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Abstract

In the year 1939, the Mathematician G.H. Hardy proved that the only functions

f which satisfy the classical orthogonality relation

� 1

0

f(λmt)f(λnt)dt = 0, m �= n,(1)

are the Bessel functions Jν(t) under certain constraints, where ν > −1 is the order

of the Bessel function, and λm, λn are the zeros of the Bessel function. More

recently, the Mathematician L.D. Abreu proved that if a function f ∈ L2
q(0, 1) is

q-orthogonal with respect to its own zeros in the interval (0, 1), then it satisfies the

q-orthogonality relation

� 1

0

f(λmt)f(λnt)dqt = 0, m �= n,(2)

where the q-integral is a Riemann-Stieltjes integral with respect to a step function

having infinitely many points of increase at the points q�, with the step size at

the point q� being q, ∀ � ∈ N0, where N0 := N ∪ {0}, and 0 < q < 1. Following

these developments, herein we present an equivalence class of entire q−1-periodic

functions satisfying the q−1-orthogonality relation

� 1

0

f(λmt)f(λnt)dq−1t = 0, m �= n.(3)
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1. Introduction

The quantum calculus, otherwise known as the q-calculus [1], has been found to

have a wide variety of interesting applications in computational number theory [2],

and the theory of orthogonal polynomials [3–5], for example. As such, herein we

investigate a class of entire functions that are q−1-orthogonal with respect to their

own zeros, and find that in this equivalence class, the only q−1-periodic functions

are nonzero constant-valued functions. It is well understood by the Fundamental

Theorem of Algebra [6], that a nonzero constant function has no roots. Accord-

ingly, this study aims to develop a novel approach to the field of q−1-orthogonal

polynomials [7], and the distribution of their zeros [8].

The paper is organized as follows: In Sec. 2 we introduce a class of entire

functions, q−1-orthogonal with respect to their own zeros, and demonstrate that

the class is comprised of q−1-periodic (i.e. constant) functions on the complex

plane. Sec. 3 details the q−1-Fourier series, and the completeness relations of

the class. In Sec. 4, a first-order linear q−1-difference equation is obtained for

arriving at the value of the q−1-periodic constant constituted by the class. Finally,

concluding remarks are made in Sec. 5.

1.1. Preliminaries. If q−1 ∈ R is fixed, then a subset of C is named A, and is

also q−1-geometric if q−1x ∈ A whenever x ∈ A. If A ⊂ C is q−1-geometric then it

contains all geometric sequences {xq−�}∞�=0, where x ∈ A such that as q → 1 then

A → C. Unless otherwise noted, herein 0 < q < 1 [9].
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Definition 1. A function f defined on the q−1-geometric set A, where 0 ∈ A,

is said to be q-regular at infinity if there exists a constant C such that

lim
�→∞

f(xq−�) = C, ∀ x ∈ A.(4)

Definition 2. The Euler-Heine q−1-difference operator [10,11], is defined by

D̂q−1f(x) :=
f(x)− f(q−1x)

x− q−1x
, ∀ x ∈ A / {0}.(5)

If 0 ∈ A, the q-derivative at zero is defined for |q| < 1 by

D̂q−1f(0) := lim
�→∞

f(sq−�)− f(0)

sq−�
, ∀ x ∈ A / {0}.(6)

The q−1-derivative at zero is denoted as f �(0), assuming the limit exists and is

independent of x.

The q−1-product rule is [12]

D̂q−1[f(x)g(x)] = f(q−1x)D̂q−1g(x) + g(x)D̂q−1f(x),(7)

and the q−1-integral in the interval (0, x) is

� x

0

f(t)dq−1t = (1− q)
∞�

�=0

f(xq−�)xq−�.(8)
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Now let 1 ≤ p < ∞, x > 0, and η ∈ R. Also let Lp
q−1,η(0, x) be the space of all

equivalence classes of functions satisfying

� x

0

tη|f(t)|pdq−1t < ∞,(9)

where two functions are defined as equivalent if they are equivalent on the sequence

{xq−� : � ∈ N0}, where N0 := N ∪ {0}. Hence, f is a function in the Banach space

Lp
q−1,η(0, x) with norm

||f ||p,η,x :=
�� x

0

tη|f(t)|pdq−1t

� 1
p

.(10)

For the case when p = 2, it can be seen that the inner product

�f, g� :=
� x

0

tηf(t)g(t)dq−1t,(11)

is a separable Hilbert space, where f, g ∈ L2
q−1,η(0, x). If x = 1, the resulting

Hilbert space is L2
q−1,η(0, 1), and the function f ∈ L2

q−1,η(0, 1) is q−1-orthogonal

with respect to its own zeros in the interval (0, 1) if

� 1

0

f(λmt)f(λnt)dq−1t =
∞�

�=0

f(λmq
−�)f(λnq

−�)q−� = 0, m �= n.(12)

Here, it should be pointed out that an orthonormal basis of L2
q−1,η(0, x) is [13]

(13) ϕn(t) =





1√
tη+1(1−q)

, t = xq−�, � ∈ N0;

0, otherwise.
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2. q−1-Periodicity

Theorem 1. If the class constituted by all entire functions f of order less than

1, or of order 1 and minimal type of the form

f(x) = xρ(x)F (x),(14)

where f(0) = −1/2, and ρ(x) is given by the natural logarithmic relation [14]

ρ(x) =
log

�
− 1

2(1−x)Γ(1+x/2)

�

log(x)
> −1

2
,(15)

where Γ is the gamma function, and the entire function F (x), with real but not

necessarily positive zeros is

F (x) = exp(cx)
∞�

n=1

��
1− x

λn

�
exp

� x

λn

��
,(16)

where c = log(2π) − 1 − γ/2, γ is the Euler-Mascheroni constant; if F (x) �= 0

and f(x) is q−1-orthogonal with respect to its zeros;
�

n λ
−1
n is convergent, but not

absolutely [16]; then f has the q−1-periodic representation

fq−1(x) =
N−1�

�=0

1

q2�+1 + q2
,(17)

defined on the q−1-geometric set A, i.e., fq−1(x) is constant in x.

Proof. The proof depends on two lemmas. If

� 1

0

{f(λnt)}2dq−1t = (q−�)η+1(1− q),(18)
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then the system

ϕn(t) =
1�

(q−�)η+1(1− q)
f(λnt)(19)

is orthonormal in (0, 1). The following Theorem 2 demonstrates the system ϕn(t)

is complete, independent of q−1-orthogonality. �

Theorem 2. If f satisfies the conditions of the previous Theorem 1, other than

q−1-orthogonality, g is q−1-integrable, and

� 1

0

g(t)f(λnt)dq−1t = 0, ∀ n,(20)

then g(t) ≡ 0.

Proof. Let x = r exp(iθ), where θ is the complex argument, i =
√
−1, and

h(x) =

� 1

0

g(t)f(xt)dq−1t.(21)

It is clear that

h(x) = xρ(x)H(x),(22)

where H(x) is an entire function. Here, we suppose that F (x) is of order less than

1, when H(x) is also of order less than 1. Since h(λn) = 0 ∀ n, it then follows that

the ratio [17]

χ(x) =
h(x)

f(x)
=

H(x)

F (x)
(23)
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is also an entire function of order less than 1. Along the imaginary axis x = r sin(θ)

it can be seen that | exp(cx)| = | exp(xλ−1
n )| = 1 ∀ n, where again c = log(2π) −

1− γ/2, and

ν(x, t) =

�����
F (xt)

F (x)

����� =
∞�

n=1

�����
λn − rt sin(θ)

λn − r sin(θ)

�����.(24)

Here it should be pointed out that no factor exceeds 1, and the limit of each factor

as r → ∞ is simply t. Therefore |ν| ≤ 1 ∀ r, t. Moreover, for every fixed value of

t < 1, as r → ∞ it can be seen that ν → ∞. As such,

|χ(x)| =
�����

� 1

0

g(t)
F (xt)

F (x)
dq−1t

����� ≤
� 1

0

|g(t)|ν(x, t)dq−1t(25)

is bounded, and tends to zero along the imaginary axis x = r sin(θ). Furthermore,

suppose that χ(x) makes an angle of π/α at the origin, and also along the imaginary

axis. By denoting the bound on χ(x) as B, such that along the imaginary axis

|χ(x)| ≤ B,(26)

then as r → ∞, it can be seen that

χ(x) = O
�
exp(δrα)

�
(27)

for every positive δ, uniformly in the angle. It then follows that the boundedness

holds in the region where f is entire and regular for x = r exp(iθ). Without loss

of generality, suppose that θ = ±π/(2α) for the two angles (−π/(2α), 0), and
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(0, π/(2α)). Also, by letting

F (x) = exp(−εxα)f(x)(28)

it can be seen that F (x) tends to zero on the real axis x = r cos(θ), and therefore

has an upper bound, denoted B�. Then, by denoting

B�� = max(B,B�),(29)

it can be seen that

|F (x)| =
��� exp

�
− ε

�
r exp(iθ)

�α�
f(x)

���,(30)

where again θ = ±π/(2α). It then follows that throughout the angle, and along

the imaginary axis x = r sin(θ), that

|F (x)| ≤ B��.(31)

Here, it should be pointed out that if B� ≤ B, then |F (x)| assumes the value B� at

any point of the real axis x = r cos(θ). Consequently B� = B��, F (x) reduces to a

constant, and B = B��. Otherwise B� < B��, such that B = B�� regardless. Thus,

|F (x)| ≤ B.(32)
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Accordingly,

|f(x)| ≤ B| exp(−εxα)|.(33)

Taking ε → 0 implies that B = 0, since ν → 0 for every fixed t < 1 as r → ∞.

Therefore,

� 1

0

g(t)f(xt)dq−1t = 0.(34)

However, we are interested in the class of functions of the form of Eq. (14), i.e.,

f(x) = xρ(x)
∞�

�=0

a�x
�,(35)

where a� �= 0 for any �. As such, we assume the following [15]:

(1) There exists a class of series, larger than that of series known classically as

convergent, such that a sum corresponds to each series of that class;

(2) Let m and n, where n < m, be two positive integers. We then have the

relation

1− xn

1− xm
= 1− xn + xm − xn+m + x2m + · · · .(36)

At x = 1, we obtain the Euler series

n

m
= 1− 1 + 1− 1 + 1− 1 + · · ·(37)

which belongs to the class from assumption (1).
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(3) Let S be the sum of the series xρ(x)
�

n an of the class, where xρ(x) is given

by Eq. (15). Then the series itself belongs to the class, and has the sum

xρ(x)S.

(4) If the series a0 + a1 + · · · + an + · · · has the sum S, then the series a1 +

· · ·+ an + · · · itself has the sum S − a0. As such, it can be seen that

S = 1− 1 + 1− 1 + 1− 1 + · · ·

= 1− (1− 1 + 1− · · · )

= 1− S,(38)

from which we obtain S = 1/2.

Hence,

� 1

0

g(t)tρ(xt)+ndq−1t = 0, ∀ n,(39)

and therefore g(t) ≡ 0. �

3. q−1-Fourier Series

The q−1-Fourier series of f(xt) with respect to the system Eq. (13) is

f(xt) ∼
�

n

an(x)ϕn(t)

=
�

n

an(x)
1�

(q−�)η+1(1− q)
,(40)
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where the Fourier coefficient

an(x) =

� 1

0

f(xt)ϕn(t)dq−1t

=
1�

(q−�)η+1(1− q)

� 1

0

f(xt)f(λnt)dq−1t;(41)

and by the Parseval completeness theorem [19], we obtain

P(x, x�) =

� 1

0

f(xt)f(x�t)dq−1t

=
∞�

n=1

an(x)an(x
�).(42)

The following theorem gives the value of an(x).

Theorem 3. If the conditions of Theorem 1 are satisfied, and x �= λn, then

� 1

0

f(xt)f(λnt)dq−1t =
(q−�)η+1(1− q)

f �(λn)
· f(x)

x− λn
.(43)

Proof. First, supposing that F (x) is of order less than 1, we write

h(x) =

� 1

0

f(xt)f(λnt)dq−1t,(44a)

fn(x) =
f(x)

x− λn
,(44b)

g(x) =
h(x)

fn(x)
,(44c)

G(x) =
g(x)

x+ 1
.(44d)
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It then follows that g is an entire function of order less than 1; G is regular and of

order less than 1 in the half-plane r cos(θ) > 0; and

G(x) =
x− λn

x+ 1

� 1

0

f(xt)

f(x)
f(λnt)dq−1t(45)

is bounded, and goes to zero along the angle θ = ±π/4. It then follows in the

quadrant between θ = ±π/4 that

g(x) = O(|x|).(46)

In a similar fashion, the same result follows for the remaining three quadrants in

the complex plane C. Obviously, g is linear and

h(x) = g(x)fn(x) =
ax+ b

x− λn
f(x).(47)

However, G goes to zero along the angle θ = π/4 such that a = 0, and

h(x) =
b

x− λn
f(x).(48)

The constant b can be obtained by making x → λn, to obtain Eq. (43). �

4. First-Order Linear q−1-Difference Equation

From Eqs. (40), and (42)-(43) it follows that

P(x, x�) =

� 1

0

f(xt)f(x�t)dq−1t = −f(x)f(x�)
τ(x)− τ(x�)

x− x�
,(49)
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where

τ(x) =
∞�

�=1

(q−�)η+1(1− q)

{f �(λ�)}2
� 1

x− λ�
+

1

λ�

�
,(50)

such that τ(0) = 0. Eq. (49) will enable us to determine f . By making x� → 0, it

follows that

� 1

0

tηf(xt)dq−1t = −f(x)
τ(x)

x
,(51)

i.e.,

� x

0

uηf(u)dqu = −xηf(x)τ(x).(52)

Hence,

τ �(0) = (q − 1)q−�[1 + η(q−� − 1)].(53)

Next, we write Eq. (49) in the form

� x

0

uρ(u)F (u)(x�t)ρ(x
�t)F (x�t)dqu = −xρ(x)+1F (x)(x�)ρ(x

�)F (x�)
τ(x)− τ(x�)

x− x�
.(54)
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Differentiating with respect to x�, and evaluating at x� = 0, it can be seen that

∂

∂x�
(x�t)ρ(x

�t)F (x�t)

�����
x�=0

= − t

4
(2 + 2c+ γ),(55a)

−xf(x)
∂

∂x�
(x�)ρ(x

�)F (x�)
τ(x)− τ(x�)

x− x�

�����
x�=0

=
(2 + 2c+ γ + 2x−1)τ(x)

4
f(x)

− τ �(0)

2
f(x).(55b)

Using Eqs. (52)-(53), and letting η = 1 for brevity, we finally obtain the q−1-

integral equation for f , namely

� x

0

uf(u)dq−1u = (1− q)q−2�x2f(x).(56)

By taking the q−1-difference D̂q−1, and using the q−1-integration by parts, i.e.,

� x

0

g(t)
�
D̂q−1f(t)

�
dq−1t+

� x

0

�
D̂q−1g(t)

�
f(q−1t)dq−1t = [fg](x)

− lim
�→∞

[fg](xq−�),(57)

it can be seen that

D̂q−1

� x

0

uf(u)dq−1u = xf(x)− lim
�→∞

xq−�f(xq−�),(58)

and

D̂q−1[x2f(x)] = (D̂q−1x2)f(x) + (q−1x)2D̂q−1f(x).(59)
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Hence, we arrive at the first-order linear q−1-difference equation [18]

D̂q−1f(x) = ã(x)f(x).(60)

Carrying out the q−1-difference D̂q−1 and upon making further simplifications,

f(x) =
� q

q + xã(x)(1− q)

�
f(q−1x),(61)

where

ã(x) =
q − q2(q2� + q)

(q − 1)x
.(62)

Repeating the above recurrence relation N times,

f(x) = f(x0)
x�

t=qx0

q

q + tã(t)(1− q)
.(63)

As N → ∞ with 0 < q < 1, then q−N → ∞, and

f(x) = f(q−Nx)
N−1�

�=0

q

q + xq−�ã(xq−�)(1− q)

= f(∞)
N−1�

�=0

1

q2�+1 + q2
.(64)

Since by Eq. (14) we have f(∞) = 1, it can be seen in the classical limit where

q → 1 and A → C that f(x) = 1/2 ∀ x ∈ C.
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5. Conclusion

By examining a class of entire first order q−1-orthogonal functions f ∈ L2
q−1(0, 1),

it has been demonstrated that the class is indeed comprised of q−1-periodic func-

tions on the separable Hilbert space interval (0, 1). This was accomplished with

the q−1-Fourier series, and a q−1-integral equation for obtaining the value of the

q−1-periodic constant constituted by the class.
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[15] Borel, E., 1929. Leçons sur les Series Divergentes. Bull. Amer. Math. Soc, 35, pp.875-876.

[16] Hardy, G.H., 1939. Notes on special systems of orthogonal functions (II): On functions or-

thogonal with respect to their own zeros. Journal of the London Mathematical Society, 1(1),

pp.37-44.

[17] Eringen, A. Cemal, and Titchmarsh, Edward Charles. The theory of functions. London, Oxford

University Press, 1939.

[18] Swarttouw, R.F. and Meijer, H.G., 1994. A q-analogue of the Wronskian and a second solution

of the Hahn-Exton q-Bessel difference equation. Proceedings of the American Mathematical

Society, 120(3), pp.855-864.

[19] Parseval des Chenes, M.A., 1806. Memoires presentes a l’Institut des Sciences, Lettres et Arts,

par divers savans, et lus dans ses assemblees. Sciences, mathematiques et physiques (Savans

etrangers), 1, p.638.


