ELEMENTARY PROOF OF THE CARTAN MAGIC FORMULA

OLEG ZUBELEVICH
DEPT. OF THEORETICAL MECHANICS, MECHANICS AND MATHEMATICS FACULTY,
M. V. LOMONOSOV MOSCOW STATE UNIVERSITY
RUSSIA, 119899, MOSCOW, MGU

Abstract. In this short note we present very simple proof of the famous Cartan homotopy formula

$$
L_{v} \omega=d i_{v} \omega+i_{v} d \omega .
$$

The Proof

Let M be a smooth manifold, $\operatorname{dim} M=m$, and let v, ω be a smooth vector field and a smooth differential k-form respectively.

Our aim is to prove the following Cartan formula

$$
L_{v} \omega=d i_{v} \omega+i_{v} d \omega .
$$

Here L_{v} is the Lie derivative and i_{v} is the interior product.
First we check the formula for each point $x \in M$ such that $v(x) \neq 0$. It is well known [1] that if $v(\tilde{x}) \neq 0$ then in some neighbourhood of the point \tilde{x} there are local coordinates $x=\left(x^{1}, \ldots, x^{m}\right)$ such that in these coordinates the vector field v is presented as follows $v=\partial_{1}$.

The corresponding flow has the form

$$
\begin{equation*}
g^{t}(x)=\left(x^{1}+t, x^{2}, \ldots, x^{m}\right) \tag{0.1}
\end{equation*}
$$

By linearity of L_{v}, d, i_{v} it is sufficient to check the Cartan formula for the monomials of the following two sorts:

1) $\omega=a(x) d x^{1} \wedge d x^{j_{1}} \wedge \ldots \wedge d x^{j_{k-1}}, \quad 1<j_{1}<\ldots<j_{k-1} \leq m ;$ and
2) $\gamma=b(x) d x^{l_{1}} \wedge \ldots \wedge d x^{l_{k}}, \quad 1<l_{1}<\ldots<l_{k} \leq m$.

Consider the case 1); the case two 2) is carried out similarly.

[^0]By direct calculation we obtain

$$
i_{v} \omega=a d x^{j_{1}} \wedge \ldots \wedge d x^{j_{k-1}}, \quad d i_{v} \omega=\sum_{s=1}^{m} \frac{\partial a}{\partial x^{s}} d x^{s} \wedge d x^{j_{1}} \wedge \ldots \wedge d x^{j_{k-1}}
$$

and

$$
\begin{aligned}
d \omega & =\sum_{r=2}^{m} \frac{\partial a}{\partial x^{r}} d x^{r} \wedge d x^{1} \wedge d x^{j_{1}} \wedge \ldots \wedge d x^{j_{k-1}} \\
i_{v} d \omega & =-\sum_{r=2}^{m} \frac{\partial a}{\partial x^{r}} d x^{r} \wedge d x^{j_{1}} \wedge \ldots \wedge d x^{j_{k-1}} .
\end{aligned}
$$

On the other hand by formula (0.1) it follows that

$$
\begin{aligned}
L_{v} \omega & =\left.\frac{d}{d t}\right|_{t=0} a\left(x^{1}+t, x^{2}, \ldots, x^{m}\right) d\left(x^{1}+t\right) \wedge d x^{j_{1}} \wedge \ldots \wedge d x^{j_{k-1}} \\
& =\frac{\partial a}{\partial x^{1}} d x^{1} \wedge d x^{j_{1}} \wedge \ldots \wedge d x^{j_{k-1}} .
\end{aligned}
$$

This proves the Cartan formula at each point of the set

$$
F=\{x \in M \mid v(x) \neq 0\} .
$$

This set is open. By continuity, the Cartan formula remains valid in the closure \bar{F}.

The set $N=M \backslash \bar{F}$ is open and $\left.v\right|_{N}=0$. This implies that in any local coordinates all partial derivatives of v vanish at each point of N. Consequently, on the set N the Cartan formula takes the trivial form:

$$
0=0 .
$$

The Cartan formula is proved.

References

[1] Taylor M.E. (2011) Basic Theory of ODE and Vector Fields. In: Partial Differential Equations I. Applied Mathematical Sciences, vol 115. Springer, New York, NY

[^0]: 2000 Mathematics Subject Classification. 00-01.
 Key words and phrases. Differential forms, interior product, Homotopy formula. Partially supported by grant RFBR 18-01-00887.

