V = V̄ , this
theorem does not follow from the Lieb-Thirring estimates. It turns into Theorem 1.1 for
dimensions 3 6 d 6 5 once we set τ1 = 0. On the other hand, since it allows to consider
ratios σ/r smaller than ratios q/p allowed by Theorem 1.1, Theorem 1.2 is an improvement
of Theorem 1.1 for dimensions 3 6 d 6 5.

One of the difficulties we encountered in this paper is that our statements can not be
derived by taking expectations in the inequalities obtained by Borichev, Golinskii, and Kupin
[3]. The reason is that operators of the Birman-Schwinger type we are dealing with might have
different properties for different ω. This difficulty was overcome through an application of the
Joukowsky transform to a half-plane with a removed semi-disk and consecutive integration
with respect to the radius.

2. Preliminaries

Everywhere below, Sp denotes the class of compact operators K obeying

‖K‖pp = Tr(K∗K)p/2 <∞, p > 1.

Note that if K ∈ Sp for some p > 1, then K ∈ Sq for q > p and ‖K‖q 6 ‖K‖p.
Let zj be the eigenvalues of a compact operator K ∈ Sn where n ∈ N \ {0}. We define the

n-th determinant of I +K by

detn(I +K) =
∏
j

(1 + zj) exp
(n−1∑
m=1

(−1)mzmj
m

)
, n > 2;

det(I +K) =
∏
j

(1 + zj), n = 1.

There exists a constant Cn > 0 depending only on n such that∣∣detn(I +X)
∣∣ 6 eCn‖X‖

n
n , ∀X ∈ Sn.

Moreover, the following statement holds (see Proposition 2.1 of [14]):
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Proposition 2.1. Let n > 2. Then for any n − 1 6 p 6 n, there exists a constant Cp,n > 0
depending only on p and n such that∣∣detn(I +X)

∣∣ 6 e
Cp,n‖X‖pSp , ∀X ∈ Sp. (2.1)

The way the eigenvalue bounds are obtained in [14] goes through applications of the following
abstract result.

Theorem 2.2. Let H0 be a selfadjoint operator on a Hilbert space H. Let W1 and W2 be two
bounded operators on H and let V = W2W1. Assume that the function

C+ 3 z 7→ W1(H0 − z)−1W2 ∈ Sp, 1 6 p <∞,

is analytic in the upper half plane C+ = {z ∈ C : Im z > 0} and continuous up to the real
line R. Assume also that

‖W1(H0 − z)−1W2‖pSp = o
( 1

|z|

)
, as |z| → ∞. (2.2)

Then the eigenvalues λj of H0 + V in C+ satisfy∑
j

Imλj 6 Cp

∫ ∞
−∞
‖W1(H0 − λ− i0)−1W2‖pSpdλ. (2.3)

where Cp depends only on the parameter p.

Proof. The proof of this statement relies on Jensen’s inequality for zeros of an analytic
function which is (also) justified in Proposition 3.11 of [14].

Proposition 2.3. Let a(z) be an analytic function on C+ satisfying the condition

a(z) = 1 + o
( 1

|z|

)
, as |z| → ∞.

Assume that for some γ > 0,

ln |a(λ+ iγ)| 6 f(λ), ∀λ ∈ R.

Then zeros of a(z) situated above the line Imz = γ satisfy the inequality∑
j

(Imλj − γ)+ 6
1

2π

∫ ∞
−∞

f(λ) dλ. (2.4)

The statement also holds for γ = 0, if a(z) is continuous up to the real line R.

The bound (2.3) follows from (2.1) and the estimate (2.4) with γ = 0 once we set

a(z) = detn(I −W1(H0 − z)−1W2), and f(λ) = Cp,n‖W1(H0 − λ− i0)−1W2‖pSp
This completes the proof of Theorem 2.2. 2

One of the tools used in the present paper is an interpolation. Interpolation has been also
used to prove Theorem 1.2 of [14], which could be generalized and formulated as follows:
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Theorem 2.4. Let (Ω, µ) be a space with a σ-finite measure µ such that L2(Ω, µ) is separable.
Let H0 be a selfadjoint operator on the Hilbert space L2(Ω, µ). Assume that the integral kernel
of the operator e−itH0 satisfies the estimate∣∣e−itH0(x, y)

∣∣ 6 C

tκ
, ∀t > 0, ∀x, y ∈ Ω,

for some κ > 0. Let V ∈ Lp(Ω, µ) ∩ L∞(Ω, µ) for p > κ such that p > 1. Assume also that
(2.2) holds for all W1 and W2 that belong to a class of functions dense in L2p(Ω, µ). Then
eigenvalues of the operator H = H0 + V satisfy∑

j

|Imλj|r 6 Cp,r

(∫
Ω

|V (x)|pdµ
) r
p−κ

for any r > max{2(p− κ), 1}.

The proof this result is literally a counterpart of the proof of Theorem 1.2 from [14] with the
only difference that the value of the parameter κ in Theorem 1.2 of [14] is 3/2 and Ω = R3.
However, one can consider different κ and spaces Ω which are different from Rd. Especially
interesting are spaces of fractional dimensions for which 2κ is not integer.

Another object that we will work with is the operator

X(k) = |V |1/2(−∆− z)−1V (−∆− z)−1V |V |−1/2, z = k2, k ∈ C+.

If V is a bounded compactly supported function, then X(k) is a trace class operator for d 6 3
and X(k) ∈ Sp for p > d/4 and d > 4. In this case, we set

Dn(k) = detn(I −X(k)), n > d/4, n ∈ N.

Proposition 2.5. Let V be a compactly supported function on Rd. If a point λ ∈ C \ R+ is

an eigenvalue of H = −∆ + V , then Dn(k) = 0 for k =
√
λ. The algebraic multiplicity of the

eigenvalue λ does not exceed the multiplicity of the root of the function Dn(·).

Proof. According to the Birman-Schwinger principle, a point λ is an eigenvalue of H if and
only if −1 is an eigenvalue of |V |1/2(−∆ − λ)−1V |V |−1/2. Therefore, 1 is an eigenvalue of
X(k0) with k2

0 = λ. On the other hand, if 1 is an eigenvalue of X(k0), then Dn(k0) = 0.
The statement about the multiplicity follows from the fact that an isolated eigenvalue of H

whose multiplicity m is larger than 1 can be turned into m simple eigenvalues by an arbitrarily
small perturbation of finite rank (which does not have to be a function). For any ε > 0 there
is a finite rank operator Kε such that ‖Kε‖ < ε and that all eigenvalues of −∆ +Kε +V near
λ are simple. Define now the function

dε(k) = detn(I − |V |1/2(−∆ +Kε − z)−1V (−∆ +Kε − z)−1V |V |−1/2)

analytic in the neighborhood of k0 =
√
λ for sufficiently small ε > 0. In this neighbourhood

of the point k0, we have dε(k) → Dn(k) uniformly, as ε → 0. Since the function dε(k) has
at least m zeros near k0, the multiplicity of the zero of function Dn(k) at k = k0 can not be
smaller than m by the argument principle. 2
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3. Large values of Re ζ without projections

The following proposition gives an important estimate for the integral kernel of (−∆−z)−ζ .

Proposition 3.1. Let d > 2 and let (d− 1)/2 6 Re ζ 6 (d+ 1)/2. The integral kernel of the
operator (−∆− z)−ζ satisfies the estimate∣∣(−∆− z)−ζ(x, y)

∣∣ 6 βeα(Im ζ)2|k|(d−1)/2−Re ζ |x− y|Re ζ−(d+1)/2 (3.1)

for z /∈ R+. The positive constants β and α in this inequality depend only on d and Re ζ.

The proof of this proposition, as well as related references, can be found in [8].

Corollary 3.2. Let (d− 1)/2 6 Re ζ < (d+ 1)/2, where d > 2. Let 2 6 r < 2d
2 Re ζ−1

. Suppose

that W is a function of the form

W (x) =
∑
n∈Zd

wnχ(x− n), wn ∈ C, x ∈ Rd.

Then ∥∥W (−∆− z)−ζχl
∥∥
S2

6 βeα(Im ζ)2|k|(d−1)/2−Re ζ ||W ||r, (3.2)

for z /∈ R+. The positive constants β and α in this inequality depend only on d and Re ζ. If
Re ζ = (d+ 1)/2 and d > 2, then (3.2) holds with r = 2.

Proof. It follows from (3.1) that∥∥W (−∆− z)−ζχl
∥∥2

S2
6 Ce2α(Im ζ)2|k|(d−1)−2 Re ζ

∑
n∈Zd

(
|n− l|+ 1

)2 Re ζ−(d+1)|wn|2.

A simple application of Hölder’s inequality leads to (3.2). 2

We need to turn (3.2) into a similar estimate for the S4-norm of the operator corresponding
to smaller values of Re ζ. For that purpose, we employ the following inequality:∥∥W (−∆− z)−ζχl

∥∥ 6 βeα(Im ζ)2||W ||∞, (3.3)

for Re ζ = 0.
By interpolation we obtain from (3.2) and (3.3) that

Proposition 3.3. Let (d − 1)/2 6 κ < (d + 1)/2, where d > 2. Let 2 6 r < 2d
2κ−1

. Suppose
that W is a function of the form

W (x) =
∑
n∈Zd

wnχ(x− n), wn ∈ C, x ∈ Rd.

Then, for any Re ζ = τ ∈ (0,κ] and z /∈ R+,∥∥W (−∆− z)−ζχl
∥∥
S2κ/τ

6 βeα(Im ζ)2|k|((d−1)/(2κ)−1)τ ||W ||rκ/τ . (3.4)

The positive constants β and α in this inequality depend only on d and τ . If κ = (d + 1)/2
and d > 2, then (3.5) holds with r = 2.
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Proof. Indeed, let Re ζ0 = τ and let

A = Ω |A|
be the polar decomposition of the operator

A = |W |ζ0/τ (−∆− z)−ζ0χl.

Consider the function

f(ζ) = eαζ
2

Tr
(
|W |ζ/τ (−∆− z)−ζχl|A|(2κ−ζ+i Im ζ0)/τΩ∗

)
.

If Re ζ = 0, then

|f(ζ)| 6 C1‖A‖2κ/τ
S2κ/τ

.

If Re ζ = κ, then

|f(ζ)| 6 C2|k|(d−1)/2−κ‖A‖κ/τS2κ/τ
‖W‖κ/τrκ/τ .

Consequently, by the three lines lemma,

|f(ζ0)| 6 C|k|θ((d−1)/2−κ)‖W‖θκ/τrκ/τ‖A‖
(2−θ)κ/τ
S2κ/τ

, θ = τ/κ.

Put differently,

|eαζ20 |‖A‖2κ/τ
S2κ/τ

6 C|k|θ((d−1)/2−κ)‖W‖θκ/τrκ/τ‖A‖
(2−θ)κ/τ
S2κ/τ

, θ = τ/κ.

The latter inequality implies (3.5). The proof is completed. 2

In particular, once we set rκ/τ = 4, we obtain

Corollary 3.4. Let (d − 1)/2 6 κ < (d + 1)/2, where d > 2. Suppose that W is a function
of the form

W (x) =
∑
n∈Zd

wnχ(x− n), wn ∈ C, x ∈ Rd.

Then ∥∥W (−∆− z)−ζχl
∥∥
S4

6 βeα(Im ζ)2|k|((d−1)/(2κ)−1) Re ζ ||W ||4, (3.5)

for any κ/2 6 Re ζ < min{κ, dκ/(4κ − 2)} and z /∈ R+. The positive constants β and α in
this inequality depend only on d and Re ζ. If κ = (d + 1)/2 and d > 2, then (3.5) holds with
Re ζ = κ/2.

Let us now consider the operator

X(ζ) = eα0ζ2W (−∆− z)−ζV (−∆− z)−ζW,

where W is a fixed function independent of ω. The proof of the following proposition is based
on the fact that E[ωn] = 0.

Proposition 3.5. Let (d − 1)/2 6 κ < (d + 1)/2, where d > 2. Let κ/2 6 Re ζ <
min{κ, dκ/(4κ − 2)}. Assume that Ṽ ∈ L2(Rd), W ∈ L4(Rd) and α0 > 2α. Then(

E(‖X(ζ)‖2
S2

)
)1/2

6 CRe ζe
(2α−α0)(Im ζ)2|k|((d−1)/κ−2) Re ζ‖Ṽ ‖2‖W‖2

4. (3.6)

If κ = (d+ 1)/2 and d > 2, then (3.6) holds with Re ζ = κ/2.
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Proof. Obviously,

E
(
‖X(ζ)‖2

S2

)
= E

(
TrX(ζ)∗X(ζ)

)
6

e2α0 Re ζ2
∑
l∈Zd
|vl|2‖W (−∆− z)−ζχl‖2

S4
‖χl(−∆− z)−ζW‖2

S4
.

Together with Corollary 3.4, this implies (3.6). 2

Corollary 3.6. Let (d−1)/2 6 κ < (d+1)/2, where d > 2. Let κ/2 6 Re ζ < min{κ, dκ/(4κ−
2)}. Assume that Ṽ ∈ L2(Rd), W = Ṽ 1/2, and α0 > 2α. Then(

E(‖X(ζ)‖2
S2

)
)1/2

6 CRe ζe
(2α−α0)(Im ζ)2|k|((d−1)/κ−2) Re ζ‖Ṽ ‖2

2. (3.7)

If κ = (d+ 1)/2 and d > 2, then (3.7) holds with Re ζ = κ/2.

4. An estimate for the square of the Birman-Schwinger operator

According to our observations that we made, if W =
√
Ṽ , then X(ζ) is a function that

obeys (3.7) for some rather large values of Re ζ and it also obeys

‖X(ζ)‖ 6 C‖Ṽ ‖2
∞

for Re ζ = 0. To obtain our first result about eigenvalues, we can interpolate between these
two cases. Let

X̃(k) = W (−∆− z)−1V (−∆− z)−1W, z = k2, k ∈ C+,

where, W is a fixed function independent of ω. Here is the result of the interpolation (which
does not work for d = 2):

Proposition 4.1. Let (d− 1)/2 6 κ < (d+ 1)/2 where d > 3. Let

max{2,κ} 6 p < min{2κ, dκ/(2κ − 1)}. (4.1)

Let W = Ṽ 1/2. Assume that Ṽ ∈ Lp(Rd). Then(
E(‖X̃(k)‖pSp)

)1/p

6 C|k|(d−1)/κ−2‖Ṽ ‖2
p (4.2)

If κ = (d+ 1)/2 and d > 3, then (4.2) holds with p = κ.

Proof. Note that X(k) = X(1). The logic of interpolation says that (4.2) holds for p defined
as

p = 2/θ, for θ such that 1 = θτ,

where κ/2 6 τ < min{κ, dκ/(4κ − 2)}. Of course, this interpolation works only if τ > 1,
which is impossible for d = 2. Observe that, in these notations, p = 2τ .

Let
X(k) = Ω |X(k)|

be the polar decomposition of the operator X(k). Consider the function

f(ζ) = eα0ζ2E
(

Tr
(
|W |ζ(−∆− z)−ζVζ(−∆− z)−ζ |W |ζ |X(k)|2τ−ζΩ∗

))
,

where
Vζ(x) :=

∑
n

ωn|vn|ζei arg vnχ(x− n).
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If Re ζ = 0, then

|f(ζ)| 6 C1E
(
‖X(k)‖2τ

S2τ

)
.

If Re ζ = τ , then

|f(ζ)| 6 C2|k|((d−1)/κ−2)τ
(
E
(
‖X(k)‖2τ

S2τ

))1/2

‖Ṽ ‖2τ
2τ .

Consequently, by the three lines lemma,

|f(1)| 6 C|k|(d−1)/κ−2‖Ṽ ‖2
2τ

(
E
(
‖X(k)‖2τ

S2τ

))1−1/(2τ)

.

Put differently,

E
(
‖X(k)‖2τ

S2τ

)
6 C|k|(d−1)/κ−2‖Ṽ ‖2

2τ

(
E
(
‖X(k)‖2τ

S2τ

))1−1/(2τ)

.

The latter inequality implies (4.2) because 2τ = p. The proof is completed. 2

Now, we can formulate and prove the following result.

Theorem 4.2. Let d > 3 and let 1 < ν < q < 2. Assume that W = |V |1/2. Then

E(‖X(k)‖pSp) 6 C|k|−ν‖Ṽ ‖2p
p (4.3)

for p defined by

p =
d(d− 1)− q

2(d− 2)
=
d

2
+

d− q
2(d− 2)

. (4.4)

Proof. Observe that the assumption ν < q < 2 leads to the inequalities

d+ 1

2
< p <

d(d− 1)− ν
2(d− 2)

. (4.5)

We will show that conditions of Proposition 4.1 are fulfilled for the parameter κ defined by

κ =
(d− 1)p

2p− ν
,

The latter relation simply means that

ν =
(

2− (d− 1)

κ

)
p. (4.6)

Consequently (4.3) follows from (4.2). The second inequality in (4.5) implies

κ >
d(d− 1)− ν

2(d− ν)
>
d− 1

2
, (4.7)

while the first inequality in (4.5) combined with the condition ν < 2 implies that

κ <
d+ 1

2
.

One can also see that the first inequality in (4.7) is equivalent to the estimate

p =
κν

2κ − (d− 1)
<

dκ
2κ − 1

,

Finally, note that in d > 3, the condition p < 2κ follows from the fact that ν + q > 2. 2
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5. Proof of Theorem 1.1

We will work with the function

d(z) = detn(I −X(k)), n = [p] + 1,

where z is related to k via the Joukowski mapping

z =
R

k
+
k

R
, R > 0,

which maps the set {k ∈ C : Im k > 0, |k| > R} onto the upper half-plane {z ∈ C : Im z >
0}. Rather standard arguments lead to the estimate∑

j

Im zj 6 C

∫ ∞
−∞

ln |d(z)|dz, (5.1)

where zj are zeros of the function d(z) situated in the upper half-plane C+. In fact, (5.1)
could be established in the same way as Jensen’s inequality for zeros of an analytic function
on a unit disk. In (5.1) we assume that V is compactly supported. The relation (5.1) leads
to the estimate∑

j

( |kj|2 −R2

|kj|2R

)
+

Im kj 6 C
(∫ ∞
−∞
‖X(k)‖pp

( 1

R
− R

k2

)
+
dk +

∫ π

0

‖X(R · eiθ)‖pp sin θdθ
)
,

Taking the expectation we obtain∑
j

E
[Im kj(|kj|2 −R2)+

|kj|2R

]
6 C

(∫ ∞
−∞

E[‖X(k)‖pp]
( 1

R
− R

k2

)
+
dk+

∫ π

0

E[‖X(R ·eiθ)‖pp] sin θdθ
)
.

Due to Theorem 4.2, the latter inequality leads to∑
j

E
[Im kj(|kj|2 −R2)+

|kj|2R

]
6 C|R|−ν‖Ṽ ‖2p

p . (5.2)

Now, suppose that we consider only the eigenvalues λj = k2
j that satisfy the inequality

|kj| 6 R0.

Multiplying (5.2) by Rq−1 and integrating with respect to R from 0 to R0, we obtain∑
|kj |6R0

E[Im kj|kj|q−1] 6 C|R0|q−ν‖Ṽ ‖2p
p , q > ν. (5.3)

This implies Theorem 1.1

6. Operators of the Birman-Schwinger type

Let a, b and V be functions on Rd. Define

Aζ = |a|ζFVζF ∗|b|ζ ,
where F is the unitary Fourier transform operator. For any complex number z, we understand
Vz as the sum

Vz(x) :=
∑
n

ωn|vn|zei arg vnχ(x− n).
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Note that the operator Aζ can be viewed as a sum over the lattice Zd

Aζ =
∑
n∈Zd

Aζ,n (6.1)

where

Aζ,n = ωn|a|ζF |vn|ζei arg vnχ(· − n)F ∗|b|ζ .
We will show that while Aζ might be not bounded at some points ω, it is still a compact

operator almost surely if a, b and Ṽ are in L2. We remind the reader that Ṽ was defined as
the function

Ṽ (x) =
∑
n

|vn|χ(x− n).

Remark. Operators of the form aFWF ∗b do not have to be bounded for all a, b and W
from L2. Indeed, let

W (x) = (|x|+ 1)−s, with d/2 < s < 2d/3,

and let

a(ξ) = b(ξ) =

{
|ξ|−3s/4, if |ξ| 6 1,

0, if |ξ| > 1.

If aFWF ∗b was bounded, the operator T = aF
√
W would be bounded as well. The latter is

not true, simply because Tψ /∈ L2 for ψ = W (the singularity of Tψ at zero is |ξ|3s/4−d).

Proposition 6.1. Let a ∈ L2, b ∈ L2 and Ṽ ∈ L2. Let also p > 2. Then the sum (6.1) with
Re ζ = 2/p converges almost surely in Sp. Moreover,(

E
[
‖Aζ‖pSp

])1/p

6 (2π)−2d/p‖a‖2/p
2 ‖b‖

2/p
2 ‖Ṽ ‖

2/p
2 , Re ζ = 2/p. (6.2)

Proof. We are going to prove (6.2) for one point ζ0 such that Re ζ0 = 2/p. For that purpose,
we define the operator K(ω) = |Aζ0|p/2. Then, obviously,

β := E
(
‖K‖2

S2

)
= E

[
‖Aζ0‖

p
Sp

]
.

Let Ω = Ω(ω) be the partially isometric operator appearing in the polar decomposition of Aζ0

Aζ0 = Ω(ω)|Aζ0|.
We introduce the analytic function

f(ζ) = E[TrAζ |K|2−ζ |K|i Im ζ0Ω∗],

which will be treated by the three lines lemma. Since ||Aζ || 6 1 for Re ζ = 0, and ‖|K|i Im ζ0Ω∗‖ 6
1, we obtain that

|f(ζ)| 6 β, for Re ζ = 0. (6.3)

On the other hand,

|f(ζ)| 6 (2π)−dβ1/2‖Ṽ ‖2 ‖a‖2 ‖b‖2, for Re ζ = 1, (6.4)

by an analogue of Hölder’s inequality valid for Shatten classes. Indeed, for Re ζ = 1,

|f(ζ)|2 6 E[‖Aζ‖2
S2

] · E[‖K‖2
S2

],
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and
E[‖Aζ‖2

S2
] = E[TrA∗ζAζ ] =

∑
n∈Zd

E[TrA∗ζ,nAζ,n] 6 (2π)−2d‖Ṽ ‖2
2 ‖a‖2

2 ‖b‖2
2.

Using the three lines lemma, we obtain from (6.3) and (6.4) that

|f(ζ)| 6 (2π)−dRe ζβ1−Re ζ/2‖Ṽ ‖Re ζ
2 ‖a‖Re ζ

2 ‖b‖Re ζ
2

Note now that f(ζ0) = β. Consequently,

β1/p 6 (2π)−2d/p‖Ṽ ‖2/p
2 ‖a‖

2/p
2 ‖b‖

2/p
2 .

2

Corollary 6.2. Let T be a random operator of the form

T = |a|FV F ∗|b|,
with

V (x) :=
∑
n

ωnvnχ(x− n).

Let a ∈ Lp, b ∈ Lp, vn ∈ `p and p > 2. Then(
E
[
‖T‖pSp

])1/p

6 (2π)−2d/p‖a‖p‖b‖p‖Ṽ ‖p.

Proof. Observe that the functions |a|p/2, |b|p/2 and Ṽ p/2 belong to L2. Therefore, according
to the proposition, the Sp-norm of the operator

K̃ = |a|pζ/2FVpζ/2F ∗|b|pζ/2

obeys the inequality(
E
[
‖K̃‖pSp

])1/p

6 (2π)−2d/p‖|a|p/2‖2/p
2 ‖|b|p/2‖

2/p
2 ‖Ṽ p/2‖2/p

2 , Re ζ = 2/p.

2

The following result is a very well known bound obtained by E. Seiler and B. Simon [19].
Moreover, the reader can easily prove it using standard interpolation.

Proposition 6.3. Let a and W be two functions from Lp(Rd) with p > 2. Let T be the
operator

T = aFW,

where F is the operator of Fourier transform. Then

‖T‖Sp 6 (2π)−d/p‖a‖p‖W‖p, p > 2.

Corollary 6.4. Let q > p > 2. Let T be a random operator of the form

T = |a|FV F ∗|b|,
with

V (x) :=
∑
n

ωnvnχ(x− n).

Let a ∈ Lp, b ∈ Lq and vn ∈ `p. Then(
E
[
‖T‖qSp

])1/q

6 (2π)−d/p−d/q‖a‖p‖b‖q‖Ṽ ‖p.
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Proof. According to Proposition 6.3,

‖T‖Sp 6 (2π)−d/p‖a‖p‖b‖∞‖Ṽ ‖p, p > 2.

On the other hand, according to Corollary 6.2,(
E
[
‖T‖pSp

])1/p

6 (2π)−2d/p‖a‖p‖b‖p‖Ṽ ‖p.

It remains to interpolate between the two cases.
For that purpose, we introduce the function

f(ζ) = E
[(

TrKp
)(1+q−p)(1−ζ)/p+ζ(p−1)(q−p)/p2

Tr |a|FV F ∗|b|qζ/pKp−1Ω∗
]
,

where K =
∣∣|a|FV F ∗|b|∣∣ and Ω is the partially isometric operator appearing in the polar

decomposition
|a|FV F ∗|b| = ΩK.

For our convenience, we denote
β := E

[(
TrKp)q/p

]
If Re ζ = 0, then by Hölder’s inequality,

|f(ζ)| 6 (2π)−d/pβ‖a‖p‖Ṽ ‖p.
If Re ζ = 1, then

|f(ζ)| 6 E
[(

TrKp
)(p−1)(q−p)/p2

‖|a|FV F ∗|b|q/p‖Sp
(
TrKp

)(p−1)/p]
,

which leads to
|f(ζ)| 6 β1−1/p(2π)−2d/p‖a‖p‖b‖q/pq ‖Ṽ ‖p.

Observe also that
f(p/q) = β.

Thus, by the three lines lemma, we obtain that

β 6 β1−1/q(2π)−d/p−d/q‖a‖p‖b‖q‖Ṽ ‖p.
The proof is completed. 2

7. Large values of Re ζ

Let 0 < R 6 1. Let χ0,k be the characteristic function of the ball

B =
{
ξ ∈ Rd : |ξ| 6 2|k|

R

}
,

and let χ1,k = 1− χ0,k be the characteristic function of its complement

Rd \B =
{
ξ ∈ Rd : |ξ| > 2|k|

R

}
.

We introduce the operators
Pn,k = Fχn,kF

∗,

which are the spectral projections of −∆ corresponding to the intervals [0, 4|k|2/R2] and
(4|k|2/R2,∞).

Besides depending on the properties of (−∆ − z)−ζ , the arguments of this paper also rely
on the properties of the operators Pn,k(−∆− z)−ζ for different values of ζ. In this section, we
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discuss relatively large values of Re ζ. The following proposition gives an important estimate
for the integral kernel of Pn,k(−∆− z)−ζ .

Proposition 7.1. Let R 6 1. Let d > 2 and let (d − 1)/2 < Re ζ 6 (d + 1)/2. The integral
kernel of the operator Pj,k(∆− z)−ζ satisfies the estimate∣∣Pj,k(−∆− z)−ζ(x, y)

∣∣ 6 βeα(Im ζ)2|k|(d−1)/2−Re ζ |x− y|Re ζ−(d+1)/2 (7.1)

for z /∈ R+ and j = 0, 1. The positive constants β and α in this inequality depend only on d
and Re ζ.

Proof. Due to Proposition 3.1, it is sufficient to prove only one of the inequalities (7.1). Let
us first estimate the integrals

In =

∫
2n|k|<R|ξ|<2n+1|k|

eiξ(x−y) dξ

(|ξ|2 − k2)ζ
= −|x− y|−2

∫
2n|k|<R|ξ|<2n+1|k|

∆ξe
iξ(x−y) dξ

(|ξ|2 − k2)ζ
=

|x−y|−2

∫
S2n+1|k|/R∪S2n|k|/R

±i(x− y)ξeiξ(x−y) dSξ
|ξ|(|ξ|2 − k2)ζ

−ζ|x−y|−2

∫
2n|k|<R|ξ|<2n+1|k|

2iξ(x− y)eiξ(x−y) dξ

(|ξ|2 − k2)ζ+1
,

(7.2)
for n > 1. We will show that∣∣In∣∣ 6 βeα(Im ζ)2

(
2n|k|/R

)(d−1)/2−Re ζ |x− y|Re ζ−(d+1)/2 (7.3)

for some β > 0 and α > 0. A priori,

|In| 6 Cde
2π| Im ζ|(2n|k|/R)d−2 Re ζ , (7.4)

but the representation (7.2) leads to

|In| 6 Cde
2π| Im ζ|(2n|k|/R)d−2 Re ζ−1|x− y|−1. (7.5)

The first estimate (7.4) implies (7.3) for 2n|k||x− y| < R, because in this case,

|In| 6 Cde
2π| Im ζ|(2n|k|/R)d−2 Re ζ

(
2n|k||x− y|/R

)Re ζ−(d+1)/2
.

The second inequality (7.5) implies (7.3) for 2n|k||x − y| > R, because (d + 1)/2 − Re ζ 6 1
and, therefore,

(2n|k|/R)d−2 Re ζ−1|x− y|−1 6 (2n|k|/R)d−2 Re ζ+Re ζ−(d+1)/2|x− y|Re ζ−(d+1)/2.

The estimates (7.3) imply (7.1) for j = 1, because

P1,k(−∆− z)−ζ(x, y) = (2π)−d
∞∑
n=1

In.

2

Corollary 7.2. Let (d− 1)/2 < Re ζ < (d+ 1)/2, where d > 2. Let 2 6 r < 2d
2 Re ζ−1

. Suppose

that W is a function of the form

W (x) =
∑
n∈Zd

wnχ(x− n), wn ∈ C, x ∈ Rd.

Then ∥∥WPj,k(−∆− z)−ζχl
∥∥
S2

6 βeα(Im ζ)2|k|(d−1)/2−Re ζ ||W ||r, (7.6)
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for z /∈ R+ and j = 0, 1. The positive constants β and α in this inequality depend only on d
and Re ζ. If Re ζ = (d+ 1)/2 and d > 2, then (7.6) holds with r = 2.

Proof. It follows from (7.1) that∥∥WPj,k(−∆− z)−ζχl
∥∥2

S2
6 Ce2α(Im ζ)2|k|(d−1)−2 Re ζ

∑
n∈Zd

(
|n− l|+ 1

)2 Re ζ−(d+1)|wn|2.

A simple application of Hölder’s inequality leads to (7.6). 2

On the other hand, we have the following inequality:∥∥WPj,k(−∆− z)−ζχl
∥∥ 6 βeα(Im ζ)2||W ||∞, (7.7)

for Re ζ = 0.
By interpolation we obtain from (7.6) and (7.7) that

Proposition 7.3. Let (d − 1)/2 < κ < (d + 1)/2, where d > 2. Let 2 6 r < 2d
2κ−1

. Suppose
that W is a function of the form

W (x) =
∑
n∈Zd

wnχ(x− n), wn ∈ C, x ∈ Rd.

Then, for any Re ζ = τ ∈ (0,κ), z /∈ R+ and j = 0, 1,∥∥WPj,k(−∆− z)−ζχl
∥∥
S2κ/τ

6 βeα(Im ζ)2|k|((d−1)/(2κ)−1)τ ||W ||rκ/τ . (7.8)

The positive constants β and α in this inequality depend only on d and τ . If κ = (d + 1)/2
and d > 2, then (7.9) holds with r = 2.

Proof. Indeed, let Re ζ0 = τ and let

A = Ω |A|
be the polar decomposition of the operator

A = |W |ζ0/τPj,k(−∆− z)−ζ0χl.

Consider the function

f(ζ) = eαζ
2

Tr
(
|W |ζ/τPj,k(−∆− z)−ζχl|A|(2κ−ζ+i Im ζ0)/τΩ∗

)
.

If Re ζ = 0, then

|f(ζ)| 6 C1‖A‖2κ/τ
S2κ/τ

.

If Re ζ = κ, then

|f(ζ)| 6 C2|k|(d−1)/2−κ‖A‖κ/τS2κ/τ
‖W‖κ/τrκ/τ .

Consequently, by the three lines lemma,

|f(ζ0)| 6 C|k|θ((d−1)/2−κ)‖W‖θκ/τrκ/τ‖A‖
(2−θ)κ/τ
S2κ/τ

, θ = τ/κ.

Put differently,

|eαζ20 |‖A‖2κ/τ
S2κ/τ

6 C|k|θ((d−1)/2−κ)‖W‖θκ/τrκ/τ‖A‖
(2−θ)κ/τ
S2κ/τ

, θ = τ/κ.

The latter inequality implies (7.9). The proof is completed. 2

In particular, once we set rκ/τ = 4, we obtain
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Corollary 7.4. Let (d − 1)/2 < κ < (d + 1)/2, where d > 2. Suppose that W is a function
of the form

W (x) =
∑
n∈Zd

wnχ(x− n), wn ∈ C, x ∈ Rd.

Then ∥∥WPj,k(−∆− z)−ζχl
∥∥
S4

6 βeα(Im ζ)2|k|((d−1)/(2κ)−1) Re ζ ||W ||4, (7.9)

for any κ/2 6 Re ζ < min{κ, dκ/(4κ − 2)}, z /∈ R+ and j = 0, 1. The positive constants β
and α in this inequality depend only on d and Re ζ. If κ = (d + 1)/2 and d > 2, then (7.9)
holds with Re ζ = κ/2.

We will now discuss the properties of the random operators

Xn,m(ζ) = eα0ζ2
(
WPn,k(−∆− z)−ζV (−∆− z)−ζPm,kW

)
.

Here W is a fixed function which does not depend on ω.

Proposition 7.5. Let (d − 1)/2 < κ < (d + 1)/2, where d > 2. Let κ/2 6 Re ζ <
min{κ, dκ/(4κ − 2)}. Assume that Ṽ ∈ L2(Rd), W ∈ L4(Rd) and α0 > 2α. Then(

E(‖Xn,m(ζ)‖2
S2

)
)1/2

6 CRe ζe
(2α−α0)(Im ζ)2|k|((d−1)/κ−2) Re ζ‖Ṽ ‖2‖W‖2

4. (7.10)

If κ = (d+ 1)/2 and d > 2, then (7.10) holds with Re ζ = κ/2.

Proof. Obviously,

E
(
‖Xn,m(ζ)‖2

S2

)
= E

(
TrXn,m(ζ)∗Xn,m(ζ)

)
6

e2α0 Re ζ2
∑
l∈Zd
|vl|2‖WPn,k(−∆− z)−ζχl‖2

S4
‖χl(−∆− z)−ζPm,kW‖2

S4
.

Together with Corollary 7.4, this implies (7.10). 2

We will also study the spectral properties of the operator

Y (ζ) = X0,0(ζ) +X0,1(ζ) +X1,0(ζ).

Corollary 7.6. Let (d−1)/2 < κ < (d+1)/2, where d > 2. Let κ/2 6 Re ζ < min{κ, dκ/(4κ−
2)}. Assume that Ṽ ∈ L2(Rd), W = Ṽ 1/2, and α0 > 2α. Then(

E(‖Y (ζ)‖2
S2

)
)1/2

6 CRe ζe
(2α−α0)(Im ζ)2|k|((d−1)/κ−2) Re ζ‖Ṽ ‖2

2. (7.11)

If κ = (d+ 1)/2 and d > 2, then (7.11) holds with Re ζ = κ/2.
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8. Small values of Re ζ

The notations we use in this section are the same as in the previous one. In particular, the
projections Pn,k are the same as before. As it was mentioned, the arguments of this paper rely
on the properties of the operators Pn,k(−∆− z)−ζ for different values of ζ. In this section, we
discuss the case 0 6 Re ζ < 1.

In the next two propositions, we discuss the properties of the random operators

Xn,m(ζ) = eα0ζ2
(
WPn,k(−∆− z)−ζV (−∆− z)−ζPm,kW

)
for Re ζ = γ/2 and 0 < γ < 3/2. Here W is a fixed function which does not depend on ω.
The value of the parameter α0 should be sufficiently large as in Corollary 7.6.

Later, we will also study the spectral properties of the operator

Y (ζ) = X0,0(ζ) +X0,1(ζ) +X1,0(ζ).

However, the terms in this representation will be studied separately. A this point, we do not
discuss X1,1(ζ) at all.

Proposition 8.1. Let d > 2. Let z ∈ C \ R+ and let 2 6 2p < 3/γ. Assume that 0 < R 6 1.
If Re ζ = γ/2, W ∈ L4p, and Ṽ ∈ L2p, then X0,0(ζ) ∈ Sp almost surely. Moreover,

E
(
||X0,0(ζ)||pSp

)1/p
6 Cp,γe

−α0| Im ζ|2/2
( |k|
R

)3d/2p−2γ

‖Ṽ ‖2p‖W‖2
4p. (8.1)

Proof. This statement follows from Corollary 6.2 and Proposition 6.3. If r = q/2 = 2p, then
1/r + 2/q = 1/p. Moreover, since

X0,0(ζ) = eα0ζ2
(
W (−∆− z)−ζ/3P0,k(−∆− z)−2ζ/3V (−∆− z)−2ζ/3P0,k(−∆− z)−ζ/3W

)
,

we obtain the estimate

‖X̃0,0(ζ)‖p 6 |eα0ζ2| · ‖W (−∆− z)−ζ/3P0,k‖q
‖P̃0,k(−∆− z)−2ζ/3V (−∆− z)−2ζ/3P0,k‖r‖P0,k(−∆− z)−ζ/3W‖q.

It remains to realize that(∫
Rd

χ0,kdξ

|(|ξ|2 − z)2ζ/3|r
)2/r

6
(∫
|ξ|<2|k|

dξ

|(|ξ|2 − z)2ζ/3|r
)2/r

+ cp,γe
c| Im ζ|

(∫
|ξ|<2|k|/R

dξ

|ξ|2γr/3
)2/r

6

Cp,γe
c| Im ζ|

( |k|
R

)2(d−2rγ/3)/r

= Cp,γe
c| Im ζ|

( |k|
R

)d/p−4γ/3

, γr < 3,

while a similar argument shows that(∫
Rd

χ0,kdξ

|(|ξ|2 − z)ζ/3|q
)2/q

6 C̃p,γe
c| Im ζ|

( |k|
R

)2(d−qγ/3)/q

= C̃p,γe
c| Im ζ|

( |k|
R

)d/2p−2γ/3

.

2

Proposition 8.2. Let 2 6 d 6 5. Let z ∈ C\R+ and let 2 6 2p < 3/γ. Assume that 4pγ > d
and 0 < R 6 1. If Re ζ = γ/2, W ∈ L4p, and Ṽ ∈ L2p, then X0,1(ζ) ∈ Sp for all ω. Moreover,

||X0,1(ζ)||Sp 6 Cp,γe
−α0| Im ζ|2/2

( |k|
R

)d/p−2γ

‖Ṽ ‖2p‖W‖2
4p. (8.2)
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Proof. Since

X0,1(ζ) = eα0ζ2
(
W (−∆− z)−ζ/3P0,k(−∆− z)−2ζ/3V P1,k(−∆− z)−ζW

)
,

we obtain the estimate

‖X0,1(ζ)‖p 6 |eα0ζ2| · ‖W (−∆− z)−ζ/3P0,k‖4p

‖P0,k(−∆− z)−2ζ/3V ‖2p‖P1,k(−∆− z)−ζW‖4p.

It remains to realize that(∫
Rd

χ0,kdξ

|(|ξ|2 − z)2ζ/3|2p
)1/(2p)

6 C̃p,γe
c| Im ζ|

( |k|
R

)d/(2p)−2γ/3

,

while (∫
Rd

χ0,kdξ

|(|ξ|2 − z)ζ/3|4p
)1/(4p)

6 C̃p,γe
c| Im ζ|

( |k|
R

)d/(4p)−γ/3
.

Finally,(∫
Rd

χ1,kdξ

|(|ξ|2 − z)ζ |4p
)1/(4p)

6 2ec| Im ζ|(∫
|ξ|>2|k|/R

dξ

(3
4
|ξ|2)2γp

)1/(4p)
6 C̃p,γe

c| Im ζ|
( |k|
R

)d/(4p)−γ
.

2

Let us now talk about the operator Y (ζ). The study of this operator has to be harder
compared to the study of X1,1(ζ) simply because P1,k(−∆− z)−ζ is bounded uniformly in z,
while it is not true about P0,k(−∆− z)−ζ .

Corollary 8.3. Let 2 6 d 6 5. Let |k| > R where 0 < R 6 1. Let also W =
√
Ṽ . Assume

that 2 6 2p < 3/γ and 4pγ > d. If Re ζ = γ/2 and Ṽ ∈ L2p, then

E
(
||Y (ζ)||pSp

)1/p
6 Cp,γe

−α0| Im ζ|2/2
( |k|
R

)3d/2p−2γ

‖Ṽ ‖2
2p.

In particular, we can set p = 1 and prove the following statement.

Proposition 8.4. Let 2 6 d 6 5. Let |k| > R where 0 < R 6 1. Let also W =
√
Ṽ . Assume

that
d

8
<
γ

2
= Re ζ <

3

4
.

Then

E
(
||Y (ζ)||S1

)
6 CRe ζ e

−α0| Im ζ|2/2
( |k|
R

)3d/2−4 Re ζ

‖Ṽ ‖2
2.

9. Another interpolation between small and large values of Re ζ

Let us recall two theorems that hold for the operator

Y (ζ) = X0,0(ζ) +X0,1(ζ) +X1,0(ζ),

with W = Ṽ 1/2. By small values of Re ζ we mean the values that are considered in Corol-
lary 8.3, which states that, for any p > 1 and d/(8p) < Re ζ < 3/(4p),

E
(
||Y (ζ)||pSp

)1/p
6 CRe ζ, pe

−α0| Im ζ|2/2
( |k|
R

)3d/2p−4 Re ζ

‖Ṽ ‖2
2p. (9.1)
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In this corollary, we had to assume that 2 6 d 6 5 and |k| > R where 0 < R 6 1. One should
not forget also that our assumptions about γ = 2 Re ζ imply that Re ζ < 3/4.

In the next result, we only replace 4 Re ζ by d/(2p) in the right hand side of (9.1).

Theorem 9.1. Let 2 6 d 6 5. Let W = Ṽ 1/2. Let

0 < Re ζ < 3/4.

Assume that
d

8 Re ζ
< p <

3

4 Re ζ
, p > 1,

and 0 < R 6 1. Then

E
(
||Y (ζ)||pSp

)1/p
6 CRe ζ, pe

−α0| Im ζ|2/2
( |k|
R

)d/p
‖Ṽ ‖2

2p

for |k| > R.

For the sake of simplicity, we choose

p =
d

7 Re ζ

In this case, because of the assumption p > 1 that we made, we have to assume that

0 < Re ζ 6
d

7
.

Note that d/7 < 3/4. Thus, we can formulate the following assertion:

Corollary 9.2. Let 2 6 d 6 5. Let 0 < Re ζ 6 d/7 and let p = d
7 Re ζ

. Assume that 0 < R 6 1.

Then

E
(
||Y (ζ)||pSp

)1/p
6 CRe ζ, pe

−α0| Im ζ|2/2
( |k|
R

)d/p
‖Ṽ ‖2

2p

for |k| > R.

By the large values of Re ζ we mean the values appearing in Corollary 7.6. We will use only
a simpler version of this result.

Theorem 9.3. Let d > 3. Let 1 < ν < η < 2. Let

2 Re ζ =
d

2
+

d− η
2(d− 2)

(9.2)

Assume that V ∈ L2(Rd) and α0 > 2α. Then(
E(‖Y (ζ)‖2

S2
)
)1/2

6 CRe ζe
(2α−α0)(Im ζ)2|k|−ν/2‖Ṽ ‖2

2. (9.3)

Proof. For Re ζ defined in (9.2), the assumption ν < η < 2 leads to the inequalities

d+ 1

2
< 2 Re ζ <

d(d− 1)− ν
2(d− 2)

. (9.4)

Let us now introduce the parameter κ setting

κ =
2(d− 1) Re ζ

4 Re ζ − ν
.
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The latter relation simply means that

ν =
(

2− (d− 1)

κ

)
2 Re ζ. (9.5)

Thus, (9.3) coincides with (7.11). Let us check that all conditions of Corollary 7.6 are fulfilled.
The second inequality in (9.4) implies

κ >
d(d− 1)− ν

2(d− ν)
>
d− 1

2
, (9.6)

while the first inequality in (9.4) combined with the condition ν < 2 implies that

κ <
d+ 1

2
.

One can also see that the first inequality in (9.6) is equivalent to the estimate

2 Re ζ =
κν

2κ − (d− 1)
<

dκ
2κ − 1

,

Finally, note that in d > 3, the condition Re ζ < κ follows from the fact that ν + η > 2.
Consequently, Corollary 7.6 implies Theorem 9.3. 2

We interpolate between Corollary 9.2 and Theorem 9.3.

Theorem 9.4. Let 3 6 d 6 5. Assume that τ1 satisfies

0 6
((d

2
+

(η − 1)(d+ 1)

7d
+

d− η
2(d− 2)

)
− 2
)
τ1 6

(ν − 1)(d+ 1)

7d
. (9.7)

with η and ν such that 1 < ν < η < 2. If d = 3, then we assume additionally that 8ν+9η < 26.
Let p, q and r be the numbers defined by

p =
d

7τ1

,
1

q
=

1− θ
p

+
θ

2
, and

1

r
=

1− θ
2p

+
θ

2
, (9.8)

where θ is the solution of the equation

τ1(1− θ) +
θ

2

(d
2

+
d− η

2(d− 2)

)
= 1. (9.9)

Then (
E
(
||Y (1)||qSq

))1/q

6 Cq

( |k|
R

)d(1−θ)/p
|k|−θν/2‖Ṽ ‖2

r, (9.10)

for |k| > R and 0 < R 6 1.

Proof. Observe that

τ1 <

{
2(ν−1)(d+1)

7(d−3)d
6 d

7
, if d > 3,

8(ν−1)
21(2−η)

6 d
7
, if 8ν + 9η < 26, and d = 3,

In both cases, τ1 obeys
0 < τ1 6 d/7.

Consider Y (ζ) for ζ running over the strip

τ1 6 Re ζ 6
d

4
+

d− η
4(d− 2)

.
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Since we have some information about the values of this function on the boundary of the strip,
we obtain (9.10) by interpolation between Corollary 9.2 and Theorem 9.3. 2

Remark. We need to explain why the parameters were selected the way described in
Theorem 9.4. The work with perturbation determinants requires convergence of integrals of
the form ∫ ∞

ε

E
(
||Y (1)||qSq

)
dk, ε > 0,

so we need the parameters to satisfy the condition

qd(1− θ)/p− qθν/2 < −1,

which is equivalent to the inequality

τ1(1− θ) < θν

14
− 1

7q
=
θ(ν − 1)

14
− (1− θ)τ1

d
,

implying that

τ1(1− θ) < θ(ν − 1)(d+ 1)

14d
.

The latter can be written differently as follows

1− θ

2

(d
2

+
d− η

2(d− 2)

)
<
θ(ν − 1)(d+ 1)

14d
.

In other words,

2 < θ
(d

2
+

(ν − 1)(d+ 1)

7d
+

d− η
2(d− 2)

)
. (9.11)

The condition that θ is large can be converted into an inequality showing that τ1 is small.
The relation (9.11) is satisfied, if((d

2
+

(ν − 1)(d+ 1)

7d
+

d− η
2(d− 2)

)
− 2
)
τ1 <

(ν − 1)(d+ 1)

7d

Since η > ν, that condition is obviously fulfilled, if (9.7) holds.

In the next statement, we estimate the remainder X1,1(ζ) for ζ = 1.

Theorem 9.5. Let p > 3d/4 > 2 and let ζ = 1. Then

E[||X1,1(ζ)||pSp/2 ]
1/p 6 C

( |k|
R

)−4

‖Ṽ ‖2
p.

Proof. In this theorem, we deal with the operator

W (−∆− z)−1P1,kV (−∆− z)−1P1,kW

On the one hand, we see that

E[||(−∆− z)−2/3P1,kV (−∆− z)−2/3P1,k||pSp ]
1/p 6 C

(∫
|ξ|>2|k|/R

∣∣∣|ξ|2 − z∣∣∣−2p/3

dξ
)2/p

‖Ṽ ‖p,

which implies the inequality

E[||(−∆− z)−2/3P1,kV (−∆− z)−2/3P1,k||pSp ]
1/p 6 C

( |k|
R

)−8/3

‖Ṽ ‖p, p > 3d/4.
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On the other hand,

‖W (−∆− z)−1/3P1,k‖2
S2p

6 C
( |k|
R

)−4/3

‖Ṽ ‖p, p > 3d/4.

Consequently,

E[||W (−∆− z)−1P1,kV (−∆− z)−1P1,kW ||pSp/2 ]
1/p 6 C

( |k|
R

)−4

‖Ṽ ‖2
p, p > 3d/4.

2

The next statement follows by Hölder’s inequality.

Corollary 9.6. Let q > 3d/8 > 1 and let ζ = 1. Then

E[||X1,1(ζ)||qSq ]
1/q 6 C

( |k|
R

)−4

‖Ṽ ‖2
2q.

Surprisingly, q in (9.8) satisfies the inequality q > 3d/8 > 1 . Thus, we obtain the following
result.

Theorem 9.7. Let 3 6 d 6 5. Assume that τ1 satisfies (9.7) with η and ν such that 1 < ν <
η < 2. If d = 3, then we assume additionally that 8ν+ 9η < 26. Let p, q and r be the numbers
defined by

p =
d

7τ1

,
1

q
=

1− θ
p

+
θ

2
, and

1

r
=

1− θ
2p

+
θ

2
, (9.12)

where θ is the solution of the equation

τ1(1− θ) +
θ

2

(d
2

+
d− η

2(d− 2)

)
= 1. (9.13)

Then (
E
(
||X(k)||qSq

))1/q

6 Cq

[( |k|
R

)d(1−θ)/p
|k|−θν/2 +

( |k|
R

)−4]
‖Ṽ ‖2

r,

for |k| > R and 0 < R 6 1.

10. Proof of Theorem 1.2

We will work with the function

d(z) = detn(I −X(k)), n = [q] + 1,

where z is related to k via the Joukowski mapping

z =
R

k
+
k

R
, R > 0,

which maps the set {k ∈ C : Im k > 0, |k| > R} onto the upper half-plane {z ∈ C : Im z >
0}. Rather standard arguments lead to the estimate∑

j

Im zj 6 C

∫ ∞
−∞

ln |d(z)|dz, (10.1)

where zj are zeros of the function d(z) situated in the upper half-plane C+. In fact, (10.1)
could be established in the same way as Jensen’s inequality for zeros of an analytic function
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on a unit disk. In (10.1) we assume that V is compactly supported. The relation (10.1) leads
to the estimate∑

j

( |kj|2 −R2

|kj|2R

)
+

Im kj 6 C
(∫ ∞
−∞
‖X(k)‖qq

( 1

R
− R

k2

)
+
dk +

∫ π

0

‖X(R · eiθ)‖qq sin θdθ
)
,

Taking the expectation we obtain∑
j

E
[Im kj(|kj|2 −R2)+

|kj|2R

]
6 C

(∫ ∞
−∞

E[‖X(k)‖qq]
( 1

R
− R

k2

)
+
dk+

∫ π

0

E[‖X(R ·eiθ)‖qq] sin θdθ
)
.

Due to Theorem 9.7, the latter inequality leads to∑
j

E
[Im kj(|kj|2 −R2)+

|kj|2R

]
6 C|R|−θqν/2‖Ṽ ‖2q

r . (10.2)

Now, suppose that we consider only the eigenvalues λj = k2
j that satisfy the inequality

|kj| 6 R0.

Multiplying (10.2) by Rσ−1 and integrating with respect to R from 0 to R0, we obtain∑
|kj |6R0

E[Im kj|kj|σ−1] 6 C|R0|σ−θqν/2‖Ṽ ‖2q
r , σ > θqν/2. (10.3)

That completes the proof. 2

While we do not intend to describe all results related to the theory of operators with complex
valued potentials, we would like to mention articles [1] -[10], [12]-[15] which could be viewed
as valueable contributions in this area. Some of these papers were already mentioned in
Introduction.
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