q^{-1}-Orthogonal Solutions of q^{-1}-Periodic

Equations

F. I. Moxley

Abstract

f which satisfy the classical orthogonality relation $$
\begin{equation*} \int_{0}^{1} f\left(\lambda_{m} t\right) f\left(\lambda_{n} t\right) d t=0, \quad m \neq n \tag{1} \end{equation*}
$$

In the year 1939, the Mathematician G.H. Hardy proved that the only functions
are the Bessel functions $J_{\nu}(t)$ under certain constraints, where $\nu>-1$ is the order of the Bessel function, and λ_{m}, λ_{n} are the zeros of the Bessel function. More recently, the Mathematician L.D. Abreu proved that if a function $f \in \mathcal{L}_{q}^{2}(0,1)$ is q-orthogonal with respect to its own zeros in the interval (0,1), then it satisfies the q-orthogonality relation

$$
\begin{equation*}
\int_{0}^{1} f\left(\lambda_{m} t\right) f\left(\lambda_{n} t\right) d_{q} t=0, \quad m \neq n \tag{2}
\end{equation*}
$$

where the q-integral is a Riemann-Stieltjes integral with respect to a step function having infinitely many points of increase at the points q^{ℓ}, with the step size at the point q^{ℓ} being $q, \forall \ell \in \mathbb{N}_{0}$, where $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$, and $0<q<1$. Following these developments, herein we present an equivalence class of entire q^{-1}-periodic functions satisfying the q^{-1}-orthogonality relation

$$
\begin{equation*}
\int_{0}^{1} f\left(\lambda_{m} t\right) f\left(\lambda_{n} t\right) d_{q^{-1}} t=0, \quad m \neq n \tag{3}
\end{equation*}
$$

1. Introduction

The quantum calculus, otherwise known as the q-calculus $[\mathbf{1}]$, has been found to have a wide variety of interesting applications in computational number theory [2], and the theory of orthogonal polynomials [3-5], for example. As such, herein we investigate a class of entire functions that are q^{-1}-orthogonal with respect to their own zeros, and find that in this equivalence class, the only q^{-1}-periodic functions are nonzero constant-valued functions. It is well understood by the Fundamental Theorem of Algebra [6], that a nonzero constant function has no roots. Accordingly, this study aims to develop a novel approach to the field of q^{-1}-orthogonal polynomials [7], and the distribution of their zeros [8].

The paper is organized as follows: In Sec. 2 we introduce a class of entire functions, q^{-1}-orthogonal with respect to their own zeros, and demonstrate that the class is comprised of q^{-1}-periodic (i.e. constant) functions on the complex plane. Sec. 3 details the q^{-1}-Fourier series, and the completeness relations of the class. In Sec. 4, a first-order linear q^{-1}-difference equation is obtained for arriving at the value of the q^{-1}-periodic constant constituted by the class. Finally, concluding remarks are made in Sec. 5.
1.1. Preliminaries. If $q^{-1} \in \mathbb{R}$ is fixed, then a subset of \mathbb{C} is named \mathcal{A}, and is also q^{-1}-geometric if $q^{-1} x \in \mathcal{A}$ whenever $x \in \mathcal{A}$. If $\mathcal{A} \subset \mathbb{C}$ is q^{-1}-geometric then it contains all geometric sequences $\left\{x q^{-\ell}\right\}_{\ell=0}^{\infty}$, where $x \in \mathcal{A}$ such that as $q \rightarrow 1$ then $\mathcal{A} \rightarrow \mathbb{C}$. Unless otherwise noted, herein $0<q<1[\mathbf{9}]$.

Definition 1. A function f defined on the q^{-1}-geometric set \mathcal{A}, where $0 \in \mathcal{A}$, is said to be q-regular at infinity if there exists a constant \mathcal{C} such that
(4) $\quad \lim _{\ell \rightarrow \infty} f\left(x q^{-\ell}\right)=\mathcal{C}, \quad \forall x \in \mathcal{A}$.

Definition 2. The Euler-Heine q^{-1}-difference operator $[\mathbf{1 0}, \mathbf{1 1}]$, is defined by

$$
\begin{equation*}
\hat{\mathcal{D}}_{q^{-1}} f(x):=\frac{f(x)-f\left(q^{-1} x\right)}{x-q^{-1} x}, \quad \forall x \in \mathcal{A} /\{0\} . \tag{5}
\end{equation*}
$$

If $0 \in \mathcal{A}$, the q-derivative at zero is defined for $|q|<1$ by

$$
\begin{equation*}
\hat{\mathcal{D}}_{q^{-1}} f(0):=\lim _{\ell \rightarrow \infty} \frac{f\left(s q^{-\ell}\right)-f(0)}{s q^{-\ell}}, \quad \forall x \in \mathcal{A} /\{0\} . \tag{6}
\end{equation*}
$$

The q^{-1}-derivative at zero is denoted as $f^{\prime}(0)$, assuming the limit exists and is independent of x.

The q^{-1}-product rule is [12]

$$
\begin{equation*}
\hat{\mathcal{D}}_{q^{-1}}[f(x) g(x)]=f\left(q^{-1} x\right) \hat{\mathcal{D}}_{q^{-1}} g(x)+g(x) \hat{\mathcal{D}}_{q^{-1}} f(x), \tag{7}
\end{equation*}
$$

and the q^{-1}-integral in the interval $(0, x)$ is

$$
\begin{equation*}
\int_{0}^{x} f(t) d_{q^{-1}} t=(1-q) \sum_{\ell=0}^{\infty} f\left(x q^{-\ell}\right) x q^{-\ell} \tag{8}
\end{equation*}
$$

Now let $1 \leq p<\infty, x>0$, and $\eta \in \mathbb{R}$. Also let $\mathcal{L}_{q^{-1}, \eta}^{p}(0, x)$ be the space of all equivalence classes of functions satisfying

$$
\begin{equation*}
\int_{0}^{x} t^{\eta}|f(t)|^{p} d_{q^{-1}} t<\infty \tag{9}
\end{equation*}
$$

where two functions are defined as equivalent if they are equivalent on the sequence $\left\{x q^{-\ell}: \ell \in \mathbb{N}_{0}\right\}$, where $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. Hence, f is a function in the Banach space $\mathcal{L}_{q^{-1}, \eta}^{p}(0, x)$ with norm

$$
\begin{equation*}
\|f\|_{p, \eta, x}:=\left(\int_{0}^{x} t^{\eta}|f(t)|^{p} d_{q^{-1}} t\right)^{\frac{1}{p}} \tag{10}
\end{equation*}
$$

For the case when $p=2$, it can be seen that the inner product

$$
\begin{equation*}
\langle f, g\rangle:=\int_{0}^{x} t^{\eta} f(t) \overline{g(t)} d_{q^{-1}} t \tag{11}
\end{equation*}
$$

is a separable Hilbert space, where $f, g \in \mathcal{L}_{q^{-1}, \eta}^{2}(0, x)$. If $x=1$, the resulting Hilbert space is $\mathcal{L}_{q^{-1}, \eta}^{2}(0,1)$, and the function $f \in \mathcal{L}_{q^{-1}, \eta}^{2}(0,1)$ is q^{-1}-orthogonal with respect to its own zeros in the interval $(0,1)$ if

$$
\begin{equation*}
\int_{0}^{1} f\left(\lambda_{m} t\right) f\left(\lambda_{n} t\right) d_{q^{-1}} t=\sum_{\ell=0}^{\infty} f\left(\lambda_{m} q^{-\ell}\right) f\left(\lambda_{n} q^{-\ell}\right) q^{-\ell}=0, \quad m \neq n \tag{12}
\end{equation*}
$$

Here, it should be pointed out that an orthonormal basis of $\mathcal{L}_{q^{-1}, \eta}^{2}(0, x)$ is [13]

$$
\varphi_{n}(t)= \begin{cases}\frac{1}{\sqrt{t^{\eta+1}(1-q)}}, & t=x q^{-\ell}, \quad \ell \in \mathbb{N}_{0} \tag{13}\\ 0, & \text { otherwise }\end{cases}
$$

2. q^{-1}-Periodicity

Theorem 1. If the class constituted by all entire functions f of order less than 1 , or of order 1 and minimal type of the form

$$
\begin{equation*}
f(x)=x^{\rho(x)} F(x) \tag{14}
\end{equation*}
$$

where $f(0)=-1 / 2$, and $\rho(x)$ is given by the natural logarithmic relation [14]

$$
\begin{equation*}
\rho(x)=\frac{\log \left(-\frac{1}{2(1-x) \Gamma(1+x / 2)}\right)}{\log (x)}>-\frac{1}{2}, \tag{15}
\end{equation*}
$$

where Γ is the gamma function, and the entire function $F(x)$, with real but not necessarily positive zeros is

$$
\begin{equation*}
F(x)=\exp (c x) \prod_{n=1}^{\infty}\left\{\left(1-\frac{x}{\lambda_{n}}\right) \exp \left(\frac{x}{\lambda_{n}}\right)\right\} \tag{16}
\end{equation*}
$$

where $c=\log (2 \pi)-1-\gamma / 2$, γ is the Euler-Mascheroni constant; if $F(x) \neq 0$ and $f(x)$ is q^{-1}-orthogonal with respect to its zeros; $\sum_{n} \lambda_{n}^{-1}$ is convergent, but not absolutely [16]; then f has the q^{-1}-periodic representation

$$
\begin{equation*}
f_{q^{-1}}(x)=\prod_{\ell=0}^{N-1} \frac{1}{q^{2 \ell+1}+q^{2}} \tag{17}
\end{equation*}
$$

defined on the q^{-1}-geometric set \mathcal{A}, i.e., $f_{q^{-1}}(x)$ is constant in x.

Proof. The proof depends on two lemmas. If

$$
\begin{equation*}
\int_{0}^{1}\left\{f\left(\lambda_{n} t\right)\right\}^{2} d_{q^{-1}} t=\left(q^{-\ell}\right)^{\eta+1}(1-q) \tag{18}
\end{equation*}
$$

then the system

$$
\begin{equation*}
\varphi_{n}(t)=\frac{1}{\sqrt{\left(q^{-\ell}\right)^{\eta+1}(1-q)}} f\left(\lambda_{n} t\right) \tag{19}
\end{equation*}
$$

is orthonormal in $(0,1)$. The following Theorem 2 demonstrates the system $\varphi_{n}(t)$ is complete, independent of q^{-1}-orthogonality.

Theorem 2. If f satisfies the conditions of the previous Theorem 1, other than q^{-1}-orthogonality, g is q^{-1}-integrable, and

$$
\begin{equation*}
\int_{0}^{1} g(t) f\left(\lambda_{n} t\right) d_{q^{-1}} t=0, \quad \forall n \tag{20}
\end{equation*}
$$

then $g(t) \equiv 0$.

Proof. Let $x=r \exp (i \theta)$, where θ is the complex argument, $i=\sqrt{-1}$, and
(21) $\quad h(x)=\int_{0}^{1} g(t) f(x t) d_{q^{-1}} t$.

It is clear that
$(22) \quad h(x)=x^{\rho(x)} H(x)$,
where $H(x)$ is an entire function. Here, we suppose that $F(x)$ is of order less than 1, when $H(x)$ is also of order less than 1 . Since $h\left(\lambda_{n}\right)=0 \forall n$, it then follows that the ratio $[\mathbf{1 7}]$
(23) $\quad \chi(x)=\frac{h(x)}{f(x)}=\frac{H(x)}{F(x)}$
is also an entire function of order less than 1 . Along the imaginary axis $x=r \sin (\theta)$ it can be seen that $|\exp (c x)|=\left|\exp \left(x \lambda_{n}^{-1}\right)\right|=1 \forall n$, where again $c=\log (2 \pi)-$ $1-\gamma / 2$, and

$$
\begin{equation*}
\nu(x, t)=\left|\frac{F(x t)}{F(x)}\right|=\prod_{n=1}^{\infty}\left|\frac{\lambda_{n}-r t \sin (\theta)}{\lambda_{n}-r \sin (\theta)}\right| . \tag{24}
\end{equation*}
$$

Here it should be pointed out that no factor exceeds 1, and the limit of each factor as $r \rightarrow \infty$ is simply t. Therefore $|\nu| \leq 1 \forall r, t$. Moreover, for every fixed value of $t<1$, as $r \rightarrow \infty$ it can be seen that $\nu \rightarrow \infty$. As such,

$$
\begin{equation*}
|\chi(x)|=\left|\int_{0}^{1} g(t) \frac{F(x t)}{F(x)} d_{q^{-1}} t\right| \leq \int_{0}^{1}|g(t)| \nu(x, t) d_{q^{-1}} t \tag{25}
\end{equation*}
$$

is bounded, and tends to zero along the imaginary axis $x=r \sin (\theta)$. Furthermore, suppose that $\chi(x)$ makes an angle of π / α at the origin, and also along the imaginary axis. By denoting the bound on $\chi(x)$ as \mathcal{B}, such that along the imaginary axis
(26) $|\chi(x)| \leq \mathcal{B}$,
then as $r \rightarrow \infty$, it can be seen that

$$
\begin{equation*}
\chi(x)=\mathcal{O}\left(\exp \left(\delta r^{\alpha}\right)\right) \tag{27}
\end{equation*}
$$

for every positive δ, uniformly in the angle. It then follows that the boundedness holds in the region where f is entire and regular for $x=r \exp (i \theta)$. Without loss of generality, suppose that $\theta= \pm \pi /(2 \alpha)$ for the two angles $(-\pi /(2 \alpha), 0)$, and
$(0, \pi /(2 \alpha))$. Also, by letting

$$
\begin{equation*}
F(x)=\exp \left(-\varepsilon x^{\alpha}\right) f(x) \tag{28}
\end{equation*}
$$

it can be seen that $F(x)$ tends to zero on the real axis $x=r \cos (\theta)$, and therefore has an upper bound, denoted \mathcal{B}^{\prime}. Then, by denoting
(29) $\quad \mathcal{B}^{\prime \prime}=\max \left(\mathcal{B}, \mathcal{B}^{\prime}\right)$,
it can be seen that
(30) $\quad|F(x)|=\left|\exp \left[-\varepsilon(r \exp (i \theta))^{\alpha}\right] f(x)\right|$,
where again $\theta= \pm \pi /(2 \alpha)$. It then follows that throughout the angle, and along the imaginary axis $x=r \sin (\theta)$, that
(31) $\quad|F(x)| \leq \mathcal{B}^{\prime \prime}$.

Here, it should be pointed out that if $\mathcal{B}^{\prime} \leq \mathcal{B}$, then $|F(x)|$ assumes the value \mathcal{B}^{\prime} at any point of the real axis $x=r \cos (\theta)$. Consequently $\mathcal{B}^{\prime}=\mathcal{B}^{\prime \prime}, F(x)$ reduces to a constant, and $\mathcal{B}=\mathcal{B}^{\prime \prime}$. Otherwise $\mathcal{B}^{\prime}<\mathcal{B}^{\prime \prime}$, such that $\mathcal{B}=\mathcal{B}^{\prime \prime}$ regardless. Thus,
(32) $|F(x)| \leq \mathcal{B}$.

Accordingly,

$$
\begin{equation*}
|f(x)| \leq \mathcal{B}\left|\exp \left(-\varepsilon x^{\alpha}\right)\right| \tag{33}
\end{equation*}
$$

Taking $\varepsilon \rightarrow 0$ implies that $\mathcal{B}=0$, since $\nu \rightarrow 0$ for every fixed $t<1$ as $r \rightarrow \infty$. Therefore,

$$
\begin{equation*}
\int_{0}^{1} g(t) f(x t) d_{q^{-1}} t=0 \tag{34}
\end{equation*}
$$

However, we are interested in the class of functions of the form of Eq. (14), i.e.,

$$
\begin{equation*}
f(x)=x^{\rho(x)} \sum_{\ell=0}^{\infty} a_{\ell} x^{\ell} \tag{35}
\end{equation*}
$$

where $a_{\ell} \neq 0$ for any ℓ. As such, we assume the following [15]:
(1) There exists a class of series, larger than that of series known classically as convergent, such that a sum corresponds to each series of that class;
(2) Let m and n, where $n<m$, be two positive integers. We then have the relation
(36) $\frac{1-x^{n}}{1-x^{m}}=1-x^{n}+x^{m}-x^{n+m}+x^{2 m}+\cdots$.

At $x=1$, we obtain the Euler series
(37) $\quad \frac{n}{m}=1-1+1-1+1-1+\cdots$
which belongs to the class from assumption (1).
(3) Let \mathcal{S} be the sum of the series $x^{\rho(x)} \sum_{n} a_{n}$ of the class, where $x^{\rho(x)}$ is given by Eq. (15). Then the series itself belongs to the class, and has the sum $x^{\rho(x)} \mathcal{S}$.
(4) If the series $a_{0}+a_{1}+\cdots+a_{n}+\cdots$ has the sum \mathcal{S}, then the series $a_{1}+$ $\cdots+a_{n}+\cdots$ itself has the sum $\mathcal{S}-a_{0}$. As such, it can be seen that

$$
\begin{aligned}
\mathcal{S} & =1-1+1-1+1-1+\cdots \\
& =1-(1-1+1-\cdots) \\
(38) \quad & =1-\mathcal{S},
\end{aligned}
$$

from which we obtain $\mathcal{S}=1 / 2$.

Hence,

$$
\begin{equation*}
\int_{0}^{1} g(t) t^{\rho(x t)+n} d_{q^{-1}} t=0, \quad \forall n \tag{39}
\end{equation*}
$$

and therefore $g(t) \equiv 0$.
3. q^{-1}-Fourier Series

The q^{-1}-Fourier series of $f(x t)$ with respect to the system Eq. (13) is

$$
\begin{align*}
f(x t) & \sim \sum_{n} a_{n}(x) \varphi_{n}(t) \\
& =\sum_{n} a_{n}(x) \frac{1}{\sqrt{\left(q^{-\ell}\right)^{\eta+1}(1-q)}} \tag{40}
\end{align*}
$$

where the Fourier coefficient

$$
\begin{align*}
a_{n}(x) & =\int_{0}^{1} f(x t) \varphi_{n}(t) d_{q^{-1}} t \\
& =\frac{1}{\sqrt{\left(q^{-\ell}\right)^{\eta+1}(1-q)}} \int_{0}^{1} f(x t) f\left(\lambda_{n} t\right) d_{q^{-1}} t \tag{41}
\end{align*}
$$

and by the Parseval completeness theorem [19], we obtain

$$
\begin{align*}
\mathcal{P}\left(x, x^{\prime}\right) & =\int_{0}^{1} f(x t) f\left(x^{\prime} t\right) d_{q^{-1} t} t \\
& =\sum_{n=1}^{\infty} a_{n}(x) a_{n}\left(x^{\prime}\right) \tag{42}
\end{align*}
$$

The following theorem gives the value of $a_{n}(x)$.

Theorem 3. If the conditions of Theorem 1 are satisfied, and $x \neq \lambda_{n}$, then

$$
\begin{equation*}
\int_{0}^{1} f(x t) f\left(\lambda_{n} t\right) d_{q^{-1}} t=\frac{\left(q^{-\ell}\right)^{\eta+1}(1-q)}{f^{\prime}\left(\lambda_{n}\right)} \cdot \frac{f(x)}{x-\lambda_{n}} \tag{43}
\end{equation*}
$$

Proof. First, supposing that $F(x)$ is of order less than 1 , we write
(44a) $\quad h(x)=\int_{0}^{1} f(x t) f\left(\lambda_{n} t\right) d_{q^{-1}} t$,
(44b) $\quad f_{n}(x)=\frac{f(x)}{x-\lambda_{n}}$,
(44c) $g(x)=\frac{h(x)}{f_{n}(x)}$,
(44d) $\quad G(x)=\frac{g(x)}{x+1}$.

It then follows that g is an entire function of order less than $1 ; G$ is regular and of order less than 1 in the half-plane $r \cos (\theta)>0$; and

$$
\begin{equation*}
G(x)=\frac{x-\lambda_{n}}{x+1} \int_{0}^{1} \frac{f(x t)}{f(x)} f\left(\lambda_{n} t\right) d_{q^{-1}} t \tag{45}
\end{equation*}
$$

is bounded, and goes to zero along the angle $\theta= \pm \pi / 4$. It then follows in the quadrant between $\theta= \pm \pi / 4$ that
(46) $\quad g(x)=\mathcal{O}(|x|)$.

In a similar fashion, the same result follows for the remaining three quadrants in the complex plane \mathbb{C}. Obviously, g is linear and

$$
\begin{equation*}
h(x)=g(x) f_{n}(x)=\frac{a x+b}{x-\lambda_{n}} f(x) . \tag{47}
\end{equation*}
$$

However, G goes to zero along the angle $\theta=\pi / 4$ such that $a=0$, and
(48) $\quad h(x)=\frac{b}{x-\lambda_{n}} f(x)$.

The constant b can be obtained by making $x \rightarrow \lambda_{n}$, to obtain Eq. (43).

4. First-Order Linear q^{-1}-Difference Equation

From Eqs. (40), and (42)-(43) it follows that

$$
\begin{equation*}
\mathcal{P}\left(x, x^{\prime}\right)=\int_{0}^{1} f(x t) f\left(x^{\prime} t\right) d_{q^{-1}} t=-f(x) f\left(x^{\prime}\right) \frac{\tau(x)-\tau\left(x^{\prime}\right)}{x-x^{\prime}} \tag{49}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau(x)=\sum_{\ell=1}^{\infty} \frac{\left(q^{-\ell}\right)^{\eta+1}(1-q)}{\left\{f^{\prime}\left(\lambda_{\ell}\right)\right\}^{2}}\left(\frac{1}{x-\lambda_{\ell}}+\frac{1}{\lambda_{\ell}}\right) \tag{50}
\end{equation*}
$$

such that $\tau(0)=0$. Eq. (49) will enable us to determine f. By making $x^{\prime} \rightarrow 0$, it follows that
(51) $\int_{0}^{1} t^{\eta} f(x t) d_{q^{-1}} t=-f(x) \frac{\tau(x)}{x}$,
i.e.,

$$
\begin{equation*}
\int_{0}^{x} u^{\eta} f(u) d_{q} u=-x^{\eta} f(x) \tau(x) \tag{52}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\tau^{\prime}(0)=(q-1) q^{-\ell}\left[1+\eta\left(q^{-\ell}-1\right)\right] \tag{53}
\end{equation*}
$$

Next, we write Eq. (49) in the form

$$
\begin{equation*}
\int_{0}^{x} u^{\rho(u)} F(u)\left(x^{\prime} t\right)^{\rho\left(x^{\prime} t\right)} F\left(x^{\prime} t\right) d_{q} u=-x^{\rho(x)+1} F(x)\left(x^{\prime}\right)^{\rho\left(x^{\prime}\right)} F\left(x^{\prime}\right) \frac{\tau(x)-\tau\left(x^{\prime}\right)}{x-x^{\prime}} \tag{54}
\end{equation*}
$$

Differentiating with respect to x^{\prime}, and evaluating at $x^{\prime}=0$, it can be seen that

$$
\begin{align*}
\left.\frac{\partial}{\partial x^{\prime}}\left(x^{\prime} t\right)^{\rho\left(x^{\prime} t\right)} F\left(x^{\prime} t\right)\right|_{x^{\prime}=0} & =-\frac{t}{4}(2+2 c+\gamma) \tag{55a}\\
-\left.x f(x) \frac{\partial}{\partial x^{\prime}}\left(x^{\prime}\right)^{\rho\left(x^{\prime}\right)} F\left(x^{\prime}\right) \frac{\tau(x)-\tau\left(x^{\prime}\right)}{x-x^{\prime}}\right|_{x^{\prime}=0} & =\frac{\left(2+2 c+\gamma+2 x^{-1}\right) \tau(x)}{4} f(x) \\
& -\frac{\tau^{\prime}(0)}{2} f(x) \tag{55b}
\end{align*}
$$

Using Eqs. (52)-(53), and letting $\eta=1$ for brevity, we finally obtain the q^{-1} integral equation for f, namely

$$
\begin{equation*}
\int_{0}^{x} u f(u) d_{q^{-1}} u=(1-q) q^{-2 \ell} x^{2} f(x) \tag{56}
\end{equation*}
$$

By taking the q^{-1}-difference $\hat{\mathcal{D}}_{q^{-1}}$, and using the q^{-1}-integration by parts, i.e.,

$$
\begin{align*}
\int_{0}^{x} g(t)\left(\hat{D}_{q^{-1}} f(t)\right) d_{q^{-1}} t+\int_{0}^{x}\left(\hat{D}_{q^{-1}} g(t)\right) f\left(q^{-1} t\right) d_{q^{-1}} t & =[f g](x) \\
& -\lim _{\ell \rightarrow \infty}[f g]\left(x q^{-\ell}\right) \tag{57}
\end{align*}
$$

it can be seen that
(58) $\quad \hat{\mathcal{D}}_{q^{-1}} \int_{0}^{x} u f(u) d_{q^{-1}} u=x f(x)-\lim _{\ell \rightarrow \infty} x q^{-\ell} f\left(x q^{-\ell}\right)$,
and

$$
\begin{equation*}
\hat{\mathcal{D}}_{q^{-1}}\left[x^{2} f(x)\right]=\left(\hat{\mathcal{D}}_{q^{-1}} x^{2}\right) f(x)+\left(q^{-1} x\right)^{2} \hat{\mathcal{D}}_{q^{-1}} f(x) \tag{59}
\end{equation*}
$$

Hence, we arrive at the first-order linear q^{-1}-difference equation [18]
(60) $\quad \hat{\mathcal{D}}_{q^{-1}} f(x)=\tilde{a}(x) f(x)$.

Carrying out the q^{-1}-difference $\hat{\mathcal{D}}_{q^{-1}}$ and upon making further simplifications,

$$
\begin{equation*}
f(x)=\left[\frac{q}{q+x \tilde{a}(x)(1-q)}\right] f\left(q^{-1} x\right) \tag{61}
\end{equation*}
$$

where
(62) $\quad \tilde{a}(x)=\frac{q-q^{2}\left(q^{2 \ell}+q\right)}{(q-1) x}$.

Repeating the above recurrence relation N times,

$$
\begin{equation*}
f(x)=f\left(x_{0}\right) \prod_{t=q x_{0}}^{x} \frac{q}{q+t \tilde{a}(t)(1-q)} . \tag{63}
\end{equation*}
$$

As $N \rightarrow \infty$ with $0<q<1$, then $q^{-N} \rightarrow \infty$, and

$$
\begin{align*}
f(x) & =f\left(q^{-N} x\right) \prod_{\ell=0}^{N-1} \frac{q}{q+x q^{-\ell} \tilde{a}\left(x q^{-\ell}\right)(1-q)} \\
& =f(\infty) \prod_{\ell=0}^{N-1} \frac{1}{q^{2 \ell+1}+q^{2}} . \tag{64}
\end{align*}
$$

Since by Eq. (14) we have $f(\infty)=1$, it can be seen in the classical limit where $q \rightarrow 1$ and $\mathcal{A} \rightarrow \mathbb{C}$ that $f(x)=1 / 2 \forall x \in \mathbb{C}$.

5. Conclusion

By examining a class of entire first order q^{-1}-orthogonal functions $f \in \mathcal{L}_{q^{-1}}^{2}(0,1)$, it has been demonstrated that the class is indeed comprised of q^{-1}-periodic functions on the separable Hilbert space interval $(0,1)$. This was accomplished with the q^{-1}-Fourier series, and a q^{-1}-integral equation for obtaining the value of the q^{-1}-periodic constant constituted by the class.

Bibliography

[1] Kac, V. and Cheung, P., 2001. Quantum calculus. Springer Science \& Business Media.
[2] Yan, S.Y., 2015. Quantum computational number theory. Springer International Publishing.
[3] Ismail, M., Ismail, M.E. and van Assche, W., 2005. Classical and quantum orthogonal polynomials in one variable (Vol. 13). Cambridge university press.
[4] Foncannon, J.J., 2008. Classical and quantum orthogonal polynomials in one variable. The Mathematical Intelligencer, 30(1), pp.54-60.
[5] Simon, B., 2005. Orthogonal polynomials on the unit circle. American Mathematical Soc.
[6] Fine, B. and Rosenberger, G., 2012. The fundamental theorem of algebra. Springer Science \& Business Media.
[7] Sanchez-Dehesa, J., 1979. On a general system of orthogonal q-polynomials. Journal of Computational and Applied Mathematics, 5(1), pp.37-45.
[8] Nevai, P.G. and Dehesa, J.S., 1979. On asymptotic average properties of zeros of orthogonal polynomials. SIAM Journal on Mathematical Analysis, 10(6), pp.1184-1192.
[9] Annaby, M.H. and Mansour, Z.S., 2012. q-Fractional calculus and equations (Vol. 2056). Springer.
[10] Heine, E. Handbuch der Kugelfunctionen, Theorie und Anwendungen, vol. 1 (G. Reimer, Berlin, 1878)
[11] Jackson, F.H., 1917. The q-integral analogous to Borel's integral. Messenger Math, 47, pp.5764.
[12] Abreu, L.D., 2006. Functions q-orthogonal with respect to their own zeros. Proceedings of the American Mathematical Society, pp.2695-2701.
[13] Annaby, M.H. 2003. q-Type Sampling Theorems. Result.Math., 44, pp.214-225.
[14] Titchmarsh, E.C., and Heath-Brown, D.R., 1986. Oxford University Press.
[15] Borel, E., 1929. Leçons sur les Series Divergentes. Bull. Amer. Math. Soc, 35, pp.875-876.
[16] Hardy, G.H., 1939. Notes on special systems of orthogonal functions (II): On functions orthogonal with respect to their own zeros. Journal of the London Mathematical Society, 1(1), pp.37-44.
[17] Eringen, A. Cemal, and Titchmarsh, Edward Charles. The theory of functions. London, Oxford University Press, 1939.
[18] Swarttouw, R.F. and Meijer, H.G., 1994. A q-analogue of the Wronskian and a second solution of the Hahn-Exton q-Bessel difference equation. Proceedings of the American Mathematical Society, 120(3), pp.855-864.
[19] Parseval des Chenes, M.A., 1806. Memoires presentes a l'Institut des Sciences, Lettres et Arts, par divers savans, et lus dans ses assemblees. Sciences, mathematiques et physiques (Savans etrangers), 1, p. 638 .

