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Abstract. We consider magnetic Schrödinger operator H = (i∇+A)2−αδΓ with an attractive singu-
lar interaction supported by a piecewise smooth curve Γ being a local deformation of a straight line.
The magnetic field B is supposed to be nonzero and local. We show that the essential spectrum is
[− 1

4α
2,∞), as for the non-magnetic operator with a straight Γ, and demonstrate a sufficient condition

for the discrete spectrum of H to be empty.

1. Introduction

It is well known that a magnetic field, even a local one, can influence substantially the behavior
of waveguide systems, in particular their geometrically induced discrete spectrum. While a particle
confined to a fixed-profile tube with Dirichlet boundary can exists in localized states whenever
the tube is bent or locally deformed [8], the presence of a local magnetic field can destroy such
a discrete spectrum. This is a consequence of a Hardy-type inequality1 proved by Ekholm and
Kovařı́k [5], for a more general form of this result see [12, Thm 9.9].

The analogous effect of bound state existence coming from the geometry of the interaction sup-
port was observed is a class of singular Schrödinger operators, usually dubbed leaky quantum wires,
with attractive contact interaction supported by a curve [8, Chap. 10]. Here too, as observed first
in [7], perturbation of a straight line by a bend or local deformation induces, under suitable asymp-
totic straightness conditions, the existence of a nonempty discrete spectrum. The above waveguide
result then leads to the natural question what would happen with such bound states in presence of
a magnetic field. The aim of this letter is to provide a partial answer.

Let us mention that magnetic Schrödinger operators with such singular interactions have been
studied recently, however, in a different situation where the field was homogeneous. In such a case
that spectral picture changes completely. The magnetic field itself turns the essential spectrum into
the family of infinitely degenerate Landau levels and the effect of the singular interaction depends
on its support: a finite curve splits the Landau levels into clusters of eigenvalues [1], a straight line
produces an absolutely continuous spectrum analogous to the well-known edges states [3] or the
Iwatsuka model [10, 11], and a non-straight support may give rise to isolated eigenvalues [9].

A local field is a much weaker perturbation which does not change the essential spectrum, the
question is what has to happen so that the discrete spectrum would be destroyed. We are going to
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example see, e.g., [2].
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prove one such sufficient condition referring to the situation when the curve supporting the singular
interaction is a local deformation of a straight line. To be more specific, we are going to consider
operator that can be formally written as

(1.1a) H = (i∇ + A)2 − αδΓ,

where A is a vector potential corresponding to magnetic field B, α > 0, and Γ is a curve of the form
Γ = (x, γ(x)), where γ(·) a continuous, piecewise C1 smooth function. There are several ways to
define the operator properly, the simplest one is to identify it with the unique self-adjoint operator
associated with the quadratic form

(1.1b) q : q[ψ] =

∫
R2
|i∇ + A|2dxdy − α

∫
Γ

|ψ|2dµ, ψ ∈ H1(R2),

where µ is the measure on Γ referring to the arc length of the curve. In addition to the stated
regularity of Γ, we will assume that

(a) the magnetic field B = rotA is compactly supported, supp(B) ⊂ Ω := (−a, a)2 for some a > 0,
(b) outside Ω the curve Γ coincides with the straight line Γ0 := {x, x}x∈R and for x ∈ (−a, a) it stays

within Ω, that is, |γ(x)| ≤ a.

Let us note that if we rotate the axes passing to the coordinates x ± y, the segment of Γ in Ω may
or may not be graph of a function. It is straightforward to check that under the stated assumption
the form is closed and bounded from below, hence the operator H is well defined. The operator
domain of H is the same as for the operator without the magnetic field consisting of functions
ψ ∈ H1(R2) ∩ H2(R2 \ Γ) with the property that the normal derivative of ψ at the point x ∈ Γ has
the jump equal to −αψ(x).

2. Main results

It is expected that the two local perturbations, the magnetic field and the departure of Γ from the
straight line will not alter the essential spectrum. This is indeed the case:

Theorem 1. Under the stated assumptions the essential spectrum of operator H coincides with the
half-line

[
− 1

4α
2,∞

)
.

Our main interest concerns the possibility that the applied magnetic field destroys the discrete
spectrum. The main result of this letter is the following sufficient condition:

Theorem 2. Adopt the same assumptions and suppose that B is not identically zero. Then there
exists a constant α0 = α0(Ω, B) > 0 such that for α ∈ (0, α0] the spectrum of operator (1.1a) below
− 1

4α
2 is empty provided that

‖γ′‖∞ ≤
2α2

0

α2 − 1.
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3. Proofs

Let us begin with the proof of Theorem 1. First we are going to show that the essential spectrum
of H contains the half-line

[
− 1

4α
2,∞

)
. We employ the Weyl criterion [13, Thm VII.12]. Put

λ = − 1
4α

2 + 2p2, p , 0, and consider the sequence of vectors

ψk : ψk(x, y) =
1
√

k
e−

α

2
√

2
|x−y| eip(x+y)/2 χ

( x
k

)
,

where χ is a smooth function with support in (1, 2) and k ∈ N.
It is straightforward to check that ψk ∈ Dom(H); the idea is to use the fact that there is a part of

plane where the magnetic field has no influence. Indeed, choosing the Landau gauge for the vector
potential A, that is, putting A(x, y) =

(
−

∫ y
0 B(x, t) dt, 0

)
, we get A(x, y) = 0 for |x| > a. For k large

enough we thus have

∂ψk(x, y)
∂x

=
1
√

k
e−

α

2
√

2
|x−y| eip(x+y)/2

[(
−

α

2
√

2
sgn(x − y) +

ip
2

)
χ
( x
k

)
+

1
k
χ′

( x
k

) ]
,

∂ψk(x, y)
∂y

=
1
√

k
e−

α

2
√

2
|x−y| eip(x+y)/2

(
α

2
√

2
sgn(x − y) +

ip
2

)
,

hence using (1.1b) and dµ =
√

2 dx we get by a direct computation

q[ψk] −
(α2

4
+ p2

)
‖ψk‖

2 =
(α2

4
+ p2

) 2
√

2
α
‖χ‖2 +

1
k2

2
√

2
α
‖χ′‖2 − α

√
2 ‖χ‖2

+
(α2

4
− p2

) 2
√

2
α
‖χ‖2 =

1
k2

2
√

2
α
‖χ′‖2 = O(k−2),

and since ‖ψk‖
2 = 2

√
2

α ‖χ‖
2 is independent of k, we infer that − 1

4α
2 + p2 ∈ σ(H). Moreover, one

can choose a sequence {kn}
∞
n=1 such that kn → ∞ as n → ∞ and the supports of the functions ψkn

are mutually disjoint which means that − 1
4α

2 + p2 ∈ σess(H).
Next we have to establish that the spectrum of H below − 1

4α
2, if any, can be only discrete.

Neumann bracketing yields the estimate

(3.1) H ≥ H1 ⊕ H2,

where H1 is the Neumann restriction of H to L2(R2\Ω) and H2 is the complementary Neumann
restriction to L2(Ω). Denoting ΓΩ := Γ � Ω and using the conventional abbreviations for partial
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derivatives, one can check easily that∫
R2\Ω

|i∇u + Au|2 dx dy − α
∫

Γ\ΓΩ

|u|2 dµ

≥

∫
R\(−a,a)

∫
R
|uy|

2 dy dx +

∫
R\(−a,a)

∫
R

∣∣∣∣iux − u
∫ y

0
B(x, t) dt

∣∣∣∣2 dx dy − α
√

2
∫
R\(−a,a)

|u(x, x)|2 dx

≥

∫
R\(−a,a)

∫
R
|uy|

2 dy dx −
α
√

2

∫
R\(−a,a)

|u(x, x)|2 dx

+

∫
R\(−a,a)

∫
R

∣∣∣∣iux − u
∫ y

0
B(x, t) dt

∣∣∣∣2 dx dy −
α
√

2

∫
R\(−a,a)

|u(x, x)|2 dx.

In the last term on the right-hand side we may replace
∫
R\(−a,a) |u(x, x)|2 dx by α√

2

∫
R\(−a,a) |u(y, y)|2 dy.

Noting then that for any y ∈ R \ [−a, a] the integral
∫ y

0 B(x, t) dt depends only on x and using the

fact that the principal eigenvalue of operator − d2

dt2 −
α√
2
δ(t) is − 1

8α
2, the above estimate implies

∫
R2\Ω

|i∇u + Au|2 dx dy − α
∫

Γ\ΓΩ

|u|2 dµ ≥ −
α2

8

( ∫
R\(−a,a)

∫
R

+

∫
R

∫
R\(−a,a)

)
|u|2 dx dy

≥ −
α2

4

∫
R2\Ω

|u|2 dx dy ;(3.2)

this means that the spectrum of H1 below − 1
4α

2 is empty.
It remains to deal with operator H2. Our task will be done if we check that its spectrum is

purely discrete; by minimax principle, it is sufficient to show that H2 is bounded from below by
an operator with a purely discrete spectrum. To this aim we will estimate the integral

∫
ΓΩ
|u|2 dµ

appearing in the singular perturbation using the magnetic Sobolev norm of u. To begin with, it is
easy to see that for any fixed x there is a y0 = y0(x) ∈ (−a, a) such that

|u(x, y0)|2 ≤
1

2a

∫ a

−a
|u(x, z)|2dz.

In view of the identity

|u(x, y)|2 =

∫ y

y0

∂

∂z
|u(x, z)|2 dz + |u(x, y0)|2,

where the derivative in the integral equals 2 Re
(
u(x, z)uz(x, z)

)
, we have the estimate

|u(x, y)|2 ≤ ε
∫ a

−a
|uz(x, z)|2 dz +

1
ε

∫ a

−a
|u(x, z)|2 dz +

1
√

2a

∫ a

−a
|u(x, z)|2 dz

≤ ε

∫ a

−a
|uz(x, z)|2 dz +

(
1
ε

+
1
√

2a

) ∫ a

−a
|u(x, z)|2 dz.
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for any ε > 0. Choosing thus A =
(
−

∫ y
0 B(x, t) dt, 0

)
we infer that∫

ΓΩ

|u|2 dµ =

∫ a

−a
|u(x, γ(x))|2

√
1 + γ′(x)2 dx

≤

√
1 + ‖γ′‖2∞

(
ε

∫
Ω

|i∇u + Au|2 dx dy +

(
1
ε

+
1
√

2a

) ∫
Ω

|u|2 dx dy
)
.

This means that H2 is, in the sense of quadratic forms, estimated from below by the operator(
1 − αε

√
1 + ‖γ′‖2∞

) (
i∇u + A

)2
− α

(
1
ε

+
1
√

2a

)
which for small enough values of ε has a purely discrete spectrum. This establishes the claim of
Theorem 1.

In order to prove Theorem 2 we need the following two lemmata:

Lemma 1. Assume that B ∈ Lloc(R2) is not identically zero on a bounded domain ω ⊂ R2, then the
principal eigenvalue of the magnetic Neumann Laplacian on ω with the field B is positive.

Proof. We have to demonstrate that

inf
H1(ω), ‖u‖=1

∫
ω
|i∇u + Au|2 dx dy ≥ c

holds for some positive c.
Let B = B(p0,R) ⊂ ω be a ball such that

∫
B

B(x, y) dx dy is not zero. We are going to use the
technics developed in [6]. By diamagnetic inequality we get∫

ω
|i∇u + Au|2 dx dy ≥

1
2

∫
ω
|i∇u + Au|2 dx dy +

1
2

∫
B

|i∇u + Au|2 dx dy

≥
1
2

∫
ω
|∇|u||2 dx dy +

1
2

∫
B

|i∇u + Au|2 dx dy.(3.3)

According to Lemma 3.1 in [5] there is a constant c0 = c0(B) > 0 such that∫
B

|i∇u + Au|2 dx dy ≥ c0

∫
B

|u|2 dx dy.

The estimate (3.3) implies that for any u satisfying ‖u‖ = 1 we have∫
ω
|i∇u + Au|2 dx dy ≥

1
2

∫
ω
|∇|u||2 dx dy +

c0

2

∫
B

|u|2 dx dy

≥ min
{ 1

2 ,
1
2 c0

}
inf

w∈H1(ω),
w≥0,‖w‖=1

(∫
ω
|∇w|2 dx dy +

∫
B
|w|2 dx dy

)
(3.4)

Let us estimate the right-hand side of (3.4). For any w ∈ H1(ω) with the unit L2 norm we use the
representation

w = βϕ + f ,
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where ϕ = 1√
vol(ω)

is the positive normalized ground state eigenfunction of the Neumann Laplacian
on ω, f is orthogonal to ϕ, and

(3.5) |β|2 + ‖ f ‖2L2(ω) = 1.

This choice means that ∫
ω
|∇ f |2 dx dy ≥ λ2

∫
ω
| f |2 dx dy,

where λ2 is the second eigenvalue of the Neumann Lapacian on ω, and consequently∫
ω
|∇w|2 dx dy +

∫
B

|w|2 dx dy =

∫
ω
|∇ f |2 dx dy +

∫
B

|βϕ + f |2 dx dy

≥ λ2

∫
ω
| f |2 dx dy +

∫
B

|βϕ + f |2 dx dy.(3.6)

The functions ϕ and f are orthogonal on ω but not on B, hence to estimate further the right-hand
side of (3.6) we have to consider separately three cases. The second integral is certainly not smaller
than

(
‖βϕ‖L2(B) − ‖ f ‖L2(B)

)2, hence if

|β|2
∫
B

|ϕ|2 dx dy ≥ 4
∫
B

| f |2 dx dy

the expression in question can be estimated as∫
B

|βϕ + f |2 dx dy ≥ λ2

∫
ω
| f |2 dx dy +

|β|2

4

∫
B

|ϕ|2 dx dy,

and similarly for ∫
B

| f |2 dx dy ≥ 4|β|2
∫
B

|ϕ|2 dx dy

the lower bound is ∫
B

|βϕ + f |2 dx dy ≥ λ2

∫
ω
| f |2 dx dy + |β|2

∫
B

|ϕ|2 dx dy.

In the remaining case when

1
4

∫
B

| f |2 dx dy < |β|2
∫
B

|ϕ|2 dx dy < 4
∫
B

| f |2 dx dy

we just know that the squared norm difference is nonnegative. Instead, we then split the first term
on the right-hand side of (3.6) and estimate one half of it from below from the last inequality
obtaining

λ2

2

∫
ω
| f |2 dx dy +

|β|2λ2

8

∫
B

|ϕ|2 dx dy.

Putting these bounds together we get∫
ω
|∇w|2 dx dy +

∫
B

|w|2 dx dy ≥
λ2

2

∫
ω
| f |2 dx dy +

|β|2

4
min

{
1,
λ2

2

} vol(B)
vol(ω)

.



MAGNETIC FIELD INFLUENCE ON THE DISCRETE SPECTRUM OF LOCALLY DEFORMED LEAKY WIRES 7

If β ≥ 1/2 the right-hand side of the last inequality does not exceed 1
16 min

{
1, λ2

2

}
vol(B)
vol(ω) , in the

opposite case relation (3.5) shows that the lower bound is 3
8λ2 >

1
16 min

{
1, λ2

2

}
vol(B)
vol(ω) . Combining

finally this conclusion with relation (3.4) we arrive at the bound

(3.7) infσ(−∆ω
N) ≥

vol(B)
16vol(ω)

min
{
1,
λ2

2

}
min

{
1,

c0

2

}
,

which proves the lemma. �

We also need the following simple estimate:

Lemma 2. Let I ⊂ R be an interval and denote by |I| its length, then for any g ∈ H1(I) and all
x ∈ I we have

|g(x)|2 ≤ 2|I|
∫

I
|g′(t)|2 dt +

2
|I|

∫
I
|g(t)|2 dt

Proof. One can check easily that there exists a point x0 ∈ I such that

|g(x0)| ≤
1
√
|I|

√∫
I
|g(t)|2dt ;

this fact in combination with Schwarz inequality yields

|g(x)|2 =

∣∣∣∣∣∣
∫ x

x0

g′(t) d − g(x0)

∣∣∣∣∣∣2 ≤ 2|I|
∫

I
|g′(t)|2 d +

2
|I|

∫
I
|g(t)|2 d.

which is what we have set up to prove. �

After this preliminary let us return to proof of the theorem. Applying Lemma 2 to u(x, y) on Ω

for a fixed x one gets

(3.8) |u(x, y)| ≤ 2C
∫ a

−a
(|ut(x, t)|2 + |u(x, t)|2) dt, y ∈ (−a, a),

where

(3.9) C := max
{
2a,

1
2a

}
.

In what follows we use again the notation ΓΩ = {x, γ(x)}x∈(−a,a). We have∫
ΓΩ

|u|2 dµ =

∫ a

−a
|u(x, γ(x))|2

√
1 + γ′(x)2 dx

and relation(3.8) allows to estimate the above expression as follows,∫
ΓΩ

|u2| dµ ≤ C
∫ a

−a

√
1 + γ′(x)2

∫ a

−a

(
|uy(x, y)|2 + |u(x, y)|2

)
dy dx,

with the constant C defined in (3.9); in this way we arrive to the bound

(3.10)
∫

ΓΩ

|u|2 dµ ≤ C
√

1 + ‖γ′‖2∞

∫
Ω

(
|uy(x, y)|2 + |u(x, y)|2

)
dx dy.
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Using once more Landau gauge for the vector potential, A =
(
−

∫ y
0 B(x, t) dt, 0

)
, we infer from

(3.10) that

(3.11)
∫

ΓΩ

|u|2 dµ ≤ C
√

1 + ‖γ′‖2∞

(∫
Ω

|i∇u + Au|2 dx dy +

∫
Ω

|u|2 dx dy
)
.

Next we use Lemma 1 by which the ground state eigenvalue of the magnetic Neumann Laplacian
on Ω is not smaller than some κ = κΩ,B > 0. The inequality (3.11) implies∫

Ω

|i∇u + Au|2 dx dy − α
∫

ΓΩ

|u2| dµ

≥

(
1 −Cα

√
1 + ‖γ′‖2∞

) ∫
Ω

|i∇u + Au|2 dx dy −Cα
√

1 + ‖γ′‖2∞

∫
Ω

|u|2 dx dy

≥ κ

(
1 −Cα

√
1 + ‖γ′‖2∞

) ∫
Ω

|u|2 dx dy −Cα
√

1 + ‖γ′‖2∞

∫
Ω

|u|2 dx dy

=

(
κ −Cα(1 + κ)

√
1 + ‖γ′‖2∞

) ∫
Ω

|u|2 dx dy,(3.12)

hence by choosing

(3.13) α

√
1 + ‖γ′‖2∞ ≤

κ

(κ + 1)C

we achieve that the right-hand side of (3.12) becomes non negative. In combination with (3.2) this
means that the spectrum below − 1

4α
2 is empty.

To finish the proof we have to specify the range of the values of α compatible with (3.13). We
note that ‖γ′‖∞ ≥ 1. Indeed, was it not the case we get a contradiction because the identity

γ(a) =

∫ a

−a
γ′(t) dt + γ(−a)

would lead to a contradiction with γ(±a) = ±a. Hence
√

1 + ‖γ′‖2∞ ≥
√

2 and the condition (3.13)
may be satisfied only if

(3.14) α ≤ α0 :=
κ

√
2(κ + 1)C

,

where C is the number given by (3.9). For a fixed α ∈ (0, α0] the condition (3.13) then reads√
1 + ‖γ′‖2∞ ≤

√
2α0
α which shows how much the curve Γ may depart from the straight line without

giving rise to bound states,

‖γ′‖∞ ≤
2α2

0

α2 − 1.

This completes the proof of Theorem 2.
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4. Concluding remarks

Let us add a few comments. First of all, for weak magnetic fields the value α0 of the critical
coupling is expected to be small. By (3.14) its behavior depends on the principal eigenvalue of
the magnetic Neumann Laplacian on Ω which is expected to go zero as B → 0 ; one could use,
for instance, [4], with a bit of extra work considering first the operator on a region Ω′ ⊃ Ω with
a smooth boundary. Furthermore, for a fixed γ one can always achieve that the discrete spectrum
is empty by choosing α small enough. In this respect it is useful to mention that the analogy with
Dirichlet waveguides that we mentioned in the introduction as an inspiration is far from complete:
a counterpart to the coupling strength α could be, in a sense, the inverse of the waveguide width
but the latter cannot take arbitrary values, for smooth waveguides at least.

On the other hand, our geometric assumptions are rather restrictive and it would be useful to
find an extension of the present result, at least to curves Γ straight outside a compact region but not
necessarily coming from a local deformation of a straight line.

Acknowledgment. The authors are obliged to Hynek Kovařı́k for useful comments. The work
of P.E. was in part supported by the European Union within the project CZ.02.1.01/0.0/0.0/16
019/0000778.

References

[1] J. Behrndt, P. Exner, M. Holzmann, V. Lotoreichik: The Landau Hamiltonian with δ-potentials supported on curves,
Rev. Math. Phys. 32 (2020), 2050010.
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Břehová 7, 11519 Prague, Czech Republic, and Department of Theoretical Physics, Nuclear Physics Institute, Czech
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