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Abstract

A previous paper [1] proposed an alternative interpretation of quantum mechanics which is 
distinct from the Copenhagen Interpretation and the pilot wave theory. This alternative 
interpretation and its associated non-deterministic surfing velocity component on the S (phase) 
surface are applied here to give an explanation of the one-slit experiment and the two-slit 
experiment in terms of the ontology of point-like entity (particle) and the function of wave field, 
without the need to invoke the notion of wave function collapse. The behaviour of the point-like 
entity is only partly influenced by the wave field so that there is a real degree of non-determinacy 
for the behaviour of the point-like entity. The path from the source of the point-like entity to the 
detecting screen of the one-slit experiment or the two-slit experiment cannot be pre-determined. 
Yet, a large collection of these paths will follow the probability pattern which is derived from the 
solution to the quantum mechanical equations with the slit boundary condition. Three modes of 
behaviour of the point-like entity in free space are identified – the cylindrical mode, the spherical 
mode and the intermediate mode. 

The point-like entity can either be a particle or a photon as the equations and their solutions for 
describing their behaviour are identical in form except that for the photon case the mass 
parameter is set to zero. Hence, the close similarity in behaviour between particles and photons is 
traced to the near identity of their relativistic equations. The particle nature of both particles and 
photons is thus affirmed while maintaining the influence (not determination) of the wave function 
on the particles and photons.  In this way, the question of wave-particle duality is dealt with for 
particles and photons. 

The absence of interference pattern when observation is made of the particles of the two-slit 
experiment can be explained by an exchange of momentum between a particle and the measuring 
element such that the two interacting intermediate modes before the momentum exchange reduce 
to the single cylindrical mode whose probability pattern is much more localised. Measurement is 
thus defined as an event where an exchange of momentum between the measured particle and the 
measuring agent takes place, leading to a wholesale and sudden change, but not collapse, of the 
wave function. 

Louis de Broglie’s formula for momentum and wavelength, and the Planck-Einstein relation, are 
also clearly evident from the analysis of the quantum mechanical equations. 

The integration of the particle’s angular momentum on the S surface yields the particle’s spin. 
The notions of rest mass, rest energy and massless particles are investigated and unpacked with 
reference to the particle’s surfing momentum on the S surface. A new definition of energy is 
proposed which could shed some light on the puzzle of dark matter. The crucial non-deterministic 
root in quantum mechanics is identified and Heisenberg’s Uncertainty Principle is critiqued. 
Finally, a possible relationship between a quantum-potential-like term and dark energy is posed.
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1.0    Introduction

According to Richard Feynman, the two-slit  experiment ‘has in it the heart of quantum 
mechanics. In reality, it contains the only mystery’.3 He also said, 

No one can “explain” any more than we have just “explained.” No one will give you any deeper 
representation of the situation. We have no ideas about a more basic mechanism from which 
these results can be deduced.4

Since the two-slit experiment is such a fundamental experiment for Quantum Mechanics and 
it is an experiment that  can be performed (compared to cosmological phenomena where 
experiments are not possible), any interpretation of  Quantum Mechanics, if it  is to be 

deemed credible, will do well to be tested with respect to this experiment. A previous paper 
[1] proposed an alternative interpretation of quantum mechanics which is distinct from the 
Copenhagen Interpretation and the pilot wave theory. It  is the aim of this paper to apply this 
interpretation to model the two-slit experiment. 

Paper [1] identifies a deterministic component and two non-deterministic components 

of the velocity of a particle which renders the total velocity  non-determinate. The three 
velocity  components neatly  form an orthogonal set. The two non-deterministic velocity 
components are tangential to the S (phase) surface and the particle can be visualised as 
‘surfing’ non-deterministically  on the S surface as it is carried forward by  the deterministic 
velocity  component which is in the direction of and is called the translational velocity. In 

the second paper [2], by prescribing or determining one of the two components of the surfing 
velocity  on the S surface (called the spin component or spin velocity), the degree of non-
determinacy is effectively reduced from two to one. The overall system is still non-

deterministic because there is still a non-deterministic velocity component on the S surface. 
This configuration yields a promising mechanism for the generation of spin for a particle 
travelling in free space with a constant translational velocity in a system of cylindrical co-
ordinates. This is called the cylindrical mode of motion and the probability density 
distribution on a S surface (in this case a z-plane which is perpendicular to the translational 

velocity), obtained from the solution of the Helmholtz equation, exhibits a certain pattern of 
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concentric circles with the probability  density as a function of radius. The pattern of 

probability  density distribution could be tested with respect to real experiments, by 
comparing it with the density  distribution of particles on a detecting screen after these 
particles have been released from the same source, one at a time, with the same velocity 
direction at some distance from the screen. It  is suggested that such an experiment will be 
difficult to perform since it is not easy to guarantee that these particles will have the same 

direction in their velocities as they are released because invariably  the particles in the 
experiment will need to be released through a narrow slit which will cause the particles to be 
diffracted into different directions.5  It seems that since such experiments will invariably 
involve particles passing through a slit  with the diffraction therein, for the suggested 
interpretation to be verified by experiments, the interpretation needs to be applied to model 

particles diffracted through slits. Paper [2] deals with free particles in the cylindrical mode of 
motion using cylindrical co-ordinates but this is not able to deal with diffraction. However, it 
is possible to model the mechanics of a diffracted particle involving spherical co-ordinates. 

In Section 5, this paper will model particle diffraction through a single slit using the 
spherical solution to the Helmholtz Equation which is derived from the Schrödinger 

equation. The spherical solution corresponds to what is called the spherical mode of motion 
which is appropriate for a point source only. This spherical mode can be interpreted as 
representing the motion of the particle through a slit of infinitesimal width. To represent the 
dynamics with respect to a slit of finite width, the spherical solution will need to be 
integrated across the width of the slit with respect to some suitable weighting across the slit. 

It will be seen that the required integral is no different in form from the Fresnel-Kirchhoff 
diffraction integral used in the study of optics if the boundary condition used at the slit is the 
same as Kirchhoff’s boundary condition; and equally  the required integral is no different in 
form from the Rayleigh-Sommerfield diffraction integral (also used in the study  of optics) if 
the boundary conditions used at the slit are the same as the Rayleigh-Sommerfield boundary 

conditions. The very close resemblance between the integral for particles and the integral for 
photons (in optics) for solving the Helmholtz Equation explains the wave-like behaviour of 
particles. This solution for diffraction through a slit  of finite width corresponds to what is 
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called the intermediate mode, intermediate between the cylindrical mode and the spherical 

mode. The intermediate mode tends to the cylindrical mode as the slit width tends to infinity 
and tends to the spherical mode as the slit width tends to zero. The solution to the diffraction 
problem with two slits can be simply obtained by evaluating the integral over the appropriate 
boundary covering the two slits, thus allowing the two intermediate modes corresponding to 
the two slits to interact with one another to produce the interference pattern (see Section 6). 

The question of measurement is dealt  with in Section 7. The measurement of a particle 
is defined as an event where an exchange of momentum between the measured particle and 
the measuring agent takes place suddenly. Such an event causes the existing wave function 
over space to change discontinuously to a new wave function over space which is consistent 
with the new momentum of the particle. It  is because of this kind of change in the wave 

function when the particle in the two-slit experiment is ‘watched’ or observed through a 
measuring agent that the interference pattern in the original wave function disappears, giving 
way to a localised pattern corresponding to the cylindrical mode. Also, it will be shown that 
the very insertion of a measuring instrument into a localised vicinity of the particle will also 
effect a change in the wave function. 

To further explore the close similarity between diffraction of particles and photons, 
special relativity is included in the governing equation in Section 8. The paper will justify 
rigorously that, contrary to popular understanding, the Gordon-Klein equation can 
incorporate a positive definite probability  density and therefore is suitable for studying 
particles in a special relativistic framework. Furthermore, the components of the electric 

field and the magnetic field of the Maxwell Equations also satisfy  the Gordon-Klein 
equation under certain simple conditions. It will be shown that  because both particles and 
photons satisfy the Gordon-Klein equation but with slightly different parameters, this sharing 
of the same equation lies at  the heart of the close similarity  between diffraction of particles 
and photons. And photons and particles are discrete point-like entities whose dynamic 

behaviour is influenced but not determined by the wave field which is the solution to the 
Gordon-Klein equation. Also, the square of the amplitude of the wave field can properly be 
interpreted according to Born’s rule, i.e., as the probability  density  of the point-like entity in 
question. The relationship between momentum and wavelength as given by de Broglie’s 
formula becomes evident from the analysis of the equations both for the particle case and the 

photon case.  
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The derivation of particle spin in a relativistic framework is treated in Section 8.3. In 

relation to the surfing momentum of the particle on the S surface, the question of the 
meaning of rest mass is raised and it will be suggested that the ‘rest mass’ is intimately 
related to the surfing momentum on the S surface and the particle’s ‘inherent mass’. An 
implication of this is that the Lorentz factor is underestimated in calculating the energy 
according to Einstein’s formula, leading to an underestimation of the energy of the particle. 

A revised definition of energy is suggested to remove the underestimation and it may help to 
account for the missing energy  called dark matter. Also, it is possible for a particle with non-
zero inherent mass to have zero rest mass when its surfing momentum on the S surface is 
zero. This raises questions about the nature of so-called massless particles. 

The crucial factor for the non-determinacy  of the motion of a particle is identified in 

the non-deterministic direction of the non-deterministic velocity  component on the S surface. 
This non-deterministic velocity has to satisfy a certain bulk constraint, i.e., in a budgetary 
statistical manner over time its evolution should lead to the satisfaction of Born’s rule which 
will in turn result in the generation of the expected spin of the particle. But there are 
innumerable ways in which this can be achieved, hence the non-determinacy of the motion 

of a particle. This raises questions about the source of the information which is necessary  for 
the satisfaction of Born’s rule and the generation of the particle’s spin since this information 
is definitely not deterministic. This leads to the question of how much we can know about 
non-deterministic processes and the causes behind them. Finally, the finding of this paper is 
discussed in relation to the Heisenberg Uncertainty Principle.

The following is the section headings of the paper to help the reader to have map of the 
paper.

1.0    Introduction
2.0 Non-Deterministic Quantum Mechanics
3.0 Conservation of Energy and Its Implications

4.0 Particle in Free Space in Cylindrical Co-ordinates
5.0  Diffraction of a Single Particle Through a Single Slit in Free Space
6.0  Diffraction of a Single Particle Through Two Slits in Free Space
7.0  The Meaning of Measurement
8.0  Photons and Particles in Special Relativistic Framework and the Definition 

of Energy
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9.0  The Heisenberg Uncertainty Principle

10.0  Conclusion

Before this paper attempts to find the solution of the diffraction problem using 
spherical co-ordinates, it  will be helpful for the reader to have a summary of the previous 
two papers outlining the interpretation suggested there and its application to particle spins in 

a cylindrical system of co-ordinates. This summary will only briefly  refer to or engage with 
the papers by other authors referenced in the previous two papers. 

2.0 Non-Deterministic Quantum Mechanics

The Schrödinger equation is

 where is the reduced Planck constant, m is the mass of the particle and U is the potential 

‘experienced’ by  the particle. Writing , the Schrödinger  equation can be exactly 

re-written as the following two equations by considering its real and imaginary parts:

  

Equation (2) is called the energy  equation. It is in a modified form of the Hamilton-Jacobi 

equation. The term, , is called the quantum potential.6 Equation (3) is called the 

pseudo continuity  equation for reasons which will become clear. Apart from these two 
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equations derived from the Schrödinger equation, there is also the following equation which 

according to paper [1] (and other papers implicitly, e.g., [3, 4, 5] ) should also be satisfied, 

where ρ ≡ R2 is the probability density, is the particle’s velocity  in three dimensions and 

is the flux of probability. This equation is called the generic continuity equation or the 

general continuity  equation. It is called the generic continuity equation in paper [1] because 

its counterparts can be found in other branches of physics, e.g., fluid mechanics. Here, it  is 
also called the general continuity equation in contrast with the pseudo-continuity equation 
(3). This general continuity equation, involving the explicit velocity of the particle, expresses 
the conservation of probability in a point-wise manner rather than as a bulk or budgetary 
constraint as in the normalisation constraint. This paper will later raise the question whether 

this general continuity  equation should also be satisfied in addition to the pseudo continuity 
equation, even though in paper [1] and [2] it was assumed that the general continuity 
equation ought to be satisfied. The general continuity equation (§4) is often conflated with 
the pseudo-continuity equation (§3) but they must be seen as distinct. This is so because the 
general continuity equation explicitly includes the velocity  of the particle, , as it should 

(since the second term is the divergence of the probability flux or probability current) while 
the pseudo continuity  equation does not explicitly includes the velocity (hence the word 
‘pseudo’). The conflation of the true continuity with the pseudo-continuity equation, as seen 
in many  papers on the pilot wave theory, is not hard to appreciate but it must be resisted. In 
that theory, an explicit velocity is prescribed,

It can be easily seen that, with this definition of the particle’s velocity, the pseudo-continuity 

equation (§3) is equivalent to the general continuity  equation (§4); hence the conflation. And 
since (§3) must be satisfied as it  is derived from the Schrödinger equation, prescribing the 
velocity  in the above manner guarantees that the general continuity  equation is also satisfied. 
However, this prescription of the particle velocity makes the particle velocity deterministic 
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in time since the time evolution of S according to (§2) and (§3), and hence the time evolution 

of , are deterministic. Nevertheless, paper [1] shows rigorously that two other 

components of the particle velocity can be added to (which is called the translational 

velocity) such that the general continuity equation is still satisfied:

where  is a unit vector constant over space (see paper [1]), defined at the point  where the 

particle is (which is called the reference point in that paper),  is the unit vector constant 

over space in the direction of   defined at the point where the particle is (see paper [1]),  

and are arbitrary functions of time but they are not functions of space (see 

paper [1] for further details; in papers [1] and [2],  and are initially  defined without 

and which are later inserted as multiplicative factors for and ).  

 neatly form an orthogonal set of velocity components at the point where the 

particle is; their sum represents the total velocity  of the particle and this sum satisfies the 
general continuity equation (§4): 

With this definition of the total velocity  of the particle, the general continuity equation (§4) 

containing the full version of the particle’s velocity is different  from pseudo continuity 
equation (§3) containing only one component of the particle’s velocity. Without explicitly 
including the general continuity equation as a governing equation in addition to the 
Schrödinger equation, one is tempted to use the pseudo continuity equation (§3) derived 
from the Schrödinger equation as the general continuity equation and limits the velocity to 

only one component, . This is the usual approach taken in the study of pilot wave theory 

(see, e.g., Bohm’s paper [6]) which renders the velocity  of the particle deterministic. In paper 
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[1], by explicitly including the general continuity equation (§4) as a governing equation, the 

arbitrary functions, and , found in the expressions of the two additional velocity 

components, afford two degrees of freedom for the velocity of the particle which is therefore 

non-deterministic. In this paper, the forms of  and will be retained even though the 

reason for retaining them here is for the consistency with observation, rather than satisfying 
the general continuity equation (see Section 8).

It should be noted that  and , evaluated at the position where the particle is, are 

perpendicular to (and hence perpendicular to  ); therefore   and lie on a plane 

tangential to the S surface at the position where the particle is. This means that the sum of  

 and represents a velocity  on that tangential plane so that the particle can be said to be 

surfing on the S surface while moving forward with velocity  . Since the sum of  and 

, which is called the surfing velocity, is quite arbitrary in its magnitude and since it 

can be in any direction on that plane tangential to the S surface, the particle can be visualised 
as surfing freely and therefore non-deterministically on the S surface while being carried 
forward by its deterministic translational velocity component, . Because (i) the particle’s 

position in space is non-deterministic due to its non-deterministic surfing velocity and (ii) 
the deterministic translational velocity can vary over space (i.e., it  is a function of space), 
generally  all three components of the particle’s velocity  are non-deterministic in time and 
therefore cannot be predicted in advance.

The interpretation of Quantum Mechanics presented in paper [1] takes the position that 

while the particle has an unambiguous position and an unambiguous momentum at any 
instant in time, the total velocity of a particle at any instant in time is non-determinate. This 
interpretation therefore echoes the non-deterministic or contingent nature of our universe in 
consonance with the Copenhagen interpretation while it maintains the existence of the 
objective position and momentum of a particle before measurement which is held by those in 

the pilot wave theory camp. In this sense, this interpretation has similarities to both of these 
interpretations but it is also fundamentally distinct from them.

In a disorderly and violent universe, the non-deterministic free motion of a particle on 
the S surface has little constraint; the particles in such a chaotic universe will not give rise to 
any stable chemical property  to sustain life as we know it in this our orderly  universe. 
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However, in a reasonable and orderly universe like ours, even though the free surfing 

velocity  on the S surface is not determinate, it may still be subject to some overall budgetary 
constraints. Paper [2] investigates the constraint on a particle’s possible free surfing velocity 
on the S surface and how this free velocity may generate the particle spin. 

3.0 Conservation of Energy and Its Implications

If we define

 where E is considered as the energy of the particle, then in quantum mechanics the energy 

of the particle consists of the kinetic energy (first term), the potential energy (third term) and 
the quantum potential (second term). This energy  differs from the classical energy of a 

particle by the quantum potential and can be reduced to the classical energy  if we put  to 

zero. In the absence of any event in which the particle gains or loses energy, this energy is 
conserved regardless where the particle is. In such a conservative regime, 

Mathematically, it is possible not to insist that  these conservative 

conditions are satisfied but it  will not correspond to the physical phenomena as we know 
them in our universe. We therefore treat E as constant in time and in space in the absence of 

any event where the particle’s energy changes. In the case of scattering, the particle’s energy 
will not be conserved and this case will be considered in Section 7. For the conservative 
case, from (§2)

where is a spatial function independent of time. From this, we see that 

Taking the gradient of the energy equation (§2), we have
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which consistently  gives us . Furthermore, if U is independent of time, since  

and , the quantum potential is also independent of time. Now, this raises 

the question whether R is also independent of time. It is conceivable that R is a function of 

time,  will make the quantum potential independent of time. 

However, the normalisation constraint requires that  where 

V is the relevant entire physical space. Since I is independent of time, has to be 

independent of time. Hence, we have R independent of time. 
The following three conditions follow from the starting point that for a conservative 

system E is independent of space and time:

We call the state of such a conservative system Steady  Motion State (SMS). The only steady 

part of the motion field is the deterministic velocity component, , which is proportional to 

 and is a function of space only while the non-deterministic surfing component can vary 
in time and space and hence can be unsteady. As explained above, if one follows a particle, 
one will see that the total velocity of the particle is non-deterministic. This is invariably true 
for Steady Motion State despite the word ‘Steady’ in the term.

4.0 Particle in Free Space in Cylindrical Co-ordinates

In the particular case of the particle travelling in free space, U is constant in space and time. 
For conservative Steady Motion State which applies in free space, we have already 

established that and therefore are constant in time. In free space, in the absence of any 

exchange of energy or momentum with any other entity, we can safely propose that is also 

independent of space. We call this conservative Steady Motion State in free space the 
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cylindrical mode of motion and the reason for such a naming will shortly become clear. We 

introduce the constant a by defining . Thus (§5) can be 

written as 

which is in the form of a Helmholtz equation. In a system of cylindrical co-ordinates, (r, θ, 

z), we adopt the convention that   is in the z direction. It can be easily  shown that a S 

surface is then identical to the (r, θ) plane (the z plane) on which the particle surfs non-

deterministically. Also, we can appeal to isotropy with respect to θ and take  so that 

the Helmholtz equation becomes

which is the radial equation with one independent variable, r. This equation is in a form of 

the Bessel equation and has the solution

where  are Bessel functions of the first and second kind respectively. It turns out that 

the only physical solution is the one with real value of a and involving the Bessel function of 
the first kind (see [2]). Physically, the R surfaces are circular tube extending along the 

direction of z, and the S surfaces, being perpendicular to the z direction, are also 
perpendicular to the R surfaces. 

 , as defined above, in this case of a particle in free space is the velocity which is 

tangential to the R contour and hence the ρ contour on a S surface; it generates angular 
momentum with respect to the origin and is therefore called the spin velocity. And  is the 

velocity  perpendicular to on the S surface; it goes through the origin and is therefore 

called the radial velocity. This radial velocity generates zero angular momentum with respect 
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to the origin.  is perpendicular to the S surface such that  ,  and  form an 

orthogonal set of velocities as expected.

Figure 1: (a) ; (b) contours of constant ρ , and on the (r, θ) plane (or S 
surface); the z direction and hence the direction of   is perpendicular to the page

Since the angular momentum of the particle depends on  which in turn depends on 

which is arbitrary, for consistency in the angular momentum cannot be an arbitrary 

function of time. We therefore make it a constant for the particular particle in question, 

constant in terms of space and time. This means that we have made the spin velocity, , 

deterministic. This is the approach taken by Salesi and Esposito [3, 4, 5] but in a 
deterministic framework because they did not include the non-deterministic which makes 

the system non-deterministic. Now, the specification of the spin velocity  does not come from 
the Schrödinger equation. The Schrödinger equation in itself does not give sufficient 

information to determine the spin angular momentum of the particle. This is well known. 
Additional constraints, such as the ones given here, are necessary  to determine the angular 
momentum. At this point, one is reminded of Einstein’s idea to find more governing 
equation(s) to close a quantum system, i.e., to make the system totally  deterministic (see, 
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e.g., [7]). However, it is not the aim of  paper [1], paper [2] and this paper to close a quantum 

system, i.e., the aim is not to make it deterministic by  adding a sufficient number of 
governing equations to reduce the degree of freedom to zero. Rather, the aim of paper [2] 
was to retain the non-deterministic nature of a quantum system but giving due allowance for 
the consistency of the particle’s spin velocity. This can be achieved by setting to be a 

constant but leaving to be non-deterministic over time. This means that while the spin 

velocity, , is deterministic, the radial velocity, , is non-deterministic, in contrast with 

Salesi and Esposito [3, 4, 5]. 
One can picture the particle to be on one hand circulating around a circular ρ contour 

with the deterministic spin velocity  appropriate to the position where the particle is, while on 

the other hand moving towards or away from the centre with the non-deterministic radial 
velocity. However, in order for Born’s rule to be satisfied in some manner, there is a certain 
budgetary statistical constraint (or bulk constraint) to be satisfied by the non-deterministic 
radial velocity. That is, over a suitable time period the radial velocity has to be such that it 
places the particle at any given narrow finite circular strip bounded by  two circular ρ 

contours for a length of time which is a certain fraction of the period, and this fraction is 
equal to the area of the circular strip  multiplied by  ρ for that circular strip  (and this will be 
seen below as the integrated probability for that circular strip  and is therefore consonant with 
Born’s rule; see [2] for details). It is important  to note that this budgetary/bulk statistical 
constraint on the non-deterministic radial velocity does not make this velocity  deterministic. 

There are innumerable ways in which this constraint can be satisfied: at any moment in time 
the particle still has its own freedom to move in a particular direction along the radius, i.e., 
inward or outward, with a certain speed.  

It is not yet  clear how this way of interpreting ρ relates to Born’s rule for interpreting ρ 
which sees ρ as the probability density. Further clarification is necessary and can be found in 

Section 6 of paper [2]. A concise clarification for the reader here may be helpful. ρ is a 
function of r as can be seen in the solution of the radial equation. Let us say the particle 
spends △t length of time in a certain narrow circular strip with area 2πr△r within the period 

T. △t / T is a non-dimensional measure of the time spent in the strip  with respect to the 

period T. The ‘non-dimensional time density’, defined for the circular strip, is the expected 

non-dimensional time, △t / T, to be spent by  the particle within that strip over the period of T 
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divided by the area of that  strip. We interpret ρ to be this ‘non-dimensional time density’ for 

the circular strip: 

For a given r, ρ tends to a limit as △r  and △t tend to zero. Note that ρ is defined with 

respect to expected events over the period T and is thus not yet defined with respect to an 
instant in time as in the usual interpretation of ρ according to Born’s rule. However, since the 
particle spends △t length of time in the strip  over the period T, at any random instant within 

the period T the expected probability of finding the particle at that particular circular strip is 
△t / T; and this probability, as seen from the above expression, is 2πr△rρ, which is the area 

of the circular strip multiplied by  ρ. In that  sense, ρ which has just been interpreted as the 
‘non-dimensional time density’ is also the ‘probability density’ for that circular strip as 
normally interpreted according to Born’s rule. Hence, we have two equivalent interpretations 
of ρ, as the ‘non-dimensional time density’ and as the ‘probability density’. This equivalence 
is highly reasonable since the more time a particle spends in a circular strip  within the period 

T (high non-dimensional time density), the more likely it is to be found in that strip at any 
random point of time within T (high probability density).

It should be pointed out that there are innumerable ways in which the particle can 
spent a total time of △t in the circular strip. The governing equations do not put  a definite 

constraint on the specific timings of the particle visiting that strip. The only constraint is not 

a specific one but a budgetary statistical one, i.e., according to Born’s rule the particle is 
expected to spend a total time of △t = 2πr△rρT in a circular strip  during the period T. There 

is nothing to determine in what specific way or order this △t is accumulated within this 

period. For example, the radial velocity of the particle can be such that it visits that strip n 
number of times during the period and the accumulated time is △t as expected; however, the 

same amount of time can be accumulated over 2n number of visits or over other numbers of 
visits in many  different sequences or orders, just as there are many different ways or 
sequences to closely reproduce the following statistical property  of throwing a dice over 
many throws – i.e., the average probability of each of the six outcomes is close to one sixth. 
In this sense, Born’s rule serves as an overall budgetary statistical rule for the length of time 
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to be spent in a strip by the particle so that this rule exerts a bulk constraint on its radial 

velocity. But this rule is not a deterministic rule dictating the radial velocity  at any point in 
time. In this way, the inherent non-deterministic nature of the quantum system under 
consideration is maintained even after Born’s rule has been imposed. Section 6 of paper [2] 
gives yet another equivalent interpretation of ρ, which is the ‘time averaged probability 
density’ for the period T. This interpretation is also consonant with Born’s rule. For this 

paper, it will be sufficient to concentrate on interpreting ρ as the non-dimensional time 
density and as the probability density. 

Paper [2] calculates the time averaged angular momentum of the particle which turns 
out to be which is independent of the parameter, a, in the Helmholtz equation.   can 

take on opposite signs corresponding to opposite spins and its magnitude corresponds to the 
particular kind of particle in question. In Section 8.3, the calculation of particle spin will be 
extended to include special relativity; critical comparison with Dirac’s theory will be made 
in a forthcoming paper. 

5.0 Diffraction of a Single Particle Through a Single Slit in Free Space

This section attempts to model the mechanics of a single particle going through a single slit 
and being diffracted by the slit. The attempt will concentrate only  on one particle. In physical 
reality  the slit wall consists of many other particles which will influence the mechanics of 

the particle going through the slit. One could make a theoretical attempt to represent this 
physical reality by treating it as a many-body problem. However, such an attempt is beyond 
the scope of this paper.  

5.1 The Spherical Mode

We now attempt to solve the governing equations – the energy equation and the pseudo 

continuity  equation – in spherical co-ordinates. We again consider the Steady  Motion State 

(SMS) where is zero. As seen above and in paper [2], this implies that the deterministic 

velocity  component, , does not vary with time (though it can vary with space) and the 

energy of the particle
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is constant over space. The second term on the r.h.s. is the quantum potential. If  we define 

then 

and is the quantum potential. Equation (§8) is in a similar form to equation (§7) and 

both equations are in the form of the Helmholtz equation. However, the parameter a in 
equation (§7) is a constant  while the parameter, D, here cannot be assumed to be constant. 
Since is independent of time and E is conserved in time, if U is also independent of 

time, then D and the quantum potential are independent of time. According to equation (§8) 

and the reasoning for (§6), R has to be independent of time so that in the pseudo 

continuity equation is zero. The pseudo continuity equation becomes 

We now proceed to solve for R in equation (§8) in spherical co-ordinates, .  The 

solution for R is then input into equation (8) which is solved for S in spherical co-ordinates. 

If D is a function of r only and appealing to symmetry, , we then separate the 

variables, , equation (§8) can be written as two separate equations:
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where k  is the constant of separation. If , a possible solution for the radial equation 

(§10) is  , where χ is a constant. The solution for equation (§11) is the Legendre 

polynomial in  for k=l(l+1) where l is an integer.

For equation (§9), we posit S to be a function of r only and is constant over 

space. This implies that the radial (translational) velocity has constant speed, , 

regardless of its direction. Now, . Since  is in the radial direction  and has 

magnitude , and ,

where the solution for F of equation (§10) has been used for R and ρ. Equation (§9) is 

exactly  satisfied by the proposed solution for S and R, and this solution will hold for various 

constant values of   and  χ. It  can be seen that  χ will be fixed by the normalisation 

constraint while  is a free parameter. Crucially, the value of k=l(l+1), where l is an 

integer, is also a parameter to be determined. At this point, a physical interpretation of this 

solution will help us to visualise the dynamics of the diffracted particle.
Firstly, the S surfaces are concentric spherical surfaces and it is evident that the particle 

is ‘radiating’ from the centre with a constant radial translational speed even if the direction 
of the radial translational velocity ( ) varies over space. However, since the particle is to 

go forward through the slit in the diffraction, in order to model the diffraction one needs to 
use only one half of a spherical S surface, i.e., use only a hemispheric S surface. Here is a 

cross section of some hemispheric S surfaces which can be rotated by π radians with respect 
to the ‘vertical’ axis to give the hemispheric picture.
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Figure 3: Cross Section of Some Hemispheric S Surfaces with Constant 

can have its θ  between 0 and π/2 radian, and its between 0 and 2π radian, while its 

magnitude is constant.

Secondly, since this theoretical model seeks to represent the three-dimensional 
dynamics of a diffracted particle in a real experiment, the slit in the experiment is envisaged 
to be a circular slit instead of a rectangular slit  (which is effectively one-dimensional), i.e., 
the slit is a small circular hole through which the particle goes through.  

Figure 4: A Wall with a Small Circular Slit in an Experiment

Thirdly, regarding the ρ distribution on the hemisphere, if we imagine the particle is 
going through the slit  vertically ‘upward’ through the radial centre of the ‘northern’ 
hemisphere, i.e., with θ=0, ρ is independent of by symmetry as assumed above in the 

solution for equation (§8), then a ρ contour on an latitudinal plane is a latitudinal circle. And 
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since there will be zeros of the Legendre polynomial which describes the co-latitudinal 

distribution of ρ as a function of the co-latitude, θ, there will be bands of non-zero ρ in the 
form of circular strips on the hemispheric S surface which are bounded by zero latitudinal 
contours of ρ (see Figure 5 and compare with Figure 2 for the cylindrical case).   as 

defined above can be shown to be (i) lying on the same plane as the ρ latitudinal contour and 
(ii) tangential to the ρ contour which is the latitudinal circle. as defined above can be 

shown to be (i) lying on the longitudinal plane and (ii) tangential to the longitudinal circle. 
Since is in the radial direction,  ,  and form an orthogonal set of velocity 

components, as expected. and together form a surfing velocity on the S hemispheric 

surface, i.e., they  form a velocity which is on the plane tangent to the hemispheric surface at 
the point where the particle is. While this surfing velocity is perpendicular to the radial 

direction, is along the radial direction. One can picture the particle as being carried away 

from the radial centre by  the translational velocity   while surfing on the hemispheric S 

surface. And while  is determined according to the expression given above with constant 

,   with non-constant is still non-determinate rendering the surfing velocity on 

the S surface non-determinate. Since the radial translational speed, , is 

constant, at a time after leaving the centre (slit) the particle will have the same radial 
distance from the centre regardless of the surfing motion on the S surfaces so that it will be 
on the same S surface regardless of the surfing motion (see Figure 3). This means that the 
particle’s position on the S hemispheric surface is non-determinate. However, overall during 
a period T, there is a budgetary constraint on the probability of the particle in various 

neighbourhoods on a S surface. To look into this, we need a closer look at  the probability 
density distribution on different S surfaces.
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Figure 5: Integrated Probability on Circular Strips of Hemispheric S Surfaces (cross 
section is to be rotated by π radian around the  axis)

Here we have two cones, one with co-latitude angle  and the other with angle 

. The area on a hemispheric S surface between the two latitude circles forms a 

circular strip. The probability density (ρ) integrated over this circular strip is 

which is independent of r. That is, the integrated probability on any circular strip bounded by 

the two latitude circles and on any  hemispheric S surface has the same value. 

The integrated probability  is preserved between the two latitudes, regardless of the 

hemispheric S surfaces, i.e., regardless of their radii. During a period T, the particle will 
spend the following length of time within these two latitudes while it moves through 
different S surfaces: T multiplied by the integrated probability between the two latitudes, 
remembering that ρ has two equivalent meanings – probability  density and non-dimensional 
time density. This overall budgetary time requirement needs to be satisfied by  tangential 

to the longitudinal circles with its suitable non-determinate .
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The function f(θ) is a Legendre polynomial in  and  has its maximum amplitude 

at , that is, the probability  density will be highest there so that the particle is most 

likely to be found in the neighbourhoods around the axis. If it happens that 

, then the probability  density, ρ, is zero on the two cones with these two 

angles, and there will be non-zero ρ between these two cones with a maximum ρ somewhere 
in between the two latitudes. 

 is the quantum potential; ; k=l(l+1) is derived from the parameter of 

the Legendre polynomial, l. Since k is positive (even for negative l), the positive quantum 
potential initially  decreases rapidly  with distance from the centre and later approaches the 

asymptotic value of zero.  Also, 

where the first two terms on the r.h.s are constant, U initially  increases rapidly with distance 

from the centre and later approaches an asymptotic value which is the sum of the first  two 
terms, as the quantum potential (the third term) approaches its asymptotic value of zero. 
With large distance from the centre, both the quantum potential and U tend to their 
asymptotic values. However, with small distance from the centre, both take on very  large 
magnitude so that at r=0 their magnitudes reach infinity  except for the case of k=0. When 

k>0, the Legendre polynomial is zero at some values of θ; when k=0, the Legendre 
polynomial has the constant value of 1. Even though the solution for k>0 is interesting as it 
varies as a function of θ and may be useful in some physical scenarios, for the slit 
experiment under consideration we cannot really account for the infinite value of the 
potential U and the infinite value of the quantum potential at the slit. Therefore, the only 

solution we can accept is the case of k=0. This special case of k = 0 is called the spherical 

mode. In this case, using the normalisation constraint to fix χ, the wave function is
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We have already pointed out that the radial translational speed, , is constant, at 

any time after leaving the centre the particle will have the same radial distance from the 

centre so that it will be on the same S hemispheric surface regardless of the surfing motion 
on such surfaces in the past. With the probability density already  independent of , the case 

of k=0 implies that the probability density is also independent of θ, meaning that the particle 

is equally likely to be found at any point of the hemispheric S surface. That is, the surfing 
motion on the S surface has to be such that statistically  it will satisfy (or approximate in 
finite time) the constant probability density  requirement for k=0. This particular scenario 
corresponds to a particle emerging from a point source and radiating out along the radial 
direction with constant radial speed while surfing non-deterministically on the S hemispheric 

surfaces to produce the uniform probability density across all angles of θ and . Since the 

particle emerges from a point source, this scenario is equivalent to a particle coming through 

a slit  of infinitesimal width. In the usual theoretical treatment of one-slit experiment where 
the detecting screen is flat rather than a hemisphere as considered here, the equivalent 
scenario for that treatment is this: as the slit width tends to zero, the distance of the first 
minimum tends to infinity on either side of the flat detecting screen and the intensity or 
probability density is uniform across the flat detecting screen.

5.2 The Diffraction Integral for Single Slit in Free Space

In a one-slit experiment in the real world, the slit area has finite width, as in Figure 4. How 
can one construct the solution to the governing equations when the slit width or slit area is 
no longer infinitesimal? An intuitive idea is to (i) assume that the above spherical solution is 

representative of a small neighbourhood of the slit which has a certain representative 
probability  density and (ii) integrate the spherical solution, weighted by the probability 
density, over the whole slit area. The probability density  distribution over the slit area 
depends on the kind of motion the particle is in prior to entering the slit. If it has been in a 
cylindrical mode of motion in free space, then the pattern of its probability density 

distribution before entering the slit  will have concentric circles of ρ contours given by the 
Bessel function of the first kind (as summarised above) and this can be taken as the 
approximation of the probability density at the slit area. If the particle has already been in a 
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near spherical mode of motion in free space due to the fact that  it has been released from a 

source with an extremely  small opening, then the probability  and phase of the wave function 
from this first mode of motion can be evaluated at the slit area and taken as the 
approximation of the probability density  at the slit area. This intuitive idea is akin to (but not 
identical to) Huygens’ principle usually applied to wave diffraction but this principle can be 
rigorously clarified and made more precise by the following proper mathematical treatment 

of the governing partial differential equation and its boundary conditions for a slit with finite 
width or finite area. According to (§6), the wave function can be written as 

where , i.e., the phase is split into the spatial part denoted by  p and the 

temporal part denoted by  t. A   surface at a given point in time comprises positions of a 

certain constant value. On that surface,  is also constant since is a 

constant over space at any given point in time. Hence, a   surface at any given point in 

time is also a S surface and the term ‘S surface’ will be used consistently throughout the 

paper. The above expression for S means that  is independent of time; hence, we are 

considering Steady Motion State and we will justify  below rigorously  why  our attention 
should be focussed on such states. According to (§6), for Steady Motion State, an 

accompanying condition is R is also independent of time. Substituting this into the 

Schrödinger equation,  noting from (§2) that , writing  and  

 yield 

Note that since E, the energy of the particle, is conserved (hence constant) and U is constant 

in free space, b is a constant. In the cylindrical mode of motion, the translational kinetic 
energy is constant and the quantum potential can be a non-zero constant. In the spherical 
mode discussed above, the translational kinetic energy is also constant but the quantum 
potential is zero. In either mode, the sum of the translational kinetic energy and the quantum 

Mathematical Physics Preprint Archive, University of Texas, Oct. 2020

24

(§12)



potential, , is equal to E–U and is therefore constant over space and time. 

This is a consequence of the total energy of a particle being conserved; therefore, it is also 

true in other modes of motion in free space, such as the intermediate mode which will be 
discussed next. 

At this point of analysis, the parameter, b, has yet to be determined but it will be 
determined. This Helmholtz equation with complex variable can be solved with the help of 
an appropriate Green function for some appropriate boundary conditions at the slit and the 

slit wall. For this solution, we can borrow from the well established mathematical procedure 
used in the study  of optical diffraction where the Helmholtz equation of the same form is to 
be solved, e.g., see Introduction to Fourier Optics by Joseph W. Goodman, chapters 3 and 4. 
Note at this point it is the mathematical procedure we are borrowing, not the physics from 
optical studies.

The free space Green function is defined as

with the parameter b given by the b in (§12),  is the reference point  on the diffracted side 

of the slit and  is the position vector. This Green function, apart from a multiplicative 

constant, in effect is virtually  equivalent to the spatial part of the wave function of the 

spherical mode obtained above with b = and  treated as the origin. This function also 

satisfies (§12) but on its own it cannot satisfy the boundary condition of a slit with finite 
width. Using the Green’s Theorem relating an integral over a volume and an integral over the 
enclosing surface and after some derivation, 

where the surface  is the surface comprising the slit wall and the slit, the direction of the 

normal derivative is pointing to the outside of in relation to and the integration is 

carried out by varying and the corresponding element on the  surface. 
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Figure 6: Circular slit, , with point source at  which is at distance d from the slit and 
situated midway of the slit; the wave function in the ambient environment on the left of the 

slit is diffracted on the right of the slit

Let the point source at give rise to this wave function to the left of the slit wall: 

which is again of the same form as the spherical mode above, and the particle from can 

only visit the half of any spherical S surface towards the slit, hence the 2π (not 4π) in the 
expression of the wave function. This expression for models the scenario where a particle 

is released through an extremely small circular hole at towards the slit, . This also 

satisfies (§12) because the same parameter, b, is used in the expression for here. In fact, 

the parameter b in (§12) is set by this parameter in this expression for  for the region to 

the left of the slit wall. What we have is that (§12) should be satisfied throughout  the whole 
domain which has been considered as a free space with constant U throughout. This 
requirement for (§12) to be satisfied throughout  the whole domain is a consequence of the 

conservation of energy as discussed above. Therefore,   for the region to the left of the slit 
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wall has to satisfy (§12) and it  does. It represents the ambient environment the particle is in 

before entering the diffraction region to the right of the slit  where the same equation, (§12), 
also applies and is to be satisfied, subject to the appropriate boundary conditions.  Note that 
it is the ambient environment which sets the parameter b in (§12) for the whole domain. 
(There can be other ambient environments before the slit which set the parameter b as will be 
seen below.)

If the position of  is far enough from the slit, then the distance between any point  

of the slit and is very close to d. Then, the solution can be well approximated by

where is the angle between the normal to the slit surface and (see 

Figure 6), and the integration is carried out on the slit surface, , by  varying   and the 

corresponding element on it. This is the same as the Fresnel-Kirchhoff diffraction formula 
except that (i) the distance between on the slit and is approximated by the constant  d 

and (ii)  is situated midway of the slit. This approximation and simplification have made 

the mathematical presentation cleaner and easier to read. The following Kirchhoff boundary 
conditions have been assumed to yield the above analytic integral:

1. on the slit wall away from the slit surface, and are assumed to 

vanish; hence, no integration needs to be carried out there;

2. on the slit surface, and are completely  determined by the source at 

 (as if the slit wall is not there).
(1) can be alleviated by either setting the first Rayleigh-Sommerfield boundary condition or 

the second Rayleigh-Sommerfield boundary condition by using one of the two modified 
Green functions respectively. The two resulting integrals will be of slightly different forms to 
(§14). However, interestingly  the average of the two integrals is identical to the integral 
obtained by applying the Kirchhoff’s boundary condition as has been done above. The 
boundary condition (2) can be alleviated by numerical method where the effect of the slit 

wall’s presence on the the wave function being generated by  the point  source at  can be 
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taken into account. But this effect is expected to be very small especially if the distance 

between  and the slit, d, is large. 

One can see from (§14) that the spherical mode, given by the second factor in the 
integral, makes contribution to the overall solution while being weighted by (i) a factor 
which is the wave function due to the particle source at  (see first  term of the integral) and 

(ii) a second factor to do with the geometry of  and (see third term of the integral). The 

former intuition that the weighting factor is the probability density at the point of the slit, , 

needs to be adjusted here in light of the more rigorous mathematical derivation above which 
gives the weighting factor in (i) instead of the the probability density. However, it is still true 

that the square of the modulus of  will reproduce the intuited probability density. 

The integration in (§14) allow the various weighted spherical modes ‘radiating’ from 
the points on the slit  surface to interact with one another in terms of phase and magnitude 
such that the solution will not be the same as the pure solitary spherical mode and the 
resulting S surfaces will not be hemispheric. This interaction between the spherical modes 

gives rise to maximums and minimums (or zeros) in the modulus of the diffracted wave 
function, hence generating the interference pattern of the one-slit experiment. The magnitude 

of most certainly will no longer be uniform but as shown above , 

which is the sum of the translational kinetic energy of the particle and the quantum potential, 
will still be constant. This means that the quantum potential and the translational kinetic 
energy will adjust to one another to maintain that constant.

In terms of non-determinacy, a particle is free to surf on the S surfaces. This is true 
both in the region before diffraction happens and in the region where diffraction happens. If 
we set the translational velocity  and the velocity  as before, i.e., as determined by the 

given formulae, then the third velocity component which is non-deterministic will have to 

be such that it  will move the particle to satisfy the budgetary  statistical constraint given by 

the probability density  distribution. Again, there are an infinite number of ways this 
budgetary statistical constraint can be satisfied; hence the inherent non-determinacy in 
particle motion in quantum mechanics also applies here. 
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 The uniform probability  density on a hemispheric S surface centred at  (the point 

source) is a function of distance from the point source only and this means that the particle 
can surf to any neighbourhood of equal size on a hemispheric S surface with equal 
probability. This in turn means that for large d the probability of reaching any  small 
neighbourhood of equal size on the slit surface is virtually  the same (since the distance 
between and is virtually  constant for any  on the slit surface). And the phase will be 

virtually  constant on the slit surface. These good approximations have been assumed in 

(§14). The possible path from to is also subject to non-determinacy as the particle is 

also free to surf on the diffracted S surfaces on the right  side of the slit. The likelihood of the 
particle reaching from or from other points on the slit surface depends on the 

probability  density at , which is the square of the modulus of . Hence, this 

modulus squared determines the probability density distribution or the interference pattern 
on a detecting screen. The best detecting screen for a circular slit should be an hemispheric 

screen. (Similar surfing on S surfaces and the resultant non-determinacy will also operate in 
the two-slit experiment; see below.)

For the cases where the perpendicular distance between  and the slit plane is also 

large, the angle is almost zero radian and the third factor in the integral of (§14) 

is virtually 1. Further approximations can be made to simplify the integral of (§14), e.g., the 
Fraunhofer approximation, but since these are well known they will not be treated here. The 
more important issue to be studied here is how the spherical modes at the slit surface 
contribute together towards the diffracted wave function. Since the Fresnel-Kirchhoff 
diffraction formula and its approximations are known to produce interference pattern even 

for the one-slit experiment in optical studies, the same kind of mathematical result applies 
here so that we can borrow the mathematical results of those formulae to affirm the 
interference pattern of the one-slit experiment of particles considered here.

5.3 The Ambient Environment, The Slit Size and De Broglie’s Formulae

Firstly, the ambient environment to the left of the slit  where the particle is before going 
through the slit  can be different from the point source (the spherical mode at ) as 

described above and the resulting diffraction will be different. For example, if the particle 
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released at  has to first go through a slit of small but finite width at  the source before 

reaching the slit   later, then diffraction also happens at this first slit and this will affect the 
ambient environment so that the boundary  condition at the  slit involving the wave 

function there will need to be adjusted according to the ambient environment in evaluating 
the more general integral of (§13) which will be different from (§14). Alternatively, if the 

particle happens to come towards the slit in a cylindrical mode of motion as described in 

Section 4.0, and in a direction perpendicular to the slit, then the radially varying circular 
contours of R on a constant S surface will apply in the wave function in the ambient 

environment and, as a good approximation, this can be used for the boundary condition at 
the slit surface in the integral of (§13) which again will be different from (§14). In this case, 
the second Rayleigh-Sommerfield solution is better than the one in (§14) which is based on 
the Fresnel-Kirchhoff diffraction formula. The second Rayleigh-Sommerfield solution for 
diffraction from an ambient cylindrical mode is

Again, the integration is carried out on the slit surface, , by varying   and the 

corresponding element on it.
In both of these examples, (§12) applies on both sides of the slit  and the constant value 

of  in the ambient environment determines the constant value of 

in (§12). For the cylindrical mode of motion in the 

ambient environment, unlike the spherical mode the quantum potential will be non-zero and 

will need to be included in calculating the value of  for (§12). 

Secondly, apart from the ambient environment, the size of the slit area also influences 
the diffraction to the right of the slit. If the slit area is infinite, then a cylindrical mode of 

motion will not be perturbed by any diffraction and continues in that mode – the particle 
merely continues with that mode of motion with constant translational velocity. If the slit 
area is infinitesimal, the diffracted solution is the spherical mode with zero quantum 

potential. This can be seen from (§15): since and indeed the whole integrand over a 

Mathematical Physics Preprint Archive, University of Texas, Oct. 2020

30

(§15)



very small slit surface will be almost constant, the expression for  is in the form for 

the spherical mode of motion. It can be shown that the same is true if the wave function in 
the ambient environment to the left of the slit is given by a point source instead of a 
cylindrical mode of motion.

  The cylindrical mode (corresponding to infinite slit width) and the spherical mode 

(corresponding to infinitesimal slit width) are two modes at the ends of a spectrum of 
possible modes which are called the intermediate modes. These intermediate modes 
correspond to diffraction by slit of finite width or area and are given by (§14).

Thirdly, the two de Broglie formulae relating (i) wavelength and momentum and (ii) 
energy and frequency  can be explored. The translational velocity of a particle, , is given 

by  . The translational momentum, , of the particle is given by . If λ is the 

wavelength of the particle and since is the rate of change of phase with distance, 

. Then 

which is de Broglie’s formula relating the momentum of a particle to the ‘wavelength’ of a 

particle. It has to be added here that this momentum is the translational momentum of the 
particle, which is distinct from the surfing momentum on the S surface. It  is seen here that 
the ‘wavelength’ of a particle comes through the rate of change of phase, S, with distance. 

This ‘wavelength’ is the wavelength of the wave field, , which influences the 

motion of the particle, rather than being an inherent property of the particle. As the 
translational momentum of the particle changes as changes through diffraction, the 

wavelength in the wave field influencing the particle will also change accordingly. It will be 

seen later that this formula and this idea will carry  over to the relativistic case. However, 
here it needs to be mentioned that in the diffracted wave function solution of (§12), 

cannot be guaranteed to be constant even though it can be constant in the ambient 
environment before the slit. This raises the meaning of the wavelength since it can have 
different values for the same particle as varies in the region on the right side of the slit 
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through diffraction. Perhaps the wavelength should be defined with respect to the constant 

in the ambient environment. However, in pre-university  physics textbook and even in 

some university elementary lecture notes, in the illustration of how interference pattern can 
occur in the presence of one slit or two slits, in working out the path difference the 
wavelength and thus is assumed to be constant even in the region where diffraction 

occurs. This can only  be an approximation and in an average sense it could be a reasonable 
approximation when is averaged over a sufficiently long distance. Such an 

approximation can be assessed either by experiment or by looking at the actual solution of 
the diffracted wave function on the right side of the slit. Or indeed experiments can be used 
to verify the actual solution of the diffracted wave function as presented here which should 
be more accurate than those based on constant .  

 From the energy equation (§2), 

where is the angular frequency. Hence, de Broglie’s two formulae can be 

derived from the spatial derivative of S and the time derivative of S respectively in the 

analytic framework adopted in this paper, the key elements of which are (§2) and (§3). 
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6.0 Diffraction of a Single Particle Through Two Slits in Free Space

Figure 7: Two circular slits, and , with point source at  which is at distance d from 
the slit and situated midway of the two slits; the wave function in the ambient environment 
on the left of the slit is diffracted on the right of the slit

The mathematical expression for the diffracted wave function in this two-slit  experiment is 

almost the same as for the one-slit case except that the surface integral covers two slits rather 
than one. For large d, the diffracted wave function is well approximated by 

where the Kirchhoff boundary conditions have been applied, the free space Green function, 

G, has been used and the integration is carried out on the two slit surfaces by varying   and 

the corresponding element on it. The wave function at  is the sum of the two diffracted 

wave functions corresponding to the two slits. Again, cannot be assumed to be constant 
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in the diffraction region even though it  is constant on the left  side of the slits. As in the single 

slit case, the particle is free to surf on the S surfaces on the left or right side of the slits. 
Hence, it can either reach slit or slit (at any point of the two slits); and after going 

through one of the two slits, the particle surfs on the distorted hemispheric S surfaces 
(distorted by the diffraction) so that non-determinacy continues throughout the particle’s 
trajectory. If the particle is detected by a screen on the right side of the slits, there is no way 

of telling which slit the particle has gone through, as Feynman pointed out in his lecture. 
Again, if we set the translational velocity  and the velocity  as before, then the third 

velocity  component which is non-deterministic will have to be such that it will move the 

particle to satisfy or approximate the budgetary statistical constraint given by the probability 
density  distribution. Obviously, one particle cannot fulfil this budgetary statistical constraint 

which can only be  approximated by  a large number of particles going through the two-slit 
system. 

Regarding the interference pattern, since the Fresnel-Kirchhoff diffraction formula and 
its approximations are again known to produce interference pattern for the two-slit 
experiment in optical studies, the same kind of mathematical result applies here so that  we 

can borrow the mathematical results of those formulae to affirm the interference pattern of 
the two-slit experiment of particles considered here.

Lastly, a brief discussion on the interference pattern is in order. (§16) can be written as

where the first term on the right hand side corresponds to the contribution  to the integral 

from slit and the second term corresponds to the contribution from slit . The usual 

approach in elementary textbooks to find the interference pattern on a detecting screen of a 
two-slit experiment is to assume that (i) and hence the diffracted wavelength are 

constant and (ii) and are equal; but these two assumptions in most cases are not 

absolutely valid. To find a point of zero intensity (or zero probability  density), this approach 
looks for two paths to the same  such that and differs by an odd number of π radians, 

i.e., they are completely  out of phase. However, because of the above two assumed 
approximations or simplifications, the point of zero intensity  identified by this approach is 
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only an approximation and the actual intensity or probability density at such a point may 

well not be zero even though it may  be small. For the probability density to be truly zero at 

, (i) and have to be exactly equal and (ii) and are exactly and completely out 

of phase. (i) can be satisfied by appealing to symmetry, i.e., symmetry about the line from 

left to right midway between the two slits so that and are exactly equal. However, 

such symmetry also implies that  and are exactly in phase, instead of exactly  out of 

phase which is required for the wave function and probability density to vanish. The author 

suggests that it is highly improbable that  these two conditions can be met exactly and 
simultaneously. Hence, it is highly improbable that there can be a point of absolutely zero 
intensity or zero probability density  even though there can be points of minimal intensity 
whose value can be slightly above zero. This has important implications for the surfing 
motion of the particle on the S surfaces and the generation of the observed interference 

pattern. If there are some points or contours of truly zero probability  density, then these 
nodal points or nodal contours are in theory out of bound for the particle’s surfing motion on 
the S surfaces. In that way, the particle is not fully free to surf on the S surfaces to produce 
the full range of the interference pattern observed in experiments. However, our theoretical 
analysis suggests strongly that such restriction imposed by alleged nodal points or contours 

is highly improbable such that the particle is indeed fully free to surf on the S surfaces to 
produce the full range of the observed interference pattern. Numerical evaluation of (§16) 
can be carried out to confirm the theoretical analysis here but such a numerical endeavour is 
beyond the scope of this paper which is theoretical in nature.   

What about the nulling effect on the interference pattern which comes from making 

observation on the particle to see which slit it goes through? Feynman discussed this strange 
phenomenon of observation.7  A light source is placed on the right side of the slit wall to 
detect or observe which slit a particular electron goes through. If the electron passes through 
slit , for example, then a photon scattered by the electron reaching our eye will allow us 

to see that the flash of light came from the vicinity of  instead of , and vice versa. 

Hence, we know which slit  the electron has passed through. And if we repeat this many 

times to build up the pattern in the detecting screen, we will see that the interference pattern 
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which was there without observation disappears.  And if we plot the distribution of electrons 

detected on the screen according to which slit they went through, the distribution pattern for 
each slit will be a localised distribution. It seems that the interference pattern is shy  of such 
kind of observation and withdraws itself when the process of an electron passing through 
which slit is spied on. Feynman wrote,

Anyway, the light exerts a big influence on the electrons. By trying to “watch” the electrons we 
have changed their motions. That is, the jolt given to the electron when the photon is scattered by 
it is such as to change the electron’s motion ...  [T]he effect of the photons being scattered is 
enough to smear out any interference effect.8

No doubt the motion of the electron is changed by  its scattering of the photon and somehow 

this scattering smears out the interference pattern. Feynman indicated the change of 
momentum of the electron when he referred to ‘the jolt given to the electron’. He went no 
further than this but we need to go further. More specifically, the electron’s momentum has 
changed in the process of scattering the photon since there is an exchange of translational 
momentum between the electron and the photon in the scattering. Now, since the momentum 

of the electron has changed, the parameter in the Helmholtz Equation (§12), b which 
depends on and thus on the translational momentum, has also changed. This means that 

the diffracted wave function which applied before the scattering and corresponded to the 

original momentum and original b is no longer valid. A new wave function satisfying the new 
Helmholtz Equation (§12) with the new value of b corresponding to the new momentum is 
necessary. At  this point, we recall that in free space there can be three modes of motion for a 
particle (at least those considered in this paper) – the cylindrical mode, the spherical mode 
and the intermediate mode. The spherical mode corresponds to diffraction by a slit  of 

infinitesimal width, the intermediate mode corresponds to diffraction by a slit  of finite width, 
while the cylindrical mode corresponds to no diffraction. When the electron scatters the 
photon, there is momentum exchange between them. The resultant momentum of the 
electron will be in a certain direction. If the resultant momentum is such that the electron is 
approaching a region with no slit ‘in sight’, i.e., it  is not approaching any  slit, the only 

possible mode of motion for the electron will be the cylindrical mode. And this will be the 
case if the electron is moving away from the two slits after the scattering. In the unlikely 
case where the electron has received such a strong jolt in scattering the photon that instead of 
moving away from the slits it is now moving back towards the slits, it will approach the slits 
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in the intermediate mode of motion. Whether the particle will move in the cylindrical mode 

of motion or in the intermediate mode of motion, a new corresponding to the new 

momentum will apply so that the electron will have a new ‘wavelength’ after the scattering. 
With the new momentum or new , the new parameter b for the Helmholtz 

equation (§12) is to be set  by this relation: .  This 

means the new on its own is not sufficient to fix the parameter b, the quantum potential, 

, is also required. Since immediately after the scattering the particle will not go into 

the spherical mode of motion (where the direction of  is ambiguous), we should not use 

the zero value for the quantum potential which is valid for the spherical mode. This raises 
the question of the value of this quantum potential. It is proposed that immediately after the 
scattering the electron goes into the cylindrical mode of motion and will continue in this 
mode if there is no slit in sight but will later continue in the intermediate mode of motion if it 
is approaching one or more slits. For the cylindrical mode of motion immediately after the 

scattering, the value of b is set by the new and the quantum potential energy for 

cylindrical mode of motion in free space. The author suggested in paper [2] that the quantum 
potential energy in the cylindrical mode of motion in free space is a constant free parameter 

which needs to be input into the system in order to solve the Helmholtz equation in R (§7). 
Once b is set by this parameter and the new in the cylindrical mode, the Helmholtz 

Equation (§12) is solved solve for ; the solution of this can be found in Section 4. 

One needs to justify further the input of the quantum potential energy as a parameter 
into the system. Evidently in the cylindrical mode of motion in free space where the 
particle’s energy (E), , the kinetic energy and the potential energy (U) are constant; the 

quantum potential energy must also be a constant  in free space since the particle’s constant 
energy is the sum of the constant kinetic energy, constant potential energy  and the quantum 
potential energy. In fact, the quantum potential energy can be considered as a universal 
constant in free space regardless of the magnitude of ; see its possible connection with 

dark energy in the Conclusion. Whether this connection is correct or not, the value of the 
quantum potential in free space as a constant has to be supplied as a parameter to yield the 
necessary  parameter, b. Once b is set, equation (§12) can be solved with the appropriate 
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spatial boundary condition, whether the boundary condition involves slits or no slits. If there 

is no slit, then the solution to (§12) corresponds to the cylindrical mode of motion. If there 
are one or more slits, then the intermediate mode of motion will ensue with the same 
parameter b. In whatever case it may be, the new wave function appears as soon as (or 

the translational momentum) changes due to the scattering with the measuring agent. 
For the case of the electron moving away from the two slits after the scattering, no slit 

is in sight and the electron will move in the cylindrical mode of motion in free space. And 
since the probability density  distribution on the flat S surfaces of the cylindrical mode of 
motion has the highest density at the centre (or central axis) of motion and generally 

decreases radially, when a large number of such electrons, after scattering, are detected on 
the detecting screen, one expects the particle intensity pattern on the detecting screen will be 
localised. And this localised pattern is consistent with the disappearing of the interference 
pattern when the electrons are observed by the use of the light source. Hence, the 
disappearance of the interference pattern is not due to it being shy of being spied upon; it has 

to do with the sudden change of the wave function into the cylindrical mode due to the 
sudden change of momentum of the electron when scattering occurs. In terms of timing, a 
new regime of motion is immediately necessary to satisfy the Helmholtz  Equation (§12) with 
new parameter b. This understanding of scattering leads to the following understanding of 
measurement or observation.

7.0 The Meaning of Measurement

The above analysis prompts one to define measurement of a particle as an event where an 
exchange of momentum between the measured particle and the measuring agent takes place. 

In the above analysis, the example of the measured particle is the electron and the example 
of the measuring agent is the photon. Or one can reverse their roles, seeing the electron as 
the measuring agent  and the photon as the measured particle. The precise naming of roles for 
the two particles is immaterial but what is important is the exchange of momentum between 
the two. Such exchange invariably  entails a sudden change of the wave field, or equivalently 

the wave function, of the particle. This sudden change in the wave function in the process of 
measurement is not a collapse of the original wave function to a point, which is usually 
invoked in the Copenhagen Interpretation for describing measurement, but it is a wholesale 
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and sudden change of the wave function over the span of the relevant physical space 

necessitated by the exchange of momentum which takes place in measurement. The former 
evolution of the wave function in the Schrödinger equation is suddenly jolted by the sudden 
(or discontinuous) insertion of a new , a new momentum and therefore a new b into the 

system – the new evolution of the wave function according to the Schrödinger equation takes 
place according to the new b. The parameter b influences the spatial part of the wave 
function through (§12) while E determines the temporal evolution of the wave function 

( ). If there is also an exchange of energy in addition to the exchange of 

momentum in the process of measurement, then the particle’s energy  will also change. In 
that case, one may say  that instead of the wave function collapsing discontinuously to a 
point, at the moment of measurement the wave function changes discontinuously over the 
physical space and its phase evolves in time at a different  rate according to the new energy. 

And as long as there is no further energy and momentum exchange (i.e., no measurement) in 
the meantime, since the time derivative of is zero according to (§6), continues in 

time without change. Hence, the conservative Steady Motion State, where the time 

derivative of is zero, always applies when the system is not disturbed by any 

measurement.  can only  be changed by a sudden exchange of momentum, or by a 

change of U in time which is non-uniform over space (see later). Therefore, the conservative 
Steady  Motion State, which has been the focus of this and the previous paper, is widely 
applicable, and the event between two distinctive and successive Steady  Motion States is 
either the event of measurement or a non-uniform change in U as will be seen later.

This above way of understanding measurement is entirely  self-consistent and logical – 
it does not involve the mysterious sudden collapse of the possible states into a single state as 
in the Copenhagen Interpretation and therefore it  does not have the challenge of the paradox 
of the Schrödinger's cat. It is also consistent with what we know of a measuring process 
where the measured particle is disturbed by a measuring agent. Such a measuring process 

may give us some information about the measured particle, e.g., its position regarding which 
of the two slits the particle went through, but there is much information of the measured 
particle which cannot be recovered by the measuring process, e.g., its original momentum 
and original energy.
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An interesting question which follows from the above analysis arises. If some 

measuring equipment or agent is inserted into the vicinity  of a particle but there is no 
exchange of momentum and energy between the particle and the measuring equipment 
(because there is no direct contact or scattering between them), will the particle ‘feel’ the 
presence of the measuring equipment which has been newly inserted into its vicinity? If we 
think about the insertion of the measuring equipment into the vicinity  of a particle, which is 

otherwise free, as a change in the the classical potential, U, in a limited area in the particle’s 
vicinity, then we expect this change of U in a limited area to have effect on the wave 
function of the particle even when there is no exchange of momentum and energy between 
the particle and the measuring equipment. This can be confirmed rigorously as follows.

In a conservative system E is constant and , i.e., the energy  and the kinetic 

energy field do not change in time. If U changes in time which is permissible in a 
conservative system, it seems that the only way to accommodate this change in the classical 
potential is to have the quantum potential and hence R change in time (see (§5)). But in 

Section 3 by assuming , it was shown that R cannot change in 

time in a conservative Steady Motion State, i.e.,  has to be a constant. This is reasonable 

when U is not changing in time. For U changing in time, let us suppose that  R is more 
complicated and more exotic than the above assumed separable form so that it can be a 

function of time and satisfy  the energy balance as U changes in time. Let before U 

changes; is independent of time. In that case, the pseudo continuity equation (§3) 

becomes

Let  after U has finished changing;  is independent of time. In that  case, the 

pseudo continuity equation (§3) becomes
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Since R changes as U changes, . Now, since ,  has not changed 

throughout the time when U was changing for a certain period. This implies that the same 
 is compatible with  and  in satisfying the above two divergence equations. 

However, since the change in U can be quite arbitrary,  can take a great variety  of form so 

that in general the second divergence equation involving will not be satisfied, even 

though we can be sure that the first divergence equation involving is satisfied. But the 

two divergence equations, corresponding to the time before U changes and the time after U 

has changed, have to be satisfied. In view of this, we have to conclude that , i.e., R 

has not changed in time despite U has changed in time. Hence, we have a contradiction 
against our presupposition that there can be a R which can change in time and has changed in 
time as U has gone through a period of change in time. Therefore, R has not changed in time.

The above conclusion about the constancy of R and  implies that the quantum 

potential remains unchanged while the kinetic energy also remains unchanged in a 
conservative regime even when the classical potential U changes in time. But this means that

is not conserved in a conservative system! We have a formidable contradiction. However, 

what we have learnt about measurement above will help us to resolve this contradiction. One 
of the assumptions above is that  has not changed throughout the time when U was 

changing. However, this assumption can be relaxed to avoid the contradiction. Since E must 

remain constant in a conservative system, when U changes in time, and R 

instantaneously  adjust to the new U to maintain constant E. This adjustment cannot be made 
via the time integration of the Schrödinger equation because, as we have seen, this equation 

does not allow and R to change in a conservative system. Therefore, the changes in  

and R are like the corresponding changes in  and R when the particle exchanges 

momentum with another entity in scattering which is a form of measurement –  i.e., these 
changes happen outside the remit of the Schrödinger equation. We are thus led to conclude 

that the remit  of the Schrödinger equation only covers those conservative systems where the 
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momentum and the classical potential do not  change in time. When the momentum or the 

classical potential changes within a period of time, however short or long, the Schrödinger 
equation has nothing to say  during this period, even though what happens after the period of 
change is within its remit since the momentum and the classical potential remains settled and 
constant after the period of change.

We can summarise the above discussion as follows. When a particle is measured 

through an exchange of momentum with the measuring agent, the wave function with its 

 and R is jolted into a new regime with a new momentum. But before the measurement 

and the exchange of momentum take place, the very insertion of any measuring equipment 
into the vicinity of the particle generates a change in the classical potential in the localised 

area occupied by the measuring equipment so that this insertion in itself already moves the 
original regime (or wave function) to a new regime before any event of measurement. The 
presence of the measuring equipment in the vicinity of the particle is sufficient to influence 
the behaviour and regime (or wave function) of the particle. If this presence of the measuring 
equipment is further followed by an actual event of measurement, the behaviour and regime 

of the particle will be changed again. Hence, it is virtually impossible to know precisely  the 
behaviour and regime of the particle before the measuring equipment is introduced into the 
particle’s vicinity. 

It has to be noted that the change in the classical potential has to be a localised one for 
the behaviour and regime of the particle of a conservative system to change.  We first look at 

the opposite situation, i.e., the classical potential changes from to where is 

constant in space, i.e, the change is not localised. This wholesale uniform change of classical 
potential over all space amounts to setting a different reference point as the level of zero 
potential. And since the reference point of such a potential is arbitrary, one should not allow 
the change of reference point to affect the dynamics of the system. The dynamics of the 
system can be safeguarded by changing the particle’s energy from (with respect to the 

original potential reference point which gives the potential as U) to (with respect to 

the new potential reference point which gives the potential as ). is 

constant in space and therefore satisfies the requirement of the constancy of energy in space 
for a conservative particle. The energy relations with respect to the original reference point 
(with subscript 1) and the new reference point (with subscript 2) are:
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 These two equations are exactly the same except the subscripts. Their accompanying pseudo 

continuity  equations involving R and S are also exactly the same except the subscripts. The 
solution for R and S in one set of two equations (energy  and pseudo continuity) is identical  
to the solution of the other set. Hence, the dynamics is safeguarded and there is no change to 
the conservative system despite the wholesale uniform change in the potential. However, the 
same cannot be said of the case where the change in potential is not uniform across the 

whole physical space. In that case, one cannot change the energy of the particle from E to  
(as in the case of uniform potential change) since is not constant in space 

and the energy of a conservative particle must be constant in space. In such a case of non-
uniform (or localised) change in potential, the energy of the particle should remain as E and 
such a non-uniform localised change in potential should effect a change in the wave function 
(with its R and S) as described above. 

In practice, the only possible change to the classical potential is the non-uniform 

localised one since it is pointless and impossible to impose a blanket uniform change of the 
classical potential over the whole physical space. Any insertion of a measuring equipment 
into the vicinity of the particle to be measured will therefore introduce a non-uniform 
localised change in classical potential which will inevitably  change the behaviour and regime 
of the particle, even before any measurement has taken place. 

Finally, if the localised change in classical potential happens discontinuously, e.g., 
through an abrupt or impulsive introduction of a measuring equipment, the wave function 
field will also change accordingly, instantaneously and thus discontinuously. That is, there 
will be no time lag in the wave function’s response to the sudden change in the classical 
potential. Often when a dynamical system is disturbed from its equilibrium by an additional 

forcing, there will be a time lag before the system’s response settles into a new equilibrium 
state. However, in a conservative quantum system which goes through a local change in the 
classical potential such as discussed above, and in a non-conservative quantum system which 
is disturbed by measurement, the responses in the wave function in both cases are immediate 
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with no time lag. This brings to mind the perplexing problem of entangled particles. When 

one of the two particles is measured, there is a momentum change which triggers the wave 
function to jump into a new regime with no time lag. Further research is necessary to explore 
the relationships between measurement, instantaneous transformation of the wave function 
and entanglement but this is beyond the scope of this paper. 

8.0  Photons and Particles in Special Relativistic Framework and the Definition of 
Energy

It is known that the three components of the electric fields and the three components of the 
magnetic field in the Maxwell equations all satisfy the equation

if the propagation medium is linear, isotropic, homogeneous and non-dispersive, where n is 

the refractive index of the medium and n=1 if the medium is vacuum. For this paper, we are 
only interested in the case of vacuum medium; hence the following wave equation will be 
used:

This is the same as the following Gordon-Klein equation if the parameter m, the rest mass, in 

that equation is set to zero:

The Gordon-Klein equation is the quantised version of Einstein’s famous equation,
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where p is treated as and E is treated as . The Gordon-Klein equation with rest 

mass set to zero is identical to the wave equation describing the six components of the 
Maxwell equations. In this sense, the Gordon-Klein equation is valid for describing the 
behaviour of photons. That is, with m aptly set to zero for massless photon it  is saying no 
more and no less than the wave equation (§17) which describes the behaviour of photons. 
But according to conventional wisdom, the Gordon-Klein equation cannot incorporate a 

positive definite probability  density; hence, it appears that it is not suitable for describing the 
particle-like behaviour of photons. The same can be said of the capacity of the Gordon-Klein 
equation to describe particles in a special relativistic framework.. But we have just arrived at 
the clear conclusion that the Gordon-Klein equation is valid for describing the behaviour of 
photons. This means that conventional wisdom has been challenged by the above logical 

conclusion and this calls for a questioning of conventional wisdom. Section 8.1 will indeed 
rigorously show that there is a proper positive definite probability density  for the Gordon-
Klein equation. Hence, it  will be shown that this particular hurdle for using the Gordon-
Klein equation for describing photons and particles can be overcome. However, there is a 
second hurdle – according to conventional wisdom the Gordon-Klein equation can only 

describe spinless particles while photons have spin 1 and other particles can have non-zero 
spins. Neither the Gordon-Klein equation in itself nor the Schrödinger equation in itself 
contains sufficient information to determine the spin angular momentum of a photon or 
particle. However, as demonstrated in Paper [2] and mentioned above, additional constraints 
are necessary to determine the angular momentum. In Section 8.3, this demonstration will be 

extended to the relativistic case where critical questions will be raised about Dirac’s theory.
 If the two hurdles mentioned above can be overcome with confidence, then one can 

conclude that the Gordon-Klein equation with the additional constraints can indeed describe 
both particles and photons including their spins, albeit  with different values for the 
parameter m, the rest mass (zero for the photon case). From this fundamental sharing of the 

same governing equation by particles and photons, we will be able to appreciate better the 
similarities between the behaviour of particles and the behaviour of photons in a relativistic 
quantum mechanical framework, including their similarities in diffraction which will be 
demonstrated in Section 8.2. Indeed, because of the fundamental sharing of the same 
governing equation, we should expect such similarities between particles and photons.
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8.1 Probability Density, the Translational Velocity, and Other Relations for the Gordon-Klein 
Equation

We will use the Gordon-Klein equation with the rest  mass parameter, m, and will set m to zero for 

the case of photons. Again writing  and substituting this into (§18), we have two 

equations corresponding to the real and imaginary parts of . The equation corresponding 

to the real part  concerns the energy of the particle or photon and the equation corresponding 
to the imaginary part is the pseudo continuity equation. Both equations have their 
counterpart in the non-relativistic case and will be considered here. Firstly, for the real part, 

Using our insights gained from the non-relativistic case, we are looking for an energy-like 

expression which will be conserved by a particle or photon in the absence of exchange of 
energy with other entities.  The r.h.s. of (§19) has dimension energy  squared which is not 
surprising since the Gordon-Klein equation is the quantised version of (§19) which has 
dimension of energy squared. For particles, the last term on the r.h.s. is the quantum potential 

multiplied by , i.e., twice the particle’s rest energy. Taking the gradient  of (§20), we 

have 

Again using our insights gained from the non-relativistic case, 

has dimension of energy squared and could be a conserved quantity of the particle or photon 

if the l.h.s. and the r.h.s. of (§21) are zero. If we take the time derivative of R to be zero as in 

the non-relativistic case, and similar to the non-relativistic case (with the 

constant K replacing E and with a function of space only), then the l.h.s. of (§21) is 
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indeed zero. Furthermore, again  and (§20) reproduces the expression for  in 

(§22). For the quantity  in (§22) to be a conserved quantity for the particle or photon, it is 

necessary  that its time derivative is also zero. Since , this requirement is ensured if 

 is also independent of time. This independence of time has been argued for in the 

conservative non-relativistic case (see Section 3 above) and the same argument can be made 
for the relativistic case. Indeed, this has already been assumed above when we stated that the 
time derivative of R is zero as in the non-relativistic case. In summary,

is a set of consistent conditions which yield the conserved quantity of (of dimension 

energy squared) for a particle or photon. (§23) is the relativistic equivalence of (§6). Again, 

note that K has replaced E of (§6). Conditions other than (§23) are mathematically  possible 
for the Gordon-Klein equation; however, they  are highly unlikely to correspond to any real 

physical phenomenon in our universe as they will be non-conservative in terms of .

If we follow the lead from the non-relativistic case and identify as the 

translational momentum, then the translational momentum of a particle for the relativistic 

case is

where is the Lorentz factor. For the translational momentum of a photon necessarily in the 

relativistic case, we have no need to reference the rest mass and write . From this 

definition of translational momentum for particle and photon as , we see that

Here, we see that this quantity K (with E as defined by Einstein in (§19)) is conserved by the 

particle or photon. In addition, the form of the Gordon-Klein equation being used assumes 
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that the classical potential is uniformly zero. And this is reflected in the definition of 

where no classical potential is involved. This is not a problem if we are interested in particles 

or photons in free space. (It is instructive to compare the conserved quantity of for the 

relativistic case with the conserved quantity  in (§5) for the non-relativistic case. The 

similarity between the two is evident.)
For the imaginary part of the Gordon-Klein equation, we have

This pseudo continuity equation for the relativistic case can be written as 

The general continuity equation is satisfied if we set

Note that the probability density as defined here is positive definite. (de Broglie derived a 

similar probability density and continuity equation for the Gordon-Klein equation but he did 

not exploit the constant value of .)9 The usual approach to finding an expression for the 

probability  density from the Gordon-Klein equation is to subtract the conjugate equation 
from the original equation so that  something like a continuity equation emerges and a 

possible probability density is identified.  It is often assumed that  the identified probability 

density  cannot be positive definite. However, if we write and , 

subtracting the conjugate equation multiplied by  the wave function from the original 
Gordon-Klein equation multiplied by the conjugate wave function, and taking the form of S 
in (§23), will produce (§26) so that  there can be a positive definite probability  density 
derived from the Gordon-Klein equation. 
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Since R does not depend on time, from (§26)  , the velocity  can be 

set as multiplied by any constant and the general continuity  equation, 

, will be satisfied. The velocity  and momentum of a particle can be 

written as 

where β is a constant and is the Lorentz factor which is dependent on the magnitude of 

and therefore not a constant. If we take seriously de Broglie’s relation for momentum and 

wavelength,  

where  and λ is the wavelength, we see that this contradicts the previous 

expression for momentum since because in general is not a constant while 

is. This means that if de Broglie’s relation holds, the velocity cannot simply be  

multiplied by a constant, except in the case where  is one, i.e., the case of non-relativity, or 

the very  special relativistic case where the magnitude of  , and hence the magnitude of 

and , are constant. This very  special relativistic case only  happens in the cylindrical or 

the spherical mode (see below), and is not expected to hold for the intermediate mode for 

diffraction. 
Because of the above difficulty in using the expression for the velocity derived from 

the pseudo continuity  equation to satisfy the general continuity  equation, there is now a 
question whether the general continuity equation can be or needs to be satisfied. In paper [1] 
which deals with the non-relativistic case, it was indeed suggested that this equation needs to 

be satisfied and can be satisfied. However, the situation for the relativistic case is not as 
simple as that paper suggested and it will be shown below that in the relativistic case, the 
satisfaction of this equation will involve some unphysical constraint on the system.

The expression for the velocity above contradicts de Broglie’s relation for momentum 
and wavelength of particles. A natural second attempt is to begin with this relation for 
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particles and see if this will lead to the satisfaction of the general continuity equation. 

Throughout this section we are interested in the translational velocity, i.e., not the surfing 

velocity, so we set . In this case,  and 

where is again the Lorentz factor which is dependent on the magnitude of , the 

translational velocity ( is reduced to 1 for the non-relativistic case and the expression for 

in that case is recovered). Since R does not depend on time, the general continuity 

equation becomes

where the pseudo continuity equation, , has been used. This means that 

 is constant along . Since  is a function of the magnitude of , this in turn implies 

successively that

1. is constant along 

2. is constant along 

3.  is constant along 

4. the magnitude of is constant along .

Even though this time we begin with de Broglie’s relation for momentum and wavelength, 
we still end up with a similar constraint, i.e., the constancy of the magnitude of the velocity 

along , for satisfying the general continuity equation. Of course, in the non-relativistic 

case, is one and such a constraint is not necessary to satisfy  the general continuity 

equation.

For photons, the translational velocity is written as
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to maintain the speed of the photon to be c and the direction to be given by  . Since R 

and ρ are independent of time, the general continuity equation is  while the 

pseudo continuity  equation is  ; if we set , the general continuity 

equation becomes

which means that  in the direction of  does not change. 

We have now attempted to use three velocity expressions to satisfy the general 

continuity  equation. The resulting constraint is either the magnitude of  has to be 

constant throughout the whole domain or  is constant along . These constraints 

can only  be relieved in the non-relativistic case for particles where is one. In the 

relativistic case, these constraints can be met only in the cylindrical or the spherical mode of 
motion, but they are not expected to be met for the intermediate mode for diffraction. This 
means that in the relativistic framework, in general the constraints will not be met and the 
general continuity equation may not need to be satisfied. We have the following three 
reasons to further support this. 

Firstly, the general continuity equation is about the conservation of probability but the 
conservation of probability  has already been expressed through the following normalisation 
constraint: the integrated probability density  over the whole space domain must be one. We 
therefore have reason to believe that we do not  need another equation for the conservation of 
probability. Secondly, the general continuity equation

when applied to the conservation of probability  involves a flux term – the probability 

flux or the probability  current. The physical meaning of this term is far from clear. Can 
probability  be carried around by the velocity field like mass, heat or electric charge? While 
mass, heat and electric charge can be carried around in physical space, what does it mean for 
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some probability of a particle to be carried around in physical space? The notion of the 

probability  of a particle being carried around in physical space according to the general 
continuity  equation is akin to the particle being ‘dissolved’ in physical space with a certain 
distribution of concentration in space (corresponding to the probability density  distribution) 
so that at each point in space there is no net source or sink of any  part of the ‘dissolved’ 
particle. This kind of advection model normally applies to some dissolved solute advected by 

the velocity of the solvent, or the heat carried by some medium and so on. But this advection 
model does not apply  to a discrete particle. This and the previous papers see a particle to be 
at one definite place at any  one time. It is not present in all of the physical space in the form 
of a dissolved solute to be carried around (or advected around) as suggested by the general 
continuity  equation. To summarise the second point, the probability of a particle is not a 

material entity like mass, heat or charge which can be moved around; hence the application 
of the general continuity equation in quantum mechanics is highly questionable. Thirdly, the 
general continuity equation is a point-wise constraint, i.e., it has to be satisfied at every 
physical point in the whole space domain, while the normalisation constraint  is a bulk 
constraint involving integrating the probability density  over the whole space domain. It 

seems that a point-wise constraint will be over-constraining and will unphysically  limit the 
system, as seen in the above very restrictive constraints. All these three reasons question the 
status, and therefore the applicability, of the general continuity  equation in quantum 
mechanics. Nevertheless, the pseudo continuity equation still applies because it is derived 
from the Gordon-Klein equation which is the governing equation. 

In the non-relativistic case, it was shown in paper [1] and above that the over-
constraining by the general continuity equation does not happen as the pseudo continuity 
equation and a suitable choice of the translational velocity  easily ensures that the general 
continuity  equation is satisfied. And this gave the author (and perhaps other authors) the 
false impression that the general continuity equation ought to be satisfied (see paper [1]). 

However, as has been shown above, in the relativistic case the general continuity equation 
overstrains the system. For these reasons, we have good ground to relieve a quantum system 
of the unnecessary constraint of the general continuity equation but we ensure the probability 
conservation by  using the usual normalisation constraint involving the volume integral 
which therefore is a bulk or budgetary constraint, not a stringent point-wise constraint like 

the general continuity equation. Furthermore, since the possible scenarios we are considering 
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here are those where R and therefore the probability  density does not vary with time, once 

the normalisation constraint is applied to set the magnitude of R at any one time, the 
conservation of the summed probability density of the particle is ensured at all times. And if  
the R distribution is transformed by a measurement event or by  the intrusion of a localised 
potential, the normalisation constraint will also apply  to the new R distribution and the 
conservation of the summed probability density of the particle will continue to be ensured. 

This is a suitable point to re-think how the velocity components in the relativistic case 
relate to the governing equations, (§20) and (§25), and the normalisation constraint (the 
consideration for the non-relativistic will be virtually identical, as will be seen). (§20) and 
(§25) are equations in R and S and they  do not in any way provide direct prescription of any 
velocity  component. In different possible universes where these equations hold, there can be 

different prescriptions of the velocity components which are based on some possible 
functions of R and S, and the behaviour of particles and photons will be very different in 
these universes. R and S are the basic fields from which many different kinds of velocities 
can be constructed and the governing equations can have no objection to these 
constructions. Some universes will be extremely chaotic because of the way  the velocities 

are prescribed from R and S. In our orderly universe, we have observed that  for both particles 
and photons,

 Since we are dealing with a momentum derived with reference to , the velocity 

component involved should be in the direction of  , so that we are not dealing with the 

surfing velocity on the S surface. Hence, we have called this velocity component the 
translational velocity, . For particles, the above expression for the momentum corresponds 

to  . For the non-relativistic case, the Lorentz factor is one and is in the 

same form as that derived by using the pseudo continuity equation to satisfy the general 
continuity  equation. However, this does not make the derivation using the two continuity 

equations valid for the following reason. The two continuity equations will always yield the 
same form for  . In another universe where has a different form, e.g., the factor 

Mathematical Physics Preprint Archive, University of Texas, Oct. 2020

53



multiplying is not a constant, the derivation using the two continuity equations will be 

seen as misguided. In any case, in the relativistic universe like ours, such derivation using 
the two continuity equations has been shown to be inappropriate. Here, instead of deriving 
the form of from the two continuity equations, we have derived the form for from 

observation in our universe so that we have confidence that this form is appropriate for this 
universe. And for photons, we have suggested that the translational velocity  is given by 

based on our observation that photons travel at the constant speed of c. 

Again, the two governing equations, (§20) and (§25), and the normalisation constraint, can 

have no objection to it. What this paragraph seeks to show is that the two governing 
equations and the normalisation constraint are not sufficient to close or determine a 
quantum system. The two governing equations and the normalisation constraint constitute a 
very open system. For this open system to become less open in order to describe our 
universe, more constraints are required. Evidently, the necessary constraints are the 

constraints on the velocity components since the open system only  prescribes R and S but 
does not prescribe any velocity component. Hence, we have chosen the above form for the 
translational velocity, , based on our observation in this universe. Yet, there are still two 

velocity  components together constituting the surfing velocity  on the S surface which is 

perpendicular to the translational velocity and thus cannot be captured by this translational 
velocity. These two velocity components again are not provided by  the governing equations 
in R and S so that in different  universes where the same equations apply, these velocity 
components can be very  different and the particle or photon behaviour will be very different 
to those in our universe. In Section 8.3, based on the constant particle spin in the non-

relativistic framework, we will suggest the forms of the two surfing velocity components 
which will accord with the observed particle spins in this universe while maintaining a 
sufficient degree of non-determinacy. In sum, we are seeking to find prescriptions for the 
three components of the velocity according to the observations we have been able to make in 
our universe. Surely, this is a robust approach for prescribing the velocity components. 

It is instructive to look at some relations involving the energy  of a particle and the 
energy of a photon (the relation between momentum and wavelength has already been 
given).
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From (§19), for photon, E=pc; hence,

where c/λ is the frequency. This is the Planck-Einstein relation. In this form, it is readily 

seen that the energy  of the photon is inversely proportional to its wavelength but 
proportional to its frequency. The same cannot be said of particles since in that case the mass 
in (§19) is non-zero. For particles in free space, according to (§23),

where is the frequency and is constant since K is constant. Hence, this 

relation for particles is not in the same form as the Planck-Einstein relation for photons as de 

Broglie suggested since h times frequency  is not equal to E but K. From (§24), in the 
relativistic framework one can see that E is not a constant  while K is so that  E does not fit 
(§28) which is an equation involving constants only.  However, K and E are very  close to one 
another according to (§24):

where is the Lorentz factor, QP stands for the quantum potential and is expected to be 

small compared to E. In (§28), K can only be replaced by E if the quantum potential is zero 
but this is only true in rare cases, e.g., in the spherical mode.

In this section, based on the two equations derived from the real and imaginary part of 
the wave function in the Gordon-Klein equation, we have set  the probability  density  to be 

 which is positive-definite. We have set an appropriate form for the translational velocity  

by invoking the observed relationship  between momentum and wavelength, rather than by 
using the pseudo continuity equation to satisfy  the general continuity equation whose status 
has been put to doubt.  The relation between energy, wavelength and frequency  for photons 
has been derived. Contrary to de Broglie, a slightly different relationship between energy  and 

frequency has been derived for particles.
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8.2 Diffraction in Special Relativistic Framework

For the special relativistic framework, the Gordon-Klein equation has been shown above as 
valid for describing both the behaviour of photons and the behaviour of particles, at least as 
far as the translational velocity  is concerned. For the photon case, m as a parameter of the 
Gordon-Klein equation is appropriately set to zero. To consider diffraction of particles and 

photons in the framework of special relativity, we need to work out the deterministic 
translational velocity  of the particle or photon in the slit experiments (with one slit and two 
slits) and explore the possible surfing velocity on the S surfaces which crucially  render the 
system non-deterministic. This requires solving the Gordon-Klein equation with the 
appropriate boundary conditions. The wave function can again be written as 

where , , i.e., the phase is split into the spatial part denoted by p 

and the temporal part denoted by t. Writing  and substituting this into the 

Gordon-Klein equation, we have the Helmholtz equation:

where according to (§22) is constant. This Helmholtz 

equation is exactly of the same form as (§12) which is for the non-relativistic case and  has 

the same expression in S and R in both the non-relativistic and the relativistic cases. This is 
very convenient and means that the  part (spatial part) of the solution for the relativistic 

case is the same as that of the non-relativistic case. This applies to the cylindrical mode, the 

spherical mode and the intermediate mode for diffraction where the boundary conditions at 
the slit and slit wall have to be taken into account. (§29) is valid for both particles and 
photons and it is rather convenient that the mass parameter, m, does not feature in the 

equation at all since  can be written purely  in terms of S and R which can be considered as 
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the dynamic variables of the system while m can be considered as a static parameter which 

does not feature in the Helmholtz equation, as in the non-relativistic case.
In both the relativistic and non-relativistic case, the translational momentum has the 

same expression, . In this section, we concentrate on the relativistic 

case for particles and photons. The translational momentum of particles and photons have 

this same form of but their velocities have different expressions. The expression for 

the translational velocity  of photon has already been given as . For 

particles, the translational velocity is  (where the non-relativistic form can be 

recovered by setting  to one). 

With reference to Figure 7 for the two-slit experiment, for large d the mathematical 

expression for the diffracted wave function satisfying (§29) is well approximated by 

which is of exactly the same form as (§16) of the non-relativistic case since (§29) is the same 

as (§12) of the non-relativistic case. (For the one-slit case, the surface integral covers one slit 
rather than two.) Note that this solution applies to both particles and photons and this shows 
that both particles and photons are subjected to the same kind of diffraction effect due to 
slits. Furthermore, for slowly  moving particles, the same expression applies to the diffracted 
wave function so that these slowly moving particles also exhibit the wave like behaviour of 

fast moving particles and photons.
The translational velocity is a deterministic velocity derived from the deterministic 

phase of the deterministic  field. For the system to be non-deterministic, as before we 

invoke the non-deterministic surfing velocity  on the S surface which is perpendicular to the 
translational velocity. This surfing velocity, being perpendicular to the translational velocity, 
is not related to the translational velocity and is therefore independent of it. We recall that the 

solution of the Gordon-Klein equation, expressed for example in R and S, does not prescribe, 
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or lead to any necessary expression for, any velocity component. In the previous section, we 

have chosen the above forms for the translational velocity, , for particles and photons 

based on our observation in this universe. Likewise, the solution of the Gordon-Klein 
equation does not lead to any  necessary expression for the surfing velocity. Again, we will 
rely  on some observations in our universe to give us some idea of what the surfing velocity 

looks like. Because we do observe the interference pattern in a two-slit experiment (and to a 
lesser extent in the single slit experiment), the non-deterministic surfing velocity  on the S 
surfaces has to be consistent with the interference pattern, i.e., the surfing velocity is free and 
non-deterministic at any  instant of time but overall it is constrained in a bulk budgetary sense 
to yield the interference pattern which is a statistical budgetary  pattern and can be produced 

in innumerable different ways – hence non-determinism. In this statistical budgetary 
manner, non-determinism is compatible with the overall known or ‘determined’ interference 
pattern. (An analogy is that one is free to spend one’s salary  in many different ways but the 
overall spending is limited by one’s determined salary.) In the next section on particle spin, 
we will suggest the forms of the two surfing velocity components which will satisfy the 

constant spin criterion and is consistent with the interference pattern resulted from 
diffraction, i.e., it conforms to these two kinds of observation. In another universe where the 
Gordon-Klein equation still applies, the surfing velocity can be very different  to that in this 
universe with the result that the behaviour of a quantum system there will be very different 
from those in our universe, e.g., non-constant spin and very different interference patterns.

Again, it  is virtually  certain that the solution in the form of (§30), when evaluated 

numerically or otherwise, will not have constant in some regions with the diffracted 

wave (e.g., near the slits) even though these regions may be small. This means that the 
wavelength is constant  only in an approximate or average sense, i.e., when averaged over a 
distance.

In summary, the components of the electric field and the magnetic field of the Maxwell 

Equations also satisfy the Gordon-Klein equation under certain simple conditions (e.g., in 
free space) so that both particles and photons satisfy  the Gordon-Klein equation, albeit  with 
different m parameter. This sharing of the same equation underlies the close similarity 
between diffraction of particles and diffraction of photons. In this paper, photons and 
particles are treated as discrete point-like entities whose non-deterministic behaviour is 

influenced but not determined by  the wave function of the Gordon-Klein equation. For both 
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particles and photons, the square of the amplitude of the wave field can properly be 

interpreted according to Born’s rule, i.e., as the probability  density  of the point-like entity in 
question. Finally, because the Helmholtz equation, derived from the Gordon-Klein equation 
and involving the spatial part of the wave function, is exactly of the same form as the 
Helmholtz equation for the non-relativistic case, the diffraction integral for the non-
relativistic case (involving particles only) can be conveniently  applied to the relativistic case  

involving both particles and photons. Hence, this paper has affirmed the ontological nature 
of both particles and photons – i.e., they are both particle entity – while maintaining the 
influence (not determination) of the wave function on the functional behaviour of particles 
and photons. In this sense, the question of wave-particle duality for particles and photons has 
been dealt with.

8.3 Particle Spins in Special Relativistic Framework

According to conventional wisdom the Gordon-Klein equation can only describe spinless 
particles.  But photons have spin 1 and other particles can have non-zero spins. It is true that 
the Gordon-Klein equation in itself does not contain sufficient information to determine the 

spin angular momentum of a photon or particle. (The same can be said for the Schrödinger 
equation regarding particles.) However, as has been suggested above when dealing with the 
form of the translational momentum, the surfing momentum on the S surface is available for 
prescription. In the case of the translational momentum, its form was prescribed in such a 
way as to match observation. For the surfing momentum, we will also seek to prescribe its 

form which will match particles spins as observed in our universe. This amounts to adding 
another constraint to the quantum system but it will be seen that this will not make the 
system deterministic. In fact, it will be shown in Section 8.7 that if an energy  conservation 
criterion is applied, the surfing momentum cannot be deterministic while yielding the 
appropriate constant spin of a particle. This approach of describing the mechanism for 

generating particle spin raises some critical questions about Dirac’s equation which will be 
discussed later.

It is proposed to prescribe these three orthogonal components of the momentum of a 
particle:
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where at the particle’s position is a unit vector perpendicular to and lies on the plane 

formed by and , is the unit vector in the direction of at the point where the 

particle is, is a constant corresponding to the kind of particle (or photon) in question,  

is constant over space but varies in time. This three orthogonal momentum components 
mimic the forms of the three orthogonal velocity components in the non-relativistic case in 
paper [2] and paper [1]. and are on a S surface. We now see if these two additional 

prescribed momentum on a S surface will generated the expected spin of a particle or photon. 

8.3.1 Particle Spin in the Cylindrical Mode

For simplicity of illustration, it  is best to consider the particle or photon spin in the 
cylindrical mode where the translational momentum, , is constant. Since (§29) of the 

relativistic case is of exactly  the same form as (§12) of the non-relativistic case, the solution 
for  should be the same in both cases. We can therefore make use of or adapt  the solution 

of the non-relativistic case for the relativistic case in question here. Hence, the S surfaces are 
uniformly flat and perpendicular to the translational momentum.  As shown in Figure 1, the 
contours of constant ρ on a S surface are concentric circles and we can calculate the angular 
momentum with respect to the centre of these circles. is tangential to the ρ contour. Since 

 goes through this centre, it does not generate any angular momentum. The solution of the 

radial equation for (§29) is the Bessel function of the first kind (see paper [2]) and has an 
infinite number of zeros as r tends to infinity. Let us say the first zero is at r=L. We shall 
concentrate our attention on the region with r less than L. (The case of r > L will be 

considered in a future paper.) The integrated angular momentum for the region with r less 
than L is

Now, the last integral can be evaluated by integration by parts so that it becomes
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Since ρ=0 at r=L, the first term is zero and the integrated angular momentum of the particle 

is

where the integral on the l.h.s. after is the normalisation integral and is therefore 1. One 

can readily see the physical significance of , i.e., it corresponds to the kind of particle  (or 

photon) being considered and is the spin number of the particle or the photon. Also the 
integrated spin of a particle or a photon does not involve the mass parameter or depend on 
the b parameter in (§29). Furthermore, the precise form of the Bessel function of the first 
kind is not necessary in the above integration; all that is required is that it has a zero at r=L.

We have obtained this form of integrated angular momentum by assuming the above 

forms of   and . Since this form of integrated angular momentum is consistent with the  

observed spins of particles and photons, we have good reason to believe that the the above 
forms of   and  are theoretically possible or probable.  

In Section 4 and in paper [2] for the non-relativistic case, we considered the question 
of interpreting ρ according to Born’s rule while maintaining that  the particle is at one 
specific position at any one time. Similarly  for the relativistic case, ρ can also be 
equivalently interpreted (i) as the ‘time averaged probability density’ for a suitable period T 
or (ii) as the non-dimensional time density for the same period. A neighbourhood of high ρ 

means that the particle or photon will spend more time in that neighbourhood and therefore 
is more likely to be in that neighbourhood. Born’s rule is therefore satisfied over the period 
T. That is, when the presence of the particle over the region of r < L (presence in terms of 
the time spent in the small neighbourhoods in the region) is averaged over the period T, such 
presence satisfies Born’s rule. Hence, the spin derived above is the average spin over the 

period T. (See paper [2] for a detailed explanation for this.) It needs to be noted that Born’s 
rule is satisfied in the above manner only if  does take the particle or photon to visit 

different circular strips for the appropriate lengths of time as expected from Born’s rule. At 
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this point we cannot see any  deterministic mechanism on  which will ensure that Born’s 

rule is satisfied. All we can say is that  must play  the role required by Born’s rule. Later in 

Section 8.7 we shall look at the crucial role of  in quantum mechanics. 

How does this understanding of spin relate to the Dirac equation? Allegedly, the Dirac 
equation describes particles of half spin. This will be scrutinised closely  in another paper but 
here briefly its potential problem is highlighted. The Gordon-Klein equation is a second 
order equation with four second order derivatives of the wave function corresponding to the 
time dimension and the three spacial dimensions. In order to reduce this equation to a system 

or set of first  order equations without loss, four new variables need to be introduced and they 
correspond to the four first order derivatives of the wave function with respect  to time and 
the three spatial dimensions. These four definitions of the four new variables constitute four 
first order equations. When the four new variables are substituted into the Gordon-Klein 
equation, that equation itself also becomes first order. Hence, in total there is a system of five 

first order equations which is entirely equivalent to the original Gordon-Klein equation. 
However, the Dirac equation is a system of four first order equations, allegedly derived from 
the Gordon-Klein equation through ‘factorising’ that equation. This is made possible by 
suitably choosing the gamma matrices in the Dirac equation. But this has the consequence 
that every  component of the Dirac wave function (or Dirac spinor) satisfies the Gordon-

Klein equation while only some combinations of the solutions to the Gordon-Klein equation 
can satisfy the Dirac equation. As a result, it  imposes a further constraint on the solutions to 
the Gordon-Klein equation and filter out some of these solutions. In any case, 
mathematically the system of five first order equations corresponding to the original 
Gordon-Klein equation with no loss is different from the system of four first  order equations 

in the Dirac equation. One has to decide which system of equations is more fundamental. 
Since the Dirac equation is derived from the Gordon-Klein equation but with some loss, this 
paper holds the position that the Gordon-Klein equation is more fundamental. This position 
is also vindicated by  its satisfactory  application in this paper for explaining the wave-particle 
duality of both particles and photons, and by the ability to explain the different values of 

particle or photon spins. Because the Dirac equation filters out some of the admissible 
solutions to the Gordon-Klein equation, it  may  also filter out some or many of the admissible 
solutions to the Gordon-Klein equation which have spins other than that admitted by the 
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Dirac equation. By using the Gordon-Klein equation and the additional prescriptions of the 

surfing momenta on a S surface,   and , this paper recovers the solutions with many 

different spin values. 
Now we turn to the question of the magnitude of the surfing momentum on a S surface.

 depends on which is constant in space and time; also depends on ρ and its gradient 

which are influenced by  the parameter . Let us call  the spin 

momentum since it  is this term that is responsible for generating the spin. This spin 

momentum at a point in space is deterministic since (i) is constant in space and time, and  

(ii) ρ is deterministic over space and constant in time. We have so far left the parameter in 

 undetermined save that it varies with time. Any non-determinacy of a quantum system 

therefore has to come from the non-deterministic nature of  in . However, it seems 

highly  reasonable to conserve the total momentum on a S surface which is quite independent 
of the translational momentum. Hence, we suggest that the magnitude of the surfing 
momentum 

is constant. This does not make deterministic since its direction can be non-deterministic. 

Section 8.7 will discuss this crucial point of non-determinacy later. 
Paper [2] for the non-relativistic case suggested that the magnitude of the surfing 

velocity  and therefore the magnitude of are not constant on the S surfaces. There, the 

quantum potential (also called Total Quantum Energy) is split into quantum potential energy 
and quantum kinetic energy; and the quantum kinetic energy representing the surfing energy 
is allowed to vary  on the S surfaces. However, it  is now suggested that this is not realistic as 
it is not possible to account for the change of the surfing momentum and the consequent 

change of surfing energy. It makes more sense to conserve the surfing momentum on the S 
surfaces and let the magnitude of  adjust to the varying magnitude of . The next 

section will show that a constant magnitude of has the an important implication 

concerning the rest mass of a particle.
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8.4  ‘Rest Mass’, ‘Rest Energy’ and Einstein’s Energy Formula

Hestenes [8] suggested ‘The Zitterbewegung Interpretation of Quantum Mechanics’ which 
encouraged other papers ([4,6]) along that line. Even though he was working with the Dirac 
equation, not the Gordon-Klein equation as in this paper, he suggested in Section 4 of his 
paper, ‘The so-called “rest mass” of the electron is therefore a kinetic energy of the magnetic 
self-interaction. It is this that gives the electron its inertial properties.’ He also referenced the 

‘flywheel-like nature of this inertia’ but he did not investigate the dynamics of such inertia. 
In this section, we suggest that  a particle has a genuine rest mass, called the ‘inherent mass’, 
which is not the same as the usual ‘rest mass’. The surfing motion or the surfing momentum 
(with its surfing energy) on the S surfaces with this inherent mass generates what we usually 
call the ‘rest mass’. (Photons will be considered in the next section.) And this has serious 

implication for the way we calculate the energy of a particle in the relativistic case, i.e., the 
usual way of calculating the energy of a particle will underestimate the value of the energy 
and this may well need to be corrected. Einstein’s energy formula can be written as

where  is the momentum as Einstein envisaged it, and m is the usual ‘rest mass’.  Since 

his momentum plays the role of the translational momentum considered in this paper (see 
later), it  is denoted by the subscript 1 while the subscript ‘E’ in denotes Einstein’s notion 

of momentum. This translational momentum is defined as 

where is the translational speed. Note that Einstein’s energy formula does not explicitly 

take into account the surfing energy on the S surface which is an essential energy in the 
quantum world as suggested in this paper. When the translational momentum is zero, the 

energy is given solely by the second term of (§31) involving the ‘rest  mass’ and it will be 
seen below that it is this ‘rest mass’ which partially incorporates the the contribution of the 
surfing motion to the energy. 
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Now, we define a new energy with subscript N (for new) to distinguish it from E given 

by (§31), and a new translational momentum:

where   , is the ‘inherent mass’ of the 

particle. The term ‘inherent mass’ means the mass inherent to the particle which does not 
arise from any motion of the particle, not even its surfing motion on the S surface. is the 

total momentum of the particle taking into account both the translational momentum and the 
surfing momentum on the S surface. Similar to the translational momentum in (§33), the 

total momentum and the surfing momentum are consistently defined as

where is the total speed, is the surfing speed in general and is the surfing speed 

when the translational speed is zero. Taking the square of (§32), we have

If we compare (§35) with (§31), we see that could be equivalent to and  therefore 

accounted for by such that 
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The ‘rest mass’, m, is  given by divided by c. A constant m requires a constant  which 

has already been suggested above. Note that  since  is constant, as the total speed varies, 

 will need to adjust  to maintain a constant . In the particular case of zero translational 

speed, is the surfing speed and the total speed, and it can be used to set the constant  

value and then calculate the ‘rest mass’ which is / c. At this point it will be good to begin 

to use a term different to the term ‘rest mass’ which can be misleading since the particle is 
not at rest due to the surfing motion on the S surface even though its translational speed may 
be zero. From now on we replace the term ‘rest mass’ with ‘effective mass’ which in general 
is not the same as the ‘inherent mass’, . 

If  is equivalent to as suggested above, then in (§31) does not include 

the surfing momentum which has been taken care of by . Hence, is the 

translational momentum as suggested above.

Note that, for zero , the ‘effective mass’, m, will be zero even though its inherent 

mass, , is not zero. This brings to mind the photon and other massless particles whose 

‘effective mass’ is zero. But zero effective mass does not exclude the possibility of the 
photon or other ‘massless’ particles having a non-zero inherent mass. In the extreme case of 
zero and zero (zero total momentum), while the inherent mass is non-zero, the 

effective mass is zero and the energy will be absolutely zero. In that case, the particle with 
zero energy may be ‘invisible’ or undetectable as far as their energy or mass is concerned 
and may become ‘visible’ only when it receives energy. 

If is zero, then both  and  are zero so that they have the same value. 

However, if is greater than zero,
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where it can be seen that  will tend to be larger than  when is greater than zero. 

However, the ratio between the and  also depends on the ratio between the 

‘effective mass’ and the ‘inherent mass’. Now,  

For ,  .

For . 

For . 

Without  experimental observation, we cannot know which of the above three cases is 
correct. However, one can with some reason suggest that the third case is more realistic, i.e.,  

is not near to c or is not a significant fraction of c. In that case,  is definitely  larger 

than . Even if the second case is true, i.e., which is unlikely, the other factor 

in the ratio of  to  can still make  greater than . 

It will be interesting to compare E with . Since of (§31) is identical to 

of (§35), the difference between and lies in the magnitudes of  and . If we 

consider the most probable case of  greater than , then  will be greater than E. 

If is zero, then the two energies are equal to the same ‘rest energy’ since both  and 

 are zero, i.e., In this case, the particle is not genuinely 

at rest since its surfing momentum is non-zero but is only  ‘at rest’ in the sense that its 

translational momentum is zero. Hence, instead of the term ‘rest energy’, the term ‘base 
energy’ corresponding to the energy for zero translational momentum is used from now on. 
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This base energy is the base on which further energy due to translational motion (kinetic 

energy) can be added. 
In (§22), we have the following quantity with the unit of energy squared:

where is the translational momentum. The sum of the first two terms of is 

equivalent either to  or , depending on whether one equates with  or  . 

Since and  take into account the surfing motion on the S surface while and 

do not, this paper suggests that the sum of the first two terms of is equivalent to , not 

.  is therefore considered to be a better measure of the energy of a particle than E 

which underestimates . However,  is not yet the total energy since there is the third 

term in  which is related to the quantum potential. 

The reason why E underestimates is because underestimates and this in 

turn is due to the crucial fact that takes into account the effect of the surfing velocity  on 

the S surface while  does not. The Lorentz factor in is naturally  greater than the 

Lorentz factor in  which lacks the surfing speed in its definition. Also, tends to be 

greater than m which accentuates the difference between  and . 

One can visualise the effect of the surfing velocity on the energy of a particle by 
imagining a bee buzzing rapidly  in a small scale matchbox while the matchbox is being 
carried in the large scale motion by a train. The large scale velocity  of the train is like the 
translational velocity of the particle while the rapid buzzing of the bee in the small matchbox 

is like the surfing motion of the particle on the S surface in the quantum scale. Let us 
imagine that the bee is the inherent mass. When the train is at rest, the bee’s buzzing motion 
with its energy in the matchbox gives rise to the ‘effective mass’ which will be less than its 

inherent mass unless it buzzes around with speed greater than . At the same time, the 

bee’s buzzing motion gives rise to its base energy (conventionally called ‘rest  energy’) when 
the train is at rest. When the train moves from rest to a higher speed, the bee’s energy will 

Mathematical Physics Preprint Archive, University of Texas, Oct. 2020

68



increase beyond the base energy. As the bee moves forward with the train, its buzzing speed 

increases the total speed of the bee beyond the speed of the train so that the Lorentz factor 
for the bee’s translational momentum is greater than it  would have been without the buzzing 
motion. Compared to the conventional way of calculating the energy contribution due to the 
translational momentum which uses the smaller Lorentz factor and the effective mass (which 
is normally less than the inherent mass), calculating the energy contribution due to the 

translational momentum using the larger Lorentz factor and the larger inherent mass, as 
suggested in this section, will produce a larger energy  value. That is, the bee has more 
energy than conventionally expected. 

Physicists have been looking for the dark matter necessary to hold the galaxies 
together. If the energy  distribution of a galaxy  is estimated without including all the 

contributions from the surfing (or buzzing) motion of its constituent particles in the quantum 
scale, the energy  will inevitably  be underestimated. The elusive dark matter may not be 
matter other than what already exists in the galaxy. It is probable that the existing energy of 
the existing matter in the galaxy  has not been fully taken into account because some effects 
of the the surfing motion of the particles have been unintentionally  excluded. Conversely, 

including all the effects of the surfing motion of the particles in the galaxy could account for 
the elusive ‘dark matter’. 

As pointed out above, in general because underestimates , E underestimates 

 and is therefore not equal to , except when   and therefore  and are zero. 

For non-zero , E can be written as 

where is the relativistic mass, . However, if the new definition of 

energy

is a better definition of energy than the traditional E as justified in this section, then the new 

definition of energy should be used and its implications should be explored. 
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8.5 The Case of Photons

It is puzzling how a massless object can have momentum and energy. Some physicists have 
entertained the possibility of photons having mass by appealing to experimental observation 
([9, 10, 11, 12]). The above analysis shows the possibility of zero effective mass while the 
inherent mass is non-zero: since , zero implies zero effective mass. However, if 

we set  to be zero for photon, then it cannot have the surfing velocity to generate its 

angular momentum, i.e., its spin value will be zero. If the photon spin is , we need to relax 

this constraint on and allow it  to be non-zero. But this will mean that its effective mass is 

non-zero. A non-zero effective mass for photon will go some way towards unravelling the 
mystery  or paradox of a massless object having angular momentum, translational momentum 
and energy. Hence, it is worth investigating this possibility  of non-zero effective mass of 

photon while maintaining the other characteristics of a photon in good shape.
It is noteworthy that the Gordon-Klein can be written in this form:

which is arguably more original than the form in (§18) since the more fundamental surfing 

momentum squared is used instead of  which involves the derived effective mass. If 

is small, then treating it as zero, i.e., treating the effective mass as zero, is a good 

approximation. Under what condition can be very  small? According to the definition 

 , of a photon could be small if the inherent mass of a photon, 

, is small or its surfing speed, , is small. However, the Lorentz factor will be 

very large since we expect the total speed, , to be near to c (it cannot be c for the Lorentz 

factor to be finite). But if both   and  are small, their product will be very small 

indeed such that  could still be very  small. In that case, the last term of (§36) can be 

ignored as a good approximation. 
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Looking at the definition , the total speed, , has to be less 

than c and the translational speed, , has to be close to c and therefore very large. The 

Lorentz factor as mentioned above will also be very large such that even though is 

s m a l l , w i l l b e o f a s i g n i f i c a n t s i z e . L o o k i n g a t  t h e d e f i n i t i o n 

, one can see that the energy is dominated by at the expense 

of  such that  is a good approximation. It  is worthy to note that in the case of 

particles the energy could be dominated by the contribution from  in the form of rest 

energy or base energy, whereas in the case of photons the opposite is true, i.e., the 
contribution from dominates.

Photons of different translational momenta correspond to different energies and 

wavelengths. What is the most appropriate way for the translational momentum to vary? 
Surely, it is not advisable to let the translational speed, , of a photon to vary  in order to 

produce variation in the translational momentum. While  is invariant, can vary to yield 

varying translational momentum and therefore varying energy. Since is close to c, small 

variation of can yield great variation in the translational momentum and energy.  Also, 

non-zero  means that the angular momentum of photon can be non-zero, which is 

consistent with observation. 
Finally, strictly  speaking in this modelling framework, c is no longer the speed of light. 

The invariant  is the speed of light, which has the value   say, which is very  close to 

some universal constant  c. This modelling framework will inevitably throw up many 

questions in relation to other theories but  it is beyond the scope of this paper to investigate 
these in great details (but see next section). What this framework has sought to show is that 
one can conceive of a photon with small inherent mass and small effective mass, while 
maintaining the invariant translational speed and maintaining the varying translational 
momentum, varying wavelength and varying energy. Perhaps, this is not unreasonable 

compared to the idea of a massless entity with non-zero energy and momentum.
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8.6 Particle Mass

It was suggested above that for zero , the ‘effective mass’ of a particle, m, will be zero 

even though its inherent mass, , is not zero. This point of zero effective mass of a particle 

reminds us of the massless particles invoked in the Standard Model. Regarding such 
massless particles, Chang [13] wrote,

[I]n the Higgs model, the rest mass of a particle is just a parameter associated with the strength of 
coupling between the particle field and the Higgs field. If this is true, we may have a 
philosophical problem. That is, the physical meaning of the rest mass m would be intrinsically 
different from energy E or momentum p. This does not seem to be very satisfactory in view of 
our traditional understanding of the physics concept. (p. 23)

He also listed some challenging problems for the Standard Model (pp. 21, 24). He thus 
attempted to ‘explore a different approach to explain the origin of particle mass based on a 

less complicated physical picture’ (p. 24). He proposed a V-medium which is ‘a continuous 
medium, which can be excited by  an energetic stimulation’ and ‘[d]ifferent excitation waves 
of the V-medium make up different types of particles observed in the physical world’ (p. 24). 
He deduced that the 4-dimensional wave equation (three-dimensions in space and one 
dimension in time) is suitable for modelling these particles in free space (equation 19). 

However, the mass of the particle is not a parameter of the equation but it can be deduced 
from the wave equation. What is required as a parameter of the wave equation is the 

quantity, , which effectively is the quantum potential (apart from some 

constants and their units) as identified in this paper.  is the component of the wave 

function on the plane perpendicular to the translational (or called longitudinal in his paper) 
momentum; this ‘transverse’ plane is effectively equivalent to the S surface in this paper. He 

suggested that the particle has motion on this plane which is controlled by  but gave 

insufficient details about this motion. (This paper and previous papers also affirm the 
particle’s motion on the S surface but give much more details about such motion which is 
crucial in generating the rest or effective mass.) The three dimensions in the spatial 

Laplacian in the wave equation are reduced to one dimension in the direction of the 
translational (or longitudinal) momentum as the Laplacian in the other two dimensions on 
the transverse plane yield what is effectively the quantum potential (multiplied by some 
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constants), , which is a constant. Then, the mass is set  as  and the square of this 

mass is incorporated into the wave equation  (via ) which has become a reduced Gordon-

Klein equation but this reduced Gordon-Klein equation only operates in the translational or 

longitudinal direction since it lacks the Laplacian in the other two dimensions on the 

transverse plane to operate on the wave function (as they have been replaced by ). 

It is laudable that the paper seeks an alternative explanation of a particle’s mass and 
identify some necessary motion on the transverse plane (S surface in this paper); it also sees 
the wave equation or the Gordon-Klein equation as useful for modelling particles (as this 

paper affirms). However, it identifies the quantum potential, or  , as the crucial parameter 

in the wave equation to generate the particle’s mass. There are three disadvantages or 
difficulties in this approach. Firstly, it does not take into account the motion of the particle 

on the transverse plane (S surface in this paper) with sufficient details. This motion on the 
transverse plane certainly adds the surfing momentum and surfing energy to the particle 
which yield the effective/rest mass and base/rest energy of the particle respectively  when the 
the longitudinal (or translational) momentum is zero; hence the transverse motion should be 
explicitly included with sufficient details in the model to generate the particle’s effective/rest 

mass, as suggested in this paper. Furthermore, the Lorentz factor for the total momentum is 
also dependent on the magnitude of the transverse motion (surfing motion in this paper); 
hence sufficient  details of the transverse motion should be incorporated explicitly, as 

suggested in this paper. Secondly, since the effective or rest mass of the particle, , 

can be expressed in terms of (inherent mass) and (the surfing velocity when the 

translational momentum is zero), this effective mass as a parameter can appear explicitly  in 

the full Gordon-Klein equation, while the quantum potential, or  , is available to be used 

to correspond to another elusive energy in the universe, dark energy (see Conclusion). But 
by using the quantum potential term to account for the particle’s mass, this quantum 

potential term cannot be used to account for another energy  such as the dark energy. Thirdly, 
relying on the quantum potential to account for the particle’s mass reduces the Gordon-Klein 
equation to effectively have only one spatial dimension instead of three spatial dimensions in 
its Laplacian. However, maintaining all three spatial dimensions in the Laplacian in that 
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equation gives explicit room to express the quantum potential alongside the effective mass. It 

allows one to see how the various energy terms fit together as a whole, as illustrated in the 
following.

This paper, in its relativistic section, began with the full Gordon-Klein equation with 
the effective/rest mass parameter. Eventually, it  expresses the effective/rest mass in terms of 
the surfing momentum and writes the full Gordon-Klein equation as

where we can see heuristically from (§21) and (§22) that the translational dimension of the 

Laplacian on the l.h.s. yields the translational momentum squared while the other two 
dimensions of the Laplacian operating on the S surfing surface yield the quantum potential 
multiplied by a suitable constant, the second order time derivative on the r.h.s. yields the 
square of K which can be called the super-energy  (the signs and exact units are not included 
in this heuristic description of the terms). It is highly reasonable that the last term of this 

equation is representing the square of the surfing momentum of the particle since this surfing 
momentum is an important aspect of the particle’s motion which has not been represented by 
any other term in the equation. It  is this term representing the surfing motion on the S surface 
which accounts for the effective/rest mass of the particle. 

It is possible for particles to have zero effective mass, or zero rest mass, through 

having zero surfing momentum, but they can still have non-zero inherent mass. How these 
inherently  massive particles with zero effective mass relate to massless particles (with zero 
effective/rest mass) in the Standard Model remains to be investigated. For example, it may 
still be possible for the massless particles in the Standard Model (with implied zero surfing 
momentum) to have non-zero inherent mass and non-zero translational momentum. 

Finally, in terms of angular momentum, how does the model presented in this paper, 
based on the Gordon-Klein equation with two added velocity components on the S surface 
generating a particle’s spin, relates to the spins of elementary  particles in the Standard 
Model?
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8.7 The Nature of The Surfing Velocity and Non-Determinacy

We now come to the final consideration of the surfing velocity component on the S surface, 
. In the cylindrical mode, we see that the surfing velocity component on the S surface, 

, is responsible for generating the spin angular momentum of the particle while  is 

perpendicular to it. In paper [2], it was indicated that it might be possible to derive a 
deterministic prescription for  . If that is the case, then since and are deterministic, 

a deterministic prescription for  will make the total velocity deterministic. However, 

paper [2] suggests some objection to this deterministic prescription for  . Here, a stronger 

objection will be presented. 
Figure 8 shows the plot of rρ against r on a S surface for the cylindrical mode. 

Figure 8: rρ as a function of r for illustrative purpose; L=2.4

Remember the interpretation of ρ as the non-dimensional time density, for a circular strip 
around the centre with △r as the width of the strip, the time to be spent in that circular strip 

should be △t =2πr△rρT where T is a suitable period (for more details, see sections 6 and 7 

of paper [2]). The magnitude of the radial velocity, , could be obtained by taking the limit 

of
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This seems to have fixed the radial speed. Since the direction of the radial velocity is also 

fixed, it  seems that  is determined and the total velocity of the particle is determined. 

However, apart from the challenge of infinite radial velocity at the centre and r=L, there is 
also the following unsurmountable difficulty. According to the above expression for the 
radial speed, this speed should be at a minimum when rρ is at the maximum. Since is 

conserved, should be at the maximum when the radial speed is at a minimum. 

However, the maximum does not occurs at the point when rρ is at the maximum; it 

occurs somewhere else near or at L as seen in the expression for  .10  Hence, this 

contradicts the suggestion that the magnitude of  is determined by (§37). 

Even though the magnitude of cannot be determined by  (§37), its magnitude is 

nevertheless determined in a different way even though its direction cannot be determined, 

i.e.,  is still non-determinate. Since the surfing momentum is conserved, if the 

translational speed does not change (which we adopt here to avoid unnecessary 

complication), then the surfing speed does not change and is thus deterministic. And 

since is deterministic, the magnitude of , , is also deterministic. However, the 

direction of  is not deterministic so that is non-deterministic. We now look at how 

with its non-deterministic direction can satisfy  the requirement given above, △t =2πr△rρT , 

despite the magnitude of   being deterministic. 

It is possible for the particle to visit the same circular strip  many times within the 
period T and the number of times it needs to visit a strip depends on . For example, a 

large means that the particle has to visit  the same strip  more times before accumulating 

the required amount of time for that strip. If N is the number of required visit, then
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An initial scale analysis suggests that  is probably very large. If that is the case, N could 

be very large. N will not be an integer but because of its large size the fractional part  can be 
neglected. The factor of 2πT in N is constant. N is thus proportional to  and it is 

instructive to plot   as a function of r. Figure 9 is such a plot for illustrative purpose; 

hence the unit in the vertical axis is not given. 

Figure 9:   as a function of r for illustrative purpose; particle moves from P1 to P10

Figure 9 is like a frequency distribution as a function of r since N is proportional to . 

The particle has to visit  the circular strip  at maximum  for the largest number of times, 

and visit the strips with minimum  the least number of times. The figure shows an 

illustrative example of a particle oscillating about the position of maximum in order to 

approximate the required frequency distribution. In reality, many more oscillations will be 
necessary  to satisfy closely the required frequency distribution.11 The figure may apparently 
suggest that the particle has to stop at many  points as it  changes its radial direction of 

motion. But this is not the case. is in general non-zero; an initial scale analysis suggests 

that is probably  very large and much larger than . How then can the frequency 
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distribution be satisfied or closely approximated by taking multiple sweeps across the r 

domain without stopping? The only conceivable way is for the particle to reverse its radial 
direction instantaneously without stopping, while maintaining the speed of  at the point of 

reversing the radial direction. as a function of r is determined (see above) and therefore 

has to be maintained even though the direction of  is not determined and is therefore free 

to change. 

There are innumerable ways of satisfying the frequency distribution and there are 
infinite number of positions where the particle’s  can suddenly and instantaneously 

reverse its direction. Hence, there is a high degree of freedom and non-determinacy. One 
could conceivably still prescribe a deterministic way of satisfying the frequency distribution, 
e.g., by fixing the positions of turning and other necessary determinations, but there are an 
infinite number of equally valid ways of doing so. There is no reason to pick any  one way.  

Therefore, there is no justifiable reason to prescribe any specific deterministic way  to satisfy 
the frequency distribution. It is best to see the quantum system as truly non-deterministic. 
The key of non-determinism lies in the non-deterministic points where suddenly reverses 

its direction. It is the ultimate source of non-determinism in quantum mechanics.  As long as 
the bulk statistics of the frequency distribution is satisfied, the system does not require that 

satisfaction to be accomplished in any specific way. This is the inherent non-determinism of 
a quantum system.

Note that the surfing speed of the particle on the S surface, , will be constant and 

therefore continuous. But the velocity, , is discontinuous in terms of direction at  the points 

of sudden and unpredictable turning even though its magnitude is continuous. Hence, the 
magnitude of the surfing velocity  is constant and continuous while the direction of the 
surfing velocity  is discontinuous. This is not conceivable in classical mechanics, but in the 
quantum world our expectation from the study of classical mechanics can be set aside. 

9.0 The Heisenberg Uncertainty Principle

According to the Heisenberg Uncertainty Principle, the product of the standard deviations of 

position and momentum should be greater than or equal to half of . However, if the energy 
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of a particle is defined by  , in the cylindrical mode of motion the energy of the 

particle is conserved which implies that the magnitude of the total momentum is conserved 
even though the direction of the total momentum is unpredictable due to the unpredictable 
nature of the direction of (while the translational momentum is predictable). This means 

that there is certainty regarding the magnitude of the momentum while there is uncertainty 
regarding the direction of the momentum and uncertainty regarding the position of the 
particle on the S surface. These uncertainties are inherent in quantum mechanics and are 
therefore not due to the effect of any observation. If these uncertainties are indeed correct, 

then the Heisenberg Uncertainty  Principle does not really  stand since there can be certainty 
in the magnitude of the momentum. A useful example for illustration is a particle with zero 
translational momentum. In this example, the magnitude of the momentum of the particle is 
purely  given by the magnitude of the surfing momentum, which is conserved and 

therefore deterministic with no uncertainty, even though (i) the direction of the surfing 
momentum is unpredictable due to the unpredictable nature of the direction of and (ii) the 

position of the particle on the surfing S surface is unpredictable. In the extreme case of zero 
translational momentum and zero surfing momentum, the momentum of the particle is zero, 
so is its energy. In that case, its momentum and its position will be determinate 
simultaneously  but it will be invisible or undetectable as far as their energy  or mass is 

concerned until it receives energy. 

10.0 Conclusion

Hestenes [8] proposed a Zitterbewegung interpretation of quantum mechanics. He suggested 

that the spinning motion of a particle on the spin plane is crucial in understanding quantum 
mechanics. He worked with the Dirac equation but this equation is physically  too restrictive 
and something in the Gordon-Klein equation is lost because of the questionable 
mathematical procedure used to derive it  from the Gordon-Klein equation (see the 
forthcoming paper for more details). Hestenes’ work encouraged others such as Salesi, 

Esposito and Recami to study the spinning motion of particles ([3, 4, 5]). However, their 
studies invariably adopted a deterministic framework but they did obtain one deterministic 
surfing velocity  component which is in addition to the usual deterministic translational 
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velocity  identified in pilot wave theory. This paper and the previous two papers ([1,2]) adopt 

the non-deterministic framework and investigate two possible surfing velocity  components 
on the S surface. The Schrödinger equation (for the non-relativistic case) and the Gordon-
Klein equation (for the relativistic case) in themselves cannot incorporate spin. However, 
these equations with the two prescribed surfing velocity components on the S surface 
constitute a sufficient number of constraints to set the angular momentum of a particle, yet 

maintaining a true degree of non-determinacy. These two equations with the two surfing 
velocity  components form the two models used in this paper for studying the cylindrical 
mode, the spherical mode and the intermediate mode of motion. These are subsequently 
employed to study diffraction in the one-slit experiment and the two-slit experiment, 
measurement, spin, rest/effective mass, energy, photons, non-determinacy and the 

Heisenberg Uncertainty Principle.
In Section 6, the surfing motion of a non-relativistic particle on the S surface is 

invoked, together with the Schrödinger equation, to explain the particle’s non-determinacy in 
the two-slit experiment (and the one-slit experiment) and the associated interference pattern. 
For the relativistic case (Section 8), the Gordon-Klein equation is shown to be capable of 

having a positive definite probability density which is the square of the modulus of its wave 
function. Thus it is the relativistic equivalent of the Schrödinger equation. The Gordon-Klein 
equation can be applied to both particles and photons. This equation and the two surfing 
velocity  components on the S surfaces constitute the modelling framework in Section 8 for 
studying relativistic particles and photons. This modelling framework is capable of 

explaining the non-determinacy and the interference pattern of the two-slit  experiment (and 
the one-slit experiment) for both particles and photons. It is thus seen that particles and 
photons are point-like entities whose behaviour is influenced but not determined by the wave 
function. The similarities in the ontological nature and the functional behaviour between 
particles and photon, that is, the similarities in their particle nature and their wavy behaviour, 

can therefore be traced to their sharing of the same Gordon-Klein equation, albeit with 
different values for the mass parameter which incidentally does not appear in the Helmholtz 
equation for the spatial part of the wave function (§29). In this way, the question of wave-
particle duality for both particles and photons is dealt with. 

When observation is made of the particles or photons of the two-slit experiment, the 

interference pattern disappears. This can be explained by an exchange of momentum 
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between a particle or photon and the measuring element such that the two interacting 

intermediate modes before the momentum exchange reduce to the single cylindrical mode 
whose probability pattern is much more localised. This prompts the definition of 
measurement as an event where an exchange of momentum between the measured particle or 
photon and the measuring agent takes place, leading to a wholesale, sudden and 
discontinuous change of of the wave function (Section 7). But this sudden change is not a 

collapse of the wave function, as understood in the Copenhagen interpretation of quantum 
mechanics. Also, similar change can take place if the classical potential changes in a 
localised manner, even in the absence of a measurement event. Hence, the introduction of a 
measurement instrument can already effect a transformed wave field.

 Louis de Broglie’s formula for momentum and wavelength is confirmed in multiple 

observations. This formula is crucial in prescribing the translational velocity  involving 

since the Schrödinger equation and the Gordon-Klein in themselves do not prescribe the 
translational velocity component and other velocity components. The relationship between 
energy and frequency for particles appears readily from the energy equation (§2) for the non-

relativistic case. For the relativistic case, the same relationship  between energy and 
frequency (Planck-Einstein relation) holds for photons but for particles a slightly different 
constant, K involving the quantum potential, replaces the constant, E. (But later in the paper 
it is suggested that photons like particles can possibly have effective mass, albeit extremely 
small.) 

By prescribing a certain form for the surfing velocity component on a S surface which 
is responsible for generating the particle spin ( ), and including a non-deterministic 

surfing velocity component perpendicular to it ( ), the integration of the particle’s angular 

momentum on the S surface for the cylindrical mode yields the particle’s observed 

characteristic spin.  It is suggested that the over-restrictive Dirac equation filters out possible 
spin regimes which can be allowed by  the Gordon-Klein equation. In contrast, our model 
based on the full Gordon-Klein equation and two surfing velocity components is sufficiently 
general to describe particles which are observed to have different spin values.

The probability density on the S surface can be interpreted equivalently (i) as the time 

averaged probability  density with respect to a certain period and (ii) the non-dimensional 
time density. For Born’s rule to be satisfied, it is important that the non-deterministic surfing 
velocity component evolves in time in such a way as to satisfy that rule.  
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A new definition of energy is proposed: which can equivalently  be written 

as This energy  definition prompts the identification 

between  and  which suggests that m, the effective mass, is generated by the 

surfing momentum on the S surface while the particle itself has an inherent mass which is 
different from, probably of a greater magnitude than, the effective mass. Since , 

the effective mass, /c , is identical to the rest mass which is the term used conventionally. 

For the case of zero translational momentum, the base energy according the new definition 
of energy is also identical to the rest energy according to Einstein’s formula. But for non-
zero translational momentum, it is virtually certain that the translational momentum is 

greater than the conventional translational momentum ; and the energy according the 

new definition will be higher than that given by Einstein’s formula. This revised 
understanding of energy gives us a better grasp of the nature of rest  energy which is called 

base energy in this paper since the particle is not  at rest even when the translational 
momentum is zero. This base energy  is the particle’s surfing energy on the S surface and it 
can be of very  large magnitude. An initial scale analysis (not presented here) suggests that 
most of this energy is carried by the non-deterministic component of the surfing velocity. 
Physicists have been looking for the mysterious dark matter required to hold galaxies 

together. If one takes the proposed revised definition of energy seriously, one can investigate 
further whether the higher value of the energy  given by this definition, compared to that 
given by the conventional formula, can account for the missing energy. For this purpose, the 
magnitude of the surfing velocity  can be deduced to fit or account for the observed missing 
energy. Hence, there seems to be a good possibility for this revised energy to account for 

dark matter. If this possibility can be verified, then we can see the connection between 
particle motion on the small quantum scale and the motion of celestial bodies of the large 
scale, i.e., small scale particle motion can enhance the energy necessary to account for the 
coherence of celestial galaxies.
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If the new definition of energy, , turns out to be a better definition of 

energy than the traditional formula,  , then the new definition of energy should 

be used when higher accuracy is needed and its implications should be explored in physics.

When it is seen that the effective mass, /c, is dependent on the surfing momentum 

and c, a small surfing momentum can yield a very small effective mass. This prompted the 
possibility of a photon having such a small surfing momentum which renders the effective 
mass to be virtually zero. In such a possibility, most of the energy of the photon is carried by 

the translational velocity component as opposed to being carried by  the surfing velocity as in 
the case of particles. Also, the invariant translational speed for photon, now called , will 

have a slightly lower value than a certain universal constant, c. The variation of the energy of 

photons can be located in the variation of the surfing velocity. 
 The Gordon-Klein equation in (§36) with the surfing momentum replacing the rest/

effective mass is arguably more original than the form in (§18) featuring the rest/effective 
mass since the rest/effective mass is derived from the surfing momentum. The form in (§36) 
gives us a heuristic appreciation of the various energy  terms involved in the conservation of 

energy. Since this equation also incorporate the quantum-potential-like term, it embodies 
more energy terms than the definition of energy squared: . Instead of 

seeing the Gordon-Klein equation in (§36) as an equation derived from quantising this 
energy definition, one should see the Gordon-Klein equation as being the more fundamental 

equation as  only accounts for a subset of the energy terms in the equation. This is clearly 

seen in the new quantity derived in this paper:

where the last term is like the quantum potential term. K has the unit of energy and is the 

conserved in the absence of exchange of energy. Its expression involves the new energy and 
the quantum-potential-like term. Let us call K the super-energy since it  incorporates one 
more term than the revised definition of energy. One wonders if the quantum-potential-like 
term is related to the dark energy necessary to account for the increasing inflation rate of the 
universe (see attempts to relate the quantum potential to dark energy in [14, 15, 16]). It is 
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certain that the total energy of a particle or a photon will have to include this term and it is 

ubiquitous even though its value may vary from the value in free space when particles 
interact with one another as in tunelling. In tunelling, a particle enters a region of lower 

 so that its increases sufficiently to overcome the potential barrier which 

would have been impossible without this quantum-potential-like term. Paper [2] shows that 

for finite surfing energy, has to be positive. It therefore has the right sign for 

becoming a candidate to account for the dark energy. Even though the spin value does not 
depend on this quantum-potential-like term, the magnitude of the spin velocity, , does 

depend on it since it  influences the distribution of the probability density on the S surface; 

hence photons may have a low value for this term which corresponds to a small . It seems 

that this term has different values for different particles and photons. It is plausible that for 

free space there is a universal density  of  and its value for a particle or photon 

could be given by the product of this universal density and the volume of the particle or 

photon. If that is the case, one can possibly integrate the density  of  over the 

whole universe to give us an estimate of this additional energy in the universe. Whether this 
can account for the dark energy in the universe remains to be seen.

Even though the motion of a particle on the S surface is non-determinate due to the 
non-deterministic direction of , it does not mean that the motion is random. One must be 

careful to make the distinction between randomness and non-determinacy. The non-
determinate motion on the S surfaces has to be well co-ordinated to match the ρ distribution 
according to Born’s rule; otherwise, that rule will be violated and the particle’s characteristic 
spin will be lost leading to a chaotic and non-life-sustaining universe which could be the 

case in an alternative universe having the same governing Gordon-Klein equation. One may 
ask: how does the particle know how to behave in order to match the ρ distribution, satisfy 
Born’s rule and in so doing produce the characteristic spin? It requires some kind of 
knowledge or information of the recent history of the trajectory  of the particle, at least within 
the period of T. Yet, even with this information available, this information along with all 
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other information and laws operating in the universe since its primordial beginning cannot 

prescribe a deterministic velocity or trajectory at any  succeeding moment in time for the 
particle. All one can say is that over a suitable period of T, somehow the particle traces out a 
trajectory with suitable non-deterministic and non-random velocity to match the ρ 
distribution on the S surface according to Born’s rule and thus produces the characteristic 
spin. This requires new information on top of the information of the particle’s history. The 

baffling question is: what causes such delicately balanced non-deterministic trajectories and 
velocities without which our universe will have little order and will not sustain life as we 
know it? And what is the source of the new information which is required moment by 
moment to move the particles and photons of the universe forward in time? The generation 
of this information might be simulated by  some stochastic process but such simulating 

processes do not  inform us any more about the causes of the particle’s highly organised non-
determinate motion on the S surface since (i) these stochastic processes are simulations in the 
first place and therefore they can only  simulate the effect but not the cause of such motion, 
and (ii) there could be multiple stochastic processes ‘successfully’ simulating the generation 
of the required information so that we have no way of knowing which simulation is nearer to 

reality. Here, we may be reaching the limit  of what we can know. Deterministic processes are 
more amenable to our knowledge; the causes of non-deterministic but highly  organised 
processes cannot be so easily pinned down, or cannot be pinned down.

Neither the Schrödinger equation nor the Gordon-Klein equation with their wave 
function gives any specific information of the three velocity components of a particle. This 

may not be an disadvantage because it  allows us to prescribe the three velocity components 
according to observation in our universe (in another hypothetical universe, these velocities 
could be different). In this paper, firstly we have prescribed the translational velocity 
according to the observed de Broglie relation between momentum and wavelength (which is 

related to ). Secondly, we have also prescribed the form of to match the different 

observed particle spins. Thirdly, we have prescribed  in such a way  that Born’s rule is 

satisfied which is also observed. Hence, all three velocities have been prescribed to match 
our observations in this universe. These correspondences yield the advantage that the model 
of a quantum particle or photon proposed here matches the above three observations in this 
universe. 
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Apart from the consistency with these three observations, the proposed model yields 

the observed relationship between energy and frequency. It also has the capacity  to account 
for the non-determinacy and the interference pattern observed in the two-slit  experiment. 
The model accounts for the observed ontological particle nature of both particles and 
photons and their observed wavy functional behaviour through their sharing of the same 
Gordon-Klein equation (with different mass parameter) and their sharing of the same forms 

of the two surfing velocity components. The model gives us a concrete notion of 
measurement and how measurement can destroy  the interference pattern of the two-slit 
experiment as has been observed. Furthermore, it gives a reasonable account of tunnelling 
which is also observed.

The model gives us some physical understanding of the meaning of rest energy (or 

base energy) which is otherwise hard to imagine. Regarding the observations on 
cosmological scale, it has the potential capacity to account for the elusive dark matter which 
was postulated as a result of our observation of galaxies. Despite its potential, we do not yet 
know if it can contribute positively to the understanding of the dark energy of the universe 
which has been inferred from observation. Nevertheless, the above has listed eleven 

observations with which the proposed model is consistent with. The philosophy of science 
teaches us that no theory can be conclusively proved to be correct since in principle every 
theory  is falsifiable and could be improved by  a better theory. One can only speak of the 
credibility of a theory  or model and its proximity  to reality. The credibility of a theory or 
model should be gauged according to its consistency with observation, no matter how 

elegant a theory or model is. The proposed model can have some claim to elegance, e.g., the 
prescription of a set of orthogonal velocities which include the two crucial surfing velocities 

on the S surface, the simple expression for the new definition of energy, , and 

the more comprehensive energy, K, the super-energy. Concerning the claim to consistency, it 
is consistent with eleven features observed in our universe. Hence, the proposed model with 
its claim to consistency with observation, and with some claim to elegance, has a good claim 
to credibility. Its credibility may  be further advanced if it proves to have the capacity  to 
explain other observed experimental phenomena not listed above, e.g., the experiment 

suggested at the end of Section 11 of paper [2], and some experiments questioning the 
Heisenberg Uncertainty  Principle [17]. It is for the experimentalists to explore further the 
model’s explanatory capacity for assessing its credibility and its proximity to reality.
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