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Abstract. We consider externally forced evolution equations. Mathemati-

cally, these are skew systems driven by a finite dimensional evolution. Two

very common cases included in our treatment are quasi-periodic forcing and
forcing by a stochastic process. We allow that the evolution is a PDE and

even that it is not well-posed and that it does not define an evolution (flow).

We first establish a general abstract theorem which, under suitable (spec-
tral, non-degeneracy, smoothness, etc) assumptions, establishes the existence

of a “time-dependent invariant manifold” (TDIM). These manifolds evolve

with the forcing. They are such that the original equation is always tangent to
a vector field in the manifold. Hence, for initial data in the TDIM, the original

equation is equivalent to an ordinary differential equation. This allows us to
define families of solutions of the full equation by studying the solutions of

a finite dimensional system. Note that this strategy may apply even if the

original equation is ill posed and does not admit solutions for arbitrary initial
conditions (the TDIM selects initial conditions for which solutions exist). It

also allows that the TDIM is infinite dimensional.

Secondly, we construct the center manifold for skew systems driven by the
external forcing.

Thirdly, we present concrete applications of the abstract result to the dif-

ferential equations whose linear operators are exponential trichotomy subject
to quasi-periodic perturbations. The use of TDIM allows us to establish the

existence of quasi-periodic solutions and to study the effect of resonances.
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equations
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1. Introduction and Organization of the Paper

The goals of this paper are to present two “reduction principles” for some ab-
stract evolution equations subject to quasi-periodic forcing or forcings with some
more complicated time dependence, including forcing by stochastic processes. The
main novelty is that we do not need to assume that the equation is well posed nor
that it defines an evolution. We assume only the existence of forwards or backwards
evolutions in subspaces. This requires to avoid using methods such as graph trans-
form and the functional equations for the center manifold need to capture not only
that it is an invariant set, but also that it consists of points where the evolution
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can be defined. We will systematically construct some special solutions that are
obtained by studying systems of lower dimension (may be even finite dimensional
in many examples).

The reduction principles were studied originally in [Per29], which, in general,
state that the bounded solution of a (possibly infinite dimensional) problem can
be found in a manifold of smaller dimensions. When the reduced manifold is finite
dimensional, the restriction of the system to the invariant manifold may be studied
with the techniques from ordinary differential equations even if the original problem
is infinite dimensional. In modern times reduction principles are formulated as the
existence of a center manifold and proved by different methods [Car81, Mie91,
AM94, JS99, dlL09, Arn98, Box91, HI11, VI92, BLZ98, LLB13, CLY00a, CLY00b]
and, specially [CL97].

To obtain an invariant manifold, we derive a functional equation for the time-
dependent equation and transform it into a fixed point problem. This is different
from the graph transform method since we do not need to involve the evolution
(which may fail to exist in some of the examples we consider).

The application of these reduction principles allows us to study the effect of res-
onances by using methods of ordinary differential equations and find many different
types of solutions besides the quasi-periodic ones. For example, we can produce
chaotic solutions or quasi-periodic solutions. As we will see, reduction principles
can be applied also to stochastic forcings of PDEs so that one can apply Fokker-
Plank equation’s methods (even if the original phase space is infinite dimensional).
Invariant manifold for stochastic perturbation have been considered in [Arn98],
which also includes an extensive review of existing literature.

The main novelty of this paper is that we consider the situation where the evolu-
tion equation is subject to external forces and we obtain a non-autonomous center
manifold. The external forces we consider can be very general, they can be either
a deterministic system (for example quasi-periodic forcing) or a stochastic process
satisfying some mild conditions (we do not treat formally white noise). Of course,
in the case of smooth forcing we obtain more regularity of the manifold. In the
quasi-periodic case, we use the time-dependent center manifold to study systemat-
ically the effect of resonances of the external forcing with the natural frequencies
of the system. We also do not need to assume that the equations we consider are
well-posed nor define an evolution (we assume only that they define forward and
backwards evolution in closed subspaces that span the whole space), but we can
conclude that there is a finite dimensional manifold in which the evolution can be
defined. We can also consider the nonlinearities which are unbounded.

The applications to keep in mind as motivations for this work, which we explain
in details in Section 4, are: the external forced complex Ginzburg-Landau equation
(henceforth CGL)

(1.1)

 θt = B(θ),
ut = ru+ (b1 + ib2)∆u+N1(θ, x, u) +N2(θ, x, u),
t ∈ R, θ ∈ C , x ∈ Td := Rd/2πZd.

Here, C is a manifold and B a vector field in it. A very important particular case
to keep in mind is C = Td and B(θ) = ω.
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The derivative complex Ginzburg-Landau equation (henceforth DCGL)

(1.2)

 θt = B(θ),
ut = ru+ (b1 + ib2)∆u+N3(θ, x, u) +N4(θ, x, u,Ou),
t ∈ R, θ ∈ C , x ∈ Td,

the externally forced Boussinesq equation

(1.3)

 θt = B(θ),
utt = µuxxxx + uxx +N5(θ, x, u) +N6(θ, x, u, ux, uxx),
t ∈ R, θ ∈ C , x ∈ Td,

and the external forced nonlinear elliptic differential equation defined on a cylin-
drical domain

(1.4)

 θt = B(θ),
utt = −uxx − αu+N7(θ, x, u) +N8(θ, x, u, ux),
t ∈ R, θ ∈ C , x ∈ Td,

where d ≥ 1 and the functions u(t, x, θ) are unknown. The functions N1, N3, N5

and N7 are assumed to be under Cr from a Banach space X to another space Y
(that satisfy some conditions), and the functions N2, N4, N6 and N8 are assumed to
be higher order in u. Another finite dimension example that served us as motivation
is the study of transition state theory in time-dependent systems [BMK08], but this
result can be obtained by other methods.

We note that the nonlinearity in DCGL is unbounded and that the four PDEs
above are ill-posed provided b1 < 0 and µ > 0. Moreover, with the conditions
r, b1 < 0 and µ > 0 and together with the assumption α > 0, the linear operators
of the above PDEs have an exponential trichotomy. Nevertheless, we will be able
to establish the existence of center manifolds for above PDEs.

Note that the linear operators in the four differential equations above just have
the discrete spectrum, but this is not essential. The general results Theorems 3.1
and 3.2 allow that the operators have continuous spectrum. For example, the
external forced nonlinear elliptic differential equation (1.4) can be replaced by{

θt = B(θ),
utt = −∂2

xxu− αu+ V (t, x)u+N(θ, x, u, ux), x ∈ Rn,

where α ≤ 0, V (t, x) = W (x) +T (t, x) with W such that −∂2
xx−α+W has a finite

number of bound states and the rest of the spectrum is positive (See [RS78] for
sufficient conditions in W ). The term T is part of the perturbations we consider.

Similar modifications can be done to the other three examples above. We omit
the details.

In several applications, C will be a compact manifold (e.g., in quasi-periodic
forcing C = Td), on the other hand if we want to include Brownian motions C = Rd
and it is well known that indeed Brownian motions explore all phase. Nevertheless,
in both cases we will assume that the perturbations in the four equations above
belong to Cr(C , (Cr(X,Y )), i.e., Ni ∈ Cr(C , (Cr(X,Y )), i = 1, · · · , 8, where X,Y
are suitable Banach spaces which ensure that the Cr norms of Ni, i = 1, · · · , 8,
are bounded. Note that with our definition of Cr space, this includes uniform
boundedness of derivatives. That is, we can include Brownian motion in a forcing
provided that the large excursions do not have too much effect.

In many physical models, one does not expect on physical grounds that the
external forcing may have large effects, so that this assumption is natural.
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In models for which this suppression of large effects is not true, we can introduce
cut-offs (such as in the prepared equation (2.11)). The cut-off model will agree with
the real model except for low probability events. In this paper, we will not consider
these probabilistic considerations and consider only the geometric aspects of the
well behaved models. Note that, with our formulation, the center manifolds will be
stochastic variables. The study of their probabilistic properties is very interesting,
but we will not consider it in this paper.

This paper is organized as follows: In section 2, we present an informal formula-
tion of the invariant manifold problem and introduce two different partial differen-
tial equations, one with smooth forcing and the other with stochastic forcing. The
cases of deterministic forcing and of stochastic forcing lead to the same fixed point
equations. The differences between smooth forcing and stochastic forcing appears
mainly in the regularity assumed on the dependence on the forcing variables and the
regularity obtained for the manifold. In section 3, we formulate precise hypotheses
and present our main results. Then we formulate equations that are equivalent
to the invariance and transform them into a fixed point problem, by proving this
operator is a contraction we give the proof of our main result, Theorem 3.1. By
Hadamard interpolation theorem, Theorem 1.1, we get an improved estimate on
the regularity of the fixed point. Finally, for the case of smooth forcing, we discuss
the regularity about θ of the manifold. In section 4, we formulate and prove the
results for the external forced nonlinear elliptic differential equations (1.4).

2. Overview of the Argument

We will consider the following non-autonomous system

(2.1)
d

dt
y = X (θ, y),

where y belongs to a Banach space X, and θ ∈ C , is the configuration space of
external forcings which evolve under its own law of evolution independent of y. The
vector field X , taking values in X, may be a partial differential operator, so that
questions of domains, existence of the evolution are subtle. The precise assumptions
will be formulated after being motivated by the informal presentation here.

We will assume that the equation (2.1) is basically linear. That is

(2.2) X (θ, y) = A y + f(θ, y) +N(θ, y)

where A is a linear operator (possibly unbounded) and for a fixed θ we assume
f(θ, · ) and N(θ, · ) are non-linear operators which could also be unbounded. Fol-
lowing [Hen81], we will assume that f(θ, · ) and N(θ, · ) are differentiable from the
space X to another space Y with X consisting of smooth functions and Y consti-
tuting of less smooth functions. More detailed assumptions on f and N will be
given later.

We will not assume that the linear equation

(2.3)
d

dt
y = A y

defines an evolution, but only that there are spaces where (2.3) defines an evolution
in the future or in the past and a subspace where (2.3) defines an evolution for all
time. We call these spaces as stable, unstable and center subspaces respectively
(very often the center subspace is finite dimensional). Note that the equation
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(2.3) is a constant equation, so we can use the techniques of semigroup theory
[Paz83, Gol17] to study the existence of these partial evolutions. See Section 2.1.

For the perturbations f and N, we will assume that for fixed θ ∈ C , N(θ, 0) = 0,
D2N(θ, 0) = 0 and that f(θ, · ) has a small Lipschitz norm as a function from X to
Y .

For the external forcing, there are two cases that are of particular interest:
A) The case of smooth forcing:

In this case, the set C is a manifold and the evolution θ(t) is generated
by a smooth differential equation

(2.4)
d

dt
Φt(θ) = B(Φt(θ)), Φ0(θ) = θ,

where B is a smooth vector field. Hence, we can rewrite the equation (2.1)
in an autonomous way:

(2.5)
d

dt
(θ, y) = X̃ (θ, y) =

(
B(θ),X (θ, y)

)
.

B) The case of stochastic forcing:
In this case, the set C is a measure space with measure µ and the evolu-

tion Φt is a Markov stochastic process. The Φt(θ) is only measurable in θ
and it is continuous (or even less regular) in t. There will be no regularity
assumed in θ beyond measurability and some boundedness. In this case the
equation (2.1) can be rewritten as

(2.6)
d

dt
y = X (Φt(θ), y).

Note that in (2.6) the function X is much less regular in the time t than in x. The
existence, uniqueness and regularity of solutions of equations with this regularity
were studied systematically by Caratheodory [Hal80, Theorem 5.3, Chapter 1].

The goal of this paper is to show that the space where solutions of (2.3) are
defined for all time is analogous to the one on which the solutions of the full equation
(2.1) are defined for all time. Namely, under suitable smallness assumptions on the
nonlinear terms, there are manifolds Wθ0 in X such that the initial value problem
for (2.5) with initial conditions θ(0) = θ0 and y(0) ∈Wθ0 has a solution defined for
all time. We note, however, that assuming that y is given by an measurable path.

We recall that the definition of Cr spaces that we use in this paper is Defini-
tion 1.2, which includes that the function and its derivatives are uniformly bounded.
This can be arranged by cutting off the functions. See Section 2.2 and the discussion
of forcing by unbounded stochastic forcings such as Brownian motion.

2.1. Invariant splittings of the linear part of the evolution equation and
their semigroups. In this section we present the assumptions on A in (2.2). We
will assume that there is a decomposition

(2.7) X = Xu ⊕Xc ⊕Xs

where Xσ are closed subspaces, σ = u, c, s, which are invariant for A . We allow
the possibility that Xs or Xu are trivial. In this case, the center manifold theorem
stated in this paper will become a slow invariant manifold theorem.

We will introduce the notations ys, yc, yu to denote the components of a point
y ∈ X over the corresponding spaces and will not distinguish between yσ as an
element of Xσ and as an element of X. We denote by Πσ the projection operator
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over Xσ associated to the splitting (2.7) and assume that the decomposition (2.7)
is invariant under A, this means that

(2.8) A (D(A )
⋂
Xσ) ⊂ Xσ

for σ = s, c, u. We will denote by Aσ the restriction of A to Xσ and not distinguish
between Aσ as an operator taking values in Xσ or as an operator taking values in
X. As a consequence of (2.8) we have that D(Aσ) = D(A )

⋂
Xσ.

Under the splitting assumption and using the notation for the splitting, the
equation (2.1) can be rewritten as the system of equations as:

(2.9)

dys
dt

= Asys + fs(θ, ys, yc, yu) +Ns(θ, ys, yc, yu),

dyc
dt

= Acyc + fc(θ, ys, yc, yu) +Nc(θ, ys, yc, yu),

dyu
dt

= Auyu + fu(θ, ys, yc, yu) +Nu(θ, ys, yc, yu),

where fσ = Πσf and Nσ = ΠσN, σ = u, c, s.
The most important assumption for us will be that
(T0):

• As defines a semigroup {etAs}t∈R+ on Xs for positive time.
• Au defines a semigroup {etAu}t∈R− on Xu for negative time.
• Ac defines a group {etAc}t∈R on Xc for all times.

Later, we will make more precise assumptions which include that etAs , for t ≥
0, etAu for t ≤ 0 are smoothing semigroups and that the contraction rates of the
semigroups on different spaces are precisely related. See hypothesis (H2.1), (3.1)
and (3.2) for details.

We present some concrete hypotheses about the equation (2.1) whose vector field
defined by (2.2) and on the space X. More hypotheses will be introduced later.

(T1): The functions f,N ∈ Cr(C , Cr(X,Y )). Moreover, ‖f(θ, · )‖Cr(U,Y ) is
small enough and

N(θ, 0) = 0, DN(θ, 0) = 0, ‖N(θ, · )‖Cr(U,Y ) ≤ L,

where L is a bounded number.
(T2): The space Xc admits Cr− bump functions (See [Remark 3.28] [CdlL] for

more discussions about the bump functions).

2.2. The Prepared Equations. We assume the spaceXc admits Cr−bump functions, i.e., (T2),
then for the full equation (2.9), the prepared equations ([Lan73]) are obtained by
scaling the variables yσ,

(2.10) yσ = εỹσ, σ = s, c, u

and by multiplying the bump function, i.e., the prepared equation are:

d

dt
ỹs = Asỹs + ε−1Fs(θ, εỹs, εỹc, εỹu),

d

dt
ỹc = Acỹc + ϕ(ỹc)ε−1Fc(θ, εỹs, εỹc, εỹu),

d

dt
ỹu = Auỹu + ε−1Fu(θ, εỹs, εỹc, εỹu),

(2.11)
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where we denote

(2.12) F (θ, y) ≡ f(θ, y) +N(θ, y).

Obviously, (2.11) is equivalent to the original equation, (2.9), when ỹc ∈ Eε(Xc) ≡
{ỹc : ‖ỹc‖Xc < 1} (that is ‖yc‖Xc < ε) under the change of variables (2.10).

It is a simple calculation in [Lan73] that, if we denote

F̃ (ỹs, ỹu, ỹc) ≡ ε−1
(
Fs(εỹs, εỹc, εỹu), ϕ(ỹc)Fc(εỹs, , εỹcεỹu), Fu(εỹs, εỹc, εỹu)

)
,

with the functions f and N satisfying the hypothesis (T1), then from (2.12) we
know that

(2.13) ‖F̃‖Cr(B(0,1,X),Y )

is as small as desired for ε sufficiently small. The norm in (2.13) involves domains
which are unit balls in the Xs, Xu spaces but the whole space in Xc. We refer to
[Lan73] for the details.

The results of [dlL09] showed that for the prepared equation in the autonomous
case, one can obtain a unique center manifold which is expressed as the graph of a
function from Xc to Xs⊕Xu. This center manifold is invariant under the prepared
equations and is tangent to the center space at the origin. Similarly, in this paper
we will obtain the time-dependent center manifold for the prepared equation (2.11).

With the similar tricks to get (3.12) from full equation (2.9) we can also get the
evolution equation of (2.11) which has the same formula with (3.12) since we have
replaced the perturbation of (2.11) with the one in (2.9). So we still use (3.12) to
denote the evolution of the prepared equation.

Of course, the existence of a cut-off function is a sufficient condition to be able
to work with the prepared equations, but it is by no means necessary. In many
cases, one can take advantage of the structure of the non-linearity to construct the
prepared equations.

2.3. The case of smooth evolution of forcing. We first consider the case when
the external forcing is evolving according to a differential equation. For example,
we may consider the effect of large celestial bodies on a small satellite, the effects
of weather in a biological population or the effect of a heat bath in a molecule, etc.
We formulate the notion of non-autonomous manifolds and reduce (formally) the
existence of these invariant manifolds to a fixed point equation. (See (3.11)). We
anticipate that the formulation makes perfect sense and it is natural in the case of
stochastic forcing with some mild regularities, so the treatment of stochastic forcing
will start also from the fixed point equation (3.11). Of course, in case that C is a
manifold and that the evolution with respect to θ is smooth, we will also obtain
the regularity with respect to θ in the conclusions but in the stochastic forcing, no
regularity in θ will be obtained.

In this section we will indicate the formulation of the existence of invariant sets
in the case when C is a manifold and its evolution is given by a differential equation
as in (2.5), where C is a finitely dimensional manifold which is also called “clock
manifold”, X is a Banach space and B is a smooth vector field on a manifold Td.
A particulary case of the set-up which is important to us is C = Tm and B(θ) = ω.
In this case, the system is said to be subject to quasi-periodic forcing. Another
important case is when C = R, the dynamics on it is given by:

θ̇ = −λθ, λ > 0
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and the forcing vanishes when θ = 0. These models describe a perturbation which
dies off exponentially as time goes to infinity. These problems appear in practice
when systems are subject to sudden transient forcings.

Assume that Φt(θ) ∈ C is the flow of the following differential equation

(2.14)
d

dt
θ(t) = B(θ(t)), θ(0) = θ ∈ C .

Then (2.5) can be rewritten as

(2.15)

d

dt
Φt(θ) = B(Φt(θ)), Φ0(θ) = θ ∈ C ,

d

dt
y = A y + F (Φt(θ), y).

The equation (2.15) is referred in the mathematical literature as an skew flow. It is
can also be consider as a non-autonomous evolution equation in a Banach space X.
The equation depends on parameters defined on another set which we will denote
by C and which are evolving independent of the state of y.

By a solution of (2.15) we always mean a classical solution, that is, a continuous
function u of (θ, y) satisfying

θ : R→ C , y : C × R→ X,

such that, ∀t ∈ R, θ ∈ C , θ is smooth with respect to t, y is such that the operator
X can be interpreted in the classical sense (this is guaranteed by using spaces X,
Y consisting of functions which are enough times differentiable), y is continuously
differentiable with respect to t and finitely differentiable with respect to θ.Moreover,
(2.15) is verified in the claimed set.

From (2.9) and (2.11) we know that the prepared equation of (2.15) is

(2.16)

d

dt
Φt(θ) = B(Φt(θ)), Φ0(θ) = θ ∈ C ,

d

dt
ys = Asys + Fs(Φt(θ), ys, yc, yu),

d

dt
yc = Acyc + Fc(Φt(θ), ys, yc, yu),

d

dt
yu = Auyu + Fu(Φt(θ), ys, yc, yu),

where, to avoid cluttering the typography, we write F̃ and ỹ as F and y, respectively.
The definition of non-autonomous invariant manifold associated to the space Xc

is the following.

Definition 2.1. Let Θ : C ×Xc → X be a C1 embedding. We say that it defines
a non-autonomous invariant manifold for (2.15) if there exists L, a vector field
defined on C ×Xc taking values in TXc, since Xc is a Banach space we can replace
TXc with Xc, such that

(2.17) DθΘ(θ, yc)B(θ) +DycΘ(θ, yc)L(θ, yc) = X (θ,Θ(θ, yc)).

Then, the manifold

W̃ ≡
{

Θ(θ, yc) ∈ X : θ ∈ C , yc ∈ Xc

}
is referred to as a non-autonomous invariant manifold of the system (2.15).
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The key point is that if (2.17) holds and
(
θ(t), yc(t)) is a solution of

(2.18)
d

dt

(
θ
yc

)
=
(

B(θ)
L(θ, yc)

)
then Θ(θ(t), yc(t)) is a solution of the full equation (e.g.(2.1)).

Note that Φt(θ) is the evolution of the vector field B(Φt(θ)), then (2.18) can be
written in a non-autonomous form

(2.19)
d

dt
yc = L(Φt(θ), yc).

We anticipate that (2.19) also makes sense in the case that Φt is not derived from
a differential equation but is a stochastic process under some mild regularity as-
sumptions.

In the case that the vector field X is unbounded, the formal argument above
requires to justify the sense in which the equations are satisfied. In our applications,
we will be able to take X as spaces of very differentiable functions, so that the
equations (2.1) will hold in the classical sense for the solutions in the center manifold
we construct. It seems that by formulating some operators as stochastic integral
we could generalize the processes considered.

Hence, the non-autonomous invariant manifolds provide with a way to produce
solutions of the problem by solving the “reduced” system (2.18). Notice that the
reduced system may be finite dimensional even if the original system was infinite
dimensional (and possible unbounded).

The geometric meaning of the equation (2.17) is that the vector field (B,X )
restricted to the manifold W̃ is tangent to the manifold. If we pull back the vector
field by the embedding Θ we obtain that (B,L) is the vector field corresponding to
X̃ in coordinates.

In the case that the extended vector field X̃ (defined in (2.5)) defines a flow,
if (2.17) is satisfied, the trajectories of the extended vector field remain in the
manifold W̃ and that the motion in the coordinates provided by Θ is precisely
L̃ ≡ (B,L).

It will be important for us that we can make sense of (2.17) even in some cases
when the extended vector field X̃ does not define a flow. The solutions obtained
by lifting the solutions of the reduced flow will still be solutions of the full equa-
tion. Hence, the present treatment allows us to systematically construct families of
solutions even for some ill-posed equations that satisfy our assumptions.

The manifold W we need will be presented as the graph of a function w : C ×
Xc → Xs ⊕Xu, i.e.,

(2.20) W =
{

(θ, wu(θ, yc), yc, ws(θ, yc))|θ ∈ C , yc ∈ Xc

}
,

we need to solve some equations that express invariance. Note that in the case of
ill-posed equations, the graph will be determined not only by the requirement that
it is an invariant set but also by requiring that its points admit a forward evolution.
More concretely, we need to derive heuristically an equation (see equation (3.11) )
for the functions ws, wu that ensure that W is invariant under (2.15), equivalently,
(2.9) since we want to allow ill-posed equation. We will also need to impose that
the points of W admit an evolution.
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From the point of geometry, the invariance of the manifold W will mean that
W ⊂ D(X̃ ) that is if z ∈ W, X̃ (z) ∈ TzW and F |W defines an evolution equation,
moreover, that there are some precise estimates, which we will make explicit later,
on the dependence on parameters. This last point is automatic in the applications
we consider in Section 4, since W is a finite dimensional smooth manifold and F |W
is a smooth and bounded vector field.

From the point of mathematics, as it is standard in invariant manifold theory, see
[Hal80, Lan73], we will formulate heuristically the invariance condition as a fixed
point problem, see equation (3.11). Then, we show that indeed one can find a fixed
point of (2.9) enjoying several extra properties (regularity, asymptotic behavior,
etc). Once we have a well behaved fixed point solving (3.5), it will be easy to check
that the set (2.20) is invariant under the equation (2.9) when w is the solution of
the fixed point of equation (3.11).

In the heuristic derivation of the fixed point equations (2.20) to be solved, we
will use, with abandon assumptions, that the differential equations we write have
solutions, etc. This will indicate that the equation derived is a necessary condition
for the invariance equation. Once the solutions for this invariance equation are
obtained, we will be able to show that the existence of solutions for the initial
conditions in the invariant manifold. Therefore, we will, for the moment, assume
that w is such that its graph is an invariant manifold and manipulate the invariance
equation to derive necessary conditions that w has to satisfy.

Since we do not assume that our equations are well posed, our procedure differs
from that in [Per29]. The functional equations equations have to select the initial
conditions that allow us to construct solutions. We will have one functional equation
in each of the components. These three equations are coupled, we formulate them
as a fixed point equation for an operator T . Then we show this operator is a
contraction in appropriate spaces. See the system (3.12) for details.

As we can only construct the evolutions of the equations whose perturbations
are small enough, we can not consider the original equation (2.15) directly, we have
to turn to its “prepared equation”, (2.16). As it is standard in Center Manifold
theory, the prepared equations agree with the original ones in a neighborhood of
original point but globally mild. The invariant manifolds for the prepared equations
will be locally invariant for the original equation. The manifolds we construct will
be unique once the prepared equations are selected, but they can depend on the
prepared equation. Hence, the locally invariant manifolds are not unique.

Therefore, in the rest of the paper, we will just construct the global center
manifold which is global invariant by equation (2.16).

We will go back to (2.15) by the inverse of (2.10) inside the set of Eε(Xc), that
is we obtain the local center manifold which is global invariant by equation (2.15).
For this reason we will only construct the center manifold for the prepared equation
(2.16).

2.4. Stochastic forcing. The set-up described in the previous section is very gen-
eral and a slight modification also accommodates the case of stochastic forcing.

When we consider stochastic forcing, C is a measure space endowed with a
measure µ. We will assume that the variables θ evolve according to an stationary
stochastic process Φt(θ). The dependence on θ need only be measurable, not even
continuous since C , in general, does not need to be assumed to be a metric space
(much less a manifold).



CENTER MANIFOLD IN PDES 11

In the stochastic processes setting, we assume that Φt preserves the probability
measure µ, which will be used to discuss expectations, etc. In this paper, however,
we will concentrate on geometric properties and will not discuss probabilistic aspects
of the manifold.

We will assume that the evolution satisfies the Markov property Φt+s(θ) =
Φt(Φs(θ)).

A key observation is that, the usual theory of existence, uniqueness, smooth
dependence on initial conditions, etc. of the Cauchy problem for skew equations

(2.21) ẏ = F (Φt(θ), y), y(0) = y0

is based on the integral equation y(t) = y0 +
∫ t
0
F (Φs(θ), y(s)) ds . Hence, it can

be developed assuming only regularity of F with respect to the y variable. For
the dependence on t continuity (or even less regularity such as CADLAG – right
continuity, limit on the left with French initials, common in the study of Levy
noise) is enough and, for the dependence on θ, measurability is enough. One can
also derive the Duhamel variation of parameters formulas in the cases that the
differential equations have terms that evolve according to an stochastic process.

In this paper, we will assume that the integral in (2.21) is a standard 1 − D
integral. This will require that our stochastic process have measurable paths. This
happens sometimes in application [Bas62, Dua15] but it excludes important applica-
tions such as white noise. It seems that one can include white noise by interpreting
(2.21) as an stochastic integral. We also recall that in (T1) we are assuming that
the effects of noise are bounded at ∞.

Using the above discussion, we can start our formulation by using the weak
form of the evolution, (2.6), which is natural when the external forcing is evolving
according to an stochastic process rather than according to the differential equation
(2.4).

Proceeding as in the previous section, we proceed to derive again (3.11). Hence,
our goal is again to establish the existence of solutions of the fixed point equation
(3.11), but the regularity assumptions (and the conclusions) will be different from
the case when the external forcing is evolving under a differential equation.

Remark 2.1. The physical interpretation of the above setup for stochastic forcing
is that, for each realization of the noise, satisfying our hypotheses, we obtain a
manifold satisfying the invariance equation (3.11). Hence, the manifold becomes a
random variable and it is possible to study statistical properties such as expected
values of several events such as the manifold going trough a point, deviations of the
above etc.

This formulation of the invariant manifold problem has been standard in the
literature. See [Box91, Arn98] and it usually receives the name quenched analysis.

We point out that in the literature, there are other approaches of the analysis of
random systems. A very important one is the study of the evolution of probability
densities, [CM65, vK81]. In finite dimensional systems, the density with respect
to the Lebesgue measure satisfies a PDE (the Fokker-Plank equation), which is a
very powerful tool since it can be analysed using PDE tools. However, for infinite
dimensional problems, since there is no Lebesgue measure, even if the evolution of
measures can be defined, there is no analogue of the Fokker-Plank equation. Of
course, for infinite dimensional problems, once a finite dimensional manifold has
been identified, it is possible to use Fokker-Plank equations to the reduced system
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in the center manifolds. Hence, the reduction principles established here are useful
both in the quenched and in the Fokker-Plank approaches.

Remark 2.2. We note that the functions we produce are solutions in the sense that
they satisfy the equations in integral form. These are called mild solutions in the
literature. If we take space X as the sufficiently differentiable functions space (in
the applications we will take X = Hr for r ≥ r0, so that this includes C` functions
for arbitrarily large `), we can conclude that the solutions thus produced are very
smooth and that they satisfy the equations in the classical sense.

3. Formulation of the results

In this section we formulate precisely the notation and hypotheses as well as the
main result, Theorem 3.1. We will start formulating the hypotheses and state the
Theorem 3.1.

In the case of the smooth forcing if we assume the regularity of F with respect
to θ, then we get the regularity of w with respect to θ. However, in our second case
(see Section 2.4) even we assume the regularity of F with respect to θ we can not
conclude regularity of w with respect to θ.

Our result will be the existence and regularity of (3.11). We will first present
results that assume that F is regular in the initial value ξ ∈ Xc (but not in θ). These
results apply both to stochastic forcing and to smooth forcing. It is well known
that the invariant manifolds for the prepared equations are unique (under some
conditions), but since the bump process involved in deriving the prepared equations
involves arbitrary choices the locally invariant manifolds for the full equation are
not unique. The lack of the uniqueness of the center manifolds is a real effect, which
has been studied in great detail in [Sij85].

3.1. Formulation of the hypotheses and the statement of the main result.
Now, we turn to formulating precisely the hypotheses for our result. We note that
these hypotheses are verified in several examples in the literature. In Section 4, we
will present the cases of the external forced nonlinear elliptic differential equations.
The same framework applies to the examples discussed in [dlL09] and [CdlL].

The first group of Hypotheses (which we will refer collectively as (H1)) concerns
the splitting assumed in (2.7). As we have use the “two spaces approach” method
of [Hen81] to guarantee the bounded-ness of perturbation F , we assume that F
is differentiable from the space X to another space Y consisting of less smooth
functions.

In this paper we will define Cr(X,Y ) to be the set functions from X to Y that
have continuous derivatives of order less than or equal to r. We will assume that
the derivatives are uniformly bounded and uniformly continuous. We endow this
space with the supremum norm of the domain with makes it a Banach space.

(H1.1): The decomposition (2.7) of the space X is invariant under A . That is,
if x ∈ D(A )

⋂
Xσ then A x ∈ Xσ.

(H1.2): The projections Πs,Πc,Πu are bounded in X.
(H1.3): There are Banach spaces Yσ, σ = s, c, u (Y = Ys ⊕ Yc ⊕ Yu) such that:
− Xσ ⊂ Yσ.
− Xσ is dense in Yσ and the embedding is continuous. Actually, Xc is isomorphic

to Yc.
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The next set of hypotheses considerers the existence of evolution semigroups in
the corresponding subspaces and making quantitative assumptions on the contrac-
tion rates of the operators, we set as (H2).

(H2.1):
− For t > 0, etAs : Ys → Xs is a contraction semigroup for positive time, we

will denote this semigroup by {etAs}t≥0.
− For t < 0, etAu : Yu → Xu is a contraction semigroup for negative time, we

will denote this semigroup by {etAu}t<0.
− For t ∈ R, etAc : Yc → Xc generates a group on Xc, which we will denote

by {etAc}t∈R.
(H2.2): For some β±3 , β1, β2 > 0, Ch > 1, α1, α2 ∈ [0, 1),

(3.1)

‖etAc‖Xc,Xc ≤ Cheβ
+
3 t, t ≥ 0,

‖etAc‖Xc,Xc ≤ Cheβ
−
3 |t|, t ≤ 0,

‖etAs‖Ys,Xs ≤ Che−β1tt−α1 , t ≥ 0,

‖etAu‖Yu,Xu ≤ Che−β2|t||t|−α2 , t ≤ 0.

with 0 ≤ β−3 < β1 and 0 ≤ β+
3 < β2. Moreover, we will also use the standard

trichotomy assumption

(3.2)

‖etAc‖Xc,Xc ≤ Cheβ
+
3 t, t ≥ 0,

‖etAc‖Xc,Xc ≤ Cheβ
−
3 |t|, t ≤ 0,

‖etAs‖Xs,Xs ≤ Che−β1t, t > 0,

‖etAu‖Xu,Xu ≤ Che−β2|t|, t < 0.

We will also make a regularity assumption about the perturbation F. For the
case of forcing by smoothing function.

(H3): The function F : C ×X → X is Cr when considered as a function from
U ⊂ X to Y , where U is an open set containing the origin and ‖F‖Cr(C×U,Y ) is
sufficiently small, where 1 < r < δ

β , for δ > β with

(3.3) δ = min{β1, β2}, β > max{β+
3 , β

−
3 },

several subsequent hypotheses (such as the sizes of balls to be considered) will be
depended on this choice of β.

In the case of forcing by stochastic processes we make the following regularity
assumption.

(H4): C is a measure space. The function F ∈ L∞(C , Cr(X,Y )) when consid-
ered as functions from U ⊂ X to Y , where U is an open set containing the origin,
and ‖F (θ, · )‖Cr(U,Y ) is small enough.

Instead of assuming (H3), (H4), we will assume the global versions of the above
local hypotheses. Hence, we will replace U, the domain of the nonlinearities assumed
before, with the whole space X.

(H3)’: The function F : C × X → X is Cr and ‖F‖Cr(C×X,Y ) is sufficiently
small.

(H4)’: C is a measure space. The function F ∈ L∞(C , Cr(X,Y )) and
‖F (θ, · )‖Cr(X,Y ) is small enough.
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Note that in this paper F = f + N, so if we use the functions f and N to
formulate the assumptions above we have the following:

(H5.1): The function f : C ×X → X is Cr when considered as a function from
U ⊂ X to Y , where U is an open set containing the origin and ‖f‖Cr(C×U,Y ) is
sufficiently small enough. Moreover, N (θ, 0) = 0, D2N (θ, 0) = 0.

(H5.2): C is a measure space. The function f ∈ L∞(C , Cr(X,Y )) when con-
sidered as functions from U ⊂ X to Y , where U is an open set containing the origin,
and ‖f(θ, · )‖Cr(U,Y ) is small enough. Moreover, N (θ, 0) = 0, D2N (θ, 0) = 0.

(H5.3): The function f : C × X → X is Cr and ‖f‖Cr(C×X,Y ) is sufficiently
small. Moreover, N (θ, 0) = 0, D2N (θ, 0) = 0.

(H5.4): C is a measure space. The function f ∈ L∞(C , Cr(X,Y )) and
‖F (θ, · )‖Cr(X,Y ) is small enough. Moreover, N (θ, 0) = 0, D2N (θ, 0) = 0.

In the case of forcing by a smooth vector field we will make extra assumptions
on the regularity of the vector field generating the forcing. Then, we will obtain
extra regularity of the manifolds in the conclusions, we set this hypothesis as (H6).

(H6.1): The set C is a Cr manifold.
(H6.2): The vector field B appearing in (2.4) is a Cr vector field.
(H6.3): Denoting by Φt(θ) the evolution of the equation (2.14), we have

‖DΦt(θ)‖C ,C ≤ Ceβ
+
3 t, t > 0,

‖DΦt(θ)‖C ,C ≤ Ceβ
−
3 |t|, t < 0.

(3.4)

The following is the main result of this paper.

Theorem 3.1. Assume that X,Y are Banach spaces satisfying (H1) and the op-
erator A and F of (2.16) satisfying (H2) and (H3) respectively.

Then, for every θ ∈ C , there exists a Cr−1+Lip function w ∈ X1 defined on Xc

and mapping Xc to Xsu. W , the graph of w, is globally invariant by (2.16).
Furthermore, if the forcing is given by a smooth vector field satisfying (H6),

then for the each initial condition ξ, the manifold W is Cr−1+Lip in θ.

Theorem 3.2. If hypotheses (H1), (H2), (H3), (H4) and (H5) are fulfilled, r ≥ 1,
there exists a Cr−1+Lip− function w defined on C × Xc and mapping C × Xc to
Xs ⊕Xu. Furthermore, W, the graph of w, is globally invariant by (2.9).

The extension of the smooth dependence on parameter θ for the case of smooth
forcing will be given in Section 3.6.

The proof of Theorem 3.1 will be obtained by formulating a fixed point equation
(see system (3.12)) for a function whose graph gives the desired invariant manifold.
The operator involved in (3.12) will be a contraction in the C0− norm, but it
will preserve a set of affine function. This is a standard situation in the theory of
center manifolds and in the theory of normally hyperbolic invariant manifolds. See
[Lan73].

3.2. Derivation the invariance of equations. We first proceed to derive, heuris-
tically, the equations satisfied by an invariant graph. Note that the equations are
ill-posed, we also need to impose that the evolution can be defined. We note that
if W , the graph of w, is invariant under (2.16), then the component along center
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direction in (2.16) gives an evolution equation for yc, namely

d

dt
Φt(θ) = B(Φt(θ)), Φ0(θ) = θ,

d

dt
yc(t) = Acyc(t) + Fc(Φt(θ), yc(t), w(Φt(θ), yc(t))), yc(0) = ξ ∈ Xc, t ∈ R.

First, following the standard practice, we study the evolution of the projection in
the center directions for the vector field in a graph of a function w (even if the
graph of w is not invariant).

For any w we denote Γwt (θ, ξ) := (Φt(θ), Jwt (θ, ξ)) be the solution of the above
system with the initial datum Γw0 (θ, ξ) = (θ, ξ). From Duhamel principle (see e.g.,
[Hen81, Tay11]), we have

(3.5) Jwt (θ, ξ) = eActξ +
∫ t

0

eAc(t−τ)Fc(Φτ (θ), Jwτ (θ, ξ), w(Φτ (θ), Jwτ (θ, ξ)))dτ.

Furthermore, the components along ys and yu in (2.16) satisfy

(3.6)

ys(t) =etAsys(0)

+
∫ t

0

e(t−τ)AsFs(Φτ (θ), Jwτ (θ, ξ), w(Φτ (θ), Jwτ (θ, ξ)))dτ, t ≥ 0,

yu(t) =etAuyu(0)

+
∫ t

0

e(t−τ)AuFu(Φτ (θ), Jwτ (θ, ξ), w(Φτ (θ), Jwτ (θ, ξ)))dτ, t ≤ 0.

To derive heuristically (in particular, we will assume that the evolution is defined
for the initial data in the graph of w) an equation for ys and yu, we note that if
the graph of w were invariant, we should have

(3.7) (ys(t), yu(t)) =
(
ws(Φt(θ), Jwt (θ, ξ)), wu(Φt(θ), Jwt (θ, ξ))

)
.

Hence, ys and yu, the components of (3.6), should read (after making the change
of variables τ = t− r in the integral)
(3.8)

ws(Φt(θ),Jwt (θ, ξ)) = etAsws(θ, ξ)

+
∫ t

0

erAsFs(Φt−r(θ), Jwt−r(θ, ξ), w(Φt−r(θ), Jwt−r(θ, ξ)))dr, t ≥ 0,

wu(Φt(θ),Jwt (θ, ξ)) = etAuwu(θ, ξ)

+
∫ t

0

erAuFu(Φt−r(θ), Jwt−r(θ, ξ), w(Φt−r(θ), Jwt−r(θ, ξ)))dr, t ≤ 0.

Note that in the first equation of (3.8) which involves ws, we assume t ≥ 0. Whereas,
in the second equation of (3.8) which involves wu, we assume t ≤ 0. Using that
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Γwt (Φt(θ), Jwt (θ, ξ)) is invertible, we find that (3.8) is equivalent to

(3.9)

ws(θ, ξ) =etAsws(Φ−t(θ), Jw−t(θ, ξ))

+
∫ t

0

erAsFs(Φ−r(θ), Jw−r(θ, ξ), w(Φ−r(θ), Jw−r(θ, ξ)))dr, t ≥ 0,

wu(θ, ξ) =etAuwu(Φ−t(θ), Jw−t(θ, ξ))

+
∫ t

0

erAuFu(Φ−r(θ), Jw−r(θ, ξ), w(Φ−r(θ), Jw−r(θ, ξ)))dτ, t ≤ 0.

Moreover, taking r = −τ and changing t to −t, we get

(3.10)

ws(θ, ξ) =e−tAsws(Φt(θ), Jwt (θ, ξ))

+
∫ 0

t

e−τAsFs(Φτ (θ), Jwτ (θ, ξ), w(Φτ (θ), Jwτ (θ, ξ)))dτ, t ≤ 0,

wu(θ, ξ) =e−tAuwu(Φt(θ), Jwt (θ, ξ))

−
∫ t

0

e−τAuFu(Φτ (θ), Jwτ (θ, ξ), w(Φτ (θ), Jwτ (θ, ξ)))dτ, t ≥ 0.

Since we assume that ws and wu are bounded, then

lim
t→−∞

e−tAsws(Φt(θ), Jwt (θ, ξ)) = 0, lim
t→∞

e−tAuwu(Φt(θ), Jwt (θ, ξ)) = 0,

then, taking limits when t→ ±∞ in (3.10) we are lead heuristically to the equations:

ws(θ, ξ) =
∫ 0

−∞
e−τAsFs(Φτ (θ), Jwτ (θ, ξ), w(Φτ (θ), Jwτ (θ, ξ)))dτ,

wu(θ, ξ) = −
∫ ∞

0

e−τAuFu(Φτ (θ), Jwτ (θ, ξ), w(Φτ (θ), Jwτ (θ, ξ)))dτ.
(3.11)

By combining the RHS of (3.5) and (3.11) we obtain an operator T defined in
some metric space Lδ ×X1 that we will define precisely in Section 3.3,

(3.12)
(
J
w

)
(t, θ, ξ) = T [J,w](t, θ, ξ) =

Tc[J,w]
Ts[J,w]
Tu[J,w]

 (t, θ, ξ)

with
(3.13)

Tc[J,w](t, θ, ξ) = eActξ +
∫ t

0

eAc(t−τ)Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))dτ,

(3.14) Ts[J,w](θ, ξ) =
∫ 0

−∞
e−τAsFs(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))dτ,

and

(3.15) Tu[J,w](θ, ξ) = −
∫ ∞

0

e−τAuFu(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))dτ.

Note that the RHS of (3.12) contains three equations: (3.13)-(3.15), then the func-
tion w, which is the fixed point of the operator, is also fixed, thus for typographical
reason we omit the symbol “w” on the superscript of J.
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Since the integrand that appears in the RHS of (3.12) is continuous, therefore the
fixed points of the (3.12) correspond to classical solutions. As said in the Section
2.4 the same equation appears in the case of the stochastic forcing.

3.3. Function spaces for the operator T . Now we define the space on which
Tc acts, which we set as
(3.16)

Lδ =
{
φ : R× C ×Xc → Xc| φ(0, θ, ξ) = ξ,∀θ ∈ C , ξ ∈ Xc,

for fixed θ, φ(·1, θ, ·2) is continuous in t and r order differentiable in ξ,

‖φ(t, θ, ξ)‖Xc ≤ 2Ch(1 + ‖ξ‖Xc)eβ|t|, ‖Dξφ(t, θ, ξ)‖Xc,Xc ≤ 2Cheβ|t|,

‖Di
ξφ(t, θ, ξ)‖X⊗ic ,Xc

≤ Cheiβ|t|, i = 2, · · · , r, t ∈ R
}

and

(3.17)
X1 =

{
w : C ×Xc → Xsu : for fixed θ, w is r order

differentiable in ξ, ‖Di
ξw(θ, ξ)‖X⊗ic ,Xcu

≤ 1, i = 0, 1, · · · , r
}
.

We define the weighted norms

(3.18)

‖J‖(βC0 ≡ sup
t∈R

sup
θ∈C

sup
ξ∈Xc

‖Jt(θ, ξ)‖Xce−β|t|,

‖w‖C0 ≡ sup
θ∈C

sup
ξ∈Xc

‖w(θ, ξ)‖Xsu ,

‖(J,w)‖C0 = max{‖J‖(βC0 , ‖w‖C0}.

The induced metric on Lδ ×X1 is

(3.19) d((J,w), (J̃ , w̃)) = ‖(J − J̃ , w − w̃)‖C0 ,

here β is the one defined in (3.3).
Note that in the study of the J, we have used a exponentially norm. This is a

standard device to obtain existence of solution for all time.

3.4. Proof of Theorem 3.1. In this section we will prove our main results. The
proof is based on a version of the contraction fixed point theorem. One consequence
of the proof by contraction fixed point theorem is that we can have an a-posteriori
version of the result. That is, if we have an approximate fixed point for (3.12), then
we can conclude that there is a true solution close to it. This is important since we
can use such result to validate numerical approximations or asymptotic expansions
that can lead to rigorous proofs. Similar results had lead to computer assisted-
proofs of existence of invariant manifolds in other contexts [Day03, CS12, dlLMJ16].
With these possible applications in view, we give two a-posteriori versions of the
result. One estimate is under the distance defined by the C0− norm and the other
one is under the distance defined by Crs− norm, 0 < s ≤ 1, (the higher order
regularity).

We will check that T = (Tc,Ts,Tu) in (3.12) indeed defines a contraction
operator in the function space Lδ ×X1 under the d−distance defined in (3.19).
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We separate the proof of Theorem 3.1 into two steps. First, we prove that
T (Lδ × X1) ⊂ (Lδ × X1) (Step 1) and then we prove that T is a contraction in
Lδ ×X1 under the d−distance defined by (3.19), (Step 2).

(Step 1): T (Lδ ×X1) ⊂ (Lδ ×X1).
The fact that T [J,w] is a C1 function in t and Cr in ξ is a direct consequence

of the fact that, for any l ∈ N, the composition of Cl functions is a Cl function.
The inequality

∫ t

0

e−β(t−τ)(t− τ)−αdτ =
∫ t

0

e−βτ τ−αdτ ≤ 1
1− α

+
1
β

will be used in many places, see the elementary proof in [CdlL]. Moreover, we will
abbreviate Ci(C × Xc, Xσ), σ = s, u, c, i = 0, · · · , r, and Ci(C × Xc, X), i =
0, · · · , r, into Ci, i = 0, · · · , r.

We will only give the proof of the boundness of (3.13) for t ≥ 0 and omit the
case t < 0 since the later case can be done in an identical manner or deduced from
former case by a change of the direction of time. From equations (3.1), (3.2) and
(3.13) we get

‖Tc[J,w](t, θ, ξ)‖Xc ≤ Cheβ
+
3 t‖ξ‖Xc + Ch

∫ t

0

eβ
+
3 (t−τ)‖Fc‖C0dτ

= Che
β+
3 t‖ξ‖Xc + Ch

1
β+

3

‖Fc‖C0(eβ
+
3 t − 1)

≤ 2Cheβ
+
3 t(‖ξ‖Xc + 1),

the last inequality is by the smallness of ‖Fc‖C0 . So

‖Tc[J,w](t, θ, ξ)‖Xc ≤ 2Cheβt(‖ξ‖Xc + 1).

Taking derivatives under the integral sign (which is justified by the uniform
integrability of the result) and applying the chain rule of derivatives, we obtain (for
any time t ∈ R)

Dξ(Tc[J,w])(t, θ, ξ) = eAct

+
∫ t

0

eAc(t−τ)
{
D2Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))

·DξJτ (θ, ξ) +D3Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))

·D2w(Φτ (θ), Jτ (θ, ξ))DξJτ (θ, ξ)
}
dτ.

(3.20)
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From (3.1) and the fact that J ∈ Lδ, w ∈ X1 we have

∥∥∥∥ ∫ t

0

eAc(t−τ)
{
D2Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))DξJτ (θ, ξ)

+D3Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))

·D2w(Φτ (θ), Jτ (θ, ξ))DξJτ (θ, ξ)
}
dτ

∥∥∥∥
Xc,Xc

≤
∫ t

0

Che
β+
3 (t−τ)‖DFc‖C0

[
‖DξJτ‖Xc,Xc + ‖D2w‖C0‖DξJ‖Xc,Xc

]
dτ

≤ 4C2
h‖Fc‖C1eβt

∫ t

0

e−(β−β+
3 )(t−τ)dτ

=
2‖Fc‖C1

β − β+
3

(1− e(β
+
3 −β)t)eβt ≤ Cheβt,

the last inequality is from the assumption that ‖Fc‖C1 is small enough (≤ β−β+
3

2 ).
All the estimates above yield

‖Dξ(Tc[J,w])(t, θ, ξ)‖Xc,Xc ≤ ‖eAct‖Xc,Xc + Che
βt ≤ 2Cheβt.

Then we give the estimate about Di
2(Tc[J,w]) with 2 ≤ i ≤ r. Note that

(3.21)

Di
ξ(Tc[J,w])(t, θ, ξ) =

∫ t

0

eAc(t−τ)
{
D2Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))

·Di
2Jτ (θ, ξ) +D3Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))

·D2w(Φτ (θ), Jτ (θ, ξ))Di
2Jτ (θ, ξ) +RJ,wi (τ, θ, ξ)

]
dτ,

where RJ,wi (τ, θ, ξ) is a sum of monomials, e.g., (Di1
ξ J)⊗j1 · · · (Dim

ξ J)⊗jm with i1j1+
i2j2 + · · ·+ imjm = i, except for the two terms we give in the integral, whose factors
are derivatives of F (evaluated at J,w) and of w up to order i. This last statement
about the order of the derivatives of J is a consequence of the Faa di Bruno formula
(A.3).

It is easy to see that all the derivatives of J appearing in the derivatives of T are
of order at most i and we have pulled out explicitly the terms containing derivatives
of J of order i. We call also attention to the fact all the monomials in RJ,wi (τ, θ, ξ)
contain at least one factor which is a derivative of F. Hence, by taking into account
that J ∈ Lδ, w ∈ X1 and assuming ‖F‖Ci is sufficiently small and applying (3.1),
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we get the the following estimate

(3.22)

∥∥∥∥∫ t

0

eAc(t−τ)
{
D2Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))

·Di
2Jτ (θ, ξ) +D3Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))

·D2w(Φτ (θ), Jτ (θ, ξ))Di
2Jτ (θ, ξ) +RJ,wi (τ, θ, ξ)

}
dτ

∥∥∥∥
X

N
i

c ,Xc

≤ ci,h‖Fc‖Cieiβt
∫ t

0

e−(iβ−β+
3 )(t−τ)dτ

≤ ci,h‖Fc‖Ci
iβ − β+

3

(1− e(β
+
3 −iβ)t)eiβt ≤ Cheiβt,

where ci,h is a constant depending only on i, Ch and the last inequality of (3.22) is
again from assumption on ‖Fc‖Cr . That is

‖Di
ξ(Tc[J,w])(t, θ, ξ)‖X⊗ic ,Xc

≤ Cheiβt, 2 ≤ i ≤ r.

This finishes the verification of Tc

(
Lδ
)
⊂ Lδ.

We also note that if the derivatives of order up to r of w are uniformly continuous,
so is the Dr

(
T [J,w]

)
.

Remark 3.1. Note that, when r grows, the smallness assumption required for
‖F‖Cr becomes more severe. Hence, we can not prove that the slow manifolds
constructed here are C∞. Indeed, it is well known ([Car81, Lan73]) that even in
finite-dimensional autonomous systems there are cases where the center manifolds
are only finitely differentiable.

Now we give the estimate about Ts[J,w]. For (3.14) from the smallness of ‖Fs‖C0

we have

‖Ts[J,w](θ, ξ)‖Xs ≤ ‖Fs‖C0

∫ 0

−∞
eβ1t|t|−α1dt,

= ‖Fs‖C0

∫ ∞
0

e−β1t|t|−α1dt,

≤ ‖Fs‖C0

( 1
β1

+
1

1− α1

)
≤ 1.

For 1 ≤ i ≤ r, we have

Di
ξ

(
Ts[J,w](θ, ξ)

)
=
∫ 0

−∞
e−Ast

{
D2Fs(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))

·Di
2Jτ (θ, ξ) +D3Fs(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))

·D2w(Φτ (θ), Jτ (θ, ξ))Di
2Jτ (θ, ξ) +QJ,wi (t, θ, ξ)

}
dt,

where QJ,wi (t, θ, ξ) is a sum of monomials like RJ,wi (τ, θ, ξ) in (3.21). Note that
β1 > rβ, then with the same tricks to get (3.22) we obtain

‖Di
ξ

(
Ts[ys, w](θ, ξ)

)
‖X⊗ic ,Xs

≤ Ci,h‖Fs‖Ci
∫ 0

−∞
eβ1t|t|−α1eiβ|t|dt

≤ Ci,h‖Fs‖Ci
( 1
β1 − iβ

+
1

1− α2

)
≤ 1,
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the last inequality is from the smallness of ‖Fs‖Ci , 1 ≤ i ≤ r.
We omit the calculations about Tu[J,w] since we just need to copy the calcula-

tions about the stable direction by a change of the direction of time and replacing
the parameter β1 with β2 and noting β2 > rβ.

Remark 3.2. As remarked in [CdlL], it is amusing to note that, since the sets Lδ
and X1 are convex and compact in the C0 topology, which makes T continuous, we
can apply the Schauder fixed point theorem and obtain the existence (but not the
uniqueness) of a fixed point at this stage.

This remarks applies to many of the textbook proofs the invariant manifold the-
orem based on functional analysis since many of them involve some propagated
bounds in the proofs in [BLZ98, Car81, Lan73].

Of course, Step 2, provides uniqueness, gives a constructive algorithm to find the
fixed point, allows to validate approximate calculations, gives slightly better regular-
ity. One can argue that the contraction mapping is more elementary than Schauder
fixed point theorem even if it requires more work.

Step 2: T is a contraction under the metric d−distance defined by (3.19).
Adding and subtracting terms and using the triangle inequality, for fixed τ we
obtain

(3.23)

∥∥Fσ(Φτ (θ), Jτ (θ, ξ),w(Φτ (θ), Jτ (θ, ξ)))

− Fσ(Φτ (θ), J̃τ (θ, ξ), w̃(Φτ (θ), J̃τ (θ, ξ)))
∥∥
Xσ

≤ ‖Fσ‖C1eβ|τ |
[
2‖Jτ − J̃τ‖(βC0 + ‖Jτ‖(βC0‖w − w̃‖C0

]
≤ 4Ch‖Fσ‖C1eβ|τ |‖(J − J̃ , w − w̃)‖C0 .

For the operator Tc, from (3.23) we get (for t > 0)

‖Tc[J,w](t, θ, ξ)−Tc[J̃ , w̃](t, θ, ξ)‖Xc

≤
∥∥∥∥∫ t

0

eAc(t−τ)
[
Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))

− Fc(Φτ (θ), J̃τ (θ, ξ), w̃(Φτ (θ), J̃τ (θ, ξ)))
]
dτ

∥∥∥∥
Xc

≤ 4‖Fc‖C1‖(J − J̃ , w − w̃)‖C0eβt
∫ t

0

e−(β−β+
3 )(t−τ)dτ

≤ 4‖Fc‖C1

β − β+
3

eβt‖(J − J̃ , w − w̃)‖C0 ,

that is

‖Tc[J,w]−Tc[J̃ , w̃]‖(βC0 ≤
4‖Fc‖C1

β − β+
3

‖(J − J̃ , w − w̃)‖C0 .(3.24)



22 H.CHENG AND R.DE LA LLAVE

Similarly, for the operators Ts and Tu, from (3.23), we get

‖Ts[J,w](θ, ξ)−Ts[J̃ , w̃](θ, ξ)‖Xs

≤
∥∥∥∥∫ 0

−∞
eAst

[
Fs(Φt(θ), Jt(θ, ξ), w(Φt(θ), Jt(θ, ξ)))

− Fs(Φt(θ), J̃t(θ, ξ), w̃(Φt(θ), J̃t(θ, ξ)))
]
dt

∥∥∥∥
Xs

≤ 4‖Fs‖C1‖(J − J̃ , w − w̃)‖C0

∫ ∞
0

e−(β1−β)t|t|−α1dt

≤ 4‖Fs‖C1

( 1
β1 − β

+
1

1− α1

)
‖(J − J̃ , w − w̃)‖C0 ,

(3.25)

and

‖Tu[J,w](θ, ξ)−Tu[J̃ , w̃](θ, ξ)‖Xu

≤ 4‖Fu‖C1

( 1
β2 − β

+
1

1− α2

)
‖(J − J̃ , w − w̃)‖C0 .

(3.26)

From (3.24)-(3.26) we obtain

d(T [J,w],T [J̃ , w̃]) ≤ κd((J,w), (J̃ , w̃)),

where κ = 4c‖F‖C1 with

c = max
{

1
β − β±3

,
1

β1 − β
+

1
1− α1

,
1

β2 − β
+

1
1− α2

}
.

The smallness of ‖F‖C1 guarantees that 0 < κ < 1, i.e. the operator T is a
contraction under the d−distance defined by (3.19). Then from the contraction
fixed theorem we know that there is a unique solution of (3.12), (J∗, w∗), which is
in the C0 closure of Lδ × X1. From Lemma 1.1 and the definition of X1 we know
that the function w∗ is Cr−1+Lip derivatives in the variables ξ.

3.5. Two a-posteriori estimates. In this subsection we will give two a-posteriori
estimates, the first estimate is under the distance defined by C0− norm and the
second estimate is under the distance defined by the Crs− norm (0 < s ≤ 1).

3.5.1. The a−posteriori estimate under the distance defined by C0− norm. Denote
(J,w) ∈ Lδ × X1 be any approximated solution of the functional functions defined
by (3.12), that is

(3.27) ‖T [J,w]− (J,w)‖(βC0 < ε.

By the discussions in Subsection 3.4 we know that the operator T defined by (3.12)
is a contract operator on Lδ ×X1, that is

‖T [J,w]−T [J̃ , w̃]‖(βC0 ≤ κ‖(J,w)− (J̃ , w̃)‖(βC0 = κ‖(J − J̃ , w − w̃)‖(βC0 ,(3.28)

where 0 < κ < 1 is the one in Subsection 3.4. Denote, moreover, that (J∗, w∗) is the
true solution of the functional functions defined by (3.12). Then by the inequalities
(3.27) and (3.28) we have

‖(J − J∗, w − w∗)‖(βC0 <
ε

1− κ
,
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which implies
‖w − w∗‖(βC0 <

ε

1− κ
.

We refer [dlL09] or the discussions below for details.

3.5.2. The a − posteriori estimate under the distance defined by Crs− norm. In
this section we give estimates for higher derivatives of (w−w∗) by using Hadamard
interpolation given in Theorem 1.1, (see [dlLMJ16] and [CdlL] for similar argu-
ments).

Let (J,w) ∈ Lδ × X1 be the approximated solution of the functional functions
defined by (3.12), and satisfying the inequality (3.27). From (3.28) we obtain

‖T [J,w]−T 2[J,w]‖(βC0 ≤ κ‖(J,w)−T [J,w]‖(βC0 .

Inductively,

(3.29) ‖T n[J,w]−T n+1[J,w]‖(βC0 ≤ κn‖(J,w)−T [J,w]‖(βC0 , n = 1, 2, · · · .
Moreover, note that T n[J,w] ∈ Lδ ×X1, n = 1, 2, · · · , then we have

‖T n[J,w]‖(rβCr ≤ c,
which implies

(3.30) ‖T n[J,w]−T n+1[J,w]‖(rβCr ≤ 2c.

For any 0 ≤ s ≤ 1, by (3.29), (3.30) and the Hadamard interpolation theorem,
Theorem 1.1, we have

‖T n[J,w]−T n+1[J,w]‖(rsβCrs

≤ C
(
‖T n[J,w]−T n+1[J,w]‖(rβCr

)s
·
(
‖T n[J,w]−T n+1[J,w]‖(βC0

)1−s

≤ C(2c)s
(
κn‖(J,w)−T [J,w]‖(βC0

)1−s

= C(2c)sκn(1−s)
(
‖(J,w)−T [J,w]‖(βC0

)1−s

.

Let (J∗, w∗) be the fixed point of the operator T obtained in Subsection 3.4,
that is (J∗, w∗) = limn→∞T n[J,w]. By the inequality above we obtain

‖(J∗, w∗)− (J,w)‖(rsβCrs = ‖ lim
n→∞

T n[J,w]− (J,w)‖(rsβCrs

≤
∞∑
n=0

‖T n+1[J,w]−T n[J,w]‖(rsβCrs

≤
∞∑
n=0

C(2c)sκn(1−s)
(
‖(J,w)−T [J,w]‖(βC0

)1−s

≤ C(2c)s

1− κ(1−s)

(
‖(J,w)−T [J,w]‖(βC0

)1−s

≤ C(2c)sε1−s

1− κ(1−s) ,

where the last inequality is from (3.27). The inequality above implies

‖w∗ − w‖(rsβCrs ≤
C(2c)sε1−s

1− κ(1−s) .
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3.6. The differentiability in θ. In this section, we give the estimates about the
derivatives in θ of w∗. These, of course, require that the flow B is differentiable in
θ.

Lemma 3.1. Let Φt(θ) be a semi-flow defined in (2.4) which satisfies the hypothesis
(H6), then for any 1 ≤ j ≤ r we have

(3.31)

sup
t∈[0,∞),θ∈C

‖Dj
θΦt(θ)‖C⊗j ,C ≤ Ce

jβ+
3 ttj ,

sup
t∈(−∞,0],θ∈C

‖Dj
θΦt(θ)‖C⊗j ,C ≤ Ce

jβ−3 |t||t|j .

For simplicity of notation we will prefer to deal only with exponentials and note
that the polynomial factors |t|j , j = 1, · · · , r, estimated by an exponential times a
constant, so we worsen slightly the exponents and add a multiplicative constant.

sup
θ∈X
‖Dj

θΦt(θ)‖C⊗j ,Y ≤ Ce
−jε

−j
4r ej(β

+
3 +ε

1
4r )t

≤ cε
−1
4 ej(β

+
3 +ε

1
4r )t, t ∈ [0,∞), 1 ≤ j ≤ r,

(3.32)

and

sup
θ∈X
‖Dj

θΦt(θ)‖C⊗j ,Y ≤ Ce
−jε

−j
4r ej(β

−
3 +ε

1
4r )|t|

≤ cε
−1
4 ej(β

−
3 +ε

1
4r )|t|, t ∈ (−∞, 0], 1 ≤ j ≤ r,

(3.33)

where c = max{Ch, C}.

Proof. This is just the Lemma 5.2 of [dlLW10]. �

Let us go back to the functional equation (3.12). We define the set on which the
operator T defined in (3.12) act

H =
{

(J,w) : J : R× C ×Xc → Xc, w : C ×Xc → Xsu,

‖Jt(θ, ξ)‖Xc ≤ 2Cheβ|t|(‖ξ‖Xs + 1), ‖Dj
θJt(θ, ξ)‖C⊗j ,Xc ≤ Che

β|t|, 1 ≤ j ≤ r,

‖Dj
θw(θ, ξ)‖C⊗j ,Xsu ≤ 1, 0 ≤ j ≤ r

}
.

We adopt the weighted norms ‖ · ‖(βC0 , ‖ · ‖C0 and ‖(·1, ·2)‖C0 which are defined in
(3.18) for the functions J,w and (J,w), respectively. The induced metric on H is
also the d−distance defined in (3.19).

Following the standard strategy in center manifold theory, we will prove that
the operator T = (Tc,Tsu) is a contraction in H. In this situation, we can ap-
peal to [Lan73, Proposition A2] (which shows that the C0 closure of functions with
uniformly bounded Cr norms is Cr−1+Lip) or to Hadamard’s interpolation theo-
rem (See Theorem 1.1) which shows that a C0 contraction in spaces of uniformly
bounded Cr functions also converges in Cr−1.

(Step 1): T
(
H
)
⊂ H.
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The estimate about T (J,w) has been given in Section 3.4, we omit the details.
From (3.13) -(3.15) we obtain

DθTs[J,w](θ, ξ) =
∫ 0

−∞
e−tAs

{
D1Fs(Φt(θ), Jt(θ, ξ), w(Φt(θ), Jt(θ, ξ)))DθΦt(θ)

+D2Fs(Φt(θ), Jt(θ, ξ), w(Φt(θ), Jt(θ, ξ)))DθJt(θ, ξ)

+D3Fs(Φt(θ), Jt(θ, ξ), w(Φt(θ), Jt(θ, ξ)))

·
[
D1w(Φt(θ), Jt(θ, ξ))DθΦt(θ) +D2w(Φt(θ), Jt(θ, ξ))DθJt(θ, ξ)

]}
dt,

DθTu[J,w](θ, ξ) = −
∫ ∞

0

e−tAu
{
D1Fu(Φt(θ), Jt(θ, ξ), w(Φt(θ), Jt(θ, ξ)))DθΦt(θ)

+D2Fu(Φt(θ), Jt(θ, ξ), w(Φt(θ), Jt(θ, ξ)))DθJt(θ, ξ)

+D3Fu(Φt(θ), Jt(θ, ξ), w(Φt(θ), Jt(θ, ξ)))

·
[
D1w(Φt(θ), Jt(θ, ξ))DθΦt(θ) +D2w(Φt(θ), Jt(θ, ξ))DθJt(θ, ξ)

]}
dt,

and

DθTc[J,w](t, θ, ξ)

=
∫ t

0

eAc(t−τ)
{
D1Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))DθΦτ (θ)

+D2Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))DθJτ (θ, ξ)

+D3Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))

· [D1w(Φτ (θ), Jτ (θ, ξ))DθΦτ (θ) +D2w(Φτ (θ), Jτ (θ, ξ))DθJτ (θ, ξ)]
}
dτ.

With (3.17), (3.32) and note that (J,w) ∈ H, we obtain, (we just consider the
case t ≥ 0),

‖DθTs[J,w](θ, ξ)‖C ,Xs ≤
∫ 0

−∞
Che

β1t|t|−α1
[
2cε

−1
4 e(β

−
3 +ε

−1
4r )|t| + 2Cheβ|t|

]
dt‖Fs‖Cr

≤
∫ 0

−∞
4cChε

−1
4 e(β1−β)t|t|−α1dt‖Fs‖Cr

=
∫ ∞

0

4cChε
−1
4 e−(β1−β)tt−α1dt‖Fs‖C1

≤ 4cChε
−1
4 ‖F‖C1

( 1
β1 − β

+
1

1− α1

)
≤ 1,

where the last inequality follows from ‖F‖C1 sufficiently small. Similarly, we also
have

‖DθTu[J,w](θ, ξ)‖C ,Xu ≤ 1,
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and

‖DθTc[J,w](t, θ, ξ)‖C ,Xc ≤
∫ t

0

Che
β+
3 (t−τ)[2cε−1

4 e(β
+
3 +ε

−1
4r )|τ | + 2Cheβ|τ |

]
dτ‖Fs‖Cr

≤
∫ t

0

4cChε
−1
4 eβ

+
3 (t−τ)eβτdτ‖Fc‖C1

= eβt
∫ t

0

4cChε
−1
4 e−(β−β+

3 )tdt‖F‖C1

≤ 4cChε
−1
4 eβt

‖F‖C1

β − β+
3

, t > 0.

Moreover, for 2 ≤ j ≤ r we have

Dj
θTs[J,w](θ, ξ) =

∫ 0

−∞
e−tAs

{
D1Fs(Φt(θ), Jt(θ, ξ), w(Φt(θ), Jt(θ, ξ)))D

j
θΦt(θ)

+D2Fs(Φt(θ), Jt(θ, ξ), w(Φt(θ), Jt(θ, ξ)))D
j
θJt(θ, ξ)

+D3Fs(Φt(θ), Jt(θ, ξ), w(Φt(θ), Jt(θ, ξ)))

·D2w(Φt(θ), Jt(θ, ξ))D
j
θJt(θ, ξ) + P J,wj (t, θ, ξ)

}
dt,

Dj
θTu[J,w](θ, ξ) = −

∫ ∞
0

e−tAu
{
D1Fu(Φt(θ), Jt(θ, ξ), w(Φt(θ), Jt(θ, ξ)))D

j
θΦt(θ)

+D2Fu(Φt(θ), Jt(θ, ξ), w(Φt(θ), Jt(θ, ξ)))D
j
θJt(θ, ξ)

+D3Fu(Φt(θ), Jt(θ, ξ), w(Φt(θ), Jt(θ, ξ)))

·D2w(Φt(θ), Jt(θ, ξ))D
j
θJt(θ, ξ) +XJ,w

j (t, θ, ξ)
}
dt,

and

Dj
θTc[J,w](t, θ, ξ) =

∫ t

0

eAc(t−τ)
{
D1Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))Dj

θΦτ (θ)

+D2Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))Dj
θJτ (θ, ξ)

+D3Fc(Φτ (θ), Jτ (θ, ξ), w(Φτ (θ), Jτ (θ, ξ)))

·D2w(Φτ (θ), Jτ (θ, ξ))Dj
θJτ (θ, ξ) + Y J,wj (τ, θ, ξ)

}
dτ,

where P J,wj (t, θ, ξ), XJ,w
j (t, θ, ξ), Y J,wj (t, θ, ξ) are sum of monomials likeRJ,wj (τ, θ, ξ)

in (3.21). Then, with the same tricks in (3.22), we obtain

‖Dj
θws(θ, ξ)‖C⊗j ,Xs ≤ 1, ‖Dj

θws(θ, ξ)‖C⊗j ,Xu ≤ 1, 2 ≤ j ≤ r

‖Dj
θJ(θ, ξ)‖C⊗j ,Xc ≤ Che

jβt, t > 0, 2 ≤ j ≤ r.

The calculations above yield T
(
H
)
⊂ H.

(Step 2): T is a contraction in H. Take any (J,w), (J̃ , w̃) ∈ H, with the same
calculations in Section 3.4, we obtain

d
(
T [J,w],T [J̃ , w̃]

)
< cd

(
(J,w), (J̃ , w̃)

)
,
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where κ = 4c1cChε−
1
4 ‖F‖C1 with

c1 = max
{

1
β − β±3

,
1

β1 − β
+

1
1− α1

,
1

β2 − β
+

1
1− α2

}
.

The smallness of ‖F‖C1 guarantees that 0 < κ < 1, i.e., the operator T is a
contraction under the d−distance defined by (3.19). Then from the contraction
fixed theorem we know that there is a unique solution of (3.12), (J∗∗, w∗∗), which
is in the C0 closure of H. From Lemma 1.1 and the definition of H we know that
the function w∗∗ is Cr−1+Lip derivatives in the variables θ.

Note that (J∗, w∗) is also the fixed point of the functional equation (3.12)
constructed in Section 3.4. By the uniqueness of the fixed point we know that
(J∗, w∗) = (J∗∗, w∗∗). That is the function w∗ is Cr−1+Lip derivatives in the vari-
ables θ for the fixed ξ ∈ Xc and Cr−1+Lip derivatives in the variables ξ for the fixed
θ ∈ C . That is, w∗ satisfies the second conclusions of the Theorem 3.1.

4. Applications

This section is devoted to an application of Theorem 3.1 to concrete equations
mentioned in the introduction.

4.1. Elliptic equations in cylindrical domains. The study of the deformation
of beams or viscid channel flows leads to the study of elliptic problem (1.4) in a
cylindrical domain Ω̃ = R×Ω with Ω a bounded domain. Following [KS79, Mie88,
Mie91, Mie94] we think of the the elliptic problem as a evolution equation when
the role time is taken by the x variable. This problem, of course, is ill-posed.

Consider the externally forced nonlinear elliptic differential equation defined on
a cylindrical domain defined in (1.4) under the periodic boundary conditions, note
that this system is a second order differential equation, by setting ut = v and
z = (u, v)T , we obtain the evolution of z, which is a first order system,

(4.1) ż = Aαz + f(θ, x) +N (θ, x, z), z(t, x+ 1) = z(t, x), α ≥ 0,

with

Aα =
(

0 1
−∂2

x − α 0

)
and

f(θ, x) = (0, N7(θ, x))T , N (z) = (0, N8(θ, x, u, ux))T .
For ζ > 0 and m ∈ N, we denote by Hζ,m the analytic functions u from Tζ to C

with Fourier expansion u(x) =
∑
k∈Z ûke

2πikx such that the norm

‖u‖2ζ,m =
∑
k∈Z
|ûk|2 exp(4πζ|k|)(|k|2 + 1)m

is finite. Obviously, for any ζ > 0 and m ∈ N the space
(
Hζ,m, ‖· ‖ζ,m

)
is a

Hilbert space. It is a Banach algebra for m > 1/2. In such a case, the operator of
composition on the right with an analytic function is an analytic operator in the
space Hζ,m. For a longer discussion on properties of these spaces see [CdlL].

Even though the perturbation N8 contains the term ux. the perturbation in the
first order system is bounded from X to Y if we set the Banach spaces X and Y as

(4.2) X = Y = Hζ,m ×Hζ,m−1, ζ > 0, m >
3
2
.
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The restriction m > 3/2 ensures that both components of the space are Banach
algebras under space multiplication.

Remark 4.1. Note that ψk,τ (x) =
(
ei2πkx, λk,τe

i2πkx
)T is the eigenvector of the

operator Aα belongs to the eigenvalue λk,τ = τ
√

(2πk)2 − α, τ ∈ {1, −1}, k ∈ Z.
Thus we take {ψk,τ (x)}k∈Z,τ∈{1, −1} as a basis of the space X.

If there exists α such that α = (2πk∗)2 (k∗ ∈ Z), then this α is called a resonance
and very interesting phenomena happen when α changes around these values [CI75].

Proposition 4.1. Assume that the function N7 is analytic and small enough under
the analytic topology. Moreover, N8 is higher order in u and analytic. Then he
nonlinearity N and the function f defined above are analytic from X into X when
m > 3/2.

Of course, in our main theorem, we used Cr regularity, which is implied by the
analytic regularity. On the other hand, even with analytic regularity in the non-
linearity we will not obtain analytic center manifolds, only finitely differentiable
ones. See Remark 3.1. Using spaces of functions analytic in x allows us to ob-
tain solutions which are analytic in x and in the examples in the literature, the
nonlinearities are analytic. A theory with finitely differentiable nonlinearities is, of
course, possible, but then, it would be better to use Sobolev spaces.
Proof. We note that the function u→ u is linear and bounded from Hζ,m to Hζ,m

and the function u → ux is bounded from Hζ,m to Hζ,m−1. Since the function
N8 : u 7→ N8(θ, x, u, ux) is analytic in its all variable we know that N8(θ, x, u, ux) ∈
Hζ,m−1. Then the nonlinearity N (θ, x, u, ux) ∈ X. The discussions about f is the
same.

Form the proposition above we know that the perturbation in the system (4.2) is
bounded from the Banach space X to itself. Then for the operators Uσ, σ = u, s, c,
generated by the linear operator Aα, we just give the estimates about the standard
trichotomy estimates (3.2) and we do not need to give the calculations to get the
estimates in (3.1).

Lemma 4.1. Fix α > 0. Then, there exist, β1 > β−3 ≥ 0 and β2 > β+
3 ≥ 0 and a

splitting of spectrum of linear operator Aα, λk,τ =
{
τ
√

(2πk)2 − α
}
k∈Z,τ∈{−1,1}, i.e.,

Spec(Aα) = σs ∪ σu ∪ σc,
where

σs = {λk,τ : Reλk,τ < −β1, k ∈ Z} ,
σu = {λk,τ : Reλk,τ > β2, k ∈ Z} ,
σc =

{
λk,τ : β−3 ≤ Reλk,τ ≤ β

+
3 , j ∈ Z

}
,

with β1 > β−3 ≥ 0 and β2 > β+
3 ≥ 0.

Proof. The eigenvalues are discrete and go to infinity with k → ∞. Hence, it
suffices to choose the β’s in such a way that there is no eigenvalue with these real
parts. Then the sets σs, σu and σc are disjoint and cover all the eigenvalues. �

We call the spectrum belongs to σs ∪ σu and σc as the hyperbolic spectrum and
the center spectrum, respectively. Obviously, the center spectrum is finite and the
hyperbolic spectrum is well separated from the center spectrum.

We now come to the evolution operators and their smoothing properties. We
have:
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Lemma 4.2. For α ≥ 0, the operator Aα generates semi-group operators Us,u

in positive and negative times and group operator U c for all t. Furthermore, the
following estimates hold

‖Us(t)‖X,X ≤ e−β1t, t > 0,

‖Uu(t)‖X,X ≤ e−β2|t|, t < 0,

‖U c(t)‖X,X ≤ eβ
+
3 |t|, t ≥ 0,

‖U c(t)‖X,X ≤ eβ
−
3 |t|, t ≤ 0,

where the parameters βi, i = 1, 2, and β±3 are the ones in Lemma 4.1.

Proof. Assume that u ∈ X with the Fourier expansion

u =
∑
k∈Z

ûk(t)ψk(x)

and the norm
‖u‖2X =

∑
k∈Z
|ûk(t)|2 exp(4πζ|k|)(|k|2 + 1)r.

Then
Us(t)u =

∑
k∈Z1

eλktûk(t)ψ(x), t > 0,

so we have

(4.3)

‖Us(t)u‖2X =
∑
k∈Z1

|eλktûk(t)|2 exp(4πζ|k|)(|k|2 + 1)r,

=
∑
k∈Z1

e2λkt|ûk(t)|2 exp(4πζ|k|)(|k|2 + 1)r

≤ e−2β1t‖u‖2X , t > 0,

the last inequality is from Lemma 4.1, that is

‖Us(t)‖X,X ≤ e−β1t, t > 0.

Similarly, we also have

‖Uu(t)‖X,X ≤ e−β2|t|, t < 0.

and
‖U c(t)‖X,X ≤ eβ

+
3 |t|, t ≥ 0, ‖U c(t)‖X,X ≤ eβ

−
3 |t|, t < 0.

�

4.2. Some discussion about other models mentioned in the introduction.
For the CGL defined in (1.1), note that the perturbations N1 and N2 are bounded
when we set the Banach spaces X and Y as

X = Y = Hζ,m, ζ > 0, m >
1
2
.

For the DCGL defined in (1.2), note that the perturbation N4 contains the term
Ou. Thus the perturbation N4 is unbounded form the Banach space X to itself, we
have to use the “two spaces approach”. We need to introduce the Banach space
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Y and give the calculations to get the estimates in (3.1). In this case, we set the
Banach spaces X and Y as

X = Hζ,m, Y = Hζ,m−1, ζ > 0, m >
3
2
.

There are more discussions about the DCGL (1.2) in Section 4.2 of the paper [CdlL],
we omit the details here.

Remark 4.2. Consider the DCGL (1.2) with the quasi-periodic forcing, that is
C = Td and

θ̇ = ω, ω ∈ Rd.

Using the center reduction to the time dependent center manifold, it is possible to
produce quasi-periodic solutions using finite dimensional KAM theory. Since the
center manifold is only finitely differentiable, we can only obtain finitely differen-
tiable solutions by using methods from finite dimensional KAM theory.

By assuming that the parameters r and b1 in the linear part satisfy appropriate
relations, the dimension of center manifold of the linear operator r+ (b1 + ib2)∆ is
2. By constructing an infinite-dimensional KAM Theorem, in [CS13] the authors
constructed a class of (d+ 2)− dimensional quasi-periodic solutions. The solutions
produced in [CS13] are analytic – and can have Bjruno frequencies – in contract
with the ones produced using our method which are finite differentiable and require
Diophantine frequencies.

For the Boussinesq equation defined in (1.3), note that this system is the two
order differential equation, by setting ut = ∂xv and w = (u, v)T , we obtain the
evolution of w. Even though the perturbation N6 contains the term uxx, the per-
turbation in the new system is bounded. In this case, we set the Banach spaces X
and Y as

X = Y = Hζ,m ×Hζ,m−1, ζ > 0, m >
3
2
.

The readers can refer to [dlLS18] for more details on (1.3).
Of course, there are many more possible examples in the literature. Notably,

[dlLS18] includes also a discussion of the Boussinesq system which is more singular
than the Boussinesq equation.

Appendix A. Basic Definitions

In this appendix, we collect some basic definitions and results to make the paper
more self-contained. The material is quite standard and indeed a very similar
Appendix can be found in [CdlL].

We call attention to Definition 1.2 which is a common definition in the field of
invariant manifolds, but which is different from other definitions (e.g. Whitney
definition) used in other areas of Mathematics. Note that Definition 1.2 involves
uniform boundedness of the derivatives, which makes it into a Banach space, which
is convenient for us. In contrast, the Whitney definition leads only to Frechet
spaces.

Definition 1.2. Let X,Y be two Banach spaces. Let O ⊂ X be an open set.
We will denote by Cr(O, Y ) the space of all functions from X to Y which possess
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uniformly bounded continuous derivatives of orders 0, 1, ..., r. We endow Cr(O, Y )
with the norm of the supremum of all the derivatives, e.g.

(A.1) ‖f‖Cr(O,Y ) = max
0≤i≤r

sup
ξ∈O
|[Dif ](ξ)|XN

i,Y .

The |A|XN
i,Y ≡ sup|ξ1|X=1,...|ξi|X=1 |A(ξ1, . . . , ξi)|Y is the usual norm of sym-

metric multilinear functions from X taking values in Y . As it is well known, the
norm (A.1) makes Cr(O, Y ) a Banach space.

Definition 1.3. We will denote by Cr−1+Lip(O, Y ) the space of functions in Cr−1(O, Y )
whose (r − 1)th derivative is Lipschitz. The Lipschitz constant is

LipO,YD
r−1f = sup

ξ 6=ζ

|Df (ξ)−Dr−1
2 f(ζ)|XN

(r−1),Y

‖ξ − ζ‖X
and the norm in Cr−1+Lip(O, Y ) is the max of the Cr−1 norm and LipO,YDr−1f .

Again this norm makes Cr−1+Lip into a Banach space.

We note that since O may be not compact, this definition is different from the
Whitney definition in which the topology is given by seminorms of suprema in
compact sets. We will not use the Whitney definition of Cr in this paper.

Definition 1.4. An open set O is called a compensated domain if there is a constant
such given x, y ∈ O there is a C1 path γ contained in O joining x, y such that
|γ| ≤ C‖x− y‖.

For O a compensated domain, we have the mean value theorem

(A.2) ‖f(x)− f(y)‖Y ≤ C‖f‖C1(O,Y )‖x− y‖X
In particular, C1 functions in a compensated domain are Lipschitz. It is not

difficult to construct non-compensated domains with C1 functions which are not
Lipschitz.

Of course a convex set is compensated and the conpensation constant is 1. In
our paper, we will just be considering domains which are balls or full spaces. See
[dlLO99] for the effects of the compensation constants in many problems of the
function theory.

A.1. Hadamard interpolation theorem. We have the following result:

Theorem 1.1. Let O be a compensated domain. Let f ∈ Cr(O, Y ). Then defining
η(r) ≡ ‖f‖Cr(O,Y ), we have that log(η(r)) is convex in r.

That is for 0 ≤ θ ≤ 1, 0 ≤ a, b ≤ r, we have

||f ||Cθa+(1−θ)b(O,Y ) ≤ C‖f‖θCa(O,Y )‖f‖
1−θ
Cb(O,Y )

A proof of Theorem 1.1 extending for non-integer values of r for suitable defini-
tions of Cr can be found in [dlLO99]. In finite dimensional spaces it was proved in
[Had98]. See also [Kra83]. We also note that the interpolation is a consequence of
the existence of Smoothing operators.

For us, the following corollary will be important.

Corollary 1.1. Assume that {fn}∞n=1 ⊂ Cr(O, Y ) is such that ‖fn‖Cr(O,Y ) ≤M .
Assume that ‖fn − fn+1‖C0(O,Y ) ≤ Cκn. Then,

‖fn − fn+1‖Cr−1(O,Y ) ≤ (2M)(r−1)/rC1/rκn/r
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Of course, even if the corollary is true for all values of κ, it is more interesting
for k < 1 as it happens in contraction mapping principles.

Remark 1.1. As we mentioned above, the interpolation Theorem 1.1 extends for
non-integer values of r′ with a suitable definition of the norm. With this definition,
we have Corollary 1.1 for all values of r′ < r. The same applies to the following
result Corollary 1.2.

A further corollary of Corollary 1.1 is

Corollary 1.2. Assume that {fn}∞n=1 ⊂ Cr(O, Y ) is such that ‖fn‖Cr(O,Y ) ≤M .
Assume that for some f∞ ∈ C0(O, Y ) ‖fn − f∞‖C0(O,Y ) → 0. Then, for all

r′ < r,
f∞ ∈ Cr

′

and fn → f∞ in Cr
′
.

Proof. Given a subsequence fni of fn we can obtain a further subsequence fnij
which satisfies ||fnij − fnij+1

||0C ≤ (1/2)j . By Corollary 1.1 we get that fnij con-

verges in Cr
′
. This limit has in Cr

′
sense has to be f∞.

It is an exercise in metric space topology that, if for all subsequences we can
obtain a subsequence that converges and all these limits are the same, then, the
original sequence converges. �

.

A.2. Lanford’s closure lemma. The following result is [Lan73, Proposition A2].

Lemma 1.1. Let O be a convex set inside of a Banach space X. Let Y be another
Banach space.

Denote by B the unit ball in Cr(O, Y ).
Assume that {fn} ⊂ B and that for each value x, fn(x) converges weakly to

f∞(x).
Then, f∞ ∈ Cr−1+Lipschitz and for 1 ≤ j ≤ r − 1, Djfn converges uniformly to

Djf∞.

The assumption of weak pointwise converge is, of course, much weaker than the
assumption of uniform convergence, which is what will appear in our applications.

Note that, in finite dimensional spaces, Lemma 1.1 would be a consequence
of Ascoli-Arzel’a theorem (indeed, the proof of [Lan73, Proposition A2] relies in
Ascoli-Arzel’a theorem for finite dimensional functions.

Even if the proof in [Lan73] uses the fact that points are joined by straight lines,
the result seems to generalize to compensated sets.

A.3. Faa Di Bruno formula.

Lemma 1.2. Let g(x) be defined on a neighborhood of x0 and have derivatives
up to order n at x0. Let f(y) be defined on a neighborhood of y0 = g(x0) and
have derivatives up to order n at y0. Then, the nth derivative of the composition
h(x) = f [g(x)] at x0 is given by the formula

(A.3) hn =
n∑
k=1

fk
∑
p(n,k)

n!Πn
i=1

gλii
(λi!)(i!)λi

.
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In the above expression, we set

hn =
dn

dxn
h(x0), fk =

dk

dyk
f(y0), gi =

di

dyi
g(x0)

and

p(n, k) =
{

(λ1, · · · , λn) : λi ∈ N,
n∑
i=1

λi = k,

n∑
i=1

iλi = n

}
.

The formula (A.3) without an explicit expression of the combinatorial coefficients
was obtained in [Arb00].

The explicit computation of the combinatorial coefficients is less straightforward,
but can be found in [AR67].

A.4. Functions of several variables and partial regularity. In several appli-
cations, we have to consider functions of several variables. One can think of one
as the regularity of the function and the other is the regularity with respect to
parameters.

In some of our applications it is easy to estimate the regularity in each of the
variables since they play a different role.

The following result shows that if we can estimate the derivatives in each of the
variables, we can obtain automatically also the mixed derivatives.

Lemma 1.3. Let X1, X2, Y be Banach spaces. O1 ⊂ X1, O2 ⊂ X2 be convex,
bounded sets.

Let f : O1 ×O2 → Y be a continuous function.
Assume that for all x1 ∈ O1, x2 ∈ O2, i, j ≤ r, we have

||∂ix1
f(x1, x2)|| ≤M <∞

||∂jx2
f(x1, x2)|| ≤M <∞

(A.4)

Then, for every n,m such that n + m < r, we have that the function f admits
mixed partial derivatives ∂nx1

∂mx2
f . Furthermore, we have

sup
x1∈O1,x2∈O2

∂nx1
∂mx2

f(x1, x2) ≤ Γ(M,O1, O2)

Of course, in analytic regularity, the fact that analyticity in several complemen-
tary directions is the celebrated Hartog’s theorem [Kra01]. In our case, we are
assuming that the functions are bounded, but the Hartog’s theorem does not need
that assumption. The Hartog’s theorem is much easier under the assumption that
the functions are bounded.

For finite dimensional spaces X1, X2 this result is a classical result in the theory
of Riesz potentials. A modern proof can be found in [Kra83, Lemma 9.1] and
[Ste70]. This result is the basis of many results in the regularity theory of elliptic
equations. There are also results when the number of derivatives is asymetric and
also for fractional derivatives.

Results of this type were found useful in the theory of Anosov systems when the
partial derivatives along the coordinate axis are generalized to be partial derivatives
along stable and unstable foliations [dlLMM86, Lemma 2.5]. A more elementary
and more general proof based on the theory of Morrey-Campanato spaces is in
[Jou88]. A very elementary proof using just the converse Taylor theorem and gen-
eralizing to some fractal sets is in [dlL92]. To go from the finite dimensional proofs
above to the infinite dimensional case, it suffices to take finite dimensional sections
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and observe that the bounds obtained are independent of the finite dimensional
space considered.
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Villars, Éditeur-Imprimeur-Libraire, Paris, 1962.
[BLZ98] Peter W. Bates, Kening Lu, and Chongchun Zeng. Existence and persistence

of invariant manifolds for semiflows in Banach space. Mem. Amer. Math. Soc.,

135(645):viii+129, 1998.
[BMK08] Thomas Bartsch, Jeremy M. Moix, and Shinnosuke Kawai. Time-dependent transition

state theory. Advance in Chemical Physis, 140(3):189–238, 2008.

[Box91] Petra Boxler. How to construct stochastic center manifolds on the level of vector fields.
In Lyapunov exponents (Oberwolfach, 1990), volume 1486 of Lecture Notes in Math.,

pages 141–158. Springer, Berlin, 1991.

[Car81] Jack Carr. Applications of centre manifold theory, volume 35 of Applied Mathematical
Sciences. Springer-Verlag, New York-Berlin, 1981.

[CdlL] Hongyu Cheng and Rafael de la Llave. Stable manifold

to bounded solutions in possibly ill-posed pdes. Submitted.
https://web.ma.utexas.edu/mp arc-bin/mpa?yn=19-6.

[CI75] N. Chafee and E. F. Infante. A bifurcation problem for a nonlinear partial

differential equation of parabolic type. Applicable Anal., 4:17--37,

1974/75.

[CL97] C. Chicone and Y. Latushkin. Center manifolds for infinite-dimensional

nonautonomous differential equations. J. Differential Equations,

141(2):356--399, 1997.

[CLY00a] Shui-Nee Chow, Weishi Liu, and Yingfei Yi. Center manifolds for invariant

sets. J. Differential Equations, 168(2):355--385, 2000. Special issue in

celebration of Jack K. Hale’s 70th birthday, Part 2 (Atlanta, GA/Lisbon,

1998).

[CLY00b] Shui-Nee Chow, Weishi Liu, and Yingfei Yi. Center manifolds for smooth

invariant manifolds. Trans. Amer. Math. Soc., 352(11):5179--5211, 2000.

[CM65] D. R. Cox and H. D. Miller. The theory of stochastic processes. John Wiley

& Sons, Inc., New York, 1965.
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