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bDoppler Institute for Mathematical Physics and Applied Mathematics, Czech Technical
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25068 Řež near Prague, Czechia

Abstract

We investigate spectral properties of quantum graphs in the form of a periodic
chain of rings with a connecting link between each adjacent pair, assuming
that wave functions at the vertices are matched through conditions manifestly
non-invariant with respect to time reversal. We discuss, in particular, the high-
energy behavior of such systems and the limiting situations when one of the
edges in the elementary cell of such a graph shrinks to zero. The spectrum
depends on the topology and geometry of the graph. The probability that
an energy belongs to the spectrum takes three different values reflecting the
vertex parities and mirror symmetry, and the band patterns are influenced by
commensurability of graph edge lengths.
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1. Introduction

One can say about quantum graphs that they belong to the class of ideas
coming before their time. Proposed first more than eighty years ago [9] and
briefly investigated [11] in line with the original proposal they were then for-
gotten for several decades and attracted attention only at the end of the 1980s
in connection with the progress in semiconductor physics. In the years that
followed they appeared to be a source of many deep questions going beyond this
‘second motivation’; we refer to the book [3] for a thorough introduction to this
field and a rich bibliography.
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Among numerous applications of quantum graphs we single out a recent
paper aiming at modeling the anomalous Hall effect [12] which served as an
indirect motivation of the present work. Let us recall that in order to make the
Hamiltonian of a quantum graph, which acts as a one-dimensional Schrödinger
operator at each edge, a self-adjoint operator, one has to match the wave func-
tions properly at the graph vertices. There is a number of way how to do that:
the most general condition in a vertex v connecting n edges can be written in
the form

(U − I)ψ(v) + i`(U + I)ψ′(v) = 0, (1.1)

where ψ(v) and ψ′(v) are vectors of boundary values of the functions and their
(outward) derivatives, ` > 0 is a parameter fixing the length scale, and U is an
n× n unitary matrix. This multitude raises the question about the meaning of
the parameters since in general different matrices U define a different physics.
If the continuity of wave functions at the vertex is required, the number of
parameters is significantly reduced. In this case we end up with the so-called δ
coupling [5] which refers to U = 2

n+iαJ−I in (1.1) with the single parameter α ∈
R, where J is the matrix whose all entries are equal to one; the particular case
with α = 0 is usually labeled as Kirchhoff. These couplings can be interpreted
in the limiting sense starting from the dynamics in a family of thin tubes with
Neumann boundary built around the graph ‘skeleton’ that shrink transversally
to zero width: such a limit leads to the Kirchhof coupling [10, 11], and the δ
coupling is obtained by adding a properly scaled potential in the vertex region.

The δ coupling was also used in the above mentioned paper [12]. However,
in order to produce a Hall-type behavior, that is, a voltage perpendicular to
the current passing though the sample without the presence of a magnetic field,
the authors had to impose a preferential direction on the graph edges which is
something hard to justify from the first principles. On the other hand, the family
of condition (1.1) includes those which violate the time reversal invariance. A
simple example proposed by two of us in [8] corresponds to the matrix

U =


0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0

 ; (1.2)

it is chosen so that at a fixed value of the momentum, k = `−1, the motion in the
vertex is cyclic, cf. (2.2) below. The lack of time reversal invariance is obvious
having in mind that this operation is represented by complex conjugation.

Instead of following the mentioned motivation, however, our main focus will
be another striking property of this coupling. It was noticed in [8] that transport
properties of such vertices depend on the graph topology, specifically on the
vertex parity. This was first manifested on band spectra of infinite lattice graphs:
comparing square and hexagonal lattice with the indicated coupling one finds
that their spectra are at high energies dominated by bands and gaps, respectively
[8]. The same mechanism determines the high-energy behavior of finite periodic
graphs [6] and strip ‘waveguides’ [7].
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In another recent paper [2] we investigated the spectral behavior of a one-
dimensional periodic graph in the form of a ring chain of the form sketched in
Fig. 1. We worked in the symmetric situation, `2 = `3 = π, and the length
scale fixed by ` = 1, and found, in particular, that the spectrum is for any `1
dominated by gaps the size of which grows with k, the square root of energy.
The widths of spectral bands, on the other hand, are bounded being either
asymptotically constant or decreasing as O(k−1) depending on whether the ap-
propriate spectral condition has a double or a single root, respectively. What
was important, however, was that all the gaps (in the positive part of the spec-
trum) closed as `1 → 0, illustrating that this vanishing edge limit, which follows
from the general result of [4], can be rather non-uniform.

The danger of such examples is that they may be too particular giving re-
sults non-generic in a broader context. This motivates us examine a wider class
of such chain graphs. Except for the obvious change of the spectrum associated
with an overall scaling, we are going to work now with three parameters, `1, `3,
and `, instead of one considered in [2]. This analysis will provide deeper insights
into the structure of the band spectrum and show, in particular, that its high-
energy behavior can be far more complex than the two mentioned asymptotic
types might indicate, especially in connection with the possible incommensura-
bility of edge lengths involved. This concerns both the gaps patterns, in particu-
lar, the distribution of their widths, as well as the ‘conductivity’. It appear that
gapless positive spectrum in case of direct coupling of the rings is closely related
to the mirror symmetry of the graph; once it is violated the probability that an
energy value is found in the spectrum for a graph with vertices of degree four
is reduced to one half. This shows that an even degree of vertices of a periodic
graph does not guarantee that its positive spectrum is dominated by bands. On
the other hand, the same quantity is zero when the vertices are of degree three
so the nonuniform character of the limit mentioned above is preserved.

Let us mention briefly the contents of the paper. In the next section we
discuss the generic case when all the edge lengths are nonzero. We derive the
spectral condition and analyze the band spectrum, in particular, we describe its
behavior in the high-energy regime. We also find conditions under which some
of the gaps close and show that the negative spectrum consists of at most two
bands. The following two sections are devoted to the situations when one of the
three edge length parameters is zero, and as a consequence, the chain vertices
have an even parity.

2. The general case with vertices of degree three

We begin the discussion with infinite chain graph of the form sketched in
Fig. 1 assuming that all the edge lengths involved are nonzero, `j > 0 for
j = 1, 2, 3, and as a consequence, all the graph vertices are of degree three. The
operator to investigate is the Laplacian on the graph acting as ψj 7→ −ψ′′j on

the jth edge. Its domain consists of functions which are locally H2and to make
the operator self-adjoint, we have to match them properly at the vertices.
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Figure 1: An elementary cell of the ring chain graph

In the introduction we indicated our interest in a particular class of vertex
couplings violating the time-reversal invariance which in the components read

(ψj+1 − ψj) + i`(ψ′j+1 + ψ′j) = 0, (cyclically) (2.1)

where we use the symbols ψj , ψ
′
j with an abuse of notation for the boundary

values of the function ψj on the jth edge and its (outward) derivative. The
condition contains another length-type parameter, `, which is a fixed positive
number; its inverse is the momentum value at which the coupling exhibits the
‘maximum rotation’ in the sense that the on-shell S matrix

S(k) =
k`− 1 + (k`+ 1)U

k`+ 1 + (k`− 1)U
(2.2)

reduces for k = `−1 to the cyclic matrix (1.2), in the present case of the 3 × 3
size. Since the spectral properties change in an obvious way when all the length-
type quantities are scaled simultaneously, we may without loss of generality fix
the scale requiring, for instance, that the upper and lower ring arcs lengths, `2
and `3, satisfy `2 + `3 = 2π.

The chain graph we consider is periodic, hence the spectral analysis can be
performed using the Floquet method [3, Chap. 4] writing the corresponding
Hamiltonian as

H =

∫ π

−π
H(θ) dθ (2.3)

where the fiber H(θ) in the direct integral decomposition (2.3) acts on L2(C),
where C is the period cell and C∗ = [−π, π) is the dual cell, or Brillouin zone.
Each of the operators H(θ) has a purely discrete spectrum and the spectrum of
H` is the union

⋃
θ∈C∗ σ(H(θ)). It is well known that the unique continuation

property does not hold in general in quantum graphs [3, Sec. 3.4], hence σ(H)
may contain, in addition to the absolutely continuous part, infinitely degenerate
eigenvalues, or ‘flat bands’ as physicists usually call them; we will see that this
indeed may happen here.

The elementary cell of our graph, indicated in Fig. 1, contains two vertices.
Choosing the coordinates to increase from the left to right, we use for the wave
function components the following Ansatz

ψj(x) = a+j eikx + a−j e−ikx, x ∈ [0, 12`j ],

ϕj(x) = b+j eikx + b−j e−ikx, x ∈ [− 1
2`j , 0], (2.4)
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with j = 1, 2, 3. The point x = 0 is in the middle of the connecting edge, hence
the function must be continuous there together with its derivative. Together
with the Floquet conditions at the ‘free ends’ of the cell we have

ψ2

(
1
2`2
)
− eiθϕ2

(
− 1

2`2
)

= 0, ψ′2
(
1
2`2
)
− eiθϕ′2

(
− 1

2`2
)

= 0,

ψ3

(
1
2`3
)
− eiθϕ3

(
− 1

2`3
)

= 0, ψ′3
(
1
2`3
)
− eiθϕ′3

(
− 1

2`3
)

= 0, (2.5)

ψ1(0)− ϕ1(0) = 0, ψ′1(0)− ϕ′1(0) = 0.

This has to be complemented by the matching conditions (2.1) at the vertices.
Since the derivatives are taken in the outward direction, they read

ψ3(0)− ψ1

(
1
2`1
)

+ i`
(
ψ′3(0)− ψ′1

(
1
2`1
))

= 0,

ψ2(0)− ψ3(0) + i` (ψ′2(0) + ψ′3(0)) = 0,

ψ1

(
1
2`1
)
− ψ2(0) + i`

(
ψ′2(0)− ψ′1

(
1
2`1
))

= 0, (2.6)

ϕ2(0)− ϕ1

(
− 1

2`1
)

+ i`
(
ϕ′1
(
− 1

2`1
)
− ϕ′2(0)

)
= 0,

ϕ3(0)− ϕ2(0) + i` (−ϕ′2(0)− ϕ′3(0)) = 0,

ϕ1

(
− 1

2`1
)
− ϕ3(0) + i`

(
ϕ′1
(
− 1

2`1
)
− ϕ′3(0)

)
= 0.

Inserting now from (2.4) into (2.6) and taking into account (2.5), we get a system
of six linear equations for the coefficients a±j and b±j , j = 1, 2, 3. To be solvable,
its determinant has to vanish; this requirement yields the spectral condition,

2 cos θ
(
k2`2 + 1

)(
sin k`2 + sin k`3

)
+ 4k` sin θ

(
cos k`3 − cos k`2

)
+ 2
(
k2`2 + 1

)(
sin k`1 − sin k(`1 + `3) cos k`2 − sin k`2 cos k`1 cos k`3

)
+
(
k4`4 + 3

)
sin k`1 sin k`2 sin k`3 = 0, (2.7)

which can be simplified to the form

sinπk
(
16 cos θ

(
k2`2 + 1

)
cos k (π − `3) + 32k` sin θ sin k (π − `3)

)
+
(
k2`2 − 1

)2(
sin k (2π − `1) + 2 sin k`1 cos 2k (π − `3)

)
+ 8
(
k2`2 + 1

)
sin k`1 −

(
k2`2 + 3

)2
sin k (`1 + 2π) = 0, (2.8)

taking into account that `2 = 2π − `3 holds by assumption. We divide the
discussion of its implications into several parts.

2.1. Positive spectrum

Let us first investigate the flat bands. The condition (2.8) can have a solution
independent of θ only if the first term on its left-hand side vanishes identically.
Consider thus k = n ∈ N, then (2.8) reduces to

−4
(
n2`2 − 1

)2
sinn`1 sin2 n`3 = 0,

and from this condition we infer that
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� For ` = 1
n and k = n ∈ N, the number k2 belongs to the spectrum

independently of `1 and `3, being always embedded in the continuous
spectrum.

� Assuming that at least one of `i, i = 1, 3, is a rational multiple of π,
in other words `i = p

qπ with coprime p, q ∈ N, the number k2 = q2n2

with n ∈ N belongs to the spectrum for all p, independently of the other
parameters, being always embedded in the continuous spectrum if the
rationality concerns `3 (or equivalently, `2).

� In particular, for `1 = mπ with m ∈ N, the number k2 = n2 belongs to the
spectrum for any n ∈ N, independently of the other parameters. Unless
`3 (or `2) is simultaneously a multiple of π, these eigenvalues may not be
embedded in the continuous spectrum.

� While this concerns the degree-four case discussed in the subsequent sec-
tions, we note here also that if `i = 0 holds for at least one of i = 1, 3, the
number k2 = n2 belongs to the spectrum for any n ∈ N independently of
the other parameters, being always embedded in the continuous spectrum
in the case of `3 = 0 (or `2 = 0).

The claims concerning the embedding follow from the continuous spectrum anal-
ysis to which we now proceed.

Away of these flat bands, the spectrum is (absolutely) continuous having a
band-and-gap structure. To show it, we rewrite the condition (2.8) in the form

a cos θ + b sin θ = c (2.9)

with

a = 16
(
k2`2 + 1

)
sin kπ cos k (π − `3) ,

b = 32k` sin kπ sin k (π − `3) , (2.10)

c = −
(
k2`2 − 1

)2(
sin k(2π − `1) + 2 sin k`1 cos 2k(π − `3)

)
− 8
(
k2`2 + 1

)
sin k`1 +

(
k2`2 + 3

)2
sin k(`1 + 2π).

For a positive k 6∈ N we have a2 + b2 6= 0 and introducing sinϑ = a√
a2+b2

and

cosϑ = b√
a2+b2

, we can rewrite condition (2.9) as

sin(ϑ+ θ) =
c√

a2 + b2
. (2.11)

Consequently, k2 belongs to a spectral band or gap, respectively, if

a2 + b2 − c2 ≥ 0, (2.12)

or
a2 + b2 − c2 < 0. (2.13)
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Figure 2: The band edge crossings indicated by black dots for ` = 1, `3 = 1
3
π in dependence

on `1 > 0. The red lines correspond to flat bands indicated in the first two bullet points
above, independent of `1. On the other hand, the dots at k2 = 4 and 16 correspond to the
flat bands of the second bullet point independent of `3.

The band-gap structure depends on the parameters of the model. While
generically the gaps are open, some of them may close; this typically happens if
the neighboring band edges exhibit a crossing as illustrated in Fig. 2; note that
these points appear in sequences having the same energy.

We can identify such situations under commensurability requirements con-
cerning relations of the lengths `3 and `1 and the ring perimeter. Let us focus
on the former case, the latter can be dealt with in a similar way. If `3 is a
rational multiple of π, i.e. `3 = m

n π with coprime m,n ∈ N, the band edges

cross at the points with the coordinates are (`1, k) = ( j`3im , in), i, j ∈ N (the case
`3 = π, that is, m = n = 1, is thus included). To see that we write the spectral
condition as F(k, `1, θ) = 0, where F(k, `1, θ) is the left-hand side of (2.8) for
the particular values of `3. Sufficient conditions to have such a crossings are

∂F(k, `1, θ)

∂`1
=
∂F(k, `1, θ)

∂θ
=
∂F(k, `1, θ)

∂k
= 0 ; (2.14)

the first and last are obvious from Fig. 2, the middle one comes from the obser-
vation that the dispersion curves are smooth and the band edges correspond to
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their extrema. The derivatives can be easily calculated,

∂F(k, `1, θ)

∂`1
= −k

(
k2`2 − 1

)2 (
cos k (2π − `1)− 2 cos k`1 cos 2k

(
π − πm

n

))
+ 8k

(
k2`2 + 1

)
cos k`1 − k

(
k2`2 + 3

)2
cos k (`1 + 2π) , (2.15)

∂F(k, `1, θ)

∂θ
= 32k` cos θ sin k

(
π − πm

n

)
− 16 sin θ

(
k2`2 + 1

)
cos k

(
π − πm

n

)
,

(2.16)

∂F(k, `1, θ)

∂k
=

16

n
sin(πk) sin k

(
π − πm

n

)(
π cos θ

(
k2`2 + 1

)
(m− n) + 2n` sin θ

)
+
(
k2`2 − 1

)2(
2`1 cos k`1 cos 2k

(
π − πm

n

)
− 4
(
π − πm

n

)
sin k`1 sin 2k

(
π − πm

n

))
+ 4k`2

(
k2`2 − 1

)(
2 sin k`1 cos 2k

(
π − πm

n

)
+ sin k(2π − `1)

)
+ 16k`2 sin k`1

+ π cosπk
(

16 cos θ
(
k2`2 + 1

)
cos k

(
π − πm

n

)
+ 32k` sin θ sin k

(
π − πm

n

))
− 4k`2

(
k2`2 + 3

)
sin k(`1 + 2π)− (`1 + 2π)

(
k2`2 + 3

)2
cos k(`1 + 2π)

+
32

n
k` sinπk cos k

(
π − πm

n

)(
(n−m)π sin θ + n` cos θ

)
+ (2π − `1)

(
k2`2 − 1

)2
cos k(2π − `1) + 8`1

(
k2`2 + 1

)
cos k`1. (2.17)

To solve the equations (2.14) we first note that (2.15) is independent of θ and it
can be easily checked that it vanishes for k = in. On the other hand, substituting
k = in into (2.16) and (2.17), we obtain the conditions

−16 sin θ
(
i2n2`2 + 1

)
cos (i(n−m)π) = 0

and
16π

(
i2n2`2 + 1

) (
cos θ cos (imπ)− cos (in`1)

)
= 0,

respectively. As can be seen, the former is satisfied only in the center of the
Brillouin zone or at its edges, θ = 0,±π. Inspecting the latter at those points,
we find that it is fulfilled for `1 = j

inπ, that is

16π
(
i2n2`2 + 1

) (
cos θ cos (imπ)− cos (jπ)

)
= 0.

This condition can be always satisfied depending on the parity of im and j: for
the same and opposite parity, it happens with θ = 0 and θ = ±π, respectively.

Let us summarize the results about the positive spectrum obtained so far:

� Flat bands: a single one, namely k2 = n2, exists if the length parameter
` = 1

n for some n ∈ N. The existence of the other ones follows from
the commensurability of the edges with the loop length: if `i = p

qπ with

coprime p, q ∈ N, the number k2 = q2n2 is a flat band for any n ∈ N,
being moreover embedded in the continuum for i = 3 but not necessarily
so for i = 1.
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� Away from the flat bands the spectrum is absolutely continuous having a
bandgap structure.

� Particular gaps may close under commensurability conditions: if `3 = m
n π

with coprime m,n ∈ N and `1 = j`3 with j ∈ N, neighboring bands touch
at the energies k2 = i2n2 for any i ∈ N.

The dependence of the spectrum on the parameter `3 for a fixed length `1 of the
connecting links showing, in particular, the gap closing is illustrated in Figs. 3
and 4.

0 1 2 3 4 5 6

0

2

4

6

8

10

ℓ3

k
2

Figure 3: The positive spectrum for ` = 1 and `1 = 3
2
π

2.2. Asymptotic behavior of spectral bands

The structure of bands and gaps, in particular, their behavior at high ener-
gies are vital for transport properties of such a chain. In [2] we have shown that
for ` = 1, `2 = `3 = π, and any `1 > 0 the spectrum is dominated by gaps and
the band widths remain bounded; we also identified two types of behavior as
k →∞, the asymptotically constant and decreasing as O(k−1). To get a deeper
insight and to see how the spectrum looks like in our more general case, let us
substitute from (2.10) into (2.13); keeping the highest power of k, we get

−16 k8`8 sin2 k`1 sin2 k (2π − `3) sin2 k`3 +O(k6) < 0. (2.18)

Consequently, the spectrum is again dominated at high energies by gaps – as
expected for a chain with vertices of degree three – because bands may exist
only in the vicinity of the points

kj,n =
nπ

`j
, n ∈ N, (2.19)
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Figure 4: The positive spectrum for ` = 1 and `1 = 1
3
π

at which the leading term vanishes.
Let us take a closer look at their structure. To this end, it is useful to rewrite

the spectral condition (2.7) in the form A4k
4 +A2k

2 +A1k +A0 = 0, where

A4 := 4`4 sin k`1 sin k`2 sin k`3,

A2 := 2`2
(
cos θ

(
sin k`2 + sin k`3

)
+ sin k`1 − sin k`2 cos k`1 cos k`3

)
− 2`2 sin k (`1 + `3) cos k`2,

A1 := 4k` sin θ
(

cos k`3 − cos k`2
)
,

A0 := 2
(

sin k`2
(

cos θ − cos k`1 cos k`3
)

+ cos θ sin k`3 − sin k (`1 + `3) cos k`2

)
+ sin k`1

(
3 sin k`2 sin k`3 + 2

)
.

Since the cubic term is absent, the spectral condition acquires the asymptotic
form

A4 +
A2

k2
= O(k−3), (2.20)

from which we can deduce the behavior of bands in the vicinity of the points
(2.19) at which the wavelength is commensurate with an edge.

The analysis in the three cases is similar, thus we present a detailed discus-
sion in the first of them only and restrict ourselves to the results in the others.
To describe the bands around k = k1,n = nπ

`1
, we set

k =
nπ

`1
+ δ, n ∈ N.
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In that case we have k−2 =
(
`1
πn

)2
+O(n−3) as n→∞, and the expansions

cos k`3 = cos
πn`3
`1
− δ`3 sin

πn`3
`1
− δ2`23

2
cos

πn`3
`1

+
δ3`33

6
sin

πn`3
`1

+O(δ4),

sin k`3 = sin
πn`3
`1

+ δ`3 cos
πn`3
`1
− δ2`23

2
sin

πn`3
`1
− δ3`33

6
cos

πn`3
`1

+O(δ4),

sin k`1 = δ(−1)n`1 −
1

6
δ3(−1)n`31 +O(δ4),

cos k`1 = (−1)n − 1

2
δ2(−1)n`21 +O(δ4),

sin k`2 = sin
πn`2
`1

+ δ`2 cos
πn`2
`1
− δ2`22

2
sin

πn`2
`1
− δ3`32

6
cos

πn`2
`1

+O(δ4),

cos k`2 = cos
πn`2
`1
− δ`2 sin

πn`2
`1
− δ2`22

2
cos

πn`2
`1

+
δ3`32

6
sin

πn`2
`1

+O(δ4),

in terms of δ. Substituting these relations in (2.20), we see that δ has to satisfy
the following relation,

β2 cos θ + β1
π2n2

+ δ
(
β3 +

β5 cos θ + β4
π2n2

)
+ δ2

(
β6 +

β8 cos θ + β7
π2n2

)
+ δ3

(
β9 +

β10 + β11 cos θ

π2n2

)
+O(δ4) = 0, (2.21)

where the coefficients βi, i = 1, ..., 11 are functions of the parameters n, `, `j ; it
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is straightforward if tedious to find them explicitly:

β1 = 2(−1)n+1`2`21 sin
2π2n

`1
, β2 = 2`2`21

(
sin

πn`2
`1

+ sin
πn`3
`1

)
,

β3 = (−1)n`1`
4 sin

πn`2
`1

sin
πn`3
`1

,

β4 = 2(−1)n+1`2`21

(
2π cos

2π2n

`1
+ `1

(
cos

πn`2
`1

cos
πn`3
`1
− 1

))
,

β5 = 2`2`21

(
`2 cos

πn`2
`1

+ `3 cos
πn`3
`1

)
,

β6 = (−1)n`4`1

(
`2 sin

πn`3
`1

cos
πn`2
`1

+ `3 sin
πn`2
`1

cos
πn`3
`1

)
, (2.22)

β7 = (−1)n`2`21

(
`21 sin

2π2n

`1
+ 4π2 sin

2π2n

`1

)
+ 2(−1)n`2`31

(
`2 sin

πn`2
`1

cos
πn`3
`1

+ `3 sin
πn`3
`1

cos
πn`2
`1

)
,

β8 = −`2`21
(
`22 sin

πn`2
`1

+ `23 sin
πn`3
`1

)
,

β9 =
1

6
(−1)n`4`1

(
6`2`3 cos

πn`2
`1

cos
πn`3
`1
−
(
`21 + 3

(
`22 + `23

))
sin

πn`2
`1

sin
πn`3
`1

)
,

β10 = (−1)n`2`31

((
`22 + `23

)
cos

πn`2
`1

cos
πn`3
`1
− 2`2`3 sin

πn`2
`1

sin
πn`3
`1

)
+

1

3
(−1)n`2`21

(
`31

(
cos

πn`2
`1

cos
πn`3
`1
− 1

)
+ 6π`21 cos

2π2n

`1
+ 8π3 cos

2π2n

`1

)
,

β11 = −1

3
`2`21

(
`32 cos

πn`2
`1

+ `33 cos
πn`3
`1

)
.

In the leading order, δ can be determined from the first two terms in Eq. (2.21),

δ =
−β2 cos θ − β1

β5 cos θ + β4 + π2β3n2
,

12



so that it behaves asymptotically as

δ =
1

π2n2
−β2 cos θ − β1

β3
+O(n−4),

provided that β3 which also depends on n does not vanish and stays away from
zero. In that case we obtain the following general asymptotic expressions for
energy and the width of the bands

En(θ) = k2θ =
(πn
`1

)2
+

2

`1

1

πn

−β2 cos θ − β1
β3

+O(n−3),

4En = k2π − k20 =
4

`1

1

πn

∣∣∣β2
β3

∣∣∣+O(n−3), (2.23)

as n→∞ which shows, in particular, that the band width behaves like O(n−1),
that is, O(k−1) in terms of the corresponding momentum values. In the excep-
tional cases when β3 vanishes, higher powers of δ in (2.21) must be taken into
account.

However, even in the generic case the gaps may exhibit a different behavior
depending on the commensurability of the parameters involved:

� If `2
`1

and `3
`1

are both rational, β3 as function of n is periodic and, in
particular, it has periodically distributed zeros. This may happen for all
n when all the lengths involved coincide, as is the case in Example 1 below,
but if ratios are not that simple, there are n’s for which β3 is nonzero. In
view of the periodicity, those have the distance from zero bounded from
below by a positive number, and therefore the O(n−1) asymptotics (2.23)
applies to them.

� If, on the other hand, both the `2
`1

and `3
`1

are irrational, β3 is nonzero for
any n, but one can find sequences of gap indices along which β3 tends to
zero in correspondence with rational approximations of the given ratios
and some band may be considerably wider than their neighboring ones.

In addition to that, of course, there are various mixed cases. To get a better
idea, let us look at some examples:

Example 2.1. The simplest situation refers to a particular case of the model
considered in [2] when `1 = `2 = `3 = π. Substituting these values into (2.22),
we get β1 = β2 = β3 = β6 = β7 = β8 = 0 and

β4 = −β5 = −4π3(−1)n`2, β9 = π3(−1)n`4, β10 = −10β11 =
20

3
π5(−1)n`2.

Substituting these values into (2.21)) we infer that

δ =
2

`πn

√
1− cos θ +O(n−3),

13



referring to the energy En(θ) = k2θ = n2 + 4
π`

√
1− cos θ+O(n−2) as a function

of the quasimomentum, hence the band widths are

4En = k2π − k20 =
4
√

2

π`
+O(n−2),

being asymptotically constant as n → ∞. As needed, the dimension of this
quantity is that of inverted squared length, recall that `1 = π.

It may happen that the band widths have several nonzero limits as n→∞.

Example 2.2. Let `1 = `3 = 4
11π and `2 = 18

11π with ` = 1. In this case, we
have β3 = 0 for all n ∈ N while β4, β5, β10, β11 are all nonzero. The remaining
coefficients depend on the parity: we have β9 = 0 for odd n and β1 = β2 =
β6 = β7 = β8 = 0 for the even ones. Consequently, (2.21)) implies two types of
asymptotic behavior. For even n, solving

δ

(
β5 cos θ + β4

π2n2

)
+ δ3

(
β9 +

β10 + β11 cos θ

π2n2

)
= 0,

we arrive at

4En =
2

`1

√
β5 − β4 −

√
−β4 − β5√

β9
+O(n−2),

which assumes two different values of the leading term, 11
3π

√
11 ≈ 3.8701 and

11
3π (
√

11 − 2) ≈ 1.537 for n = 4m and n = 4m − 2, respectively. For odd n, on
the other hand, solving

β2 cos θ + β1
π2n2

+ δ

(
β5 cos θ + β4

π2n2

)
+ δ2

(
β6 +

β7 + β8 cos θ

π2n2

)
= 0,

we get two roots; using the fact that β1 + β2 = 0 holds in this case, they both
simplify to the same expression,

4En =
2

`1

√
β2 − β1
β6

+O(n−1),

in which that leading term value is 11
π ≈ 3.501. Hence all the band widths

here are asymptotically constant assuming three different values as shown in
Fig. 5. The plot is rather simple but it is useful for comparison with the other
examples given below. To make it more visible how the values are switching as
the band index is changing, we draw here and in the following the lines joining
points referring to the adjacent values of n. Recall also that the quantity plotted
here is the leading term which represents a reliable characterization of the band
width provided it is much smaller than the width of the adjacent gaps. For
comparison we plot here also the (leading term of the) latter; we see that the
condition is satisfied, the better the large the band index is.

In other cases the asymptotically constant bands may be combined with
shrinking ones.

14
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Figure 5: Band width leading term vs. band index (referring to bands around the points nπ
`1

)

for `1 = `3 = 4
11
π, `2 = 18

11
π, and ` = 1 in comparison with the gap width

Example 2.3. Let now `1 = π
5 , `2 = 13π7 , `3 = π

7 , and ` = 1, in which
case β1 = β2 = 0 for any n ∈ N, while β4, β5, β9, β10, β11 never vanish and
β3 = β6 = β7 = β8 = 0 holds for n = 7m. In the latter case, we use (2.21)) and
solve

δ
(β5 cos θ + β4

π2n2

)
+ δ3

(
β9 +

β11 cos θ + β10
π2n2

)
= 0 ;

this yields bands of asymptotically constant widths appearing as spikes in Fig. 6
below,

4En =
2

`1

√
β5 − β4 −

√
−β4 − β5√

β9
+O(n−2)

with the leading term 28
π

√
10
13 ≈ 7.817. On the other hand, if n is not a multiple
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104
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Figure 6: The leading term vs. band index for `1 = π
5

, `2 = 13π
7

, `3 = π
7

, and ` = 1, again
in comparison with the gaps width

15



of seven, equation (2.21)) leads to

δ

(
β3 +

β5 cos θ + β4
π2n2

)
+ δ2

(
β6 +

β8 cos θ + β7
π2n2

)
= 0,

producing bands of decreasing widths,

4En =
4π

`1

1

n

∣∣∣∣β5β6 − β3β8π2β2
6

∣∣∣∣+O(n−2). (2.24)

Fig. 6 shows that the coefficient of n−1 in the leading term is periodic (mod 7)
and that the gaps dominates as n increases.

On the other hand, it may happen that ‘almost all’ bands are shrinking with
respect to the band index which is the case when we make some of the edges
incommensurate.

Example 2.4. Choose `1 = 1, `2 = `3 = π, and ` = 1, then the first three
coefficients in (2.22) are

β1 = 2(−1)n+1 sin 2nπ2, β2 = 4 sinnπ2, β3 = (−1)n sin2 nπ2 ;

since the second and the third do not vanish, the band width asymptotics is
given by (2.23). Its dependence on the band index plotted in Fig. 7 shows that
even the ‘spikes’ making the locally widest bands are decreasing. However, the

1 200 400 600 800 1000
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104
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◆ 2n(π
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)2

● |△E|

Figure 7: The leading term vs. band index for `1 = 1, `2 = `3 = π, and ` = 1

used scale is too narrow to make a general conclusion; expanding the range of
the index n two or three orders of magnitude, one finds that there is a sequence
of very rare bands the widths of which do not decrease. At such a large scale,
we also see that the gaps eventually dominate even over such exceptional bands.

In the above example the band width plot still shows a lot of regularity due
to the fact that `2 = `3. Not surprisingly, this changes if make all the involved
edges incommensurate.
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Example 2.5. Suppose that the two parts of the ring are in golden ratio,
`2
`3

=
√
5+1
2 , and `1 = ` = 1. Then all the βi’s are nonzero and the band widths

are given by (2.23). On the other hand, changing the length of the connecting
link to `1 = π we get β1 = β2 = 0 and formula (2.24) applies. Then plots are
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Figure 8: The leading term vs. band index for `1 = 1, `2
`3

= 1+
√
5

2
, and ` = 1

1 200 400 600 800 1000

0.1

1

10

100

1000

104

105

n

◆ 2n(π
ℓ1
)2

● |△E|

Figure 9: The same as above but with `1 = π

irregular as seen from Figs. 8 and 9, and moreover, they depend on the choice of
`1; note that in the second case the latter is commensurate with the total length
of the ring. At the same time, the influence of the parameter ` determining the
length scale is less pronounced, changing it in the first case to ` = π we get a
plot very similar to that of Fig. 8. The comparison with gap width mentioned
in the previous examples applies again, however, the ‘extremely diophantine’
character of the ratios involved means that we have to go very high values of
the index, n & 106, to have the gaps dominating over all the bands.
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2.3. The other two band series

To describe the bands around the points nπ
`j
, j = 2, 3, we proceed in a

similar way so we limit ourselves to sketching the results without going into
details. Setting again

kn,j =
nπ

`j
+ δ, n ∈ N,

we write again the spectral condition in the form of the expansion (2.21) where
the leading coefficients are now

β1 = 2`2`22

(
sin

πn`1
`2

+ (−1)n+1 sin
πn (`1 + `3)

`2

)
,

β2 = 2`2`22 sin
πn`3
`2

, β3 = (−1)n`4`2 sin
πn`1
`2

sin
πn`3
`2

, (2.25)

for j = 2, and

β1 = 2`2`23

(
sin

πn`1
`3

+ (−1)n+1 sin
πn (`1 + `2)

`3

)
,

β2 = 2`2`23 sin
πn`2
`3

, β3 = (−1)n`4`3 sin
πn`1
`3

sin
πn`2
`3

, (2.26)

for j = 3. In the generic case when β3 stays away from zero the asymptotic
behavior of the solution to (2.21) is given by (2.23) again, hence replacing `1 by
`j and using the coefficients (2.25) and (2.26), we arrive at

4En =
8

πn`2

∣∣∣ sin πn`1
`j

∣∣∣−1 +O(n−3), j = 2, 3,

as n→∞. In the other cases we have to resort to higher powers of δ in (2.21)
similarly as we did that in the previous section.

2.4. The band width asymptotic behavior: an overall view

The entire positive spectrum naturally combines all the bands mentioned
above. The band structure depends on the ratios of the lengths involved. To
get a better idea, instead of combining the results of the previous two sections,
we compute the spectrum directly from (2.12) in two situations corresponding
to Examples 2.1 and 2.5; the results are plotted in Figs. 10 and 11, respectively.
We see the difference between the two situations: in the first case when the edge
lengths are the same the band pattern is periodic in the momentum scale, while
irrational relations produce more bands (roughly three times as many in view
of (2.18)) distributed in an irregular way. To get an understandable picture we
choose a more narrow momentum range than in Figs. 7–9. On the other hand,
the obtained band patterns are exact, not only asymptotic. The curves below
them show positive values of a2 + b2 − c2 as a function of k. Since their shape
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Figure 10: The full band spectrum in the situation of Example 2.1 with ` = 1

is still not well seen at the chosen scale, we show in the insets of Figs. 10 and
11 this function – its values now in the linear, not logarithmic scale – over a
shorter interval corresponding to the lowest four or five bands.

Despite their different structure, the band spectra in all cases have a common
property. As we have noted in the opening of Sec. 2.2, the bands can occur (at
the momentum scale) only in the vicinity of the points (2.19). As a union of
three periodic sequences, the density of this set is uniform in the sense that the
number of its points in an interval (k, k′) tends to

(
2+ `1

π

)
|k′−k| as |k′−k| → ∞.

At the same time, it follows from (2.23) that the band widths are O(k−1) as
k → ∞. Translated to the energy scale, k2, this means that the density of
points k2j,n decreases as O(k−1) while the bands are at most constant. In terms
of the probability of belonging the (positive) spectrum introduced by Band and
Berkolaiko [1] it means that

Pσ(H) := lim
K→∞

1

K
|σ(H) ∩ [0,K]| = 0, (2.27)

where, of course, zero can be replaced here by any fixed positive number.

2.5. The negative spectrum

The condition determining the spectrum in the negative half of the real axis
can be obtained from (2.8) by replacing k with iκ; this gives

16 sinhπκ
(

cos θ(κ2`2 − 1) coshκ(π − `3) + 2κ` sin θ sinhκ(π − `3)
)

− (κ2`2 + 1)2
(

sinhκ(2π − `1) + 2 sinhκ`1 cosh 2κ(π − `3)
)

+ 8(κ2`2 − 1) sinhκ`1 + (κ2`2 − 3)2 sinhκ(`1 + 2π) = 0. (2.28)
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Figure 11: The full band spectrum in the situation of Example 2.5 with `1 = π

Mimicking the argument that led to (2.12), we arrive at the band condition

128 sinh2 πκ
(
κ4`4−6κ2`2+(κ2`2+1)2 cosh 2κ(π−`3)+1

)
−(ρ−τ)2 ≥ 0, (2.29)

where

ρ := (κ2`2 + 1)2
(

sinhκ(2π − `1) + 2 sinhκ`1 cosh 2κ(π − `3)
)
,

τ := (κ2`2 − 3)2 sinhκ(`1 + 2π) + 8(κ2`2 − 1) sinhκ`1.

Note that in this case the analogue a2 + b2 in (2.11) is nonzero for any κ > 0,
and consequently, there are no flat bands in the negative part of the spectrum.

Extending slightly the argument from [2] we see that in the symmetric case,
`2 = `3 = π, the interval (−`−2, 0) does not belong to the spectrum. Indeed,
condition (2.28) then becomes

cos θ = coshκπ coshκ`1 + sinhκπ sinhκ`1
κ4`4 − 2κ2`2 + 5

4− 4κ2`2
,

and since the last fraction is positive for κ < `−1, the right-hand side is then
larger than one. This no longer true generally, but we can still claim that

� the negative spectrum remains separated from zero.

To see that, let us inspect the behavior of the left-hand side of (2.29) as κ→ 0+
taking its Taylor expansion to the fourth order,

−128π(`1 + 2π)
(
(2π − `3)`3 + 2π`1

)
κ4 +O(κ6),
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in which the leading term is negative for small κ and any fixed choice of the
paramaters, uniformly across the Brillouin zone.

The next question concerns the number of negative bands. In the particu-
lar case considered in [2] we found an answer through a direct investigation of
the spectral condition. One can approach, however, the problem from a more
general point of view. In order to state the result, let us return to the vertex con-
dition (1.1). If a vertex is of degree n, the matrix U characterizing the coupling
has n eigenvalues, with their multiplicity taken into account. We divide them
into three groups, n(0) real eigenvalues (necessarily equal to ±1 corresponding
to the Neumann and Dirichlet part of the coupling in the sense of Theorem 1.4.4
in [3], respectively), and n(±) non-real ‘Robin’ eigenvalues situated in the upper
and lower complex plane, respectively.

Theorem 2.6. Consider a periodic quantum graph and assume that its elemen-
tary cell contains N vertices with the couplings described by unitary matrices
Ui, i = 1 . . . , N , then the negative spectrum of the corresponding Hamiltonian

consists of at most
∑N
i=1 n

(−)
i bands.

Proof. Since the dependence of the fiber operators H(θ) in (2.3) on the quasimo-
mentum is continuous, the number of negative bands coincides with the number
of dispersion curves in the negative part of the axis, i.e. with the maximum
number of negative eigenvalues that H(θ) may have. It is easy to see that a
star graph Hamiltonian with the vertex of degree n characterized by a matrix
U has exactly n(−) negative eigenvalues, their multiplicity taken into account;
if n(−) = 0, the corresponding operator is positive. What is important is that
such a positivity connected with a vertex coupling is a local property, as seen
from the corresponding quadratic form given in Theorem 1.4.11 of [3].

Consider now the fiber H(θ) corresponding to our periodic graph with a fixed
θ ∈ [−π, π). The total number of the eigenvalues of Ui situated in the open lower

halfplane is N− :=
∑N
i=1 n

(−)
i . Let H̃ =

∫ π
−π H̃(θ) dθ refer to a quantum graph

in which each vertex matrix Ui is replaced by Ũi such that its eigenvalues with
non-negative imaginary parts are preserved and those with negative ones are
replaced with eigenvalues which are either real or situated in the upper halfplane.
It follows from this construction that the self-adjoint operators H(θ) and H̃(θ)
have a common symmetric restriction with the deficiency indices (N−, N−).
From the general theory of self-adjoint extensions it follows that the spectrum
of H(θ) in any spectral gap of H̃(θ) consists of at most of isolated eigenvalues
of the total multiplicity N−, cf. Corollary 1 to Theorem 8.19 in [13]. However,
H̃(θ) is positive by construction, henceH(θ) cannot have more thanN− negative
eigenvalues, their multiplicity take into account.

This general result confirms what we know for particular cases; recall the
examples of square and honeycomb lattices [8] having one and two negative
bands, respectively. In our present situation we have two vertices of degree
three in the elementary cell; the corresponding matrix U in each of them has
eigenvalues 1 and e±2πi/3 so that N− = 2. It should be stressed that it may
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happen that the two bands merge into one. In the symmetric case considered
in [2] we has shown that this happens for ` = 1 and `1 = π. The same is true
for any `; to see that it is sufficient to note that for `1 = `3 = π the left-hand
side of (2.29) becomes

−8 sinh4 πκ(κ2`2 − 3)2
(
− κ4`4 − 10κ2`2 + cosh 2πκ(κ2`2 − 3)2 + 7

)
vanishing at κ =

√
3`−1 and being positive in the vicinity of this point. For

other values of the parameters the two bands may merge at a different value
of κ but an overall picture remains similar as illustrated on Fig. 12. The band
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Figure 12: The negative spectrum for ` = 3
2

and `3 = 2
3
π as a function of `1 > 0, the dot

indicates the band crossing point.

crossing point is given by a relation analogous to (2.14), however, in the general
case we are unable to find its solution in a closed form.

2.6. Long connecting links

While the ring circumference is fixed by assumption, one may ask what
happens if the value of `1 is large. It is clear that the positive spectrum will
become denser being determined primarily by bands around the points πn

`1
.

Nevertheless, the chain will be generically non-conducting since by (2.27) the
probability that an energy lies in the positive spectrum is zero for any `1.

The negative spectrum, on the other hand, consists of two bands (which may
merge at some point) for any `1; one can ask how they behave when `1 → ∞.
Since we have sinhκ`1 ≈ coshκ`1 ≈ 1

2 eκ`1 for a fixed κ > 0 in this limit, we
can write the spectral condition (2.28) as

f(`3, `;κ) eκ`1 + g(`3, `;κ, θ) +O(e−κ`1) = 0
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with

g(`3, `;κ, θ) := 32 sinhπκ
(

cos θ(κ2`2−1) coshκ(π−`3)+2κ` sin θ sinhκ(π−`3)
)
.

This shows that in the limit the bands shrink, exponentially fast, to the points
determined by the condition f(`3, `;κ) = 0, or explicitly

e2πκ (κ2`2−3)2+8(κ2`2−1)+(κ2`2+1)2
(
e−2πκ−2 cosh 2κ(π−`3)

)
= 0. (2.30)

Those are situated at both sides of κ =
√
3
` ; one checks easily that

f(`3, `;

√
3

`
) = 16

(
1 + e−

2
√

3π
` − 2 cosh

2
√

3(π − `3)

`

)
< 0

in view of the inequalities coshx ≥ 1 and e−
1
x ≤ 1 for x > 0, and on the other

hand, we have f(`3, `;κ) = 16κπ+
(
20π2 − 4(π− `3)2

)
κ2 +O(κ3) > 0 for small

κ and limκ→∞ f(`3, `;κ) = +∞; according to the general result obtained above
the equation (2.30) cannot have more than two roots.

In the limit `1 → ∞ the bands shrink to points. In the symmetric case,
`3 = π, assuming that the scale parameter ` is not too large we can substitute
κ2 = 3

`2 + ε into (2.30) and obtain

ε ≈ ±4`−2
(
e
√

3π
` ∓ 1

)−1
,

in particular, ε ≈ ±0.0173 for ` = 1 in accordance with the result of [2]. For
`3 6= π we move away from this approximate symmetry, in the limit `3 → 0 the
upper limit point approaches −κ2 = −1/`2 as the condition (2.30) reduces to
−8(e2πκ − 1)(κ2`2 − 1) = 0 while the lower one escapes to −∞.

3. Vertices of degree four: the case of `1 = 0

Let us now pass to the situation where the vertices are of degree four. This
may happen if one of the edge lengths, `1 or `3 shrinks to zero (not both of them,
of course). Consider first the former situation. To find the spectral condition,
we can take the natural Ansätze and match them as we did when deriving the
condition (2.8), or equivalently, to take the limit `1 → 0 in the latter; this yields

sinπk
(
(k2`2+1)

(
cos θ cos k(π−`3)−cosπk

)
+2k` sin θ sin k(π−`3)

)
= 0. (3.31)

3.1. The positive spectrum

The easiest thing to conclude from (3.31) is that k2 belongs to the spectrum
for any natural number k = n ∈ N; it may or may not be embedded as we will
see below. As for the continuous component, in the symmetric case, `3 = π,
the condition (3.31) reduces to cos θ = cos kπ, so that the spectrum covers the
entire interval [0,∞). In the absence of this symmetry, the spectrum has a
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band-gap structure determined by vanishing of the bracket in (3.31). Rewriting
this condition in the form (2.9), the a, b, and c are as follows

a = (k2`2 + 1) cos k(π − `3),

b = 2k` sin k(π − `3),

c = (k2`2 + 1) cos kπ,

where a2 + b2 is obviously nonzero. Consequently, it follows from (2.12) that k2

belongs to a spectral band if and only if

4k2`2 − (k2`2 + 1)2 cos 2πk + (k2`2 − 1)2 cos 2k(π − `3) ≥ 0. (3.32)

In the high energy regime, in particular, the band condition reduces to the
inequality cos 2k(π − `3) ≥ cos 2kπ which can be equivalently rewritten as

sin k`2 sin k`3 ≥ 0 (3.33)

keeping in mind that `2 + `3 = 2π, and gaps refer to the values k2 for which
these expressions become negative, both modulo an O(k−2) relative error.

It is clear from (3.33) that the spectrum has an infinite number of open gaps
whenever the chain is asymmetric, `3 6= π. A detailed shape of the spectrum
depends on the ratio `2

`3
. It is clear that the band pattern is periodic at the

momentum scale if this number is rational and irregular in the opposite case.
It has, however, a universal property:

� The probability (2.27) of belonging to the (positive) spectrum is

Pσ(H) =

{
1 . . . `3 = π
1
2 . . . `3 6= π

(3.34)

Indeed, the probability that each of the factors on the left-hand side in (3.33) is
for a randomly chosen value of k positive (or negative) is 1

2 . In the symmetric
case these effects are correlated, in the asymmetric they are not, so the proba-
bility is ( 1

2 )2 + ( 1
2 )2 = 1

2 , and the band and gaps sizes thus grow at the energy
scale in the average at the same rate. This means that due to its geometry an
asymmetric chain is ‘less conductive’.

On the other hand, a comparison of (2.27) and (3.34) shows again the effect
observed in the particular situation in [2]: for a chain of ‘loosely coupled’ rings
we have Pσ(H) = 0 whatever the length `1 of the connecting link may be,
while in the limit `1 → 0 the probability is positive (irrespective of the junction
position). In other words, the spectrum converges in the vanishing edge limit
in accordance with the result of [4] but the convergence is rather nonuniform.

3.2. Gap closing and embedded eigenvalues

The existence of infinitely many gaps in the asymmetric case does not mean,
of course, that some of them may not close for particular values of the parame-
ters. Specifically, we have the following claims:
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� If the ring arcs are commensurate, `2`3 ∈ Q, there are infinitely many points
where the gaps close coinciding with some of the flat bands mentioned
above; the latter can in this way be embedded in the continuous spectrum.
These crossings occur at (`3, k) =

(
mπ
n , nj

)
with m,n, j ∈ N. To show

that, we denote the expression in the large bracket at the left-hand side
of (3.31) by H(k, `3, θ). Then, in analogy with (2.14), crossings occur if

∂H(k, `3, θ)

∂`3
=
∂H(k, `3, θ)

∂θ
=
∂H(k, `3, θ)

∂k
= 0. (3.35)

Evaluating the derivatives at k = jn and `3 = mπ
n , we get

∂H(k, `3, θ)

∂`3

∣∣∣∣ k=nj
`3=mπ/n

= −2 sin θ j2n2` cosπj(n−m),

∂H(k, `3, θ)

∂θ

∣∣∣∣ k=nj
`3=mπ/n

= − sin θ(j2n2`2 + 1) cosπj(n−m),

∂H(k, `3, θ)

∂k

∣∣∣∣ k=nj
`3=mπ/n

= 2j` cosπjn
(

cosπjm
(
π(n−m) sin θ + n` cos θ

)
− n`

)
.

The first two expressions vanish for θ = 0,±π; substituting these values
into in the third one we arrive at the equations

−4jn`2 sin2

(
πjm

2

)
cosπjn = 0

and
−2jn`2 (cosπjm+ 1

)
cosπjn = 0,

respectively; the former is satisfied for even values of jm, the latter for odd
ones. This proves the claim and shows at the same time that the crossings
occur at the edges of the Brillouin zone or in its center, depending on the
parity of jm.

� There can be no gap at the momentum value k = `−1. To see that, we
have to solve the equations (3.35) at (`−1, `3, θ). The derivatives are easily
calculated, vanishing of the first two requires sin θ`+`3−π

` = 0 and third
one gives

(π − `3) sin
θ`+ `3 − π

`
+ ` cos

θ`+ `3 − π
`

+ π sin
π

`
− ` cos

π

`
= 0.

The first term at the left-hand side vanishes and we get the equation

±`
(

1∓ cos
π

`

)
+ π sin

π

`
= 0

which is satisfied for `−1 ∈ N, the upper sign for even `−1 and the lower
sign for the odd one. Needless to say, this is the only missing gap in
case that `2 and `3 are incommensurate; the band-and-gap pattern in
dependence on `3 is illustrated in Fig. 13.
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Figure 13: The positive spectrum for ` = 1
3

.

3.3. The negative spectrum

To find the negative spectrum one has to substitute k = iκ into (3.31) and
(3.32), in particular, it corresponds to the values κ for which

H(κ) := −(κ2`2 − 1)2 cosh 2κπ + (κ2`2 + 1)2 cosh 2κ(π − `3)− 4κ2`2

is non-negative. The elementary cell now contains a single vertex of degree
four and the eigenvalues of the corresponding matrix U are ±1 and ±i, hence
by Theorem 2.6 there is one negative band. It always contains the point −`−2
because the inequality (κ2`2+1)2 ≥ 4κ2`2 implies H(`−1) ≥ 0. In the symmetric
case, `3 = π, we have H(κ) = −2(κ2`2−1)2 sinh2 κπ, so the negative band is flat
as we already know from [2], otherwise H(`−1) > 0 and the negative spectrum
is absolutely continuous.

Furthermore, the band is symmetric with respect to the exchange of `3 to
2π − `3 because cosh is an even function. Also, the negative spectrum remains
separated from zero, since H(κ) = −2`3(2π−`3)κ2 +O(κ4) is negative for small
values of κ. Large values of κ also cannot give rise to spectral points because
limκ→∞ H(κ) = −∞ holds for any `3 ∈ (0, 2π). At the same time the band
widens as illustrated in Fig. 14 and its lower edges escapes to −∞. This is no
paradox, however, as the lengths cannot vanish simultaneously because is such
a case the present model loses meaning.

4. Vertices of degree four: the case of `3 = 0

4.1. The positive spectrum

To get the spectral condition, it is again sufficient to perform the limit `3 → 0
in equation (2.8), which yields

sinπk
(
(k2`2 + 1)

(
cos θ cos kπ − cos k(`1 + π)) + 2k` sin θ sin kπ

)
= 0. (4.36)
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It is obvious that k2 for any k ∈ N belongs to the spectrum independently of θ.
These flat bands are always embedded in the continuous spectrum; note that
the large bracket at the left-hand side of (4.36) can be annulated by choosing
cos θ = cosn`1. To determine the band structure beyond the flat case, we restate
the requirement in the form (2.9) with the coefficients

a = (k2`2 + 1) cos kπ,

b = 2k` sin kπ,

c = (k2`2 + 1) cos k(`1 + π),

satisfying a2 + b2 6= 0. After some simplifications, we conclude that k2 belongs
to a band if and only if

4k2`2 + (k2`2 − 1)2 cos 2πk − (k2`2 + 1)2 cos 2k(`1 + π) ≥ 0. (4.37)

The band pattern is illustrated in Fig. 15. In particular, in the high-energy
regime, k → ∞, the number k2 belongs to a band if and only if cos 2πk ≥
cos 2k(`1 + π), or equivalently

sin k`1 sin k(`1 + 2π) ≥ 0,

and to a gap if these quantities are negative, both again modulo an O(k−2)
relative error. The bands and gaps grow in the average at the energy scale; at
the momentum scale they are asymptotically periodic if `1 is a rational multiple
of π, and aperiodic for `1 incommensurate with the ring perimeter. In contrast
to the situation discussed in the previous section, there is no ‘fully conducting’
chain here:

� The probability of belonging to the spectrum is for any `1 > 0 equal to

Pσ(H) = 1
2 .
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Figure 15: The positive spectrum for ` = 1. The red lines mark embedded flat bands, the
dots the points where the gaps close.

In the asymptotic regime of large `1 the spectrum becomes ‘dense’ in the sense
that the number of bands in a fixed interval increases as `1 → ∞ but the
probability to be in a band remains the same. In contrast to the previous
section again, it makes no sense to speak of the limit `1 → 0 here.

4.2. Gap closing

Asking again under which condition may some gaps close we find that the
answer depends on the commensurability of `1 with the ring circumference:

� For `1 = mπ
n with coprimem,n ∈ N, band crossings occur at k = nj, j ∈ N.

The argument is similar to that used in Sec. 3.2. Denoting the large
bracket in 4.36 by G(k, `1, θ), we can write the condition for such a crossing
as

∂G(k, `1, θ)

∂`1
=
∂G(k, `1, θ)

∂θ
=
∂G(k, `1, θ)

∂k
= 0.

Computing the derivatives at k = nj, we find that the first two vanish if
sin(jn(`1 + π)) = 0 and sin θ cosπjn = 0, respectively, which is true for
for `1 = mπ

n and θ = 0,±π. Combining this finding with the remaining
condition, we arrive at the equations

2jn`2(1− cosπjm) cosπjn = 0 for θ = 0

and
−2jn`2(cosπjm+ 1) cosπjn = 0 for θ = ±π.

which are are satisfied for even and odd values of jm, respectively.
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� In particular, crossings occur at all the natural values of k if `1 = mπ.

� On the other hand, all the gaps remain open if `1 is not a multiple of π.

4.3. The negative spectrum

As in the preceding section, it follows from the general properties of quantum
graphs that there is a single negative band. To find it, we have to replace k
with iκ in (4.36) and (4.37); a number −κ2 belongs to the spectrum if

G(κ) := −4κ2`2 + (κ2`2 + 1)2 cosh 2πκ− (κ2`2 − 1)2 cosh 2κ(`1 + π)

is non-negative. In particular, −`−2 belongs always to the band which is in this
case never flat because G(`−1) > 0.

Let us next look how the negative band behaves when `1 is large. Dividing
the spectral condition by coshκ(`1 + π), we get

(κ2`2 − 1)

(
cos θ coshπκ

coshκ(`1 + π)
− 1

)
+

2κ` sin θ sinhπκ

coshκ(`1 + π)
= 0

which for large `1 takes the form

1− κ2`2 + 2
(

cos θ coshπκ (κ2`2 − 1) + 2κ` sin θ sinhπκ
)
O(e−κ`1) = 0

showing that the band shrinks to the value −`−2 as `1 →∞. Moreover, putting
κ = `−1 + δ we can solve the resulting equations for δ arriving thus at the
asymptotic expression

−κ2(θ) = −`−2 − 4`−2 e−
π+`1
` sin θ sinh

π

`
+O

(
e−

2`1
`

)
giving the band width

∆E = 8`−2 e−
π+`1
` sinh

π

`
+O

(
e−

2`1
`

)
.

The negative spectrum is shown in Fig. 16. It again remains separated from
zero since G(κ) = −2`1(2π+ `1)κ2 +O(κ4) is negative for small values of κ. On
the other hand, the band becomes wider as `1 decreases but, as is the situation
discussed in the previous section, the limit `1 → 0 makes no sense.
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