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Abstract. We show that inverse square singularities can be treated as bound-

ary conditions containing rational Herglotz–Nevanlinna functions of the eigen-

value parameter with “a negative number of poles”. More precisely, we treat in
a unified manner one-dimensional Schrödinger operators with either an inverse

square singularity or a boundary condition containing a rational Herglotz–

Nevanlinna function of the eigenvalue parameter at each endpoint, and define
Darboux-type transformations between such operators. These transformations

allow one, in particular, to transfer almost any spectral result from boundary

value problems with eigenparameter dependent boundary conditions to those
with inverse square singularities, and vice versa.
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1. Introduction

One-dimensional Schrödinger operators with summable potentials and constant
(Dirichlet or Robin) boundary conditions are among the most comprehensively
studied operators in spectral theory [25], [26]. However, potentials arising in phys-
ical applications usually have nonintegrable singularities of various kind. For in-
stance, the potential of the Schrödinger equation corresponding to one of the most
basic models of quantum mechanics, namely that of the nonrelativistic hydrogen
atom, is represented as the sum of two nonintegrable terms, one of which is a mul-
tiple of x−1, while the other is of the form `(` + 1)x−2, where the orbital angular
momentum quantum number ` is a nonnegative integer [10, Section 39]. Potentials
with singularities of the former kind can be studied just like summable ones [19]
by introducing the so-called quasi-derivatives [2]. Inverse square singularities (also
known as Bessel-type singularities) of the above form, however, also arise from
other radial Schrödinger operators acting in odd-dimensional spaces by separation
of variables, and require a special treatment. We refer the reader to [22] and the
references therein for various direct and inverse spectral results concerning inverse
square singularities.

On the other hand, eigenvalue problems with boundary conditions dependent
on the eigenvalue parameter have found numerous applications in various fields
of science and technology. Fulton’s well-known papers [12], [13] contain a fairly
comprehensive list of references up to 1980 and some recent examples of their use
in modern physics can be found in [21]. We refer to our recent papers [16], [19],
and the references therein for direct and inverse spectral theory of one-dimensional
Schrödinger operators with eigenparameter dependent boundary conditions.

From an operator-theoretic point of view, a boundary value problem with bound-
ary conditions containing (not necessarily rational) Herglotz–Nevanlinna functions
of the eigenvalue parameter describes a self-adjoint extension with exit of the mini-
mal differential operator generated by the one-dimensional Schrödinger equation in
L2, i.e. a self-adjoint operator in a larger Hilbert space H containing L2 as a closed
subspace [18]. Problems with boundary conditions containing rational Herglotz–
Nevanlinna functions then correspond to extensions with finite-dimensional exit
spaces (i.e., dimH 	 L2 < ∞). Such extensions have recently been studied in [8],
[9].

In our recent paper [16], we defined Darboux-type transformations between
boundary value problems with boundary conditions containing rational Herglotz–
Nevanlinna functions of the eigenvalue parameter, and obtained various direct and
inverse spectral results for such problems by using these transformations. For prob-
lems with a boundary condition dependent on the eigenvalue parameter (respec-
tively, an inverse square singularity) at one endpoint and a Robin or Dirichlet
condition at the other, a similar approach was used earlier by Binding, Browne and
Watson [3], [4] (respectively, by Carlson [5]).

The purpose of this paper is to demonstrate that the framework developed in
[16] can be naturally extended to include inverse square singularities. This is by no
means unexpected, since the fact that constant boundary conditions are related with
eigenparameter dependent boundary conditions and inverse square singularities via
Darboux transformations was already observed by Churchill [6] and Crum [7] (see
also Krein [24]) respectively. In [16], to each eigenparameter dependent or inde-
pendent boundary condition we assigned its index, an integer not smaller than −1,
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Figure 1. Singularities, boundary conditions, and their indices

and two other real numbers, which allowed us to formulate various spectral results
in a unified manner. What is perhaps more surprising is that after assigning the
index with values smaller than −1 to inverse square singularities (see Figure 1) and
defining the other two numbers in a proper way (see ω1 and ω2 in (4.2) below), the
results obtained in [16] either remain intact in our more general setting or can easily
be generalized (see Subsection 4.3 for the latter case). Moreover, the index of the
inverse square singularity with orbital quantum number ` under this assignment
simply turns out to be equal to −`− 1, the only value of κ other than ` for which
κ(κ+1) = `(`+1). On the other hand, the index of a rational Herglotz–Nevanlinna
function counts the number of its poles: each finite pole is counted twice and a pole
at infinity (if any) once. It is in this sense that inverse square singularities behave
as boundary conditions containing rational Herglotz–Nevanlinna functions of the
eigenvalue parameter with “a negative number of poles”.

The (Darboux) transformation method used in this paper is also known as
the single commutation method in contradistinction to the double commutation
method [15], which was also used for studying problems with an inverse square sin-
gularity at an endpoint [14] (see also [1]). In terms of their effect on the spectral
measure—which in our case is just the sum

∑
γ−1
n δλn

(t) of the Dirac measures
supported at the eigenvalues, with the norming constants γn being defined in Sub-
section 2.3—the former method amounts to multiplying this measure by the factor
t−λ (cf. Theorem 3.2), whereas the latter one to adding a weighted Dirac measure
supported at λ to it [23]. The double commutation method, however, appears to
be not well suited for studying problems with eigenparameter dependent boundary
conditions or inverse square singularities at both endpoints.

We can use the lattice of integer points in the plane to schematically describe
boundary value problems and transformations between them, where the abscissa
(respectively, the ordinate) of each point equals the index of the boundary condi-
tion or singularity at the left (respectively, the right) endpoint. For instance, the
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transformations considered in some of the papers mentioned above are shown in
Figure 2. Single commutations are indicated by diagonal arrows and double com-
mutations by (slightly curved) vertical arrows. Figure 3 shows the transformations
considered in this paper together with those considered in [16]. Transformations
(arrows) pointing in the south-west direction remove the smallest eigenvalue, those
pointing in the north-east direction add a new eigenvalue below the spectrum, and
finally, ones pointing in the south-east or north-west directions (absent from this
paper) are isospectral.

The paper is organized as follows. Section 2 contains the necessary notation and
definitions, as well as some preliminary results. Section 3 is devoted to our trans-
formations. In Subsection 3.1 we define two transformations on the set of rational
Herglotz–Nevanlinna functions and inverse square singularities. In Subsections 3.2
and 3.3 we define two transformations between boundary value problems, study
how these transformations affect the eigenvalues and the norming constants of a
problem, and show that they are inverses of each other. We apply these trans-
formations in Section 4 to the solution of a number of direct and inverse spectral
problems. Namely, we study the asymptotics of the eigenvalues and the norming
constants in Subsection 4.1, prove an oscillation theorem in Subsection 4.2, calcu-
late the so-called regularized trace in Subsection 4.3, obtain necessary and sufficient
conditions for two sequences of real numbers to be the eigenvalues and the norming
constants of some boundary value problem in Subsection 4.4, and consider symmet-
ric problems and a Hochstadt–Lieberman-type result in the final Subsection 4.5.



SINGULARITIES AND EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS 5

ind f

ind F
Guliyev [16]

this paper

isospectral
eigenvalue

added

isospectral
eigenvalue
removed

Figure 3. Transformations considered in [16] and in this paper

2. Preliminaries

We start by recalling some definitions from [16] and introducing some new ones.
We also present several preliminary results which will be needed in the subsequent
sections.

2.1. Notation. Every rational Herglotz–Nevanlinna function can be written as

f(λ) = h0λ+ h+

d∑
k=1

δk
hk − λ

with h0 ≥ 0, h ∈ R, δk > 0, and h1 < . . . < hd. We assign to each function f of
this form its index

ind f :=

{
2d+ 1, h0 > 0,

2d, h0 = 0

and two polynomials f↑ and f↓ by writing this function as

f(λ) =
f↑(λ)

f↓(λ)
,

where

f↓(λ) := h′0

d∏
k=1

(hk − λ), h′0 :=

{
1/h0, h0 > 0,

1, h0 = 0.
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Clearly, the index counts each finite pole of a rational Herglotz–Nevanlinna function
twice and its pole at infinity (if any) once. We denote the smallest pole of f and
the total number of its poles (if it has any) not exceeding λ by π̊(f) and Πf (λ)
respectively:

π̊(f) :=

{
h1, ind f ≥ 2,

+∞, ind f ≤ 1,
Πf (λ) :=

∑
1≤k≤d
hk≤λ

1.

In [16] we used the infinity symbol to represent the Dirichlet condition. In this
paper we denote the Dirichlet condition by ∞0, and introduce an entire sequence
of “infinities” ∞n to denote singularities with coefficients n(n + 1) for n ≥ 1. We
set ind∞n := −n− 1. We denote by B the set of all rational Herglotz–Nevanlinna
functions and these infinity symbols ∞n, n ≥ 0. The above two functions are
extended to all f ∈ B by setting π̊(∞n) = +∞ and Π∞n

(λ) ≡ 0.
In order to be able to deal with boundary conditions and inverse square singu-

larities in a unified way, we introduce the notation

`f := −1−min{0, ind f}

for f ∈ B. Obviously, `f = n if f = ∞n and `f = −1 if f is a rational Herglotz–
Nevanlinna function. Thus, in effect, we are just assigning the “orbital quantum
number” −1 to all rational Herglotz–Nevanlinna functions.

We denote by P(q, f, F ) the boundary value problem generated by the equation

− y′′(x) +

(
`f (`f + 1)

x2
+
`F (`F + 1)

(π − x)2
+ q(x)

)
y(x) = λy(x) (2.1)

and the boundary conditions

y′(0)

y(0)
= −f(λ),

y′(π)

y(π)
= F (λ) (2.2)

at nonsingular endpoints, if any. In other words, at each endpoint we either have a
boundary condition or inverse square singularity. We start with the one-dimensional
Schrödinger equation with the potential q, and then adjoin the first boundary con-
dition from (2.2) (respectively, the Dirichlet condition y(0) = 0) if f is a rational
Herglotz–Nevanlinna function (respectively, f = ∞0), or simply add the term
n(n + 1)/x2 to the potential if f = ∞n with n ≥ 1, in which case no boundary
condition is needed as the potential becomes limit-point at 0. We do the same for
the right endpoint.

We denote by W1
2[0, π] the Sobolev space of absolutely continuous functions y

with y′ ∈ L2(0, π). The notation

xn = yn + `2

(
1

nα

)
means

∑∞
n=0 |nα(xn − yn)|2 < ∞, and 1A denotes the indicator function of a set

A:

1A(x) :=

{
1, x ∈ A,
0, x /∈ A.
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2.2. Regular solutions. We define the left regular solution ϕ of the problem
P(q, f, F ) as the solution of the equation (2.1) that satisfies the initial conditions

ϕ(0, λ) = f↓(λ), ϕ′(0, λ) = −f↑(λ)

when ind f ≥ −1 and asymptotically behaves as

ϕ(x, λ) ∼ x`f+1

(2`f + 1)!!
, x→ 0

near the left endpoint when ind f ≤ −1, where (2`f + 1)!! :=
∏`f
k=0(2k+1). For the

Dirichlet boundary condition (ind f = −1) these two conditions coincide. Similarly,
the right regular solution ψ is defined as the one satisfying the initial conditions

ψ(π, λ) = F↓(λ), ψ′(π, λ) = F↑(λ)

or the asymptotics

ψ(x, λ) ∼ (π − x)`F +1

(2`F + 1)!!
, x→ π.

For each fixed x ∈ (0, π) (and also for nonsingular endpoints) the solutions
ϕ(x, λ) and ψ(x, λ) together with their first derivatives with respect to x are entire
functions of λ. The boundary value problem P(q, f, F ) has a discrete set of eigen-
values, which are real and simple, and for each eigenvalue λn there exists a unique
number βn 6= 0 such that

ψ(x, λn) = βnϕ(x, λn).

These eigenvalues coincide with the zeros of the characteristic function

χ(λ) := ϕ(x, λ)ψ′(x, λ)− ϕ′(x, λ)ψ(x, λ),

which is independent of x ∈ (0, π). The asymptotics of the regular solutions and
their first derivatives (see [22, formulas (2.24), (2.25)] and the proof of [16, Lemma
2.2] for the cases of singular and nonsingular endpoints respectively) show that the
characteristic function is entire of order 1/2. Therefore, Hadamard’s theorem [27,
Theorem 9.10.8] yields the infinite product representation

χ(λ) = −π1Z(L)
n=−1∏

n=bLc+1

1

(n− L)2

n=bLc∏
n=0

(λn − λ)

+∞∏
n=max{bLc+1,0}

λn − λ
(n− L)2

(2.3)

with L := (ind f + indF )/2; see, e.g., [17, Lemma A.1] for details.
If the left endpoint is singular or the boundary condition at the left endpoint is

Dirichlet (i.e., `f ≥ 0) then the left regular solution satisfies the asymptotics

ϕ′(x, λ)

ϕ(x, λ)
=
`f + 1

x
+ o(1), x→ 0.

We will also need in Subsection 4.3 a more refined version of this asymptotics when
q ∈W1

2[0, π]. In this case we have

ϕ′(x, λ)

ϕ(x, λ)
=
`f + 1

x
+

x

2`f + 3

(
q(0) +

`F (`F + 1)

π2
− λ
)

+ o(x), x→ 0. (2.4)

Both of these asymptotics can be obtained from the proof of [5, Theorem 4.2].
The following nonoscillation result can be proved in the usual way (see, e.g., the

proofs of [5, Lemmas 3.3 and 3.4] and [16, Lemma 2.5] for details).

Lemma 2.1. If λ ≤ λ0 then the left regular solution ϕ(x, λ) and the right regular
solution ψ(x, λ) are strictly positive in (0, π).
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Arguing as in the proofs of [5, Theorems 4.2 and 4.3] one can also prove that if y

is a solution of (2.1) having no zeros in (0, π), then (y′/y)
2−m2

f/x
2−m2

F /(π−x)2 ∈
L2(0, π), where mf = `f + 1 or mf = −`f , depending on whether y is bounded
near the left endpoint or not, and similarly for the right endpoint. Together with
the obvious identity(

y′(x, λ)

y(x, λ)

)′
+

(
y′(x, λ0)

y(x, λ0)

)2

= q(x) +
`f (`f + 1)

x2
+
`F (`F + 1)

(π − x)2
− λ (2.5)

this gives (y′/y)
′
+mf/x

2+mF /(π−x)2 ∈ L2(0, π). It is immediate from Lemma 2.1
that the condition of not having zeros in (0, π) is certainly fulfilled for ϕ, and more
generally, for linear combinations of ϕ and ψ with strictly positive coefficients. For
the sake of later reference we now formulate our result in these two special cases as
a lemma.

Lemma 2.2. The eigenfunction ϕ(x, λ0) corresponding to the smallest eigenvalue
satisfies the relation(

ϕ′(x, λ0)

ϕ(x, λ0)

)′
+
`f + 1

x2
+

`F + 1

(π − x)2
∈ L2(0, π).

Similarly, if λ < λ0 and y(x, λ) is a solution of the equation (2.1) that can be
expressed as a linear combination with strictly positive coefficients of the regular
solutions ϕ and ψ, then(

y′(x, λ)

y(x, λ)

)′
− min{`f , 0}

x2
− min{`F , 0}

(π − x)2
∈ L2(0, π).

The use of the minimum function in the second case stems from the following
observation: for values of λ not coinciding with one of the eigenvalues, a (left or
right) regular solution is unbounded near the opposite endpoint if and only if that
endpoint is singular.

2.3. Hilbert space formulation and norming constants. The differential ex-
pression on the left-hand side of (2.1) generates a self-adjoint operator in L2(0, π)
whenever there are no boundary conditions dependent on the eigenvalue param-
eter. The domain of this operator consists of functions for which the differential
expression in (2.1) is well defined and which satisfy the corresponding boundary
conditions (if any). This is no longer true when the eigenvalue parameter is present
in one or both of the boundary conditions. One now needs to consider a direct sum
of L2(0, π) and a suitable number of copies of C: H = L2(0, π)⊕CN . The number
of these extra copies equals the total number of poles of the functions f and F ,
including those at infinity:

N :=

⌈
ind f

2

⌉
+

+

⌈
indF

2

⌉
+

,

where we denoted by d·e+ the smallest nonnegative integer not smaller than the
argument.

We now describe the operator when the left endpoint is singular (ind f ≤ −2) and
there is dependence on the eigenvalue parameter at the right endpoint (indF ≥ 1
is odd), i.e.,

F (λ) = H0λ+H +

D∑
k=1

∆k

Hk − λ
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with H0 > 0, H ∈ R, ∆k > 0, and H1 < . . . < HD. In this case, H = L2(0, π) ⊕
CD+1 with inner product given by

〈Y,Z〉 :=

∫ π

0

y(x)z(x) dx+

D∑
k=1

ηkζk
∆k

+
ηD+1ζD+1

H0

for Y =
(
y η1 . . . ηD+1

)T ∈ H and Z =
(
z ζ1 . . . ζD+1

)T ∈ H, where

the superscript T denotes the transpose. The self-adjoint operator in this space is
defined by

A(Y ) :=


−y′′(x) +

(
`f (`f+1)

x2 + q(x)
)
y(x)

H1η1 −∆1y(π)
...

HDηD −∆Dy(π)

y′(π)−Hy(π)−
∑D
k=1 ηk


on the domain

D(A) :=
{
Y ∈ H

∣∣ y, y′ ∈ AC(0, π], −y′′ +
(
`f (`f + 1)/x2 + q

)
y ∈ L2(0, π),

ηD+1 = H0y(π)
}
.

The other cases are similar; see, e.g., [16, Section 2.2] for the general regular case.
The operatorA thus defined is self-adjoint in H and its spectrum is purely discrete

and coincides with the set of eigenvalues of the boundary value problem P(q, f, F ).
We denote by Φn the eigenvector of this operator whose first component coincides
with ϕ(x, λn). For instance, in the case considered in the preceding paragraph Φn
has the form

Φn :=
(
ϕ(x, λn) ∆1

H1−λn
ϕ(π, λn) . . . ∆D

HD−λn
ϕ(π, λn) H0ϕ(π, λn)

)T
.

These eigenvectors form an orthogonal basis for H. As for the eigenfunctions
ϕ(x, λn) of the boundary value problem P(q, f, F ), they may form a basis for
L2(0, π) only after removing N of them and that also depends on which ones exactly
are removed [20].

We define the norming constants as

γn := ‖Φn‖2H.
For a problem without singular endpoints, the three sequences {λn}n≥0, {βn}n≥0,
and {γn}n≥0 satisfy the identity [16, Lemma 2.1]

χ′(λn) = βnγn. (2.6)

That this identity also holds for problems with singular endpoints can be verified in
a straightforward manner by using the above asymptotics of the regular solutions
and the fact that any solution of the equation (2.1) behaves as O

(
x−`f

)
near (say)

the left endpoint.

3. Transformations

We now turn to our transformations. First we define transformations on the set
of rational Herglotz–Nevanlinna functions and inverse square singularities. Then
we introduce the main players of this paper—transformations between boundary
value problems of the form P(q, f, F ).
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3.1. Transformation of boundary conditions and singularities. In [16], we
used a single transformation to both increase and decrease the index of a boundary
condition. For the purposes of this paper, however, it is more convenient to define
two separate transformations, one in either direction. The first of these transfor-
mations acts in the direction from eigenparameter dependent boundary conditions
towards inverse square singularities, while the second in the opposite direction (see
Figure 1).

On the set Σ̂ := {(µ, f) ∈ R×B : µ < π̊(f)}, we define the transformation

Θ̂ : Σ̂→ B, (µ, f) 7→ f̂

by

f̂ :=

{
λ 7→ µ−λ

f(λ)−f(µ) − f(µ), ind f ≥ 1,

∞− ind f , ind f ≤ 0.

Here f̂(µ) = − (f ′(µ))
−1 − f(µ), by definition, in the first case. Similarly, on

the set Σ̃ :=
{

(µ, τ, f) ∈ R2 ×B : µ < π̊(f), τ > f(µ) if ind f ≥ 0
}

, we define the
transformation

Θ̃ : Σ̃→ B, (µ, τ, f) 7→ f̃

by

f̃ :=


λ 7→ µ−λ

f(λ)−τ − τ, ind f ≥ 0,

λ 7→ −τ, ind f = −1,

∞− ind f−2, ind f ≤ −2.

These two transformations are inverses of each other in the sense that

Θ̃(µ,−f(µ), Θ̂(µ, f)) = f, Θ̂(µ, Θ̃(µ, τ, f)) = f

for any (µ, f) ∈ Σ̂ and (µ, τ, f) ∈ Σ̃ respectively. The following result, the proof of
which can be found in [16, Subsection 3.1], implies in particular that the transfor-

mations Θ̂ and Θ̃ are well defined.

Lemma 3.1. We have f̂ := Θ̂(µ, f) ∈ B with ind f̂ = ind f − 1 and f̃ :=

Θ̃(µ, τ, f) ∈ B with ind f̃ = ind f + 1. The poles of f and f̂ (respectively, f

and f̃) interlace each other with π̊(f) < π̊(f̂) (respectively, π̊(f) > π̊(f̃)) when-
ever both of them have poles, i.e., when ind f ≥ 3 (respectively, when ind f ≥ 2).
Moreover,

f̂↑(λ) =
−f(µ)f↑(λ)−

(
λ− µ− f2(µ)

)
f↓(λ)

λ− µ
, f̂↓(λ) =

f↑(λ)− f(µ)f↓(λ)

λ− µ
and

f̃↑(λ) = τf↑(λ) +
(
λ− µ− τ2

)
f↓(λ), f̃↓(λ) = −f↑(λ) + τf↓(λ)

for any rational Herglotz–Nevanlinna function f .

3.2. Transformation of problems which removes the smallest eigenvalue.
Now we introduce our first transformation between boundary value problems of
the form P(q, f, F ) (depicted as an arrow pointing in the south-west direction in
Figure 3). This transformation decreases the indices of both f and F by one.
Therefore, by applying it a sufficient number of times, one eventually arrives at a
problem with only inverse square singularities at both endpoints (i.e., a dot located
in the third quadrant in Figure 3).
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We define the transformation

T̂ : L2(0, π)×B2 → L2(0, π)×B2, (q, f, F ) 7→ (q̂, f̂ , F̂ )

by

f̂ := Θ̂(λ0, f), F̂ := Θ̂(λ0, F ),

q̂(x) := q(x)− 2

(
ϕ′(x, λ0)

ϕ(x, λ0)

)′
− 2(`f + 1)

x2
− 2(`F + 1)

(π − x)2
.

(3.1)

It is immediate from Lemma 2.2 that this transformation is well defined. The
following result shows how exactly the eigenvalues and the norming constants of a

boundary value problem are affected under the transformation T̂.

Theorem 3.2. If (q̂, f̂ , F̂ ) = T̂(q, f, F ) then the eigenvalues λ̂n and the norming

constants γ̂n of the transformed problem P(q̂, f̂ , F̂ ) are related to the eigenvalues λn
and the norming constants γn of the original problem P(q, f, F ) by

λ̂n = λn+1, γ̂n =
γn+1

λn+1 − λ0
, n ≥ 0.

Proof. A standard calculation shows that

ϕ̂(x, λ) :=


1

λ0−λ

(
ϕ′(x, λ)− ϕ′(x,λ0)

ϕ(x,λ0) ϕ(x, λ)
)
, λ 6= λ0,

−ϕ(x, λ0) ∂
∂λ

(
ϕ′(x,λ)
ϕ(x,λ)

)∣∣∣
λ=λ0

, λ = λ0

is the left regular solution of the problem P(q̂, f̂ , F̂ ). It is also straightforward

to check that a number λ 6= λ0 is an eigenvalue of P(q̂, f̂ , F̂ ) if and only if it
is an eigenvalue of P(q, f, F ). Therefore one only needs to verify that λ0 is not

an eigenvalue of P(q̂, f̂ , F̂ ) and this can easily be done by considering the general
solution of the equation

− y′′(x) +

(
`f̂ (`f̂ + 1)

x2
+
`F̂ (`F̂ + 1)

(π − x)2
+ q̂(x)

)
y(x) = λ0y(x) (3.2)

and obtaining a contradiction (see the proof of [19, Theorem 3.2] for details).
Let us now turn to norming constants. A simple symmetry argument shows

that a formula similar to the above, but with a minus sign, also holds for the

right regular solutions of the problems P(q, f, F ) and P(q̂, f̂ , F̂ ). Hence ψ̂(x, λ̂n) =

−βn+1ϕ̂(x, λ̂n). On the other hand, the infinite product representation (2.3) implies
that the characteristic functions of these two problems are related by the formula

χ(λ) = (λ0 − λ)χ̂(λ). (3.3)

In particular, χ′(λ̂n) = (λ0− λ̂n)χ̂′(λ̂n). Therefore, by (2.6), the norming constant

γ̂n of P(q̂, f̂ , F̂ ) corresponding to λ̂n equals

χ̂′(λ̂n)

−βn+1
=

γn+1

λn+1 − λ0
.

�

We will invert the action of the transformation T̂ in the next subsection. How-
ever, as the above theorem shows, the information about the smallest eigenvalue
λ0 and the corresponding norming constant γ0 is lost under this transformation.
We will soon see that they can be given arbitrarily, as long as λ0 is strictly smaller
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than the smallest eigenvalue of the problem P(ŝ, f̂ , F̂ ) and γ0 is positive. To see
how these two numbers can help us, we observe from (3.1) that one needs to know

ϕ(x, λ0) to invert the action of T̂. Since the function 1/ϕ(x, λ0) is also a solution
of the equation (3.2), its Wronskian with ϕ̂(x, λ0) can be found by calculating its
value at 0 or its limit as x→ 0:

W
(

1

ϕ
, ϕ̂

)
= 1.

Similarly, we have

W
(

1

ϕ
, ψ̂

)
= β0W

(
1

ψ
, ψ̂

)
= β0.

Therefore
1

ϕ
=

1

W
(
ψ̂, ϕ̂

) (ψ̂ − β0ϕ̂
)
.

It is this coefficient β0 here that can be expressed in terms of λ0 and γ0. Indeed,
by (2.6) and (3.3), we have

β0 =
χ′(λ0)

γ0
= − χ̂(λ0)

γ0
.

3.3. Transformation of problems which adds a new eigenvalue. We now
turn to our second transformation between problems of the form P(q, f, F ) (depicted
as an arrow pointing in the north-east direction in Figure 3). This transformation

inverts the action of the transformation T̂ defined in the previous subsection (see
Theorem 3.4 below) and in particular increases the indices of both f and F by
one. Therefore, by applying it a sufficient number of times, one eventually arrives
at a problem without any singularities and with eigenparameter dependent (or
independent) boundary conditions at both endpoints (i.e., a dot located in the first
quadrant in Figure 3).

Throughout this subsection λ̊(q, f, F ) and γ̊(q, f, F ) denote the smallest eigen-
value and the corresponding norming constant, respectively, of a problem P(q, f, F ).
We define the transformation

T̃ : S̃ → L2(0, π)×B2, (µ, ν, q, f, F ) 7→ (q̃, f̃ , F̃ )

on the set

S̃ :=
{

(µ, ν, q, f, F ) ∈ R× (0,+∞)× L2(0, π)×B2 : µ < λ̊(q, f, F )
}

by

f̃ := Θ̃

(
µ,−u

′(0)

u(0)
, f

)
, F̃ := Θ̃

(
µ,
u′(π)

u(π)
, F

)
,

q̃(x) := q(x)− 2

(
u′(x)

u(x)

)′
+

2(`f̃ + 1)

x2
+

2(`F̃ + 1)

(π − x)2
,

(3.4)

where

u(x) := ψ(x, µ) +
χ(µ)

ν
ϕ(x, µ).

Strictly speaking, the values of the solution u and its first derivative are not defined

at singular endpoints, but the transformation Θ̃ does not depend on its second

argument in this case either. That the transformation T̃ is well defined follows
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from Lemma 2.2 together with the obvious identity min{`f , 0} = `f̃ + 1 for any

f ∈ B.

The analogue of Theorem 3.2 for the transformation T̃ now reads as follows.

Theorem 3.3. If (q̃, f̃ , F̃ ) = T̃(µ, ν, q, f, F ) then the eigenvalues λ̃n and the norm-

ing constants γ̃n of the transformed problem P(q̃, f̃ , F̃ ) are related to the eigenvalues
λn and the norming constants γn of the original problem P(q, f, F ) by

λ̂0 = µ, γ̂0 = ν, λ̂n = λn−1, γ̂n = γn−1(λn−1 − µ), n ≥ 1.

This theorem is a consequence of the following result, together with Theorem 3.2
and the discussion thereafter.

Theorem 3.4. The transformations T̂ and T̃ are inverses of each other in the

sense that if (q̂, f̂ , F̂ ) = T̂(q, f, F ) then T̃
(
λ̊(q, f, F ), γ̊(q, f, F ), q̂, f̂ , F̂

)
= (q, f, F )

for all (q, f, F ) ∈ L2(0, π)×B2, and conversely T̂T̃(µ, ν, q, f, F ) = (q, f, F ) for all

(µ, ν, q, f, F ) ∈ S̃.

The proofs of both theorems are similar to those in [16, Section 3.3] and are thus
omitted.

4. Some applications

As can be seen from Figure 3, by applying one of the transformations defined
in the preceding section to any boundary value problem of the form P(q, f, F ) a
sufficient number of times, one eventually arrives at either a problem with inverse
square singularities at both endpoints or a problem with eigenparameter dependent
boundary conditions at both endpoints (i.e., without any singularities). Therefore,
these transformations allow one to transfer almost any spectral result to P(q, f, F )
either from problems with eigenparameter dependent boundary conditions or from
those with inverse square singularities.

In this section we illustrate these possibilities by generalizing a number of direct
and inverse spectral results obtained in [16] for problems with eigenparameter de-
pendent boundary conditions to problems with inverse square singularities at one
or both endpoints. An exception is made in the second half of the final subsec-
tion, where we go the other way around and extend an inverse spectral result from
problems with inverse square singularities to problems of the form P(q, f, F ).

Our basic strategy in the first three subsections can be described as follows. Let
P(q, f, F ) be an arbitrary problem. We may assume without loss of generality that
K := max{`f , `F } ≥ 1, since otherwise both of the endpoints would be nonsingular
and such problems were already considered in [16]. Let λ−K < . . . < λ−1 be
arbitrary numbers such that λ−1 < λ0 and γ−K , . . ., γ−1 be arbitrary positive
numbers. We set (q(0), f (0), F (0)) := (q, f, F ) and define the chain of problems
P(q(k), f (k), F (k)) inductively by

(q(k), f (k), F (k)) := T̂(λ−k, γ−k, q
(k−1), f (k−1), F (k−1)), k = 1, 2, . . . ,K. (4.1)

Then the last problem P(q(K), f (K), F (K)) has no singular endpoints and is thus
of the form considered in [16]. Now it only remains to observe that the origi-

nal problem P(q, f, F ) can be reconstructed as (q, f, F ) := T̂K(q(K), f (K), F (K)).
In Subsection 4.4 we consider similar chains consisting not of problems but their
supposed eigenvalues and norming constants.
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As already mentioned in the introduction, in order to formulate various spectral
results in a unified manner, we associated (apart from the index) two other real
numbers to every rational Herglotz–Nevanlinna function. We now extend their
definition to arbitrary f ∈ B by setting

ω1 =


1
h0
, ind f ≥ 0 is odd,

−h, ind f ≥ 0 is even,

− `f (`f+1)
2π , ind f ≤ −1,

ω2 =


h
h0
−
∑d
k=1 hk, ind f ≥ 0 is odd,

−
∑d
k=1 hk, ind f ≥ 0 is even,

− `
2
f (`f+1)2

8π2 , ind f ≤ −1.

(4.2)
We define Ω1 and Ω2 similarly for the right endpoint.

Remark 4.1. In [16] we associated a monic polynomialωf to every rational Herglotz–
Nevanlinna function f and defined ω1 and ω2 as respectively the second and third
coefficients of this polynomial. Although we used only these two coefficients of the
polynomial in that paper, it subsequently turned out that the whole polynomial
ωf is useful in some spectral problems [21]. It would be interesting to generalize
this polynomial to our current setting.

4.1. Asymptotics of eigenvalues and norming constants. We have shown in
[16, Subsection 4.1] that the eigenvalues and the norming constants of a boundary
value problem P(q, f, F ) with no singular endpoints (i.e., min{ind f, indF} ≥ −1)
obey the asymptotics

√
λn = n− ind f + indF

2
+

1

πn

(
1

2

∫ π

0

q(x) dx+ ω1 + Ω1

)
+ `2

(
1

n

)
(4.3)

and

γn =
π

2

(
n− ind f + indF

2

)2 ind f (
1 + `2

(
1

n

))
(4.4)

respectively. Our aim in this subsection is to demonstrate that the same asymp-
totics also hold for all pairs f , F ∈ B, with ω1 and Ω1 defined as in (4.2). As a
preliminary result, we show that the expression in parentheses on the right-hand

side of (4.3) is invariant under the transformation T̂.

Lemma 4.2. If (q̂, f̂ , F̂ ) = T̂(q, f, F ) then

1

2

∫ π

0

q(x) dx+ ω1 + Ω1 =
1

2

∫ π

0

q̂(x) dx+ ω̂1 + Ω̂1,

where ω̂1 and Ω̂1 are defined as in (4.2) with f and F replaced by f̂ and F̂ respec-
tively.

Proof. It is easy to check that

ω̂1 − ω1 =

{
f(λ0), ind f ≥ 0,

− `f+1
π , ind f ≤ −1
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and similarly for the right endpoint (see the proof of [16, Lemma 4.1] for details).
On the other hand, from (3.1) we have

1

2

∫ π

0

(q(x)− q̂(x)) dx =

(
ϕ′(x, λ0)

ϕ(x, λ0)
− `f + 1

x
+
`F + 1

π − x

)∣∣∣∣π
0

=

(
ϕ′(x, λ0)

ϕ(x, λ0)
+
`F + 1

π − x

)∣∣∣∣
x=π

− `F + 1

π

−
(
ϕ′(x, λ0)

ϕ(x, λ0)
− `f + 1

x

)∣∣∣∣
x=0

− `f + 1

π
,

where the values at singular endpoints should be understood as limits. Now it only
remains to observe that(

ϕ′(x, λ0)

ϕ(x, λ0)
− `f + 1

x

)∣∣∣∣
x=0

+
`f + 1

π
= ω1 − ω̂1

and similarly for the right endpoint. �

Consider now the chain of problems (4.1). The above lemma, Theorem 3.2, and
the obvious identities ind f (k) − ind f (k−1) = indF (k) − indF (k−1) = 1 show that
if the asymptotics (4.3) and (4.4) hold for some problem of this chain then they
also hold for the preceding one. Since the last problem P(q(K), f (K), F (K)) has no
singular endpoints and thus its eigenvalues and norming constants satisfy (4.3) and
(4.4), the same asymptotics also hold for all the other problems of the chain (4.1),
and in particular for the original problem P(q, f, F ). We formulate this result as a
theorem.

Theorem 4.3. The eigenvalues and the norming constants of the problem P(q, f, F )
satisfy the asymptotics (4.3) and (4.4).

4.2. Oscillation of eigenfunctions. The Sturm oscillation theorem says that the
number of zeros in (0, π) of an eigenfunction of the Sturm–Liouville problem with
constant boundary conditions equals the index of the corresponding eigenvalue. In
the case of a boundary value problem P(q, f, F ) with rational Herglotz–Nevanlinna
functions f and F , one needs to take into account the number of poles of these
functions [16, Theorem 4.4]. In this subsection, we generalize this result to the case
of arbitrary f , F ∈ B.

To this end, we first prove that if ϕ and ϕ̂ are the left regular solutions of two

problems P(q, f, F ) and P(q̂, f̂ , F̂ ) with (q̂, f̂ , F̂ ) = T̂(q, f, F ) then the difference
between the number of zeros of ϕ(x, λn) and ϕ̂(x, λn) can be written as 1+Πf̂ (λn)−
Πf (λn) + ΠF̂ (λn) − ΠF (λn) for every n ≥ 1. This is established by using the
identities

(ϕ̂(x, λn)ϕ(x, λ0))
′

= ϕ(x, λn)ϕ(x, λ0),

(
ϕ(x, λn)

ϕ(x, λ0)

)′
= (λ0 − λn)

ϕ̂(x, λn)

ϕ(x, λ0)

and showing that the function ϕ(x, λn) has exactly one zero in each of the intervals
(0, x1), (x1, x2), . . ., (xN , π), where x1, . . ., xN are the zeros of the function ϕ̂(x, λn)
in (0, π). More details can be found in [16, Lemma 4.3] when f and F are rational
Herglotz–Nevanlinna functions, and the case of singular endpoints is even easier as
the eigenfunctions vanish at singular endpoints.

Consider again the problems (4.1). The n-th eigenfunction of P(q, f, F ) corre-
sponds to the (n+K)-th eigenfunction of P(q(K), f (K), F (K)) and the latter one has
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n + K −Πf(K)(λn) −ΠF (K)(λn) zeros in (0, π). Therefore, applying the result of
the preceding paragraph successively to the problems (4.1), we obtain the following
result.

Theorem 4.4. An eigenfunction of the problem P(q, f, F ) corresponding to the
eigenvalue λn has exactly n−Πf (λn)−ΠF (λn) zeros in (0, π).

4.3. Regularized trace formulas. As can be seen from (2.5), (3.1), and (3.4), our

transformations T̂ and T̃ preserve the smoothness of the potential. This implies,
in particular, that the eigenvalues of a problem P(q, f, F ) with q ∈ W1

2[0, π] have
the asymptotics √

λn = n− a+
b

n− a
+ `2

(
1

n2

)
,

where

a :=
ind f + indF

2
, b :=

1

π

(
1

2

∫ π

0

q(x) dx+ ω1 + Ω1

)
.

Therefore, the first regularized trace of the problem P(q, f, F ), which we defined in
[16] as

Trace(q, f, F ) :=
∑
n<a

λn +
∑
n=a

(λn − b) +
∑
n>a

(
λn − (n− a)2 − 2b

)
,

converges. In the case of a boundary value problem P(q, f, F ) with rational Herglotz–
Nevanlinna functions f and F , the sum of this series can be calculated by the
formula [16, Theorem 4.6]

Trace(q, f, F ) =
(−1)ind fq(0)

4
+

(−1)indF q(π)

4
− ω2

1

2
− Ω2

1

2
− ω2 − Ω2.

In order to also include inverse square singularities, the expression on the right-hand
side needs to be generalized slightly.

Theorem 4.5. The following identity holds:

Trace(q, f, F ) =(−1)`f+ind f 2`f + 1

4

(
q(0) +

`F (`F + 1)

π2

)
+ (−1)`F +indF 2`F + 1

4

(
q(π) +

`f (`f + 1)

π2

)
− ω2

1

2
− Ω2

1

2
− ω2 − Ω2 −

(a2 + a+ 6b)(2a+ 1)

6
1(−∞,−1](a).

For rational Herglotz–Nevanlinna functions f and F we have `f = `F = −1 and
a ≥ 0, and thus the two expressions coincide. The proof of the theorem follows by
reducing the problem P(q, f, F ) to the one with min{ind f, indF} ≥ −1, as in the
preceding two subsections, and using Lemma 4.2 and the following lemma.

Lemma 4.6. Let (q̂, f̂ , F̂ ) := T̂(q, f, F ), and let ω̂1 and ω̂2 be defined by (4.2) with

f and F replaced by f̂ and F̂ respectively. We have

(−1)`f̂+ind f̂ (2`f̂ + 1)

(
q̂(0) +

`F̂ (`F̂ + 1)

π2

)
− 2ω̂2

1 − 4ω̂2

= (−1)`f+ind f (2`f + 1)

(
q(0) +

`F (`F + 1)

π2

)
− 2ω2

1 − 4ω2 − 2λ0
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and similarly for the right endpoint. The regularized traces of these two problems
are related by the formula

Trace(q̂, f̂ , F̂ ) = Trace(q, f, F )− λ0 +
(
a2 + 2b

)
1(−∞,0)(a) + b1{0}(a).

Proof. From (2.5) and (3.1) we obtain

q̂(0) + q(0)

2
=

((
ϕ′(x, λ0)

ϕ(x, λ0)

)2

− (`f + 1)2

x2

)∣∣∣∣∣
x=0

− (`F + 1)2

π2
+ λ0,

which, using (2.4), gives

(2`f+3)

(
q̂(0) +

(`F + 1)(`F + 2)

π2

)
= (2`f+1)

(
q(0) +

`F (`F + 1)

π2

)
+2f2(λ0)+2λ0

with the convention that the next to the last term on the right-hand side is omitted
whenever ind f ≤ −1. This together with the identities

(2`f + 3) = (−1)`f̂−`f+ind f̂−ind f (2`f̂ + 1), (`F + 1)(`F + 2) = `F̂ (`F̂ + 1),

and

ω̂2
1 + 2ω̂2 − ω2

1 − 2ω2 = λ0 + (−1)`f+ind f
(
f2(λ0) + λ0

)
proves the first identity of the lemma. The case of the right endpoint is proved sim-

ilarly. The relation between Trace(q̂, f̂ , F̂ ) and Trace(q, f, F ) is straightforward
from the definition of the trace. �

4.4. Inverse problem by eigenvalues and norming constants. We now turn
to inverse eigenvalue problems for boundary value problems of the form P(q, f, F ).
The purpose of this subsection is to answer the following question: What conditions
must two sequences of real numbers {λn}n≥0 and {γn}n≥0 satisfy in order to be
the eigenvalues and the norming constants of a boundary value problem of the form
P(q, f, F )?

Obviously, the elements of the former sequence must be pairwise distinct and
the elements of the latter one must all be positive:

λ0 < λ1 < λ2 < . . . , γn > 0, n ≥ 0. (4.5)

Moreover, Theorem 4.3 shows that these two sequences should also satisfy the
asymptotics √

λn = n− M +N

2
+

σ

πn
+ `2

(
1

n

)
,

γn =
π

2

(
n− M +N

2

)2M (
1 + `2

(
1

n

)) (4.6)

for some real σ and integers M , N . We are now going to prove that these necessary
conditions are also sufficient, i.e., for any sequences of real numbers {λn}n≥0 and
{γn}n≥0 satisfying these conditions, there exists a unique boundary value problem
P(q, f, F ) having these sequences as its eigenvalues and norming constants. The
idea is to reduce the general case to the case M , N ≥ −1 for which the result was
already proved in [16, Theorem 4.7].

Theorem 4.7. Let {λn}n≥0 and {γn}n≥0 be sequences of real numbers satisfying
the conditions (4.5) and (4.6). Then there exists a unique boundary value problem
P(q, f, F ) having the eigenvalues {λn}n≥0 and the norming constants {γn}n≥0.
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Proof. We only need to consider the case K := −1−min{M,N} ≥ 1. Let λ−K <
. . . < λ−1 be arbitrary numbers strictly less than λ0 and let γ−K , . . ., γ−1 be
arbitrary positive numbers. With Theorem 3.3 in mind, we consider the sequences

{λ̃n}n≥0 and {γ̃n}n≥0 defined by

λ̃n := λn−K , γ̃n := γn−K

min{n,K}−1∏
m=0

(λn−K − λm−K).

They satisfy the conditions (4.5) and (4.6) with M and N replaced by M+K ≥ −1
and N + K ≥ −1 respectively. Therefore there exists a boundary value problem

P(q̃, f̃ , F̃ ) having the eigenvalues {λ̃n}n≥0 and the norming constants {γ̃n}n≥0. Now
it only remains to observe from Theorem 3.2 that the original sequences {λn}n≥0

and {γn}n≥0 are the eigenvalues and the norming constants of the boundary value

problem P(q, f, F ) with (q, f, F ) := T̂K(q̃, f̃ , F̃ ). The uniqueness follows similarly
from Theorems 3.2 and 3.4. �

4.5. Inverse problems by one spectrum. It is well known for a boundary value
problem P(q, f, F ) with constant f and F that the knowledge of the norming con-
stants can be replaced by some other information, like a symmetry assumption on
this boundary value problem, or the knowledge of the potential on half the interval
and the corresponding boundary constant. We generalized these results to prob-
lems P(q, f, F ) with rational Herglotz–Nevanlinna functions f and F in [16]. These
results can also be extended to the case of arbitrary f , F ∈ B.

We start with symmetric boundary value problems, i.e., those of the form P(q, f, f)
with q(x) = q(π − x). Obviously, the eigenvalues of a symmetric problem satisfy
asymptotics of the form (4.6) with M = N . Conversely, if {λn}n≥0 is a sequence
of real numbers satisfying the asymptotics√

λn = n−M +
σ

πn
+ `2

(
1

n

)
, (4.7)

for some real σ and integer M , then there exists a unique symmetric problem

P(q̃, f̃ , f̃) having the eigenvalues {λ̃n}n≥0 constructed as in the preceding subsec-

tion. The problem P(q, f, F ) with (q, f, F ) := T̂K(q̃, f̃ , f̃) is also symmetric and
its uniqueness can be established in a similar way. Hence we have the following
result. Alternatively, one could first prove that a problem is symmetric if and only
if βn = (−1)n for all n ≥ 0 and then use (2.6), as in [16, Subsection 4.5].

Theorem 4.8. Let {λn}n≥0 be a strictly increasing sequence of real numbers sat-
isfying the asymptotics (4.7) for some real σ and integer M . Then there exists a
unique symmetric boundary value problem P(q, f, f) having the spectrum {λn}n≥0.

Let us now turn to Hochstadt–Lieberman-type results. For the sake of variety,
here we transform every problem P(q, f, F ) to a problem with singular endpoints
rather than with boundary conditions dependent on the eigenvalue parameter. It
follows from a result of Eckhardt and Teschl [11, Theorem 5.4] that a problem
P(q, f, F ) with max{ind f, indF} ≤ −1 is uniquely determined by its spectrum,
the coefficient f , and the values of q on (0, π/2 + ε) for some ε > 0, where one can
also take ε = 0 if ind f ≥ indF .
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So, let P(q, f, F ) and P(q̃, f, F̃ ) be two problems with q(x) = q̃(x) a.e. on
(0, π/2 + ε) and the same eigenvalues λn, n ≥ 0. The isospectrality of the bound-

ary value problems P(q, f, F ) and P(q̃, f, F̃ ) and the asymptotics of their eigen-

values imply that indF = ind F̃ . We assume without loss of generality that
K := 1 + max{ind f, indF} ≥ 1, since the other case is already contained in the

above-mentioned result. We set (q(0), f (0), F (0)) := (q, f, F ) and (q̃(0), f̃ (0), F̃ (0)) :=

(q̃, f, F̃ ), and define the chains of problems P(q(k), f (k), F (k)) and P(q̃(k), f̃ (k), F̃ (k))

inductively by (q(k), f (k), F (k)) := T̂(q(k−1), f (k−1), F (k−1)) and (q̃(k), f̃ (k), F̃ (k)) :=

T̂(q̃(k−1), f̃ (k−1), F̃ (k−1)) for k = 1, 2, . . ., K. Then obviously f (k) = f̃ (k) and

indF (k) = ind F̃ (k) for each k.
Denote the left regular solutions of the boundary value problems P(q(k), f (k), F (k))

and P(q̃(k), f̃ (k), F̃ (k)) by ϕ(k) and ϕ̃(k) respectively. Then using the definitions

of the left regular solution and the transformation T̂, for each k = 0, 1, . . .,
K − 1 we successively obtain ϕ(k)(x, λk) = ϕ̃(k)(x, λk) on (0, π/2 + ε) and thus

q(k+1)(x) = q̃(k+1)(x) a.e. on (0, π/2 + ε). In particular, we have f (K) = f̃ (K) and
q(K)(x) = q̃(K)(x) a.e. on (0, π/2 + ε), and hence, by the result mentioned above,

(q(K), f (K), F (K)) = (q̃(K), f̃ (K), F̃ (K)).
We now observe that both 1/ϕ(K−1)(x, λK−1) and 1/ϕ̃(K−1)(x, λK−1) coincide

on the left half of the interval (0, π) and satisfy the same differential equation on
all of this interval. This yields q(K−1)(x) = q̃(K−1)(x) a.e. on (0, π) and F (K−1) =

F̃ (K−1). Repeating this argument K − 1 more times concludes the proof of the
following result.

Theorem 4.9. Let {λn}n≥0 and {λ̃n}n≥0 denote the eigenvalues of the problems

P(q, f, F ) and P(q̃, f, F̃ ) respectively. If q(x) = q̃(x) a.e. on (0, π/2 + ε) for some

ε > 0 and λn = λ̃n for all n ≥ 0, then (q, f, F ) = (q̃, f, F̃ ). Moreover, one can also
take ε = 0 if ind f ≥ indF .

References

[1] S. Albeverio, R. Hryniv, and Ya. Mykytyuk, Inverse spectral problems for Bessel operators,

J. Differential Equations 241 (2007), no. 1, 130–159.
[2] F. V. Atkinson, W. N. Everitt, and A. Zettl, Regularization of a Sturm–Liouville problem

with an interior singularity using quasiderivatives, Differential Integral Equations 1 (1988),

no. 2, 213–221.
[3] P. A. Binding, P. J. Browne and B. A. Watson, Sturm–Liouville problems with boundary

conditions rationally dependent on the eigenparameter. I, Proc. Edinb. Math. Soc. (2) 45
(2002), no. 3, 631–645.

[4] P. A. Binding, P. J. Browne and B. A. Watson, Sturm–Liouville problems with boundary
conditions rationally dependent on the eigenparameter. II, J. Comput. Appl. Math. 148
(2002), no. 1, 147–168.

[5] R. Carlson, Inverse spectral theory for some singular Sturm–Liouville problems, J. Differential

Equations 106 (1993), no. 1, 121–140.
[6] R. V. Churchill, Expansions in series of non-orthogonal functions, Bull. Amer. Math. Soc.

48 (1942), 143–149.
[7] M. M. Crum, Associated Sturm–Liouville systems, Quart. J. Math. Oxford Ser. (2) 6 (1955),

121–127. arXiv:physics/9908019
[8] A. Dijksma and H. Langer, Finite-dimensional self-adjoint extensions of a symmetric oper-

ator with finite defect and their compressions, Advances in complex analysis and operator
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[26] J. Pöschel and E. Trubowitz, Inverse spectral theory, Academic Press, Inc., Boston, MA,
1987.

[27] B. Simon, Basic complex analysis. A Comprehensive Course in Analysis, Part 2A, American

Mathematical Society, Providence, RI, 2015.

Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences,

9 B. Vahabzadeh str., AZ1141, Baku, Azerbaijan.

Email address: njguliyev@gmail.com

https://arxiv.org/abs/1110.2453
https://arxiv.org/abs/1708.07497
https://arxiv.org/abs/1803.02567
https://arxiv.org/abs/1807.11865
https://arxiv.org/abs/1806.10459
https://arxiv.org/abs/1905.07952
https://arxiv.org/abs/1910.05812
https://arxiv.org/abs/1004.4175
https://arxiv.org/abs/1010.4902

	1. Introduction
	2. Preliminaries
	2.1. Notation
	2.2. Regular solutions
	2.3. Hilbert space formulation and norming constants

	3. Transformations
	3.1. Transformation of boundary conditions and singularities
	3.2. Transformation of problems which removes the smallest eigenvalue
	3.3. Transformation of problems which adds a new eigenvalue

	4. Some applications
	4.1. Asymptotics of eigenvalues and norming constants
	4.2. Oscillation of eigenfunctions
	4.3. Regularized trace formulas
	4.4. Inverse problem by eigenvalues and norming constants
	4.5. Inverse problems by one spectrum

	References

